[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20000025984A - Liquid precursor useful to chemical deposition of copper - Google Patents

Liquid precursor useful to chemical deposition of copper Download PDF

Info

Publication number
KR20000025984A
KR20000025984A KR1019980043331A KR19980043331A KR20000025984A KR 20000025984 A KR20000025984 A KR 20000025984A KR 1019980043331 A KR1019980043331 A KR 1019980043331A KR 19980043331 A KR19980043331 A KR 19980043331A KR 20000025984 A KR20000025984 A KR 20000025984A
Authority
KR
South Korea
Prior art keywords
copper
deposition
thin film
present
alkyl group
Prior art date
Application number
KR1019980043331A
Other languages
Korean (ko)
Other versions
KR100536484B1 (en
Inventor
이시우
한상호
강상우
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019980043331A priority Critical patent/KR100536484B1/en
Publication of KR20000025984A publication Critical patent/KR20000025984A/en
Application granted granted Critical
Publication of KR100536484B1 publication Critical patent/KR100536484B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: Organic copper complex compound is provided which is liquid at room temperature, is suitable for chemical deposition of copper by the high stability and vapor pressure, and exhibits an excellent deposition characteristic. CONSTITUTION: Organic copper complex compound is represented by the formula (I),wherein, R1 is C1-C4 alkyl group; R2 is hydrogen or C1-C4 alkyl group; and R3 and R4 is, respectively, C1-C4 alkyl group or fluoro-substituted C1-C4 alkyl group.

Description

구리의 화학 증착에 유용한 액상 전구체Liquid precursors useful for chemical vapor deposition of copper

본 발명은 반도체 제조공정 중 구리배선제조에 활용할 수 있는, 구리의 화학 증착에 유용한 액상 유기 구리 (I) 전구체에 관한 것이다.The present invention relates to a liquid organic copper (I) precursor useful for chemical vapor deposition of copper that can be utilized in the manufacture of copper wiring in semiconductor manufacturing processes.

최근 전자 산업은 정보처리 속도의 고속화와 정보 저장 용량의 대형화에 따라 전자소자는 소형화되는 경향이 있다. 이와 같은 요구에 따라 소자들 사이에 금속 배선은 더욱더 고밀도, 고집적화, 소형화하는 추세에 있다. 전자 소자에서 현재 사용되고 있는 배선용 금속으로 텅스텐, 알루미늄이 사용되고 있으나, 알루미늄은 다소 낮은 비저항값(2.7 μΩ·cm)을 가지나 전자 이동의 단점이 있고, 텅스텐은 전자 이동의 문제는 없으나 높은 비저항값(5.4 μΩ·cm) 때문에 새로운 고밀도 소자용으로 사용하기에는 부적절하다.In recent years, the electronic industry tends to be miniaturized due to the increase in information processing speed and the increase in information storage capacity. In response to such demands, metal wiring between devices has become increasingly high density, high integration, and miniaturization. Although tungsten and aluminum are used as wiring metals currently used in electronic devices, aluminum has a relatively low resistivity value (2.7 μΩ · cm), but has a disadvantage in electron transfer. μΩcm) is not suitable for use in new high density devices.

이에 비해 구리는 비저항값이 작고 (1.67 μΩ·cm) 전자 이동에 대한 내성이 강해 수명이 길며 녹는점 또한 알루미늄 보다 높고 전류밀도를 10 배 이상 높일 수 있어 고속 동작이 가능할 뿐만 아니라 칩 크기도 동일 성능의 기존의 칩보다 65 % 정도 줄일 수 있고, 전력소모량을 줄일 수 있으며 다층 배선 제품 제조비용을 현재보다 약 30% 정도 줄일 수 있으므로 차세대 금속 배선용으로 매우 적합한 금속이다.On the other hand, copper has a small resistivity (1.67 μΩ · cm) and strong resistance to electron transfer, resulting in longer lifespan, higher melting point than aluminum, and a 10 times higher current density. It is 65% lower than existing chips, can reduce power consumption, and can reduce the manufacturing cost of multilayer wiring products by about 30% than present, making it a very suitable metal for next-generation metal wiring.

구리를 배선에 사용하는 방법으로 가장 각광받고 있는 공정은 유기금속화학증착법(MOCVD=metal organic chemical vapor deposition)에 의한 것이다. 그 이유는, 화학증착법은 물리적 증착법(PVD=physical vapor deposition)에 비해 층덮힘 및 개구 충전 특성이 뛰어나 미세 패턴 제조가 유리하기 때문이다.The most popular process for using copper for wiring is by metal organic chemical vapor deposition (MOCVD). The reason is that the chemical vapor deposition method has superior layer covering and opening filling properties than physical vapor deposition (PVD = physical vapor deposition), which is advantageous in producing a fine pattern.

최근 MOCVD법에 의한 구리 배선 제조에 사용하기 위한 유기 구리 전구체의 합성에 대한 연구가 활발하기는 하나, 전자소자의 회로용으로 적용할 만큼의 물성을 나타내는 전구체는 없다고 할수 있다. 유기 구리 전구체의 간단한 합성 방법은 도일(Doyle)등이 보고 한 바 있다[Organometallics,Vol.4, No. 5, 830 (1985)]. 이 방법은 산화구리(I)(Cu2O), 1,1,1,5,5,5-헥사플루오로-2,4-펜탄디올(Hhfac) 및 올레핀을 반응시켜 물(H2O)분자가 빠지면서 (hfac)Cu(올레핀) 착물을 형성시키는 방법이다.Recently, research on the synthesis of organic copper precursors for use in the production of copper wirings by MOCVD has been actively conducted, but there is no precursor exhibiting sufficient physical properties for the circuits of electronic devices. A simple method of synthesizing an organic copper precursor has been reported by Doyle et al . [Organometallics, Vol. 4, No. 5, 830 (1985). This method involves the reaction of copper (I) (Cu 2 O), 1,1,1,5,5,5-hexafluoro-2,4-pentanediol (Hhfac) with olefins to react with water (H 2 O). This is a method of forming a (hfac) Cu (olefin) complex as the molecules are released.

공업적으로 화학증착용으로 가능성이 큰 유기 구리(I) 전구체로는 (hfac) Cu(I)(vtms) 및 (hfac)Cu(I)(atms) [vtms: 비닐트리메틸실란, atms: 알릴트리메틸실란]가 있는데, 이들 전구체는 모두 금속 구리에 결합된 중성 리간드가 이중결합을 가진 올레핀들이다. 이들 전구체는 상온에서 액체 혹은 녹는점이 낮은 고체로서 증기압이 높은 것으로 알려져 있다. 그러나 이들 전구체의 열적 안정성 및 박막의 물성은 구리 배선 요구 수준에 미치지 못하고 있으므로 새로운 전구체의 개발이 요구되고 있다.The organic copper (I) precursors that are likely to be used for chemical vapor deposition are (hfac) Cu (I) (vtms) and (hfac) Cu (I) (atms) [vtms: vinyltrimethylsilane, atms: allyltrimethyl Silanes], and these precursors are all olefins in which the neutral ligand bonded to metallic copper has a double bond. These precursors are known to have high vapor pressure as liquids or low melting point solids at room temperature. However, since the thermal stability of the precursors and the physical properties of the thin film do not meet the requirements for copper wiring, development of new precursors is required.

따라서, 본 발명에서는 열적으로 안정하여 다루기 쉬우면서 충분히 낮은 증기압을 갖고 우수한 증착 특성을 나타내는 액상 유기 구리(I) 전구체를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a liquid organic copper (I) precursor that is thermally stable, easy to handle, has a sufficiently low vapor pressure, and exhibits excellent deposition characteristics.

도 1 및 도 2는 각각 본 발명의 구리 전구체를 이용하여 증착된 구리 박막의 기판 온도 변화에 따른 구리 증착 속도 및 비저항치를 나타내는 그래프이고,1 and 2 are graphs showing the copper deposition rate and the resistivity according to the substrate temperature change of the copper thin film deposited using the copper precursor of the present invention, respectively.

도 3 및 도 4는 본 발명의 전구체를 이용하여 증착된 구리 박막에 대한 X선 회절분석 결과를 각각 회절각도-강도 및 증착온도-강도로 나타낸 그래프이고,3 and 4 are graphs showing X-ray diffraction analysis results of diffraction angles-intensity and deposition temperature-intensity of copper thin films deposited using the precursors of the present invention, respectively.

도 5a 내지 5f는 본 발명의 전구체를 사용하여 100 ℃, 150 ℃ 및 200 ℃에서 증착된 구리 박막의 표면 및 단면을 주사전자현미경(SEM)으로 분석한 사진이고 (a 및 d는 100 ℃, b 및 e는 150 ℃, c 및 f는 200 ℃),5a to 5f are photographs obtained by scanning electron microscopy (SEM) analysis of the surface and cross section of a copper thin film deposited at 100 ° C., 150 ° C. and 200 ° C. using the precursor of the present invention (a and d are 100 ° C. and b). And e is 150 ° C., c and f are 200 ° C.),

도 6은 본 발명의 전구체를 이용하여 다양한 증착온도에서 증착된 구리 박막의 파장에 따른 반사도 값을 나타낸 그래프이다.6 is a graph showing reflectance values according to wavelengths of copper thin films deposited at various deposition temperatures using the precursor of the present invention.

본 발명에서는 상기 목적을 달성하기 위해 하기 화학식 1의 유기 구리(I) 착화합물을 제공한다:The present invention provides an organic copper (I) complex of formula 1 to achieve the above object:

화학식 1Formula 1

상기식에서,In the above formula,

R1은 C1-4알킬기이고,R 1 is a C 1-4 alkyl group,

R2는 수소 또는 C1-4알킬기이며,R 2 is hydrogen or a C 1-4 alkyl group,

R3및 R4는 각각 C1-4알킬 또는 플루오로-치환된 C1-4알킬이다.R 3 and R 4 are each C 1-4 alkyl or fluoro-substituted C 1-4 alkyl.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 상기 화학식 1의 유기 구리(I) 착화합물중 하기 화학식 2의 화합물이 바람직하다:Among the organic copper (I) complexes of the general formula (I) of the present invention, compounds of the following general formula (2) are preferred:

본 발명의 유기 구리(I) 착화합물은 1,1,1,5,5,5-헥사플루오로-2,4-펜탄디온(Hhfac), 2,4-펜탄디온(acac) 또는 2,2,6,6-테트라메틸-3,5-헵탄디온(TMHD)와 같은 β-디케톤 화합물을 4-알킬-1-펜텐과 같은 올레핀 화합물 및 산화구리(I)(Cu2O)와 반응시켜 제조할 수 있다. 상기 반응은 에테르, 디클로로메탄 등과 같은 유기 용매의 존재하에 약 2:2:1의 몰비의 디케톤:올레핀:Cu2O를 0 내지 20 ℃의 온도 및 대략 1기압의 압력에서 30 내지 60분간 반응시킴으로써 수행할 수 있으며, 이때 MgSO4촉매를 산화구리(I)를 기준으로 1 내지 2몰 범위의 양으로 사용할 수 있다. 반응생성물을 분자체와 같은 여과체로 여과하여 목적하는 화합물을 수득할 수 있다.The organic copper (I) complex of the present invention is 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (Hhfac), 2,4-pentanedione (acac) or 2,2, Prepared by reacting a β-diketone compound such as 6,6-tetramethyl-3,5-heptanedione (TMHD) with an olefin compound such as 4-alkyl-1-pentene and copper (I) (Cu 2 O) can do. The reaction was carried out in a molar ratio of diketone: olefin: Cu 2 O in a molar ratio of about 2: 2: 1 in the presence of an organic solvent such as ether, dichloromethane, etc. at a temperature of 0-20 ° C. and a pressure of approximately 1 atmosphere for 30-60 minutes It can be carried out by, where the MgSO 4 catalyst can be used in an amount ranging from 1 to 2 moles based on copper (I). The reaction product can be filtered through a filter such as molecular sieve to give the desired compound.

상기 반응물들은 시판하는 것을 구입하여 사용할 수 있다.The reactants may be purchased commercially available.

본 발명에 따른 유기 구리(I) 착화합물은 상온에서 액체로서, 열적으로 안정하여 다루기 쉬울 뿐만아니라 상온 내지 60 ℃ 범위의 버블러 온도에서 증착하기에 충분한 증기압을 나타내어 구리 박막의 화학 증착에 특히 유용하다.The organic copper (I) complex according to the present invention is particularly useful for chemical vapor deposition of copper thin films, as a liquid at room temperature, not only thermally stable and easy to handle, but also exhibiting sufficient vapor pressure to deposit at bubbler temperatures ranging from room temperature to 60 ° C. .

본 발명의 화합물을 전구체로 사용하여 통상의 화학증착법에 의해 진공하에서 기판 상에 구리박막을 증착시킬 수 있다. 화학 증착시 운반 기체로는 아르곤과 같은 불활성기체를 사용하며, 기판으로는 백금, SiO2, TiN, Si 기판 등을 사용할 수 있고, 증착 온도는 90 내지 200 ℃ 범위가 적합하다.The compound of the present invention can be used as a precursor to deposit a copper thin film on a substrate under vacuum by conventional chemical vapor deposition. In chemical vapor deposition, an inert gas such as argon may be used as a carrier gas, and platinum, SiO 2 , TiN, Si substrate, or the like may be used as a substrate, and a deposition temperature of 90 to 200 ° C. is suitable.

이하, 실시예를 참조로 본 발명을 보다 상세히 설명하며, 본 발명이 이에 국한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

실시예 1: 유기 구리 전구체의 합성Example 1 Synthesis of Organic Copper Precursors

Cu2O 0.5 g (3.5mmol)와 MgSO40.84g (7.0mmol)를 포함하고 있는 쉴렝크 (Schlenk) 플라스크에 에테르 30 ml를 넣고 4-메틸-1-펜텐 0.59 g (7.0mmol)을 천천히 가하였다. 에테르 용매는 아르곤 기류하에서 나트륨벤조페논으로부터 증류하여 사용하였다. 생성된 붉은색 현탁액을 30분간 교반한 후 0℃로 냉각하고, 여기에 Hhfac 1.46 g (7.0mmol)이 녹아있는 에테르 용액을 캐뉼라를 이용하여 천천히 가하고 1시간 정도 상온에서 교반하였다. 용액의 색이 초록색으로 변한 다음, 이 용액을 셀라이트(CeliteR)에 통과시켜 거른 다음 진공하에서 용매를 제거하여 초록색 액상 상태의, 화학식 2의 구조를 갖는 유기구리전구체 화합물 1.12 g 을 얻었다. 수율은 90%였고,1H 및13C-NMR로서 화합물을 확인하였으며, 그 결과는 다음과 같다.30 ml of ether was added to a Schlenk flask containing 0.5 g (3.5 mmol) of Cu 2 O and 0.84 g (7.0 mmol) of MgSO 4 , and 0.59 g (7.0 mmol) of 4-methyl-1-pentene was added slowly. It was. The ether solvent was used distilled from sodium benzophenone under argon stream. The resulting red suspension was stirred for 30 minutes, cooled to 0 ° C., and an ether solution containing 1.46 g (7.0 mmol) of Hhfac was slowly added thereto using a cannula and stirred at room temperature for about 1 hour. After the color of the solution turned green, the solution was passed through Celite R and filtered, and then the solvent was removed under vacuum to obtain 1.12 g of an organic copper precursor compound having a structure of Chemical Formula 2 in a green liquid state. The yield was 90%, the compound was confirmed by 1 H and 13 C-NMR, the results are as follows.

1H-NMR(CDCl3, ppm)δ6.13(s, 1H), 5.28(m, 1H), 4.41(dd, 2H), 1.97(t, 2H), 1.75(m, 1H), 0.97(d, 6H) 1 H-NMR (CDCl 3 , ppm) δ6.13 (s, 1H), 5.28 (m, 1H), 4.41 (dd, 2H), 1.97 (t, 2H), 1.75 (m, 1H), 0.97 (d , 6H)

13C-NMR(CDCl3, ppm)δ178.25(q, CF3COCH), 120.13(q, CF3), 109.14, 89.92 (COCHCO), 85.08, 42.65, 28.80, 21.77 13 C-NMR (CDCl 3 , ppm) δ 178.25 (q, CF 3 COCH), 120.13 (q, CF 3 ), 109.14, 89.92 (COCHCO), 85.08, 42.65, 28.80, 21.77

실시예 2: 구리 박막의 증착 및 물성 시험Example 2: Deposition and Properties of Copper Thin Films

실시예 1에서 합성된 화합물을 전구체로 사용하여 화학증착법에 의해 기판의 온도를 변화시키면서 TiN 기판 위에 구리박막을 증착시켰으며, 이때 운반 기체로는 아르곤을 50 sccm의 유량으로 사용하였고, 전구체의 온도는 45 ℃로 유지하였으며, 전체압력은 0.3 mmHg로 일정하게 유지하였다.Using the compound synthesized in Example 1 as a precursor, a copper thin film was deposited on the TiN substrate while the temperature of the substrate was changed by chemical vapor deposition, wherein argon was used as a carrier gas at a flow rate of 50 sccm and the temperature of the precursor. Was maintained at 45 ℃, the total pressure was kept constant 0.3 mmHg.

증착 온도에 따른 구리 박막 증착 속도와 증착된 박막의 비저항치를 각각 도 1 및 도 2에 나타내었다. 도 1로부터 알 수 있듯이, 100 ℃의 기판 온도에서부터 증착이 되기 시작하여 170 ℃까지 증착 속도가 급격히 증가하다가 170 ℃ 이상의 온도에서는 완만한 증착속도를 나타낸다. 도 2에서는 증착이 시작되는 온도(100 ℃)에서는 그레인 경계면에서 산란 효과 (thin film effect) 때문에 저항이 크게 나오지만, 125 내지 200 ℃ 범위의 기판 온도에서의 비저항치는 벌크 구리의 값(1.67 μΩ·cm)과 비슷하게 됨을 알 수 있다.The deposition rate of the copper thin film and the resistivity of the deposited thin film according to the deposition temperature are shown in FIGS. 1 and 2, respectively. As can be seen from FIG. 1, deposition starts at a substrate temperature of 100 ° C., and the deposition rate rapidly increases to 170 ° C., but shows a gentle deposition rate at a temperature of 170 ° C. or higher. In Fig. 2, at the temperature at which deposition starts (100 ° C.), the resistance is large due to the thin film effect at the grain boundary, but the specific resistance value at the substrate temperature in the range of 125 to 200 ° C. (1.67 μ1 · cm Is similar to).

또한, 다양한 증착온도에서 증착된 구리 박막에 대하여 X선 회절분석 (XRD; X-ray diffraction)을 수행하였으며, 회절각도 변화에 따른 강도 값, 및 증착온도 변화에 따른 증착 박막 중의 구리 결정의 (111) 방위/ (200) 방위 비율을 각각 도 3 및 도 4에 나타내었다. 도 3 및 도 4로부터 본 발명의 구리전구체를 사용하여 증착된 구리 박막은 (111) 우선 방위를 갖는 다결정 박막임을 알 수 있다. (111)/(200) 강도비가 클수록 금속 배선의 단선이 잘 일어나지 않는 사실에 비추어 본 발명의 구리전구체를 사용하면 우수한 특성의 구리 박막이 형성됨이 검증된다.In addition, X-ray diffraction (XRD) was performed on the copper thin films deposited at various deposition temperatures. A) bearing / (200) bearing ratios are shown in FIGS. 3 and 4, respectively. It can be seen from FIG. 3 and FIG. 4 that the copper thin film deposited using the copper precursor of the present invention is a polycrystalline thin film having a (111) preferred orientation. In light of the fact that the (111) / (200) strength ratio is larger, disconnection of the metal wiring is less likely to occur, it is verified that the copper thin film having excellent characteristics is formed using the copper precursor of the present invention.

또한, 실시예 1에서 합성한 본 발명의 구리 전구체를 사용하여 100 ℃, 150 ℃ 및 200 ℃에서 증착한 구리 박막의 표면 및 단면을 전자주사현미경(SEM)으로 분석하였으며, 각각의 SEM 사진을 도 5a 내지 도 5f에 도시하였다(a 및 d는 100 ℃, b 및 e는 150 ℃, c 및 f는 200 ℃). 도 5로부터 본 발명에 따르는 구리 박막은 우수한 층덮힘 특성을 가지며, 결정들간의 연결성도 좋음을 알 수 있다.In addition, using the copper precursor of the present invention synthesized in Example 1, the surface and cross-section of the copper thin film deposited at 100 ℃, 150 ℃ and 200 ℃ was analyzed by an electron scanning microscope (SEM), each SEM picture 5a to 5f (a and d at 100 ° C., b and e at 150 ° C., c and f at 200 ° C.). It can be seen from FIG. 5 that the copper thin film according to the present invention has excellent layer covering properties and good connectivity between crystals.

박막의 거칠기를 조사하기 위하여, 다양한 증착온도에서 증착된 구리 박막에 대하여 파장에 따른 반사도를 측정하였으며, 그 결과를 도 6에 나타내었다. 도 6으로부터 본 발명에 따른 구리 박막이 거칠기가 그다지 크지 않음을 알 수 있다.In order to investigate the roughness of the thin film, reflectivity according to the wavelength of the copper thin film deposited at various deposition temperatures was measured, and the results are shown in FIG. 6. It can be seen from FIG. 6 that the copper thin film according to the present invention is not very rough.

본 발명에 따르면 짧은 반응 시간내에 높은 수율로 구리 박막 형성용의 새로운 유기 구리(I) 착물을 합성할 수 있으며, 이 착물은 상온에서 열안정성이 우수하고, 액체 상태에 있으면서 기화가 잘되는 특징이 있으므로 구리의 화학 증착에 유용하게 사용할 수 있으며, 증착된 구리 박막은 우수한 물성을 갖는다.According to the present invention, a new organic copper (I) complex for forming a copper thin film can be synthesized in a high yield within a short reaction time, and the complex has excellent thermal stability at room temperature, and is characterized by good vaporization while being in a liquid state. It can be usefully used for chemical vapor deposition of copper, and the deposited copper thin film has excellent physical properties.

Claims (3)

하기 화학식 1의 구조를 갖는 유기 구리(I) 착화합물:An organic copper (I) complex having a structure of Formula 1 화학식 1Formula 1 상기 식에서,Where R1은 C1-4알킬기이고,R 1 is a C 1-4 alkyl group, R2는 수소 또는 C1-4알킬기이며,R 2 is hydrogen or a C 1-4 alkyl group, R3및 R4는 각각 C1-4알킬 또는 플루오로-치환된 C1-4알킬이다.R 3 and R 4 are each C 1-4 alkyl or fluoro-substituted C 1-4 alkyl. 제 1 항에 있어서,The method of claim 1, 하기 화학식 2의 구조를 갖는 것을 특징으로 하는 착화합물.Complex having a structure of formula (2). 화학식 2Formula 2 상온 내지 60 ℃ 범위의 온도에서 제1항에 따른 유기 구리 착화합물을 기화시켜 화학증착법에 의해 기판 상에 구리 박막을 증착시키는 방법.A method of depositing a thin copper film on a substrate by chemical vapor deposition by vaporizing the organic copper complex according to claim 1 at a temperature ranging from room temperature to 60 ° C.
KR1019980043331A 1998-10-16 1998-10-16 Liquid precursors useful for chemical vapor deposition of copper KR100536484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980043331A KR100536484B1 (en) 1998-10-16 1998-10-16 Liquid precursors useful for chemical vapor deposition of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980043331A KR100536484B1 (en) 1998-10-16 1998-10-16 Liquid precursors useful for chemical vapor deposition of copper

Publications (2)

Publication Number Publication Date
KR20000025984A true KR20000025984A (en) 2000-05-06
KR100536484B1 KR100536484B1 (en) 2006-02-28

Family

ID=19554252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980043331A KR100536484B1 (en) 1998-10-16 1998-10-16 Liquid precursors useful for chemical vapor deposition of copper

Country Status (1)

Country Link
KR (1) KR100536484B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085731A (en) * 1991-02-04 1992-02-04 Air Products And Chemicals, Inc. Volatile liquid precursors for the chemical vapor deposition of copper
JP3284779B2 (en) * 1993-09-20 2002-05-20 三菱マテリアル株式会社 Copper thin film forming method
KR100249825B1 (en) * 1997-12-17 2000-03-15 정선종 Method of copper chemical vapor deposition using metalorganic precursor
KR100289946B1 (en) * 1998-09-21 2001-05-15 신현국 Precursor solution for chemical vapor deposition of copper film and its preparing method

Also Published As

Publication number Publication date
KR100536484B1 (en) 2006-02-28

Similar Documents

Publication Publication Date Title
US5187300A (en) Volatile precursors for copper CVD
US6359159B1 (en) MOCVD precursors based on organometalloid ligands
EP1688426B1 (en) Organometallic complexes and their use as precursors to deposit metal films
KR100767257B1 (en) VOLATILE METAL β-KETOIMINATE COMPLEXES
CN103755747A (en) Organometallic compounds, and methods of use thereof
KR20020046230A (en) Copper source reagent compositions, and method of making and using same for microelectronic device structures
JP2000186053A (en) Alkene ligand precursor and its synthesis
US6589329B1 (en) Composition and process for production of copper circuitry in microelectronic device structures
US5441766A (en) Method for the production of highly pure copper thin films by chemical vapor deposition
US5880303A (en) Amidoalane precursors for chemical vapor deposition of aluminum
KR100298125B1 (en) Organocuprous precursors for chemical deposition of copper
KR100296959B1 (en) Organo cuprous complex precursor useful for chemical vapor deposition of copper
US6130345A (en) Copper (1) precursors for chemical deposit in gas phase of metallic copper
US6340768B1 (en) MOCVD precursors based on organometalloid ligands
KR20000013302A (en) Glass copper precursor for chemical vapor deposition
KR100536484B1 (en) Liquid precursors useful for chemical vapor deposition of copper
CN112125931A (en) Synthesis method of bis (tert-butylamine) bis (dimethylamine) tungsten (VI)
KR101074310B1 (en) Copper complexes and process for formation of copper-containing thin films by using the same
US6838573B1 (en) Copper CVD precursors with enhanced adhesion properties
KR100600468B1 (en) Process for producing cycloalkene copper precursors
KR100984466B1 (en) Cu? COMPLEX, METHOD FOR MANUFACTURING THE SAME, METHOD FOR MANUFACTURING COPPER THIN FILM USING THE SAME AND SEMICONDUCTOR SUBSTRATE MANUFACTURED BY USING THE SAME
JPH07252266A (en) Organocopper compound for formation of copper thin film by chemical vapor deposition of organometal having high vapor pressure
JPH07188256A (en) Organosilver compound for silver thin film formation by organometallic chemical vacuum deposition with high vapor pressure
EP1792907A1 (en) Volatile metal beta-ketoiminate complexes
JPH0770163A (en) Organic copper compound for forming copper with film by chemical vacuum deposition of organic metal high in vapor pressure

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110916

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee