[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR19990046140A - Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same - Google Patents

Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same Download PDF

Info

Publication number
KR19990046140A
KR19990046140A KR1019990010875A KR19990010875A KR19990046140A KR 19990046140 A KR19990046140 A KR 19990046140A KR 1019990010875 A KR1019990010875 A KR 1019990010875A KR 19990010875 A KR19990010875 A KR 19990010875A KR 19990046140 A KR19990046140 A KR 19990046140A
Authority
KR
South Korea
Prior art keywords
nitrogen
composition
wastewater
organic matter
microorganisms
Prior art date
Application number
KR1019990010875A
Other languages
Korean (ko)
Inventor
이근헌
정재현
오재원
Original Assignee
명호근
쌍용양회공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명호근, 쌍용양회공업 주식회사 filed Critical 명호근
Priority to KR1019990010875A priority Critical patent/KR19990046140A/en
Publication of KR19990046140A publication Critical patent/KR19990046140A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 암모니아성 질소를 바로 질소가스로 전환시킬 수 있는 직접적 질소 제거 미생물을 포함하는, 폐수 중의 유기물 및 암모니아성 질소를 고효율로 제거하기 위한 조성물 및 이를 이용한 폐수 처리 방법에 관한 것으로, 본 발명의 조성물을 고농도의 질소 함유 폐수에 사용하면 유기물, 특히 암모니아성 질소의 제거효율이 현저하게 우수할 뿐만 아니라 공정이 매우 간단하여 이로 인한 경제적인 이익도 기대할 수 있다.The present invention relates to a composition for efficiently removing organic matter and ammonia nitrogen in waste water and a method for treating waste water using the same, including a direct nitrogen removal microorganism capable of directly converting ammonia nitrogen to nitrogen gas. The use of the composition in wastewater containing high concentrations of nitrogen is not only excellent in the removal efficiency of organic matter, especially ammonia nitrogen, but also a very simple process, which can be expected economic benefits.

Description

고농도의 유기물 및 질소 제거용 미생물을 포함하는 조성물 및 이를 이용하여 폐수를 처리하는 방법{Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same}Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same

본 발명은 암모니아성 질소를 질소가스로 바로 전환시킬 수 있는 미생물을 포함하는 조성물 및 이를 이용한 폐수 처리 방법에 관한 것으로, 구체적으로는 폐수 중의 암모니아성 질소를 아질산화 또는 질산화 질소로 전환되는 중간단계를 거치지 않고 바로 질소가스로 전환시킬 수 있는 미생물이 포함된 조성물 및 이를 이용하여 보다 간단하고 효율적으로 폐수 중의 유기물 및 질소를 처리하는 방법에 관한 것이다.The present invention relates to a composition comprising a microorganism capable of directly converting ammonia nitrogen to nitrogen gas and a wastewater treatment method using the same, and specifically, to an intermediate step of converting ammonia nitrogen in wastewater into nitrous oxide or nitrogen nitrate. It relates to a composition containing a microorganism that can be converted directly to nitrogen gas without going through, and a method for treating organic matter and nitrogen in wastewater more simply and efficiently using the same.

1997년 현재 국내에는 약 44 개소의 축산폐수 공동처리장이 가동 및 공사중에 있다. 그러나 대부분의 공동처리장의 경우 최종 방류수의 처리수준이 법적 규제치를 만족하지 못하고 있으며 공사중인 공동처리장의 경우도 처리공정이 완전히 확립되지 못하여 계속적으로 보완해야 하는 실정이다. 뿐만 아니라 민간 축산폐수 처리장도 비슷한 상황이다.As of 1997, about 44 livestock wastewater treatment plants are in operation and under construction. However, in most common treatment plants, the treatment level of the final effluent does not satisfy the legal regulations, and in the case of the joint treatment plant under construction, the treatment process is not fully established and must be supplemented continuously. In addition, private livestock wastewater treatment plants are in a similar situation.

수중의 질소가 생물학적으로 제거되는 기작은 2단계 반응으로 이루어지는데, 1 단계는 호기성 상태에서 수중의 암모니아성 질소가 니트로소모너스(Nitrosomonas)와 니트로박터(Nitrobactor)에 의해 아질산성 질소를 거쳐 질산성 질소로 산화되는 질산화 과정이고, 2 단계는 상기 질산화반응 결과 생성된 아질산성 질소와 질산성 질소가 미생물에 의해 환원되어 질소가스로 전환되는 탈질과정이다.Biological removal of nitrogen from water is a two-step reaction. In the first step, ammonia nitrogen in aerobic water is passed through nitrite nitrogen through nitrite by Nitrosomonas and Nitrobactor. Nitric oxidation is oxidized to nitrogen, and step 2 is a denitrification process in which nitrite nitrogen and nitrate nitrogen generated as a result of the nitrification are reduced by microorganisms and converted into nitrogen gas.

1 단계 질산화 반응에서는 1g의 암모늄 이온을 산화시키기 위해 약 4.5g의 산소를 필요로 하는데, 이는 호기성 반응에서 유기물을 산화시키는데 필요로 하는 양에 비하여 매우 많은 양이다. 또한 반응결과 발생하는 산성성분에 의해 pH가 감소되어 극단적인 경우에는 반응이 중단되기도 하며, 이 단계에서 이용되는 질산화 박테리아는 유기물 제거를 위해 사용되는 박테리아에 비하여 성장속도가 매우 느려 반응조(폐수처리장)내에 미생물의 균주량을 일정하게 유지하기 위해서는 미생물의 체류시간을 길게 유지시켜야 한다는 불편함이 있다.The first stage nitrification reaction requires about 4.5 g of oxygen to oxidize 1 g of ammonium ions, which is much higher than the amount needed to oxidize organics in aerobic reactions. In addition, the pH is reduced by the acidic components generated as a result of the reaction, and in some cases, the reaction is stopped. The nitrifying bacteria used in this step are slower than the bacteria used for organic matter removal, so the reaction tank (wastewater treatment plant) In order to maintain a constant amount of strains of microorganisms within, it is inconvenient to keep the residence time of the microorganisms long.

2 단계 탈질반응에서 미생물의 기작은 호흡기작으로 1단계 반응 결과물인 아질산성 질소나 질산성 질소가 산소공급원으로 사용되는 무산소 반응이다. 그러나, 산소가 약 0.2ppm 이상 존재하는 조건에서 대부분의 탈질 미생물들은 산소공급원으로써 아질산성 질소나 질산성 질소를 사용하지 않고 산소를 이용한다. 이 경우 탈질반응은 심각한 저해를 받는다. 그러므로 이 단계에서는 반드시 무산소 조건을 유지시켜야 한다. 또한 탈질 반응이 원활하게 이루어지기 위해서는 수중에 존재하는 유기물/질소의 비율이 최소한 4이상, 바람직하게는 10 이상이 되어야 한다. 탈질 반응을 일으키는 미생물로는 아크로모박터(Achromobacter), 아씨네토박터(Acinetobacter), 애그로박터(Agrobacter) 등이 있다.The microbial mechanism in the two-stage denitrification reaction is a respiratory mechanism, an oxygen-free reaction in which the nitrite nitrogen or nitrate nitrogen, which is the result of the first stage reaction, is used as the oxygen source. However, in the presence of oxygen of about 0.2 ppm or more, most denitrifying microorganisms use oxygen without using nitrite nitrogen or nitrate nitrogen as an oxygen source. In this case, denitrification is severely inhibited. Therefore, anoxic conditions must be maintained at this stage. In addition, in order for the denitrification reaction to be performed smoothly, the ratio of organic matter / nitrogen present in water should be at least 4, preferably at least 10. Microorganisms causing denitrification include Achromobacter, Acinetobacter, and Agrobacter.

이러한 호기 및 무산소의 2 단계 반응으로 이루어진 질소제거 과정을 다소 변형시킨 방법들이 사용되어 왔는데("Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal" Clifford W. Randall, et al., Vol. 5, Technomic Publishing Co.; 이상은, "오폐수의 질소, 인 처리기술", 첨단환경기술, 1995년 1월; 및 고광백외 6명 "폐수처리공학", 동화기술, (1993)), 이러한 방법들을 이용하여 고농도의 질소 함유 폐수를 처리하는 것은 어렵다. 실제로 축산폐수의 경우 공동처리장에 유입되는 폐수의 BOD 농도는 10,000 내지 30,000 ppm, 총질소 농도는 4,000 내지 6,000 ppm으로써, 예를 들어, BOD 20,000 ppm, 총질소 4,000 ppm인 축산폐수 중에 존재하는 고형물 및 부유물질을 제거하면 BOD는 약 7,000 ppm, 총질소는 약 3,400 ppm으로 낮아진다. 이어서 질소처리를 위해 2 단계 공정을 도입하게 되면, 이론적으로 1 단계에서는 BOD가 80% 제거되고, 이 때 사용되는 미생물의 세포증식을 위해 질소가 소모됨으로써, 결과적으로 2 단계 공정에 유입되는 폐수의 BOD 농도는 1,400ppm, 총질소 농도는 약 2,900ppm로서 유기물/질소 비율이 0.48로 떨어지게 되어 2 단계 탈질반응은 일어나지 않게 된다. 따라서 종래 기술에서는 탈질반응의 조건을 조절하기 위해 외부에서 오염물질(유기물)을 추가로 다량 첨가해 주어야 하는 불합리한 점이 있으며, 질소 제거를 위해 혐기-무산소-호기 조건을 교차로 반복하고 슬러지를 반송해야 하는 공정이 필요하게 된다. 따라서 공정이 복잡해지게 되며 많은 경우 생물학적 반응조가 7개까지도 필요하다[대한민국 특허 공개 제 94-000379 호 및 윤조희, 한국수질보전학회지, 12(4), 463(1996)]는 단점이 있다.Some modifications to the nitrogen removal process consisting of two-stage reactions of aerobic and anaerobic reactions have been used ("Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal" Clifford W. Randall, et al., Vol. 5, Technomic Publishing Co .; Lee, "Nitrogen in Wastewater, Phosphorus Treatment Technology," Advanced Environmental Technology, January 1995; and High Kwangbaek et al. 6 "Wastewater Treatment Engineering", assimilation technology, (1993)), using these methods It is difficult to treat high concentrations of nitrogen containing wastewater. In practice, the livestock wastewater has a BOD concentration of 10,000 to 30,000 ppm and a total nitrogen concentration of 4,000 to 6,000 ppm, for example, solids present in the livestock wastewater having a BOD of 20,000 ppm and a total nitrogen of 4,000 ppm. Removing the suspended solids lowers the BOD to about 7,000 ppm and the total nitrogen to about 3,400 ppm. Subsequently, if a two-stage process is introduced for nitrogen treatment, in theory, 80% of the BOD is removed in the first stage, and nitrogen is consumed for the cell growth of the microorganisms used at this time, and consequently, The BOD concentration is 1,400ppm and the total nitrogen concentration is about 2,900ppm, and the organic matter / nitrogen ratio drops to 0.48 so that the two-stage denitrification does not occur. Therefore, in the prior art, it is unreasonable to add a large amount of contaminants (organic matters) from the outside to control the conditions of the denitrification reaction, and to repeat the anaerobic, anaerobic, and aerobic conditions and remove the sludge for nitrogen removal. The process is necessary. Therefore, the process is complicated, and in many cases, up to seven biological reactors are required (Korean Patent Publication No. 94-000379 and Yoon Jo-hee, Korean Journal of Water Conservation, 12 (4), 463 (1996)).

이에 본 발명자들은 보다 간단하고 효율적으로 폐수 중의 유기물 및 질소를 제거할 수 있는 방법을 개발하기 위해 계속 연구를 진행하던 중, 질소제거시 질산화 과정 및 탈질화 과정을 모두 거치지 않고 암모니아성 질소를 직접 질소가스로 전환시킬 수 있는 미생물을 발견함으로써 본 발명을 완성하였다.Accordingly, the present inventors continue to research to develop a method for removing organic matter and nitrogen in wastewater more simply and efficiently, and directly remove nitrogen from ammonia nitrogen without undergoing nitrification and denitrification. The present invention has been completed by finding a microorganism that can be converted to a gas.

본 발명의 목적은 폐수 중의 유기물 및 질소를 보다 간단하고 효율적으로 제거할 수 있는 조성물 및 이를 이용한 폐수 처리 방법을 제공하는 것이다.It is an object of the present invention to provide a composition which can more simply and efficiently remove organic matter and nitrogen in wastewater and a wastewater treatment method using the same.

도 1은 폐수 처리방법의 계통도를 나타낸 것이다.Figure 1 shows a schematic diagram of the wastewater treatment method.

상기 목적을 달성하기 위해, 본 발명에서는 슈도모너스(Pseudomonas), 스트렙토코쿠스(Streptococcus), 락토바실러스(Lactobacillus), 믹서마이시트 (Myxomycetes), 스트렙토마이시스(Streptomyces), 악티노마이시스(Actinomyces), 캔디다(Candida), 한세누라(Hansenula), 싸카로마이시스(Saccharomyces), 무코어(Mucor), 아스페길러스(Aspergillus), 트리코데마(Trichoderma) 또는 이들의 혼합물로부터 선택된, 암모니아성 질소를 질소가스로 바로 전환시킬 수 있는 직접적 질소 제거 미생물을 포함하는, 폐수 중의 유기물 및 암모니아성 질소 제거용 조성물을 제공한다.To achieve the above object, in the present invention, Pseudomonas, Streptococcus, Streptococcus, Lactobacillus, Lactobacillus, Myxomycetes, Streptomyces, Actinomyces, Actinomyces ), Candida, Hansenula, Saccharomyces, Mucor, Aspergillus, Trichoderma or mixtures thereof, ammonia nitrogen It provides a composition for removing organic matter and ammonia nitrogen in waste water, including a direct nitrogen removal microorganism that can be converted directly to nitrogen gas.

상기 다른 목적을 달성하기 위해, 본 발명에서는 생물학적 폐수 처리 방법에 있어서, 상기 조성물을 사용하는 것을 특징으로 하는 폐수 처리 방법을 제공한다.In order to achieve the above another object, the present invention provides a wastewater treatment method, characterized in that the composition is used in the biological wastewater treatment method.

이하 본 발명을 좀더 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 충남 계룡산 상신리 부근의 11월 낙엽이 쌓여 있는 토양에서 낙엽을 제거하고 깊이 1㎝ 이내의 토양을 채취하여 수중의 암모니아성 질소를 질산화 공정을 거치지 않고 직접 제거하는 미생물군(이하 "직접적 질소제거 미생물"이라 칭함)을 발견하였다.In the present invention, a microbial group that removes deciduous leaves from soil accumulated in November in Sangsin-ri, Gyeryongsan, Chungcheongnam-do and collects soil within 1 cm of depth and directly removes ammonia nitrogen in water without undergoing nitrification process (hereinafter referred to as "direct nitrogen"). "Removal microorganisms" were found.

분리된 미생물들은 동정 결과, 박테리아로서 슈도모너스(Pseudomonas), 스트렙토코쿠스(Streptococcus)와 락토바실러스(Lactobacillus), 방선균으로서 믹서마이시트(Myxomycetes), 스트렙토마이시스(Streptomyces), 악티노마이시스 (Actinomyces), 효모균으로 캔디다(Candida), 한세누라(Hansenula), 싸카로마이시스(Saccharomyces), 균류로 무코어(Mucor), 아스페길러스(Aspergillus), 트리코데마(Trichoderma)로 확인되었다.Isolated microorganisms were identified as Pseudomonas, Streptococcus and Lactobacillus as bacteria, Myxomycetes as streptococci, Streptomyces and Actinomysis as bacteria. Actinomyces, Candida (Candida), Hansenula (Hansenula), Saccharomyces (Saccharomyces), fungi were identified as Mucor (Mucor), Aspergillus (Trichoderma).

토양으로부터 분리된 미생물 중에는 상기 미생물 이외에도 마이크로코쿠스(Micrococcus), 피치아(Pichia), 리조푸스(Rhizopus) 등의 미생물(이하 "일반 미생물"이라 칭함)이 존재하였으며, 이들은 본 발명의 조성물이 폐수처리에 사용될 때 자연발생적으로 발생할 수 있는 미생물들로서 수중의 질소를 직접 제거하지는 못하지만 상기 직접적 질소제거 미생물의 역할에 저해 작용은 하지 않는 것으로 나타났다.Among the microorganisms separated from the soil, micrococcus, Pichia, Rhizopus and the like microorganisms (hereinafter referred to as "general microorganisms"), in addition to the microorganisms, were present. When used for treatment, naturally occurring microorganisms do not directly remove nitrogen from water, but do not inhibit the role of the direct nitrogen-depleting microorganisms.

본 발명에서는 상기 직접적 질소제거 미생물, 즉 슈도모너스, 스트렙토코쿠스, 락토바실러스, 믹서마이시트, 스트렙토마이시스, 악티노마이시스, 캔디다, 한세누라, 싸카로마이시스, 무코어, 아스페길러스, 트리코데마 또는 이들의 혼합물을 포함하는 유기물 및 암모니아성 질소 제거용 조성물을 제조한다.In the present invention, the direct nitrogen-removing microorganism, that is, Pseudomonas, Streptococcus, Lactobacillus, Mixer My Sheet, Streptomyces, Actinomysis, Candida, Hansenura, Sakaromysis, Mucore, Aspegyl To prepare an organic and ammonia-nitrogen removal composition comprising a russ, trichoderma or a mixture thereof.

바람직하게 본 발명에서는, 상기 토양으로부터 분리된 직접적 질소제거 미생물을 생육가능한 통상의 액체배지, 예를 들어 글루코스, 다이메틸에테르, 전분, 폴리사카라이드, NaNO3를 포함하는 25 내지 35℃의 액체배지에서 3 내지 5 일간 배양한 후 원심분리하여 미생물과 배양여액을 분리하여 수득한 조성물을 사용할 수 있다. 이 때 분리된 미생물 조성물의 함수율은 약 90%이므로 수분조절재를 사용하여 수분율을 40%로 조절하여 사용하는 것이 더욱 바람직하며, 사용량은 수분조절재의 중량에 대해 2 내지 10 중량%의 미생물을 배합시키는 것이 바람직하다. 상기 수분조절재로는 톱밥, 왕겨, 밀기울 등이 사용될 수 있으며 이는 증량재 및 부착여재로서의 역할도 수행한다.Preferably in the present invention, a liquid medium of 25 to 35 ℃ containing a conventional liquid medium capable of growing a direct nitrogen removal microorganism separated from the soil, for example, glucose, dimethyl ether, starch, polysaccharide, NaNO 3 After culturing for 3 to 5 days in centrifugation can be used to obtain a composition obtained by separating the microorganism and the culture filtrate. At this time, since the water content of the separated microbial composition is about 90%, it is more preferable to use the water content by adjusting the water content to 40% by using a moisture control material, and the amount used is 2 to 10% by weight of microorganisms based on the weight of the water control material. It is preferable to make it. Sawdust, rice husk, bran, etc. may be used as the moisture control material, which also serves as an extender and adhesion medium.

상기 제조된 조성물을 교반식 발효조에서 25 내지 35℃의 조건으로 1 일간 배양한 후 동결건조하여 유기물 및 질소 제거용 미생물 제제를 제조할 수 있다.The prepared composition may be cultured in a stirred fermenter for 25 days at 25 ° C. for 1 day and then lyophilized to prepare a microorganism preparation for removing organic matter and nitrogen.

이하에서는 통상적인 생물학적 폐수처리 공정에 본 발명의 조성물을 사용할 경우의 과정을 각 단계별로 설명한다.The following describes each step in the case of using the composition of the present invention in a conventional biological wastewater treatment process.

고액분리 : 폐수를 생물학적 처리단계로 유입시키기 전에 고액분리하여 폐수를 가능한 최대로 안정하게 생물학적 처리단계로 유입시키며, 폐수의 성상에 맞춰 폐수중의 부유물(SS)의 농도가 높을 경우 원심분리타입을 사용하며, 부유물 농도가 낮을 경우 필터타입을 사용한다. 고액분리기를 거친 폐수의 부유물 농도를 2,000ppm 내외로 조절하여 생물학적 처리에 미치는 부하를 최대한 일정하게 유지한다.Solid-liquid separation: Before the wastewater enters the biological treatment stage, the solid-liquid separation flows the wastewater into the biological treatment stage as stably as possible.If the concentration of suspended solids (SS) in the wastewater is high, the centrifugal separation type If the suspended solids concentration is low, use the filter type. By adjusting the concentration of suspended solids in the wastewater through the solid-liquid separator to around 2,000ppm, the load on biological treatment is kept as constant as possible.

고율폭기조 : 암모니아성 질소를 직접 제거하는 미생물을 포함하는 본 발명의 조성물을 이용하여 유기물과 질소를 제거하는 단계로서 암모니아성 질소를 직접 분해하거나 또는 암모니아성 질소를 쉽게 분해할 수 있도록 변환시켜 다음 공정인 탈질조에서의 효율을 높인다. 고율폭기조의 운전조건은 유입되는 폐수의 성상에 따라 조절한다. 본 발명에서는 BOD 부하를 0.5 내지 2.0㎏·BOD/㎥·d, 수리학적 체류시간을 2 내지 6일, 미생물농도(MLSS)는 4,000 내지 6,000ppm, 용존 산소량(DO)은 약 2ppm 이상으로 유지한다.High rate aeration tank: A step of removing organic matter and nitrogen using the composition of the present invention comprising a microorganism that directly removes ammonia nitrogen, the next step by directly decomposing ammonia nitrogen or converted to easily decompose ammonia nitrogen Increase the efficiency in the denitrification tank The operating conditions of the high rate aeration tank are adjusted according to the characteristics of the incoming wastewater. In the present invention, the BOD load is 0.5 to 2.0 kg.BOD / m 3 · d, the hydraulic residence time is 2 to 6 days, the microbial concentration (MLSS) is maintained at 4,000 to 6,000 ppm, and the dissolved oxygen amount (DO) is about 2 ppm or more. .

탈질조 : 활성슬러지와 고율폭기조에서 월류하는 질소 직접 제거 미생물이 혼재하며 유기물 제거와 함께 질소의 탈질이 일어난다. 탈질조에서는 처리효율을 높이기 위해 다공성 세라믹 담체를 미생물의 부착여재로 사용할 수도 있다. 다공성 세라믹 담체는 높은 다공성과 비표면적을 가지고 있기 때문에 미생물의 부착능력이 우수하며, 이의 투입량은 폐수의 성상에 따라 조절하는데 탈질조 용량 대비 3 내지 23%를 투입하는 것이 바람직하다. 투입량이 3% 미만이면 탈질미생물의 부착량이 적어 질소 제거효율이 미미하며, 23%를 초과하면 교반이 어렵고 폭기할 경우 조내에 균일한 용존산소량을 조절해 주기 어렵게 된다. 탈질조에서는 BOD 부하를 0.3 내지 1.0㎏·BOD/㎥·d, 수리학적 체류시간을 2 내지 6일, 미생물농도(MLSS)는 3,000 내지 5,000ppm으로 조절한다.Denitrification tank: Directly remove nitrogen flowing from activated sludge and high rate aeration tank, and nitrogen denitrification occurs with organic matter removal. In the denitrification tank, a porous ceramic carrier may be used as an attachment medium for microorganisms to increase treatment efficiency. Porous ceramic carriers have high porosity and specific surface area, so the microorganisms are excellent in adhesion capacity, and the amount thereof is preferably added in an amount of 3 to 23% relative to the capacity of the denitrification tank to control the characteristics of the wastewater. If the input amount is less than 3%, denitrification microorganisms have a small amount of denitrification efficiency, and nitrogen removal efficiency is insignificant. If the amount is more than 23%, stirring is difficult. In the denitrification tank, the BOD load is 0.3 to 1.0 kg.BOD / m 3 · d, the hydraulic residence time is 2 to 6 days, and the microbial concentration (MLSS) is adjusted to 3,000 to 5,000 ppm.

SBR (회분식 연속반응조) : 활성슬러지를 이용하여 탈질조에서 유출되는 처리수에 잔존하는 유기물, 질소 및 인을 한번 더 제거하는 단계로서 보다 깨끗한 방류수질을 얻고자 할 때 사용한다. 회분식 연속반응조는 한 반응조에서 폐수의 유입, 혐기성 조건, 호기성 조건, 무산소 조건, 침전 및 유출이 일어나는 반응조로서 유기물은 혐기성, 호기성 및 무산소 조건에서 제거되고, 질소는 무산소 조건에서, 그리고 인은 호기성 조건에서 제거된다.SBR (Batch Continuous Reactor): This step is used to remove organic matter, nitrogen and phosphorus remaining in the treated water flowing out of the denitrification tank by using activated sludge to obtain cleaner discharge water quality. Batch reactor is a reactor in which waste water inflow, anaerobic condition, aerobic condition, anaerobic condition, precipitation and effluent occur in one reactor, organic matter is removed in anaerobic, aerobic and anoxic conditions, nitrogen is in anoxic condition and phosphorus is aerobic condition Is removed.

후처리 : 방류기준 뿐만 아니라 심미적 처리, 즉, 색도까지 처리하기 위한 최종적 처리 단계로서 응집침전, 전기분해, 오존산화 및 여과(사여과 + 활성탄여과)를 폐수의 성상에 맞게 선택하여 사용한다. 이중 응집반응조는 무기응집제와 고분자 응집제를 이용하여 유기물, 인 및 색도를 제거하는 공정이다. 본 공정에서 무기응집제로는 황산반토, 고분자 응집제로는 음이온성 응집제를 사용한다. 응집제의 투입량은 회분식 연속반응조 처리수의 성상에 따라 조절할 수 있으며 황산반토는 500 내지 2,000ppm, 고분자 응집제는 5 내지 10ppm을 투입하는 것이 바람직하다. 활성탄 여과기는 최종적으로 유기물과 부유성 물질을 제거하는 공정으로서 응집반응조 처리수의 성상에 따라 가동 여부를 결정할 수 있다. 즉, 응집반응조의 효율이 저하된 경우에 활성탄 여과기를 가동함으로써 수질을 안정화시킬 수 있다.Post-treatment: Coagulation sedimentation, electrolysis, ozone oxidation, and filtration (filtration + activated charcoal) are selected and used according to the characteristics of the wastewater as a final treatment step to treat not only the discharge criteria but also the aesthetic treatment, that is, the chromaticity. Double agglomeration reaction tank is a process for removing organic matter, phosphorus and color using an inorganic coagulant and a polymer coagulant. In this process, alumina sulfate is used as the inorganic flocculant and anionic flocculant is used as the polymer flocculant. The amount of the flocculant can be adjusted according to the properties of the batch water treatment tank, the alumina is preferably 500 to 2,000ppm, 5 to 10ppm polymer coagulant. Activated charcoal filter is a process of finally removing organic matter and suspended solids, and can be operated according to the properties of the flocculation tank treated water. That is, the water quality can be stabilized by operating an activated carbon filter when the efficiency of the flocculation tank falls.

이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실 시 예 1Example 1

충남 계룡산 상신리 부근의 토양으로부터 분리, 배양된 미생물(슈도모너스 3.5 x 108cfu/g, 스트렙토코쿠스 4.2 x 108cfu/g, 락토바실러스 2.8 x 109cfu/g, 믹서마이시트 2.0 x 109cfu/g, 스트렙토마이시스 3.7 x 108cfu/g, 악티노마이시스 7.2 x 108cfu/g, 캔디다 8.0 x 109cfu/g, 한세누라 4.3 x 1010cfu/g, 싸카로마이시스 5.1 x 109cfu/g, 무코어 8.8 x 108cfu/g, 아스페길러스 9.4 x 109cfu/g 및 트리코데마 3.8 x 109cfu/g)을 하기 표 1과 같은 조성을 갖는 액체배지를 이용하여 40℃, 회전속도 150 rpm의 진탕배양기에서 4일 동안 배양한 다음, 원심분리하여 여액을 제거하고 수분함수율 90% 정도인 케이크(cake) 상태의 미생물을 톱밥에 대해 무게비로 5%가 되도록 톱밥에 가한 후 교반기에서 30℃의 조건으로 배양하면서 혼합하였다. 수득된 혼합물을 -40℃에서 진공 동결건조하므로써 직접적 질소제거용 미생물이 포함된 조성물을 제조하였다. 제조된 미생물 제제 조성물을 공기가 통하지 않는 비닐팩에 보관하였다.Microorganisms isolated and cultured from the soil near Sangsin-ri, Gyeryongsan, Chungnam (Pseudomonas 3.5 x 10 8 cfu / g, Streptococcus 4.2 x 10 8 cfu / g, Lactobacillus 2.8 x 10 9 cfu / g, Mixer My Sheet 2.0 x 10 9 cfu / g, Streptomyces 3.7 x 10 8 cfu / g, Actinomysis 7.2 x 10 8 cfu / g, Candida 8.0 x 10 9 cfu / g, Hansenura 4.3 x 10 10 cfu / g, Sakaro Mysis 5.1 x 10 9 cfu / g, coreless 8.8 x 10 8 cfu / g, Aspegillus 9.4 x 10 9 cfu / g and Trichodema 3.8 x 10 9 cfu / g)) having the composition shown in Table 1 After culturing for 4 days in a shaker at 40 ° C. and a rotational speed of 150 rpm using a liquid medium, the filtrate was removed by centrifugation, and a cake-like microorganism having a water content of about 90% was used as a weight ratio to sawdust. It was added to the sawdust to be% and mixed while incubating at 30 ℃ condition in a stirrer. The resulting mixture was vacuum lyophilized at -40 ° C to prepare a composition containing microorganisms for direct nitrogen removal. The prepared microbial formulation composition was stored in a non-airproof plastic pack.

실 시 예 2Example 2

상기 제조된 조성물의 성능을 조사하기 위하여 다음과 같이 배치식 실험을 하였다. 크기 10ℓ 규모의 반응조에 상기 제조예 1에서 제조된 조성물 6g을 첨가한 후 BOD 7,000ppm, 총질소 농도(TN) 3,400ppm인 축산 실폐수 2ℓ를 첨가하고 4일 동안 폭기하여 미생물을 배양 및 순화시켰다. 이후 폐수량을 1일 2ℓ씩 추가하면서 총 8 일간 순화시켰다. 순화완료 후 미생물의 농도는 5,500㎎/ℓ로 측정되었다. 이어서 반응조내의 폐수와 미생물의 혼합액을 방치하여 미생물을 침전시킨 후 상등액을 배출시키고 다시 축산폐수를 유입시켜 폭기하면서 시간변화에 따른 BOD, 암모니아성 질소, 질산성 질소 및 아질산성 질소의 농도변화를 측정하였다. 그 결과는 하기 표 2에 나타내었다.In order to investigate the performance of the prepared composition, a batch experiment was conducted as follows. 6 g of the composition prepared in Preparation Example 1 was added to a 10 L reactor, and 2 L of livestock wastewater having a BOD of 7,000 ppm and a total nitrogen concentration (TN) of 3,400 ppm was added and aerated for 4 days to incubate and purify the microorganism. . Afterwards, the wastewater was purified for a total of 8 days with the addition of 2 L per day. After purification, the concentration of microorganism was determined to be 5,500 mg / l. Subsequently, the mixed solution of wastewater and microorganisms in the reactor was left to settle the microorganisms, and then the supernatant was discharged and the livestock wastewater was introduced again to aeration to measure the concentration change of BOD, ammonia nitrogen, nitrate nitrogen and nitrite nitrogen with time. It was. The results are shown in Table 2 below.

비교 실시예 1Comparative Example 1

종래의 방법으로 2개의 반응조를 연계시켜 1 차조는 호기성(폭기)조건을 2차조는 무산소 조건을 부여하면서 활성오니균을 순화시켰다. 순화는 상기 실시예 1보다 2배 이상 긴 20 일간 하였으며 미생물 농도도 상기 실시예 1과 동일하게 5,500ppm/ℓ에 맞도록 조절하였다. 순화가 완료된후 시간변화에 따라 실시예 1과 동일한 방법으로 동일 항목을 측정하였다. 2차조에는 1차조에서 암모니아성 질소가 90%이상 진행된 폐수를 유입시켜 탈질반응을 수행하였다. 하기 표 3 및 4는 각각 1차조(질산화 과정) 및 2차조(탈질과정)의 결과를 나타낸 것이다.In the conventional method, two reaction tanks were linked to purify activated sludge bacteria while the first tank gave an aerobic (aeration) condition and the second tank gave anoxic conditions. Purification was performed for 20 days longer than 2 times longer than in Example 1, and the microbial concentration was adjusted to 5,500 ppm / L as in Example 1. After the completion of the purification, the same items were measured in the same manner as in Example 1 according to the time change. In the second tank, denitrification was carried out by introducing wastewater having 90% or more of ammonia nitrogen in the first tank. Tables 3 and 4 show the results of the first tank (nitrification process) and the second tank (denitrification process), respectively.

비교 실시예 2Comparative Example 2

2차조에 폐수를 유입시키기 전에 탈질과정에서 필요한 유기물(메탄올) 4,000 ppm을 추가로 첨가하는 것을 제외하고는 상기 비교 실시예 1과 동일한 방법으로 실시하였다. 2차조에서의 측정 결과는 하기 표 5에 나타내었다.The same process as in Comparative Example 1 was carried out except that 4,000 ppm of organic matter (methanol) needed in the denitrification process was further added before introducing the wastewater into the secondary tank. The measurement results in the secondary tank are shown in Table 5 below.

실 시 예 3Example 3

충남 논산시의 C농장에서 배출되는 축산폐수를 이용하여 통상의 방법으로 처리하였다. 스크린을 거쳤을 때 CODcr는 약 10,000ppm, 부유물질은 약 2,000ppm, 총질소는 3,500ppm이었다. 고율폭기조의 용량은 10ℓ이었으며 본 발명의 조성물을 첨가하여 미생물농도(MLSS)가 5,000ppm이 되도록 하였다. 또한 수리학적 체류시간은 4일로 하였으며 호기성 조건만 부여하였다. 탈질조의 용량은 10ℓ이었으며 하수 종말 처리장의 폭기조에서 입수한 활성슬러지를 투입하여 미생물 농도가 4,000 ppm이 되도록 하였다. 수리학적 체류시간은 4일로 하였으며 다공성 세라믹 담체를 탈질조 용량 대비 15% 투입하였다. 탈질조에서는 호기성 조건과 무산소 조건을 교차로 부여하여 호기 → 무산소 → 호기 → 무산소 형태로 각 조건을 3시간씩 하였다. 회분식 연속반응조의 용량은 5ℓ였으며 하수종말처리장의 폭기조에서 입수한 활성슬러지를 투입하여 미생물 농도가 3,000ppm이 되도록 하였고 수리학적 체류시간은 2일로 하였다. 회분식 연속반응조에서는 유입 → 혐기 → 호기 → 무산소 → 침전 → 유출의 단계를 1사이클로 하여 하루에 1사이클을 운전하였다. 응집반응조에서는 황산반토를 1,000ppm 투입하여 15분간 교반한 후 음이온성 고분자 응집제를 5ppm 투입하여 40분간 교반하였다. 이어서 2 시간 동안 침전시킨 후 활성탄 여과기를 통과시켰다.Livestock wastewater discharged from farm C in Nonsan, Chungnam, Korea, was treated in a conventional manner. The screen was about 10,000 ppm CODcr, about 2,000 ppm suspended solids, and 3,500 ppm total nitrogen. The capacity of the high rate aeration tank was 10 L and the composition of the present invention was added so that the microbial concentration (MLSS) was 5,000 ppm. In addition, hydraulic retention time was 4 days and only aerobic conditions were given. The capacity of the denitrification tank was 10 liters and the activated sludge obtained from the aeration tank of the sewage treatment plant was added to make the microbial concentration 4,000 ppm. The hydraulic retention time was 4 days and 15% of the porous ceramic carrier was added to the capacity of the denitrification tank. In the denitrification tank, aerobic and anaerobic conditions were given at the intersection, and each condition was performed for 3 hours in the form of aerobic → anaerobic → aerobic → anaerobic. The capacity of the batch continuous reactor was 5 liters. The activated sludge obtained from the aeration tank of the sewage treatment plant was added to make the concentration of microorganism 3,000 ppm and the hydraulic residence time was 2 days. In a batch continuous reactor, one cycle was operated in one cycle of inflow, anaerobic, aerobic, anaerobic, sedimentation, and effluent. In the flocculation tank, 1,000 ppm of alumina sulfate was added and stirred for 15 minutes, and then 5 ppm of anionic polymer flocculant was added and stirred for 40 minutes. It was then precipitated for 2 hours and then passed through an activated carbon filter.

상기의 각 공정을 운전한 후 수질분석을 실시하였으며 미생물의 상태가 정상상태에 도달한 후 운전일수에 따라 각 공정의 유출수를 분석하여 그 결과를 표 6 및 7에 나타내었다. 도 1은 폐수 처리방법의 계통도를 나타낸 것이다.Water quality analysis was performed after operating the above processes, and after the state of the microorganism reached the steady state, the runoff of each process was analyzed according to the number of operating days and the results are shown in Tables 6 and 7. Figure 1 shows a schematic diagram of the wastewater treatment method.

비교 실시예 3Comparative Example 3

고율폭기조에 본 발명의 조성물을 투입하지 않고 하수 종말 처리장의 폭기조에서 입수한 활성슬러지를 투입하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 처리한 다음 수질을 분석하여 그 결과를 표 8 및 9에 나타내었다.Except for adding the activated sludge obtained from the aeration tank of the sewage terminal treatment plant without adding the composition of the present invention to the high-rate aeration tank, the water was analyzed in the same manner as in Example 2 and then analyzed for the water quality. Shown in

비교 실시예 4Comparative Example 4

탈질조에 다공성세라믹 담체를 투입하지 않은 것을 제외하고는 상기 실시예 3과 동일한 방법으로 실시하고 수질을 분석하여 그 결과를 하기 표 10에 나타내었다.Except that the porous ceramic carrier was not added to the denitrification tank was carried out in the same manner as in Example 3 and the water quality was analyzed and the results are shown in Table 10 below.

이상과 같이 본 발명의 직접적 질소 제거 미생물을 포함하는 조성물을 이용하여 폐수를 처리할 경우 유기물, 특히 암모니아 질소의 제거효율이 현저하게 우수할 뿐만 아니라 기존의 2 단계 질소제거 공정을 거칠 필요가 없어 공정이 매우 간단하여 이로 인한 경제적인 이익도 기대할 수 있다.As described above, when the wastewater is treated using the composition containing the direct nitrogen removing microorganism of the present invention, the removal efficiency of organic matter, especially ammonia nitrogen is not only excellent, but it does not need to go through the conventional two-step nitrogen removal process. This is so simple that you can expect economic benefits.

Claims (4)

슈도모너스(Pseudomonas), 스트렙토코쿠스(Streptococcus), 락토바실러스 (Lactobacillus), 믹서마이시트(Myxomycetes), 스트렙토마이시스(Streptomyces), 악티노마이시스(Actinomyces), 캔디다(Candida), 한세누라(Hansenula), 싸카로마이시스(Saccharomyces), 무코어(Mucor), 아스페길러스(Aspergillus), 트리코데마(Trichoderma) 또는 이들의 혼합물로부터 선택된, 암모니아성 질소를 질소가스로 바로 전환시킬 수 있는 직접적 질소 제거 미생물을 포함하는 폐수 중의 유기물 및 암모니아성 질소 제거용 조성물.Pseudomonas, Streptococcus, Lactobacillus, Myxomycetes, Streptomyces, Actinomyces, Candida, Hansenura ( Directly capable of converting ammonia nitrogen directly into nitrogen gas, selected from Hansenula, Saccharomyces, Mucor, Aspergillus, Trichoderma or mixtures thereof A composition for removing organic matter and ammonia nitrogen in wastewater containing nitrogen-removing microorganisms. 제 1 항에 있어서,The method of claim 1, 상기 조성물이 상기 직접적 질소제거 미생물을 생육에 필요한 통상의 액체배지로 1차 배양하고 톱밥과 혼합하여 2차 배양한 후 동결건조하여 제조된 것임을 특징으로 하는 조성물.The composition is characterized in that the direct nitrogen-removing microorganisms are cultured first with a normal liquid medium required for growth, and then mixed with sawdust and secondary culture followed by lyophilization. 생물학적 폐수 처리 방법에 있어서, 제 1 항의 조성물을 이용하여 고농도의 질소 함유 폐수를 처리하는 것을 특징으로 하는 방법.A biological wastewater treatment method, wherein the nitrogen-containing wastewater is treated using the composition of claim 1. 제 3 항에 있어서,The method of claim 3, wherein 고율 폭기조에서 상기 제 1 항의 조성물을 이용하여 폐수 중의 유기물 및 질소를 제거하는 단계; 탈질조에서 상기 제 1 항의 조성물과 활성오니가 혼합된 미생물로 2차적으로 유기물과 질소를 제거하는 단계; 최종 생물학적 처리로서 회분식 연속 반응조에서 유기물, 질소 및 인을 제거하는 단계; 및 응집반응조에서 유기물, 인 및 색도를 고도처리하는 단계를 포함하는 방법.Removing organic matter and nitrogen from the wastewater using the composition of claim 1 in a high rate aeration tank; Removing organic matter and nitrogen in a denitrification tank with a microorganism in which the composition of claim 1 and the activated sludge are mixed; Removing organics, nitrogen and phosphorus in a batch continuous reactor as a final biological treatment; And highly treating organic matter, phosphorus and chromaticity in an agglomeration reactor.
KR1019990010875A 1999-03-30 1999-03-30 Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same KR19990046140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990010875A KR19990046140A (en) 1999-03-30 1999-03-30 Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990010875A KR19990046140A (en) 1999-03-30 1999-03-30 Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same

Publications (1)

Publication Number Publication Date
KR19990046140A true KR19990046140A (en) 1999-06-25

Family

ID=54781031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990010875A KR19990046140A (en) 1999-03-30 1999-03-30 Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same

Country Status (1)

Country Link
KR (1) KR19990046140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528762B1 (en) * 2001-09-07 2005-11-15 가부시키가이샤 도쿄 바이옥스 Pollution inhibitor of drainage system and method for inhibiting pollution of drainage system using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884095A (en) * 1981-10-29 1983-05-20 U S C Internatl Co:Kk Purifying agent for sea water
KR910006525A (en) * 1989-09-30 1991-04-29 공정곤 Manufacturing method of polyester fiber with excellent color tone and touch
JPH07265063A (en) * 1994-03-31 1995-10-17 Kao Corp Microorganism capable of decomposing quaternary ammonium salt
KR19980033946A (en) * 1996-11-04 1998-08-05 박덕규 Active microorganism culture material for wastewater treatment and its use method
KR19980064989A (en) * 1998-06-12 1998-10-07 최성훈 High concentration organic wastewater treatment process by high speed biodegradation method
KR0183318B1 (en) * 1995-11-29 1999-04-01 김희수 Wastewater treatment method using bacillus sp. micro organism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884095A (en) * 1981-10-29 1983-05-20 U S C Internatl Co:Kk Purifying agent for sea water
KR910006525A (en) * 1989-09-30 1991-04-29 공정곤 Manufacturing method of polyester fiber with excellent color tone and touch
JPH07265063A (en) * 1994-03-31 1995-10-17 Kao Corp Microorganism capable of decomposing quaternary ammonium salt
KR0183318B1 (en) * 1995-11-29 1999-04-01 김희수 Wastewater treatment method using bacillus sp. micro organism
KR19980033946A (en) * 1996-11-04 1998-08-05 박덕규 Active microorganism culture material for wastewater treatment and its use method
KR19980064989A (en) * 1998-06-12 1998-10-07 최성훈 High concentration organic wastewater treatment process by high speed biodegradation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528762B1 (en) * 2001-09-07 2005-11-15 가부시키가이샤 도쿄 바이옥스 Pollution inhibitor of drainage system and method for inhibiting pollution of drainage system using the same

Similar Documents

Publication Publication Date Title
AU2010327173B2 (en) Wastewater pretreatment method and sewage treatment method using the pretreatment method
US4999111A (en) Process for treating wastewater
AU731280B2 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
CA1241773A (en) Process for purifying sewage in plants having adsorption stages
CN109824220A (en) A kind of Biochemical Process for Treating Coke Plant Wastewater
CN101781056B (en) Treatment method of waste papermaking water
US6780319B1 (en) Method and installation for treating effluents, comprising an additional treatment of the sludge by ozonization
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100229237B1 (en) Advanced treatment method and its device of night soil
CA1114964A (en) Plant for the treatment of waste water by the activated-sludge process
CN112047468A (en) Biochemical treatment method of landfill leachate
CN112520911B (en) Landfill leachate concentrated water treatment method
KR20020083978A (en) CPA(Continuity inflow Periodic Activated-sludge System)PROCESS
KR100517095B1 (en) Wastewater Treatment Apparatus and Method
KR19990046140A (en) Composition containing microorganism capable of removing high concentration of organic materials and nitrogen, and method for treating wastewater by using same
KR100191195B1 (en) Night soil treatment method and unit with high efficiency
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
Ali et al. Yeast Waste Water Treatment Using Fixed Biofilm Reactor Packed With Hybrid Bio-Carrier
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR20030071604A (en) Process of the treatment of high-concentrated and non-biodegradable industrial wastewater using modified-cultured facultative bacteria
KR19980019537A (en) (N) and phosphorus (P) from the drainage disposal in the rotating disc process,
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
KR100398821B1 (en) Promoter for Flocculation of Activated Sludge and Wastewater Treatment Using It
KR100342106B1 (en) Waste water treatment system of cross-flow anaerobic filter reactor by using recycled tire media and method using it
KR20020040125A (en) The Method and Apparatus of Biological High Efficiency Wastewater Treatment Using the Contacting Media for Activated Sludge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application