KR20000031078A - Method of preparing complex fertilizer - Google Patents
Method of preparing complex fertilizer Download PDFInfo
- Publication number
- KR20000031078A KR20000031078A KR1019980046941A KR19980046941A KR20000031078A KR 20000031078 A KR20000031078 A KR 20000031078A KR 1019980046941 A KR1019980046941 A KR 1019980046941A KR 19980046941 A KR19980046941 A KR 19980046941A KR 20000031078 A KR20000031078 A KR 20000031078A
- Authority
- KR
- South Korea
- Prior art keywords
- potassium
- fertilizer
- nitrogen
- weight
- water
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05C—NITROGENOUS FERTILISERS
- C05C11/00—Other nitrogenous fertilisers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Fertilizers (AREA)
Abstract
Description
본 발명은 복분해 반응에 의한 복합비료의 제조방법에 관한 것으로, 좀 더 상세하게는 폐기 옥심(oxim)용액을 염화칼륨 분말과 복분해 반응시켜 황산칼륨과 질산칼륨을 함유하는 복합비료를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a complex fertilizer by a metathesis reaction, and more particularly, to a method for producing a complex fertilizer containing potassium sulfate and potassium nitrate by metathesis reaction of a waste oxim solution with potassium chloride powder. will be.
종래, 복분해법을 이용하여 황산칼륨을 제조하는 방법이 다수 공지되어 있으며, 그 대표적인 예는 다음과 같으나, 어느 것이나 충분히 만족스러운 것은 못되었다.Conventionally, many methods for producing potassium sulfate using a metathesis method are known, and representative examples thereof are as follows, but none of them is satisfactory enough.
1) 랑베이나이트(Langbeinite) 법:1) Langbeinite law:
(MgSO4·KCl·3H2O)→K2SO4·6H2O+MgCl2K2SO4·MgSO4·6H2O+2KCl→2K2SO4+MgCl2 (MgSO 4 · KCl · 3H 2 O) → K 2 SO 4 · 6H 2 O + MgCl 2 K 2 SO 4 · MgSO 4 · 6H 2 O + 2KCl → 2K 2 SO 4 + MgCl 2
상기 방법은 독일, 이태리 등에서 일부 제조하고 있는 방법으로서 원광인 카이나이트(Kainite)를 약 100℃의 물에 용해시켜 쇼오나이트(schoenite) 또는 레오나이트(Leonite)를 만든후, 염화칼륨(KCl)과 반응시켜 황산칼륨(K2SO4)를 제조하는 방법이나 수율이 낮은 것이 단점이다.The method is partially manufactured in Germany, Italy, etc., and dissolves ore, kaineite, in water at about 100 ° C. to form schoenite or leonite, and then reacts with potassium chloride (KCl). It is a disadvantage in that the method for producing potassium sulfate (K 2 SO 4 ) or low yield.
2) 에이블, 판토(Able, Fanto)법:2) Able, Fanto method:
2KCl+CaSO4→ K2SO4+CaCl2 2KCl + CaSO 4 → K 2 SO 4 + CaCl 2
석고와 염화칼륨을 반응시키는 제조방법으로서 수율이 낮은 것이 단점이다.It is a disadvantage that the yield is low as a method of making gypsum and potassium chloride react.
3) 포타세에 프로튜트 키미끄(potasse etproduits chimigues)법:3) Potasse etproduits chimigues method:
석고와 염화칼륨을 50% 암모니아 수용액중에서 반응시키는 방법이나 그 취급이 곤란하고 공해 유발성이 강한 단점이 있다.Gypsum and potassium chloride are reacted in a 50% aqueous ammonia solution, but they are difficult to handle and have strong pollution.
4) 톰빌(Tombill) 광업소법:4) Tombill Mining Law:
4Na2SO4+ 6KCl → Na2SO4·3K2SO4·6NaCl 4Na 2 SO 4 + 6KCl → Na 2 SO 4 · 3K 2 SO 4 · 6NaCl
황산나트륨과 염화칼륨을 68℉의 수용액 상태로 만들어 Na2SO4와 K2SO4의 혼합물로 만든 후, 염화칼륨의 포화용액으로써 순수한 K2SO4결정을 얻는 방법이나 수율이 매우 낮다.Sodium sulfate and potassium chloride are prepared in a 68 ° F. aqueous solution to form a mixture of Na 2 SO 4 and K 2 SO 4 , and a pure K 2 SO 4 crystal is obtained as a saturated solution of potassium chloride.
5) 뷰크너(Buchener)법:5) Buchener method:
(NH4)2SO4+ 2KCl → K2SO4+ 2NH4Cl(NH 4 ) 2 SO 4 + 2KCl → K 2 SO 4 + 2NH 4 Cl
황산암모늄과 염화칼륨을 300∼345℉에서 반응시키는 방법으로서 부식이 심한 것이 결점이다.As a method of reacting ammonium sulfate and potassium chloride at 300 to 345 ° F., corrosion is a disadvantage.
6) 게베르크 샤프트 빅터(Gewerk schaft victor)법:6) Gewerk schaft victor method:
황산 암모늄과 염화칼륨을 암모니아 수용액중에서 반응시켜 97%의 높은 수율을 얻을 수 있으나, 부식이 매우 심한 결점이 있다.Ammonium sulfate and potassium chloride can be reacted in aqueous ammonia solution to obtain a high yield of 97%, but the corrosion is very poor.
또한, 카프로락탐의 제조에 통상적으로 이용되는 스태미카본(stamicarbon) HSO 공정에 있어서, 부산물로서 산출되는 황산암모늄을 유안 비료(N-NH3암모니아태 질소 20% 이상)로 추출한 후, 최종 잔류물로서 산업 폐기물인 C=NOH를 함유하는 옥심(Oxim) 용액을 증발 및 농축시켜 유초안 비료(총 질소분 30%정도, 황산 및 초산 암모늄)를 제조하는 방법이 공지되어 있으나, 이 유초안 비료는 대기중의 수분을 흡수하여 비료 입자들간의 고결(bonding) 및 조해 현상이 극심하여 실용화하기 곤란한 문제점이 있었다.In addition, in the stamicarbon HSO process which is commonly used for the preparation of caprolactam, the ammonium sulfate produced as a by-product is extracted with yuan fertilizer (N-NH 3 ammonia nitrogen 20% or more), and then the final residue As an example, a method of preparing an organic fertilizer (about 30% of nitrogen, sulfuric acid and ammonium acetate) by evaporating and concentrating an oxime solution containing C = NOH as an industrial waste is known. There is a problem in that it is difficult to practically use due to the absorption of moisture in the fertilizer particles (bonding) and deliquescent between the fertilizer particles.
이에 상술한 문제점들을 해소하기 위하여, 광범위한 연구를 거듭한 결과 본 발명자는, 산업 폐기물인 옥심 용액(수분제외 중량중, 암모니아태 질소(N-NH3) 함량이 약 18∼19중량%, 질산태 질소(N-NO3) 함량이 약 11∼12중량%를 염화칼륨 분말과 복분해 반응시키는 것에 의하여, 양질의 황산칼륨비료(수용성 칼륨 함량 47∼51중량% 및 총질소분 1∼7중량%) 및 질소질칼륨질 복합비료(수용성 칼륨 함량 15∼19중량% 및 총질소분 15∼19중량%)를 경제적으로 추출 제조할 수 있음을 발견하였고, 본 발명은 이에 기초하여 완성하였다.In order to solve the above problems, after extensive research, the inventors have found that the oxime solution (in addition to the water content, ammonia nitrogen (N-NH 3 ) content of about 18 to 19 % by weight, nitrate) A high quality potassium sulfate fertilizer (47-51% by weight of water-soluble potassium content and 1-7% by weight of total nitrogen) and nitrogenous material by metathesis reaction of about 11-12% by weight of nitrogen (N-NO 3 ) with potassium chloride powder It has been found that potassium complex fertilizers (15 to 19% by weight of water-soluble potassium content and 15 to 19% by weight of total nitrogen) can be extracted and produced economically, and the present invention has been completed based on this.
따라서, 본 발명의 목적은 산업 폐기물인 옥심 용액으로부터 수질 및 대기오염의 우려없이, 양질의 황산칼륨비료 및 질소질칼륨질복비를 제조하는 방법을 제공하는데 있다.It is therefore an object of the present invention to provide a method for producing high quality potassium sulfate fertilizer and nitrogenous nitrogen yield ratio from the oxime solution, which is an industrial waste, without fear of water quality and air pollution.
본 발명의 다른 목적은 기존의 복분해 반응 공정에 비하여, 황상칼륨 비료 및 질소질칼륨질복비를 고순도, 고수율로 얻을 수 있는 경제적인 제조방법을 제공하는데 있다.Another object of the present invention is to provide an economical manufacturing method which can obtain a sulfur-potassium fertilizer and a nitrogen-nitrogen nitrogen yield in high purity and high yield, compared to the conventional metathesis reaction process.
상기 목적을 달성하기 위한 본 발명의 제조방법은 카프로락탐 제조로부터 파생되는 부생 황산암모늄을 유안비료로서 추출한 후의 잔류산업폐기물인 옥심(Oxim)용액에 염화칼륨을 투입하여 교반하에 40∼80℃로 반응시키고, 반응종료후, 결정물을 여과처리하여 황산칼륨비료를 얻으며, 상기 여과처리로부터의 여액을 증발농축시킨후 교반하에 0∼10℃로 냉각시키고 방치한 다음, 여과건조시켜 질소질칼륨질복합비료를 얻는 것으로 이루어진다.The production method of the present invention for achieving the above object is by adding potassium chloride to the oxime (Oxim) solution, which is a residual industrial waste after extraction of by-product ammonium sulfate derived from caprolactam preparation as yuan fertilizer and reacted at 40 ~ 80 ℃ under stirring After completion of the reaction, the crystals were filtered to obtain potassium sulfate fertilizer. The filtrate from the filtration treatment was concentrated by evaporation, cooled to 0-10 ° C. under stirring, left to stand, and then filtered and dried to obtain a nitrogenous potassium nitrogen fertilizer. Consists of gaining.
이하, 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the present invention will be described in more detail.
수용액중에서 옥심용액의 성분인 황산암모늄과 질산암모늄을 염화칼륨과 반응, 복분해시켜 황산칼륨비료 및 질소질칼륨질복비의 결정을 제조하는 화학반응은 (NH4)2SO4+ NH4NO3+ 3KCl → 3NH4Cl + KNO3+ K2SO4이며, 적당한 온도에서의 수용액중에는 NH4 +, K+, SO4 -, NO3 -, Cl-등의 이온들이 각각의 용해도에 따라 이온상태로 존재하며 과량의 이온들은 각 분자 상태, 즉 K2SO4, KNO3, NH4등으로 석출하게 된다.The chemical reaction to prepare potassium sulfate fertilizer and nitrous nitrogen complex ratio by reacting ammonium sulfate and ammonium nitrate with potassium chloride in the aqueous solution with ammonium sulfate and metathesis is (NH 4 ) 2 SO 4 + NH 4 NO 3 + 3KCl → and 3NH 4 Cl + KNO 3 + K 2 SO 4, while an aqueous solution at a suitable temperature NH 4 +, K +, SO 4 -, NO 3 -, Cl - ions such as they are present as ions according to their respective solubility Excess ions are precipitated in each molecular state, that is, K 2 SO 4 , KNO 3 , NH 4 .
이에 따라 용액의 용해도와 석출고체의 구성비 사이에는 일정한 평행상태가 존재하게 되며 이것을 이용하여 제품으로 요구되는 황산칼륨의 순도와 질소질칼륨질복비의 조성을 얻게 된다.As a result, a constant parallel state exists between the solubility of the solution and the composition ratio of the precipitated solid, thereby obtaining the purity of potassium sulfate and the composition of nitrogenous potassium nitrogen yield required for the product.
수용액중에서 생성되는 염화암모늄과 황산칼륨 및 질산칼륨중 용해도가 높은 염화암모늄과 질산칼륨의 일부가 이온상태로 용액중에서 잔존해 있게 되며 용해도가 비교적 낮은 황산칼륨은 용액의 조성에 따라 일정한 구성비로 석출하게 된다.Some of ammonium chloride and potassium nitrate, which are highly soluble in aqueous solution, in ammonium chloride and potassium nitrate, remain in the solution in an ionic state, and potassium sulfate, which has relatively low solubility, is precipitated at a constant ratio depending on the composition of the solution. do.
따라서, 옥심용액중의 황산칼륨 및 질산칼륨이 과량인 경우 수용액중에는 염화암모늄, 질산칼륨 및 미석출 황산칼륨 등이 존재하며, 고체상에는 황산칼륨이 존재하게 된다.Therefore, when the amount of potassium sulfate and potassium nitrate in the oxime solution is excessive, ammonium chloride, potassium nitrate and unprecipitated potassium sulfate are present in the aqueous solution, and potassium sulfate is present in the solid phase.
또한 염화칼륨이 과량인 경우에는, 수용액에 미반응 염화칼륨, 염화암모늄, 질산칼륨이 존재하며, 고체에는 황산칼륨, 미반응 염화칼륨이 존재하게 되어 용액과 동적 평형상태를 이루게 된다.In addition, when potassium chloride is excessive, unreacted potassium chloride, ammonium chloride and potassium nitrate are present in the aqueous solution, and potassium sulfate and unreacted potassium chloride are present in the solid to form a dynamic equilibrium with the solution.
한편, 제품으로서 요구되는 황산칼륨의 순도는 석출된 고체상에서의 순도에 따라 결정되며, 질산칼륨은 수용액의 NH4 +, NO3 -, K+, Cl-이온에 의해 결정된다.On the other hand, the purity of potassium sulfate required as a product is determined by the purity in the precipitated solid phase, and potassium nitrate is determined by the NH 4 + , NO 3 − , K + , Cl − ions of the aqueous solution.
본 발명의 제조방법은 반응조내에서의 각 물질 등의 이온, 즉 K+, NH4 +, SO4 -, NO2 -등의 평형상태를 공지의 방법으로 적절히 조절하여 황산칼륨결정 및 질소질칼륨질 복합비료 결정을 각각 추출할 수 있다.The production method of the present invention ion and the like of various materials in the reaction vessel, that is, K +, NH 4 +, SO 4 -, NO 2 - adjusting the equilibrium, such as by a known method to potassium sulfate crystals and nitrogenous potassium quality Each compound fertilizer crystal can be extracted.
폐기 옥심용액은 일반적으로 물 약 30∼50중량%, 황산암모늄 약 25∼15중량% 및 질산암모늄 약 45∼35중량%을 함유한다. 또한, 폐기 옥심용액과 반응하게 되는 염화칼륨은 수용성칼륨(K2O)을 60%이상 함유하는 것이다. 옥심용액과 염화칼륨의 첨가 중량비는 1 : 0.5 ∼ 1 : 7.0이고, 바람직하게는 1 : 0.6이다.The waste oxime solution generally contains about 30-50% by weight of water, about 25-15% by weight of ammonium sulfate and about 45-35% by weight of ammonium nitrate. In addition, potassium chloride reacted with the waste oxime solution contains 60% or more of water-soluble potassium (K 2 O). The weight ratio of the oxime solution and the potassium chloride is 1: 0.5 to 1: 7.0, preferably 1: 0.6.
염화칼륨 첨가비가 0.4미만에서는 수율이 저하되어 바람직하지 않으며, 0.8을 초과하면 경제성이 없으며 더 이상 수율의 증가가 없게 된다. 상기 반응물을 60rpm∼120rpm으로 교반하면서 50∼80℃에서 약 20분∼2시간 반응시킨다. 혼합액을 주입하고 약 2분간 탈수시킨 다음, 염소제거 세정수로 세정하고 약 3분간 탈수시킨다. 이것을 약 40℃∼80℃로 약 20분∼2시간정도 건조하면 황산칼륨 결정이 얻어진다.If the potassium chloride addition ratio is less than 0.4, the yield is lowered, which is undesirable, and if it exceeds 0.8, it is not economical and there is no increase in yield. The reaction is reacted at 50 to 80 ° C. for about 20 minutes to 2 hours with stirring at 60 rpm to 120 rpm. The mixed solution is poured and dehydrated for about 2 minutes, then rinsed with dechlorination water and dehydrated for about 3 minutes. Potassium sulfate crystals are obtained by drying this at about 40 ° C to 80 ° C for about 20 minutes to 2 hours.
한편, 상기의 여액을 진공 증발 농축시킨후, 약 30rpm으로 교반하면서 약 0℃∼10℃로 냉각시키고, 약 30분간 체류시키면 백색 결정이 얻어진다. 이 백색결정을 원심탈수기 또는 프레스필터로부터 추출하고, 건조기에서 약 40℃∼80℃로 약 20분∼2시간 정도 건조시키면 질소질칼륨질 복합비료 결정이 얻어진다. 또는, 상기 농축 결정의 방법이외의 여액을 직접 스프레이 건조기나 냉동건조기에 투입, 결정을 추출할 수도 있으나, 공해문제가 야기될 것을 우려하여 본 발명에서는 농축결정 방법을 채택하였다.On the other hand, the filtrate was concentrated by vacuum evaporation, cooled to about 0 ° C to 10 ° C with stirring at about 30 rpm, and left for about 30 minutes to obtain white crystals. The white crystals are extracted from a centrifugal dehydrator or press filter, and dried in a drier at about 40 ° C. to 80 ° C. for about 20 minutes to 2 hours to obtain a nitrogenous potassium complex fertilizer crystal. Alternatively, the filtrate other than the concentrated crystal method may be directly added to a spray dryer or a freeze dryer, and the crystal may be extracted. However, in the present invention, a concentrated crystal method has been adopted in the interest of causing pollution problems.
상기 황산칼륨 결정은 수용성 칼륨(K2O) 함량이 47∼51중량%이고, 총질소분이 1∼7중량%, 염소분이 1중량% 미만으로 함유한다.The potassium sulfate crystals contain 47 to 51% by weight of water-soluble potassium (K 2 O), 1 to 7% by weight of total nitrogen, and less than 1% by weight of chlorine.
본 발명의 방법에 있어서는 이온의 평형상태를 조절하는 것에 의하여 수용성 칼륨의 함량을 비교적 넓은 범위에 걸쳐서 임의로 용이하게 조절할 수가 있다.In the method of the present invention, by adjusting the equilibrium state of ions, the content of water-soluble potassium can be easily adjusted arbitrarily over a relatively wide range.
또한, 상기 질소질칼륨질복비결정은 수용성 칼륨의 함량이 15∼19중량%이고, 총질소분이 15∼19중량%이며, 염소분 6∼12중량%이고, 이것은 주로 KNO3로 이루어진고, K2SO4와 NH4Cl을 포함한다.In addition, the nitrogen nitrogen potassium nitrification ratio is 15 to 19% by weight of water-soluble potassium, 15 to 19% by weight of total nitrogen, 6 to 12% by weight of chlorine, which is mainly composed of KNO 3 , K 2 SO 4 and NH 4 Cl.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.
실시예 1Example 1
30ℓ 용량의 1개의 뱃치형 반응조와 2개의 연속식 반응조로 구성되는 완전혼합 방식의 파일러트 플랜트를 사용하였다.A fully mixed pilot plant consisting of one batch reactor with a 30 L capacity and two continuous reactors was used.
40중량%의 물과, 20중량%의 황산암모늄, 40중량%의 질산암모늄으로 이루어지며, 질산태 질소가 6.4중량%, 암모니아태 질소가 10.4중량% 함유하는 옥심용액 1,000g을 상기 뱃치형 반응조에 넣고 60℃로 가열한 후, 60중량%의 수용성칼륨(K2O)을 함유하는 60메쉬입도의 염화칼륨 600g을 투입하였다. 회전수 120rpm으로 30분간 교반하면서 반응시켰다. 공정수는 염화칼륨양의 50중량%로 하여 정수위 밸브에 의하여 자동 투입 조절하였다. 여기서, 뱃치형 반응기중에서의 30분간에 걸친 1차 반응 종료시의 혼합액은 25%의 슬러리를 포함하였으며, 목표 순도의 90%정도를 유지하도록 하였다. 이어서, 연속식 반응조로 이송시키면서 10분간 더 반응시켜 목표순도와 슬러리량을 상승시켰다.The batch reactor comprises 1,000 g of an oxime solution containing 40 wt% water, 20 wt% ammonium sulfate, 40 wt% ammonium nitrate, 6.4 wt% nitrogen nitrate and 10.4 wt% ammonia nitrogen. After heating to 60 ° C., 600 g of potassium chloride having a 60 mesh particle size containing 60% by weight of water-soluble potassium (K 2 O) was added thereto. The reaction was carried out at 30 rpm for 30 minutes with stirring. Process water was 50 weight% of potassium chloride amount, and it automatically controlled by the water level valve. Here, the mixed liquor at the end of the first reaction over 30 minutes in a batch reactor contained 25% slurry and maintained about 90% of the target purity. Subsequently, the mixture was further reacted for 10 minutes while being transferred to a continuous reactor to increase the target purity and slurry amount.
반응 종료후 용액을 원심 여과기로 투입하여 6000×g로 2분간 원심 탈수시킨 다음, 생성물의 합액율에 따른 순도저하를 방지하기 위하여 염소제거 세정수 100ml을 투입하여 세정시키면서 500×g로 다시 3분간 탈수시켰다. 탈수된 결정물을 건족시중에서 60℃로 30분간 건조시켜, 318.4g의 황산칼슘결정을 얻었다(물을 제외한 총중량비에 대하여 26.5%의 수율).After completion of the reaction, the solution was introduced into a centrifugal filter and centrifuged for 2 minutes at 6000 × g. Then, 100 ml of chlorine removal water was added and washed again for 3 minutes at 500 × g in order to prevent a drop in purity according to the product ratio of the product. Dehydrated. The dehydrated crystals were dried at 60 DEG C for 30 minutes in dry condition to give 318.4 g of calcium sulfate crystals (26.5% yield based on the total weight ratio except water).
이를 분석한 결과;Analysis of this;
수용성 칼륨 : 48.1 중량%Water Soluble Potassium: 48.1 wt%
총 질 소 분 : 5.0 중량%Total nitrogen content: 5.0 wt%
염 소 분 : 0.7 중량%Chlorine content: 0.7 wt%
수 분 : 0.3 중량%Moisture: 0.3 wt%
함유하고 있는 양질의 황산칼륨 비료임이 판명되었다.It was found to be a good quality potassium sulfate fertilizer.
한편, 상기 원심여과기로부터의 여액(질산칼륨복비의 오액)을 열교환기에 의하여 약 50℃로 예열한 후, 진공증발장치중에서 진공증발농축시킨후, 약 30rpm으로 교반하면서 냉각 탱크중에서 5℃로 냉각시키고, 30분간 방치하여 백색결정을 석출시켰다.Meanwhile, the filtrate from the centrifugal filter (filtrate of potassium nitrate) is preheated to about 50 ° C. by a heat exchanger, and then vacuum evaporated in a vacuum evaporator, then cooled to 5 ° C. in a cooling tank with stirring at about 30 rpm. The mixture was left for 30 minutes to precipitate white crystals.
상기와 같이 원심 여과기로 석출된 결정들을 분리하고, 건조기중에서 30분간 60℃로 건조시켜, 535.3g의 질소질칼륨질복비 결정을 얻었다(물을 제외한 총중량비에 대하여 44.61%의 수율).The precipitated crystals were separated by a centrifugal filter as described above, and dried in a drier at 60 ° C. for 30 minutes to obtain 535.3 g of nitrogenous nitrogen yield ratio crystals (44.61% yield based on the total weight ratio except water).
이를 분석한 결과;Analysis of this;
수용성 칼륨 : 19.5 중량%Water Soluble Potassium: 19.5 wt%
총 질 소 분 : 17.4 중량%Total nitrogen content: 17.4 wt%
염 소 분 : 8.6 중량%Chlorine content: 8.6 wt%
수 분 : 0.5 중량%Moisture: 0.5 wt%
를 함유하고 있는 양질의 질소질칼륨질 복합비료임이 판명되었다.It was found to be a high quality nitrogenous potassium fertilizer containing fertilizer.
상기한 바와 같이, 본 발명에 따른 제조방법은 산업 폐기물인 옥심용액을 수질 및 대기오염의 우려없이 양질의 황산칼륨비료 및 질조질칼륨질복비를 얻을 수 있으며, 기존의 복분해법에 비하여 비료성분을 고순도, 고수율로 경제적으로 얻을 수가 있고, 만하임(Mannheim)법 등에서와는 달리 황산칼륨비료중의 Cl 함량을 1중량% 미만으로 용이하게 감소시킬 수 있는 등의 장점을 갖고 있다.As described above, the manufacturing method according to the present invention can obtain a high quality potassium sulfate fertilizer and a high quality potassium fertilizer ratio of the oxime solution, which is an industrial waste, without the concern of water quality and air pollution. It is economically obtainable with high purity and high yield, and unlike the Mannheim method, it has the advantage of easily reducing the Cl content in potassium sulfate fertilizer to less than 1% by weight.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980046941A KR20000031078A (en) | 1998-11-03 | 1998-11-03 | Method of preparing complex fertilizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980046941A KR20000031078A (en) | 1998-11-03 | 1998-11-03 | Method of preparing complex fertilizer |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000031078A true KR20000031078A (en) | 2000-06-05 |
Family
ID=19556992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980046941A KR20000031078A (en) | 1998-11-03 | 1998-11-03 | Method of preparing complex fertilizer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000031078A (en) |
-
1998
- 1998-11-03 KR KR1019980046941A patent/KR20000031078A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3956464A (en) | Preparation of phosphates | |
EP3626695B1 (en) | Method for producing ammonium sulfate nitrate | |
CN111592014A (en) | Method and system device for preparing potassium sulfate, calcium carbonate and ammonium chloride from phosphogypsum | |
BG63775B1 (en) | Method for potassium sulphate production | |
CN101486481A (en) | Method for coproduction of ammonia sulfate and superfine light calcium carbonate from fluorgypsum | |
CN110697731A (en) | Method for preparing ammonium sulfate and calcium carbonate from desulfurized gypsum | |
RU2235065C2 (en) | Method for producing potassium sulfate from potash and sodium sulfate | |
US5035872A (en) | Method of preparing potassium magnesium phosphate | |
US3785797A (en) | Production of nitrophosphate fertilizer | |
SU814272A3 (en) | Method of producing phosphoric acid | |
US2843454A (en) | Conversion of sodium chloride into sodium carbonate and ammonia chloride | |
KR920004712B1 (en) | Method of composite fertilizer compose of nitrogenous potassium and potassium sulfate fertilizers used with fertilizers oxim solution | |
KR20000031078A (en) | Method of preparing complex fertilizer | |
GB2052467A (en) | Preparation of multicomponent fertilizers | |
CN112919520B (en) | Deep dephosphorization method for phosphogypsum | |
US2680679A (en) | Manufacture of fertilizers | |
CN1114635A (en) | Process for producing potassium sulfate by plaster stone conversion method | |
WO2022023886A1 (en) | Process for the production of potassium sulphate based fertilizers | |
US2733132A (en) | patewo | |
US4169882A (en) | Purification of phosphoric acid with oxalic acid | |
GB2129410A (en) | Production of calcium phosphates | |
WO2001040112A1 (en) | Production of two alkali metal salts by a combined ion exchange and crystallisation process | |
SU842087A1 (en) | Method of producing complex fertilizer | |
US2879152A (en) | Manufacture of fertilizers | |
CN105084331B (en) | A kind of production method of no waste residue phosphoric acid by wet process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |