KR20000031297A - Method of preparing high-purity nitrogen gas - Google Patents
Method of preparing high-purity nitrogen gas Download PDFInfo
- Publication number
- KR20000031297A KR20000031297A KR1019980047268A KR19980047268A KR20000031297A KR 20000031297 A KR20000031297 A KR 20000031297A KR 1019980047268 A KR1019980047268 A KR 1019980047268A KR 19980047268 A KR19980047268 A KR 19980047268A KR 20000031297 A KR20000031297 A KR 20000031297A
- Authority
- KR
- South Korea
- Prior art keywords
- air
- nitrogen
- liquid
- gas
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04181—Regenerating the adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
- F25J3/0486—Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04945—Details of internal structure; insulation and housing of the cold box
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/42—Nitrogen or special cases, e.g. multiple or low purity N2
- F25J2215/44—Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
본 발명은 심랭법에 의해 공기로부터 기체질소를 분리, 생산하는 고순도 질소가스 제조방법에 관한 것으로, 공기가 에어필터(2)를 통하여 유입되어 압축기(3)에서 압축되고 냉동기(4)와 분리기(5)를 통과하는 단계와, 다음에는 흡착제가 들어있는 흡착탑(6)을 통과하면서 공기중의 수분과 이산화탄소가 완전히 제거된 건조공기가 일부는 주 열교환기(8)로 도입되고 일부 건조공기는 건조공기 라인(15)을 통하여 액체공기열교환기(16)로 도입되는 단계와, 주 열교환기(8)로 도입된 건조공기는 노점부근까지 냉각이 되어 규칙적 패킹이 장착된 정류탑(10)으로 도입되어 정류탑(10)에서는 상부에서는 가벼운 질소가스가 모이고 하부에서는 산소성분이 풍부한 액체공기가 모이게 되는 단계와, 정류탑(10) 상부의 질소가스는 정류탑 위에 설치되어 있는 질소응축기(13)에서 완전응축이 일어나 다시 정류탑(10) 상부로 환류액이 되어서 돌아오고 환류액 중 일부는 액체질소 저장탱크(22)에 저장되며 정류탑 상부의 질소가스는 열교환기(8)를 거쳐 기체질소 라인(19)을 통해 제품으로 회수되는 단계와, 정류탑(10) 하부의 액체공기는 팽창밸브(11)를 통과하면서 압력이 떨어진 상태로 액체공기분리기(12)로 도입되어 정류탑위의 질소응축기(13) 내부를 흐르는 질소와 열교환하고 기화되어 열교환기(8)를 통하여 상온으로 변하고 흡착탑의 재생가스로 이용되는 단계와, 액체공기분리기(12) 하부에 있는 액체공기의 일부를 액체공기 라인(17)을 통하여 외부로 방출시키는 단계와, 희가스는 희가스 라인(14)을 통하여 질소응축기(13) 전단에서 제거하며, 건조공기 라인(15)을 통하여 액체공기열교환기(16)에 들어간 상온의 건조공기는 액체공기분리기(12) 하부에서 액체공기 라인(17)을 통하여 나온 액체공기와 질소응축기 (13) 전단에서 희가스 라인(14)을 통하여 나온 희가스와 열교환하여 온도가 저하된 상태로 팽창터빈(9)으로 들어가고, 상기 액체공기와 희가스는 상온의 가스가 되어 폐가스라인(20)을 통해 대기로 방출되는 단계로 이루어진다.The present invention relates to a high-purity nitrogen gas production method for separating and producing gaseous nitrogen from air by a deep cooling method, wherein air is introduced through an air filter (2), compressed in a compressor (3), and a freezer (4) and a separator ( 5), and then through the adsorption tower (6) containing the adsorbent, some of the dry air is completely introduced into the main heat exchanger (8) and some dry air is dried Introduced into the liquid air heat exchanger (16) through the air line (15), and dry air introduced into the main heat exchanger (8) is cooled to near the dew point and introduced into the rectifying tower (10) equipped with regular packings. In the rectification tower 10, light nitrogen gas is collected at the upper part, and liquid air rich in oxygen is collected at the lower part, and the nitrogen gas at the upper part of the rectification tower 10 is nitrogen condenser 13 installed on the rectification tower. Complete condensation occurs at the top of the rectification tower (10) to return to the reflux liquid and some of the reflux liquid is stored in the liquid nitrogen storage tank 22 and the nitrogen gas at the top of the rectification tower through the heat exchanger (8) The step of recovering the product through the line 19 and the liquid air under the rectification column 10 is introduced into the liquid air separator 12 while the pressure is released while passing through the expansion valve 11 to the nitrogen condenser on the rectification column (13) heat exchange with nitrogen flowing inside and vaporized to change to room temperature through the heat exchanger (8) and used as regeneration gas of the adsorption tower; and a portion of the liquid air under the liquid air separator (12) is transferred to the liquid air line ( 17) and the rare gas is removed at the front end of the nitrogen condenser (13) through the rare gas line (14), and the dry air at room temperature entering the liquid air heat exchanger (16) through the dry air line (15). Is liquid Heat exchanged with the liquid air from the lower part of the atmosphere (12) through the liquid air line (17) and the rare gas from the front of the nitrogen condenser (13) through the rare gas line (14) to the expansion turbine (9) in a temperature lowered state. After entering, the liquid air and the rare gas are gas at room temperature and are discharged to the atmosphere through the waste gas line 20.
Description
본 발명은 심랭법에 의해 공기로부터 기체질소를 분리, 생산하는 고순도 질소가스 제조방법에 관한 것이다.The present invention relates to a high-purity nitrogen gas production method for separating and producing gaseous nitrogen from air by a deep cooling method.
종래의 심냉법에 의한 질소가스 제조방법은 공기를 액화분리시키기 위해서 먼저 공기를 압축시키고 공기중의 수분과 이산화탄소를 흡착탑에서 제거한 다음 열교환기에서 초저온으로 냉각시킨 후 정류탑으로 보낸다.In the conventional method for producing nitrogen gas by deep cooling, the air is first compressed to remove the air from the adsorption column, and the moisture and carbon dioxide are removed from the adsorption tower, and then cooled to a cryogenic temperature in a heat exchanger and then sent to the rectification tower.
정류탑에서는 기액평형 원리에 의한 물질분리가 일어나고, 이 때 가벼운 질소는 정류탑 상부에 모이고 산소성분이 많은 공기는 액체가 되어 정류탑 하부에 모인다. 정류탑 하부의 액체공기는 팽창밸브를 거쳐 액체공기분리기로 이송되고 액체공기분리기 안에 들어있는 질소응축기를 식히는 역활을 한다.In the rectification column, the separation of substances by the gas-liquid equilibrium principle occurs. At this time, light nitrogen collects in the upper part of the rectifying tower and oxygen-rich air becomes a liquid and collects in the lower part of the rectifying tower. The liquid air at the bottom of the rectification column is transferred to the liquid air separator through an expansion valve and serves to cool the nitrogen condenser contained in the liquid air separator.
질소응축기에는 정류탑으로부터 도입된 질소가스가 응축되어 액체질소로 정류탑으로 환류된다. 이 때 필요한 한랭은 팽창터빈을 통하거나 액체질소를 사용하여 얻는다. 그리고 장치중에서 초저온에서 작동하는 것은 모두 콜드박스라는 단열상자에 들어있다.In the nitrogen condenser, the nitrogen gas introduced from the rectification tower is condensed and refluxed with liquid nitrogen to the rectification tower. The required cold is obtained through expansion turbines or using liquid nitrogen. And all of the devices that operate at very low temperatures are in an insulated box called a cold box.
이러한 종래의 방법에는 몇가지 문제점이 있다.There are several problems with this conventional method.
심랭식 공기분리에 있어서 가장 중요한 부분은 정류탑인데, 종래에는 정류탑 내에 수십장의 트레이를 장착시켜 유체의 기액평형의 원리로 질소를 분리했다. 그러나 트레이의 사용은 탑내의 압력손실을 증가시켜 결과적으로 동력비의 증가를 가져오게 됐다.The most important part of the deep-cooled air separation is the rectification column. In the past, dozens of trays were mounted in the rectification column to separate nitrogen on the principle of gas-liquid equilibrium. However, the use of trays increased the pressure loss in the tower, resulting in increased power costs.
그래서 석유화학을 중심으로 트레이 대신 규칙적 패킹을 사용하는 방법이 보급되었고 공기분리에서도 아르곤 탑이나 저압탑에는 이미 사용되고 있다. 그럼에도 불구하고 공기분리중 고순도 질소를 제조하는 고압탑에는 규칙적 패킹을 사용하지 않는 이유는 규칙적 패킹이 탑내의 압력이 적을수록 효과적이지만 탑내의 압력이 높으면 트레이에 비하여 효과가 떨어지기 때문이다. 그러나 고압탑에서라도 규칙적 패킹은 트레이 방식에 비하여 압력손실이 1/5 이하이므로 운전동력비 측면에서는 트레이 방식에 비하여 유리하다.Therefore, petrochemical centering is used to use regular packing instead of tray, and air separation is already used in argon tower or low pressure tower. Nevertheless, the reason why the regular packing is not used in the high pressure tower that produces high purity nitrogen during air separation is that the regular packing is more effective at lower pressure in the column, but the higher pressure in the tower is less effective than the tray. However, even in high pressure towers, regular packing is more advantageous than tray type in terms of operating power ratio because pressure loss is less than 1/5 compared to tray type.
그리고 종래의 방법에는 희가스 제거에 몇가지 문제점이 있었다.In the conventional method, there are some problems in removing rare gas.
공기중에 미량으로 존재하는 헬륨이나 수소, 네온 등 질소보다 가벼운 희가스는 계속 제거되어야 한다.Rare gases lighter than nitrogen, such as helium, hydrogen, and neon, present in trace amounts in the air, must be removed.
국내에 특허등록된 공고번호 제90-5986호의 다이도산소의 방법에는 정류탑 상부의 질소가스를 질소응축기로 보낸 다음 질소가스를 부분응축시켜 일부는 액으로 환류시키고 일부는 희가스 제거를 위해 외기로 방출하고 있다. 이러한 공정에서는 보통 제품질소의 0.4 내지 0.8 % 에 해당하는 배출 희가스가 열회수 없이 폐기되며, 또한 희가스를 질소응축기 안으로 도입한 후 배출시키므로 질소응축기의 부피가 커지고 입출구부가 3 군데로 장치가 복잡해진다. 또한 부분응축을 위해서는 열량조정이 정밀해야 하므로 운전이 어려워질 수 있다.In the method of Daido Oxygen of Patent No. 90-5986, which is registered in Korea, the nitrogen gas at the top of the rectifying tower is sent to a nitrogen condenser, and then partially condensed, and some are refluxed to liquid, and some are discharged to the outside to remove rare gas. Doing. In this process, 0.4 to 0.8% of the product nitrogen is usually discharged without heat recovery, and the rare gas is introduced into the nitrogen condenser and then discharged, thereby increasing the volume of the nitrogen condenser and complicated the apparatus at three entrance and exit points. In addition, calorie adjustment must be precise for partial condensation, which can make operation difficult.
에어 프로덕츠 앤드 케미칼스 인코포레이티드의 특허공고 번호 제91-4123호는 희가스를 제품질소와 함께 섞어 배출하는 공정을 취하고 있으나, 이 방법은 질소의 순도가 중요시되는 공정에서는 사용하기 곤란하다. 그러므로 희가스의 한랭을 충분히 회수하면서 질소의 순도를 높이는 방법이 필요하게 된다.Patent Publication No. 91-4123 of Air Products and Chemicals, Inc., is a process in which rare gas is mixed with product nitrogen and discharged, but this method is difficult to use in a process where nitrogen purity is important. Therefore, there is a need for a method of increasing the purity of nitrogen while recovering the cold of rare gas sufficiently.
본 발명의 목적은 상기와 같은 문제점을 해결하고자 정류탑 내부에 규칙적 패킹을 사용하고 희가스를 효율적으로 제거하는 고순도 질소가스 제조방법을 제공하고자 하는 것이다.An object of the present invention is to provide a high-purity nitrogen gas production method using a regular packing in the rectification tower to efficiently remove the rare gas to solve the above problems.
본 발명의 고순도 질소가스 제조방법은 공기가 에어필터를 통하여 유입되어 압축기에서 압축되고 냉동기와 분리기를 통하여 잔류수분이 제거되는 단계와, 다음에는 흡착제가 들어있는 흡착탑을 통과하면서 공기중의 수분과 이산화탄소가 완전히 제거된 건조공기가 일부는 주 열교환기로 도입되고 일부 건조공기는 건조공기 라인을 통하여 액체공기열교환기로 도입되는 단계와, 주 열교환기로 도입된 건조공기는 노점부근까지 냉각이 되어 규칙적 패킹이 장착된 정류탑으로 도입되어 정류탑에서는 물질이동이 일어나서 정류탑 상부에서는 가벼운 질소가스가 모이고 하부에서는 산소성분이 풍부한 액체공기가 모이게 되는 단계와, 정류탑 상부의 질소가스는 정류탑 위에 설치되어 있는 질소응축기에서 완전응축이 일어나 다시 정류탑 상부로 환류액이 되어서 돌아오고 환류액 중 일부는 액체질소 저장탱크에 저장되며 정류탑 상부의 질소가스는 열교환기를 거쳐 기체질소 라인을 통해 제품으로 회수되는 단계와, 정류탑 하부의 액체공기는 팽창밸브를 통과하면서 압력이 떨어진 상태로 액체공기분리기로 도입되어 정류탑위의 질소응축기 내부를 흐르는 질소와 열교환하고 기화되어 열교환기를 통하여 상온으로 변하고 흡착탑의 재생가스로 이용되는 단계와, 액체공기분리기 하부에 아세틸렌을 포함하는 탄화수소가 쌓일 경우 폭발이 일어나므로 액체공기의 일부를 액체공기 라인을 통하여 외부로 방출시키는 단계와, 희가스는 희가스 라인을 통하여 질소응축기 전단에서 제거하며, 건조공기 라인을 통하여 액체공기열교환기에 들어간 상온의 건조공기는 액체공기분리기 하부에서 액체공기 라인을 통하여 나온 액체공기와 질소응축기 전단에서 희가스 라인을 통하여 나온 희가스와 열교환하여 온도가 저하된 상태로 팽창터빈으로 들어가고, 상기 액체공기와 희가스는 상온의 가스가 되어 폐가스라인을 통해 대기로 방출되는 단계로 이루어진다.In the method of manufacturing high purity nitrogen gas of the present invention, air is introduced through an air filter, compressed in a compressor, and residual water is removed through a freezer and a separator. Next, water and carbon dioxide in the air are passed through an adsorption tower containing an adsorbent. Completely removed dry air is introduced into the main heat exchanger, and some dry air is introduced into the liquid air heat exchanger through the dry air line, and the dry air introduced into the main heat exchanger is cooled to near the dew point and regular packing is installed. It is introduced into the rectification tower, and the material movement takes place in the rectification tower, so that light nitrogen gas is collected at the top of the rectification tower and liquid air rich in oxygen is collected at the bottom, and the nitrogen gas at the top of the rectification tower is nitrogen installed in the rectification tower. Full condensation occurs in the condenser and back to the top of the tower After returning, some of the reflux is stored in the liquid nitrogen storage tank, and the nitrogen gas at the top of the tower is recovered through the heat exchanger to the product through the gas nitrogen line, and the liquid air at the bottom of the tower is passed through an expansion valve. Introduced into the liquid air separator in a separated state, and heat exchanged with nitrogen flowing in the nitrogen condenser on the rectification column, and vaporized to change to room temperature through a heat exchanger and used as a regeneration gas of the adsorption tower, and a hydrocarbon containing acetylene under the liquid air separator. Is exploded when the gas accumulates, and a part of the liquid air is discharged to the outside through the liquid air line, and the rare gas is removed at the front end of the nitrogen condenser through the rare gas line and dried at room temperature into the liquid air heat exchanger through the dry air line. Air is drawn from the bottom of the liquid air separator Heat exchanged with the rare gas from the front of the liquid air and nitrogen condensate through the rare gas line enters the expansion turbine in a temperature-decreased state, and the liquid air and the rare gas become gas at room temperature and are discharged to the atmosphere through the waste gas line. Is done.
본 발명의 다른 실시예는 희가스는 희가스 라인을 통하여 질소응축기 전단에서 제거하며, 건조공기 라인을 통하여 액체공기열교환기에 들어간 상온의 건조공기는 액체공기분리기 하부에서 액체공기 라인을 통하여 나온 액체공기와 열교환하며 온도가 저하된 상태로 질소응축기 전단에서 희가스 라인을 통하여 나온 희가스와 합쳐져 혼합 라인을 통하여 팽창터빈으로 들어가고, 상기 액체공기는 상온의 가스가 되어 폐가스라인을 통해 대기로 방출되는 단계를 가진다.In another embodiment of the present invention, the rare gas is removed at the front end of the nitrogen condenser through the rare gas line, and the dry air at room temperature entering the liquid air heat exchanger through the dry air line exchanges heat with the liquid air from the liquid air separator through the liquid air line. And the temperature is lowered in the front of the nitrogen condenser combined with the rare gas from the rare gas line enters the expansion turbine through the mixing line, the liquid air is a gas at room temperature has a step of being discharged to the atmosphere through the waste gas line.
도1은 본 발명의 제조방법을 실현하는 장치의 구성을 도시하는 공정흐름도1 is a process flow diagram showing the configuration of an apparatus for realizing the manufacturing method of the present invention.
도2는 본 발명의 제조방법을 실현하는 다른 장치의 구성을 도시하는 공정흐름도Fig. 2 is a process flow diagram showing the construction of another apparatus for realizing the manufacturing method of the present invention.
<도면의 부호에 대한 설명><Description of Symbols in Drawings>
1: 원료공기 라인 2: 에어필터 3: 압축기1: Raw material air line 2: Air filter 3: Compressor
4: 냉동기 5: 분리기 6: 흡착탑4: freezer 5: separator 6: adsorption tower
7: 전기히터 8: 주 열교환기 9: 팽창터빈7: Electric Heater 8: Main Heat Exchanger 9: Expansion Turbine
10: 정류탑 11: 팽창밸브 12: 액체공기분리기10: rectification column 11: expansion valve 12: liquid air separator
13: 질소응축기 14: 희가스 라인 15: 건조공기 라인13: nitrogen condenser 14: rare gas line 15: dry air line
16: 액체공기열교환기 17: 액체공기 라인 18: 액체질소 라인16: liquid air heat exchanger 17: liquid air line 18: liquid nitrogen line
19: 기체질소 라인 20: 폐가스 라인 21: 혼합 라인19: gas nitrogen line 20: waste gas line 21: mixing line
22: 액체질소 저장탱크 23: 콜드박스22: liquid nitrogen storage tank 23: cold box
본 발명을 첨부된 도면을 참조하여 상세히 설명한다.The present invention will be described in detail with reference to the accompanying drawings.
도1은 본 발명의 제조방법을 실현하는 장치의 구성을 도시하는 공정흐름도이다.1 is a process flow diagram showing the configuration of an apparatus for realizing the manufacturing method of the present invention.
본 발명의 장치는 원료공기 라인(1), 여과기(2), 공기압축기(3)와 공기의 온도를 낮추는 냉동기(4), 분리기(5), 공기중의 수분과 이산화탄소를 제거하는 흡착탑(6), 폐가스의 온도를 높이는 전기히터(7) 등으로 된 상온부와, 주 열교환기(8), 한랭을 발생시키는 팽창터빈(9), 규칙적 패킹이 들어있는 정류탑(10), 팽창밸브(11), 질소가스가 응축되는 질소응축기(13), 질소응축기를 통해 가열되는 액체공기분리기(12), 건조공기와 액체공기와 희가스가 서로 열교환하는 액체공기열교환기(16), 가스의 입출구에 해당하는 파이프와 파이프에 소속된 밸브로 구성되어 있다. 이중에서 초저온에 해당하는 부분은 콜드박스(23)라는 단열상자 안에 놓여 있다.The apparatus of the present invention comprises a raw air line (1), a filter (2), an air compressor (3) and a refrigerator (4) for lowering the temperature of the air, a separator (5), and an adsorption tower (6) for removing water and carbon dioxide from the air. ), A room temperature section such as an electric heater (7) for raising the temperature of the waste gas, a main heat exchanger (8), an expansion turbine (9) for generating cold, a rectifying tower (10) containing regular packings, an expansion valve ( 11), a nitrogen condenser (13) in which nitrogen gas is condensed, a liquid air separator (12) heated through the nitrogen condenser, a liquid air heat exchanger (16) in which dry air and liquid air exchange with each other, and gas inlet and outlet. It consists of a pipe and a valve attached to the pipe. The portion corresponding to the cryogenic temperature among them lies in a heat insulation box called a cold box (23).
부호(14)는 희가스라인, 부호(17)는 액체공기 라인, 부호(18)는 액체질소 라인, 부호(19)는 기체질소 라인, 부호(20)는 폐가스 라인, 부호(22)는 액체질소 저장탱크를 나타낸다.14 is a rare gas line, 17 is a liquid air line, 18 is a liquid nitrogen line, 19 is a gas nitrogen line, 20 is a waste gas line, 22 is liquid nitrogen Represents a storage tank.
도1을 참조하여 본 발명의 질소가스 제조방법을 설명하면, 공기가 원료공기 라인(1)으로 공급되고 에어필터(2)를 통하여 장치내로 유입되어 압축기(3)에서 압축되고 냉동기(4)와 분리기(5)를 통하여 잔류수분이 제거된다.Referring to Figure 1, the nitrogen gas production method of the present invention, the air is supplied to the raw air line (1) and introduced through the air filter (2) into the apparatus is compressed in the compressor (3) and the freezer (4) and Residual water is removed through the separator (5).
다음에는 흡착제가 들어있는 흡착탑(6)을 통과하면서 공기중의 수분과 이산화탄소가 완전히 제거된 건조공기로 일부는 주 열교환기(8)로 도입되고 일부 건조공기는 건조공기 라인(15)을 통하여 액체공기열교환기(16)로 도입된다.Next, some of the dry air is introduced into the main heat exchanger (8) while some air is passed through the adsorption tower (6) containing the adsorbent and completely free of moisture and carbon dioxide. Is introduced into the air heat exchanger (16).
주 열교환기(8)로 도입된 건조공기는 노점부근까지 냉각이 되어 규칙적 패킹이 장착된 정류탑(10)으로 도입된다. 정류탑(10)에서는 물질이동이 일어나서 정류탑 상부에서는 가벼운 질소가스가 모이고 하부에서는 산소성분이 풍부한 액체공기가 모이게 된다.The dry air introduced into the main heat exchanger (8) is cooled to near the dew point and introduced into the rectifying tower (10) equipped with regular packing. In the rectification tower 10, a mass transfer occurs, and light nitrogen gas is collected at the top of the rectification tower, and liquid air rich in oxygen is collected at the bottom.
정류탑(10) 상부의 질소가스는 정류탑 위에 설치되어 있는 질소응축기(13)에서 완전응축이 일어나 다시 정류탑(10) 상부로 환류액이 되어서 돌아온다. 환류액 중 일부는 액체질소 저장탱크(22)에 저장되고 정류탑 상부의 질소가스는 열교환기(8)를 거쳐 기체질소 라인(19)을 통해 제품으로 회수된다.Nitrogen gas on the top of the rectification tower 10 is completely condensed in the nitrogen condenser 13 installed on the rectification tower 10 is returned to the top of the rectification tower (10). Some of the reflux is stored in the liquid nitrogen storage tank 22 and nitrogen gas at the top of the rectification column is recovered to the product through the gas nitrogen line 19 via the heat exchanger 8.
정류탑(10) 하부의 액체공기는 팽창밸브(11)를 통과하면서 압력이 떨어진 상태로 액체공기분리기(12)로 도입되어 정류탑위의 질소응축기(13) 내부를 흐르는 질소와 열교환하고 기화되어 열교환기(8)를 통하여 상온으로 변하고 흡착탑의 재생가스로 이용된다.The liquid air in the bottom of the rectification column 10 is introduced into the liquid air separator 12 while the pressure is dropped while passing through the expansion valve 11 to exchange heat with nitrogen flowing in the nitrogen condenser 13 on the rectification column and vaporize it. It changes to room temperature through the group 8, and is used as regeneration gas of an adsorption tower.
액체공기분리기(12) 하부에 아세틸렌을 포함하는 탄화수소가 쌓일 경우 폭발이 일어나므로 액체공기의 일부를 액체공기 라인(17)을 통하여 외부로 방출시킨다.When hydrocarbons containing acetylene accumulate under the liquid air separator 12, an explosion occurs, thereby releasing a part of the liquid air to the outside through the liquid air line 17.
희가스는 희가스 라인(14)을 통하여 질소응축기(13) 전단에서 제거하며, 건조공기 라인(15)을 통하여 액체공기열교환기(16)에 들어간 상온의 건조공기는 액체공기분리기(12) 하부에서 액체공기 라인(17)을 통하여 나온 액체공기와 질소응축기 (13) 전단에서 희가스 라인(14)을 통하여 나온 희가스와 열교환하여 온도가 저하된 상태로 팽창터빈(9)으로 들어가고, 상기 액체공기와 희가스는 상온의 가스가 되어 폐가스라인(20)을 통해 대기로 방출된다.The rare gas is removed at the front end of the nitrogen condenser 13 through the rare gas line 14, and the dry air at room temperature entering the liquid air heat exchanger 16 through the dry air line 15 is liquid air at the bottom of the liquid air separator 12. The liquid air and the rare gas from the front of the nitrogen condenser (13) through the line (17) exchanges with the rare gas from the line (14) and enters the expansion turbine (9) in a temperature-decreased state, the liquid air and rare gas is room temperature Becomes a gas and is discharged to the atmosphere through the waste gas line 20.
본 발명에서는 질소응축기(13)에 도입되기 전에 희가스 라인(14)을 통하여 희가스를 미리 제거하여 질소응축기의 크기를 줄일 수 있고, 질소응축기의 구조를 단순화시킬 뿐만 아니라 조작도 단순화시키면서 희가스의 제거효율을 높일 수 있다.In the present invention, the rare gas can be removed in advance through the rare gas line 14 before being introduced into the nitrogen condenser 13, thereby reducing the size of the nitrogen condenser and simplifying the structure of the nitrogen condenser and simplifying the operation while removing the rare gas. Can increase.
또한 희가스의 한랭회수를 위하여 액체공기열교환기(16)에서 건조공기와 서로 열교환시킨 후 외부로 방출한다.In addition, in order to recover the cold gas of rare gas, the liquid air heat exchanger (16) exchanges heat with dry air and releases it to the outside.
다른 방법으로는 액체공기열교환기를 단순화시키면서 한랭회수를 높이기 위해 도2에 도시된 다른 장치를 사용할 수 있다.Alternatively, the other apparatus shown in FIG. 2 can be used to increase the cold recovery while simplifying the liquid air heat exchanger.
도2는 본 발명의 제조방법을 실현하는 다른 장치의 구성을 도시하는 공정흐름도이다.Fig. 2 is a process flow diagram showing the construction of another apparatus for realizing the manufacturing method of the present invention.
이러한 장치는 원료공기 라인(1)에 공급되는 공기중의 불순물을 제거하는 여과기(2)와 공기를 압축시키는 공기압축기(3), 압축된 공기를 냉각시키는 프레온 냉동기(4), 수분을 제거하는 분리기(5), 미량의 수분과 이산화탄소를 제거하는 흡착탑(6), 폐가스의 온도를 상승시키는 전기히터(7) 등으로 이루어진 상온부와, 건조공기를 노점온도까지 떨어뜨리는 주 열교환기(8), 한랭을 발생시키는 팽창터빈(9), 규칙적 패킹으로 채워진 정류탑(10), 압력을 저하시키는 팽창밸브(11), 액체공기가 기화되는 액체공기분리기(12)와 그 안에서 정류탑 상부의 질소가스를 완전히 액체로 응축시키는 질소응축기(13) 등으로 이루어진 저온부로 구성된다.Such a device includes a filter (2) for removing impurities in the air supplied to the raw material air line (1), an air compressor (3) for compressing air, a freon freezer (4) for cooling the compressed air, and water for removing Room temperature section consisting of separator (5), adsorption tower (6) for removing trace amounts of water and carbon dioxide, electric heater (7) for raising the temperature of the waste gas, and main heat exchanger (8) for dropping dry air to the dew point temperature , Expansion turbine (9) for generating cold, rectification tower (10) filled with regular packing, expansion valve (11) for reducing pressure, liquid air separator (12) in which liquid air is vaporized, and nitrogen at the top of the tower It consists of a low temperature part which consists of nitrogen condensers 13 etc. which completely condense a gas into a liquid.
나머지 부호중 도1과 동일한 부호는 도1에 도시된 부재를 나타낸다.The same reference numerals as those in Fig. 1 indicate the members shown in Fig. 1.
본 발명의 질소가스 제조방법은 희가스는 희가스 라인(14)을 통하여 질소응축기(13) 전단에서 제거하며, 건조공기 라인(15)을 통하여 액체공기열교환기(16)에 들어간 상온의 건조공기는 액체공기분리기(12) 하부에서 액체공기 라인(17)을 통하여 나온 액체공기와 열교환하며 온도가 저하된 상태로 질소응축기(13) 전단에서 희가스 라인(14)을 통하여 나온 희가스와 합쳐져 혼합 라인(21)을 통하여 팽창터빈(9)으로 들어가고, 상기 액체공기는 상온의 가스가 되어 폐가스라인(20)을 통해 대기로 방출된다.In the nitrogen gas production method of the present invention, the rare gas is removed at the front end of the nitrogen condenser 13 through the rare gas line 14, and the dry air at room temperature entering the liquid air heat exchanger 16 through the dry air line 15 is liquid air. The heat exchanger with the liquid air from the lower part of the separator 12 through the liquid air line 17, combined with the rare gas from the front of the nitrogen condenser 13 through the rare gas line 14 in a state in which the temperature is lowered to mix the mixing line 21 Entering the expansion turbine (9) through, the liquid air is a gas at room temperature is discharged to the atmosphere through the waste gas line (20).
이러한 방법은 액체공기열교환기(16)에서 건조공기와 액체공기만이 열교환하고 희가스는 압력을 낮춘 후 건조공기와 팽창터빈(9)으로 도입되는 방법이 채택된다.This method adopts a method in which only the dry air and the liquid air heat exchange in the liquid air heat exchanger 16 and the rare gas is reduced in pressure and then introduced into the dry air and the expansion turbine 9.
이 방법은 팽창터빈으로 도입되는 유량을 증가시켜 한랭발생량을 늘릴 수 있고 같은 한랭량이라면 폐가스의 유량이 희가스 양만큼 줄어드므로 결과적으로 질소의 생산이 증가된다.This method can increase the amount of cold generated by increasing the flow rate introduced into the expansion turbine, and if the same amount of cold, the flow rate of waste gas is reduced by the amount of rare gas, resulting in increased nitrogen production.
본 발명에 의한 희가스 이용의 촛점은 희가스의 한랭을 최대한으로 이용하면서 질소의 순도를 높이는 방법이다. 이 방법중 초저온 영역은 콜드박스(23)에 들어 있으며 장치의 응급사고시에는 액체질소저장탱크(22)로부터 백업질소가 공급된다.The focus of the use of rare gas according to the present invention is a method of increasing the purity of nitrogen while making the most of the cold of rare gas. In this method, the cryogenic region is contained in the cold box 23 and the backup nitrogen is supplied from the liquid nitrogen storage tank 22 in case of an emergency of the apparatus.
상기와 같은 본 발명의 실시예들을 실시한 결과 정류탑의 압력손실이 종래의 방법에 비하여 1/5 이하로 줄고 한랭의 회수효율이 상승하는 이유로 전체적인 운전효율은 기존의 공정에 비하여 같은 생산조건에서 5 내지 10% 의 동력비 절감효과를 얻을 수 있다.As a result of implementing the embodiments of the present invention as described above, the overall operating efficiency is 5 at the same production conditions compared to the conventional process, because the pressure loss of the rectification column is reduced to 1/5 or less and the recovery efficiency of the cold rises. Energy savings of up to 10% can be achieved.
본 발명의 고순도 질소가스 제조방법에 따르면, 같은 조건의 고순도 질소를 저렴한 운전비로 생산할 수 있고 희가스의 이용이 보다 효과적으로 이루어지고 있으며, 희가스를 질소응축기 전단에서 제거함으로써 응축기의 구조를 단순화 할 수 있다.According to the high-purity nitrogen gas production method of the present invention, it is possible to produce high-purity nitrogen under the same conditions at a low operating cost, and the use of rare gas is more effective, and the structure of the condenser can be simplified by removing the rare gas from the front end of the nitrogen condenser.
또한 희가스를 팽창터빈으로 보낼 경우 팽창터빈 유량이 늘어나므로 그만큼의 폐가스의 유량이 필요없게 되고 그 만큼의 질소가스의 생산량을 늘릴 수 있어서 회수율도 증가된다.In addition, when the rare gas is sent to the expansion turbine, the flow rate of the expansion turbine is increased, so the flow rate of waste gas is not required, and the yield of nitrogen gas can be increased, thereby increasing the recovery rate.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980047268A KR100275859B1 (en) | 1998-11-05 | 1998-11-05 | A manufacturing method for high purity nitrogen gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980047268A KR100275859B1 (en) | 1998-11-05 | 1998-11-05 | A manufacturing method for high purity nitrogen gas |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000031297A true KR20000031297A (en) | 2000-06-05 |
KR100275859B1 KR100275859B1 (en) | 2000-12-15 |
Family
ID=19557213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980047268A Expired - Lifetime KR100275859B1 (en) | 1998-11-05 | 1998-11-05 | A manufacturing method for high purity nitrogen gas |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100275859B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100859916B1 (en) * | 2004-11-08 | 2008-09-23 | 다이요 닛산 가부시키가이샤 | Process and apparatus for nitrogen production |
KR100905616B1 (en) * | 2002-12-23 | 2009-07-02 | 주식회사 포스코 | How to regenerate adsorber using liquid air from liquid tank |
KR100930316B1 (en) * | 2008-05-16 | 2009-12-08 | 대성산업가스 주식회사 | Ultra-small liquid nitrogen and liquid oxygen production device |
CN105466154A (en) * | 2015-12-21 | 2016-04-06 | 七台河宝泰隆煤化工股份有限公司 | Air separation technique |
CN116621117A (en) * | 2023-05-24 | 2023-08-22 | 上海汉兴化工科技有限公司 | Preparation method of high-purity hydrogen for fuel cell |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111456950B (en) * | 2020-03-17 | 2021-12-03 | 安徽晋煤中能化工股份有限公司 | Air compressor machine heat recovery unit |
KR102764909B1 (en) * | 2024-08-25 | 2025-02-06 | 인프라에어홀딩스 주식회사 | N2-CDA Air Compressor System |
-
1998
- 1998-11-05 KR KR1019980047268A patent/KR100275859B1/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100905616B1 (en) * | 2002-12-23 | 2009-07-02 | 주식회사 포스코 | How to regenerate adsorber using liquid air from liquid tank |
KR100859916B1 (en) * | 2004-11-08 | 2008-09-23 | 다이요 닛산 가부시키가이샤 | Process and apparatus for nitrogen production |
KR100930316B1 (en) * | 2008-05-16 | 2009-12-08 | 대성산업가스 주식회사 | Ultra-small liquid nitrogen and liquid oxygen production device |
CN105466154A (en) * | 2015-12-21 | 2016-04-06 | 七台河宝泰隆煤化工股份有限公司 | Air separation technique |
CN105466154B (en) * | 2015-12-21 | 2017-12-15 | 七台河宝泰隆煤化工股份有限公司 | A kind of space division technique method |
CN116621117A (en) * | 2023-05-24 | 2023-08-22 | 上海汉兴化工科技有限公司 | Preparation method of high-purity hydrogen for fuel cell |
CN116621117B (en) * | 2023-05-24 | 2024-02-02 | 上海汉兴化工科技有限公司 | Preparation method of high-purity hydrogen for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
KR100275859B1 (en) | 2000-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0211957B1 (en) | Apparatus for producing high-purity nitrogen and oxygen gases | |
KR900005985B1 (en) | High- purity nitrogen gas production equipment | |
US7591985B2 (en) | Method for purifying germanium hydrides | |
KR101099855B1 (en) | Air separator | |
WO1986000693A1 (en) | Apparatus for producing high-frequency nitrogen gas | |
CN113086956A (en) | Neon purification process and purification equipment thereof | |
KR100275859B1 (en) | A manufacturing method for high purity nitrogen gas | |
JPH09264667A (en) | Manufacturing device for extra-high purity nitrogen and oxygen | |
CN111637684A (en) | Single-tower cryogenic rectification argon recovery system with circulation and method | |
KR890001768B1 (en) | Highly pure nitrogen gas producing apparatus | |
JP2585955B2 (en) | Air separation equipment | |
JP3306517B2 (en) | Air liquefaction separation apparatus and method | |
JPH09184681A (en) | Method for manufacturing super high-purity oxygen and nitrogen | |
KR101238063B1 (en) | Nitrogen generating device and apparatus for use therefor | |
JPH10132458A (en) | Oxygen gas production method and apparatus | |
CN1221102A (en) | Ultra high purity nitrogen and oxygen generator unit | |
US4530708A (en) | Air separation method and apparatus therefor | |
US5546765A (en) | Air separating unit | |
JPH08291967A (en) | Method and apparatus for separating the air | |
CN213238140U (en) | Air separation system | |
CN103988037B (en) | Air separating method and device | |
JPH09217982A (en) | Air liquefaction separation device and air liquefaction separation method | |
JP3957842B2 (en) | Nitrogen production method and apparatus | |
JP2001033155A (en) | Air separator | |
KR19980014831A (en) | Apparatus and method for separating nitrogen from air by the centrifugal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19981105 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19981105 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20000918 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20000925 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20000926 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20030902 Start annual number: 4 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20060808 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20070808 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20080808 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20090901 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20100810 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20110809 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20120814 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20120814 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20130925 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20130925 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20140925 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20140925 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20150924 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20150924 Start annual number: 16 End annual number: 16 |
|
FPAY | Annual fee payment |
Payment date: 20160927 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20160927 Start annual number: 17 End annual number: 17 |
|
FPAY | Annual fee payment |
Payment date: 20170926 Year of fee payment: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20170926 Start annual number: 18 End annual number: 18 |
|
FPAY | Annual fee payment |
Payment date: 20180927 Year of fee payment: 19 |
|
PR1001 | Payment of annual fee |
Payment date: 20180927 Start annual number: 19 End annual number: 19 |
|
EXPY | Expiration of term | ||
PC1801 | Expiration of term |
Termination date: 20190505 Termination category: Expiration of duration |