[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR19990031603A - Stacking method of lithium polymer secondary battery cell - Google Patents

Stacking method of lithium polymer secondary battery cell Download PDF

Info

Publication number
KR19990031603A
KR19990031603A KR1019970052386A KR19970052386A KR19990031603A KR 19990031603 A KR19990031603 A KR 19990031603A KR 1019970052386 A KR1019970052386 A KR 1019970052386A KR 19970052386 A KR19970052386 A KR 19970052386A KR 19990031603 A KR19990031603 A KR 19990031603A
Authority
KR
South Korea
Prior art keywords
electrode
active material
electrode active
battery cell
secondary battery
Prior art date
Application number
KR1019970052386A
Other languages
Korean (ko)
Inventor
최재훈
Original Assignee
왕중일
대우전자부품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 왕중일, 대우전자부품 주식회사 filed Critical 왕중일
Priority to KR1019970052386A priority Critical patent/KR19990031603A/en
Publication of KR19990031603A publication Critical patent/KR19990031603A/en

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬폴리머 2차전지셀의 적층방법에 관한 것으로, 전극(30)과 전극활물질(32)을 폴리아세틸렌, 폴리아닐린, 폴리피롤, 포리티오펜, 폴리아센으로 이루어진 그룹으로부터 선택된 전도성고분자(34)를 매개로 부착시키게 되므로써, 전극활물질에 별도의 고분자바인더를 사용함이 없이 단지 전극과 전극활물질사이에 저항이 낮은 전도성고분자를 매개로 부차시키게 되어 전극의 계면저항을 최소화시키게 되는 효과가 있는 것이다.The present invention relates to a method for laminating a lithium polymer secondary battery cell, wherein the electrode (30) and the electrode active material (32) are conductive polymers (34) selected from the group consisting of polyacetylene, polyaniline, polypyrrole, polythiophene, and polyacene. By attaching through the medium, there is an effect of minimizing the interfacial resistance of the electrode by adding a low-resistance conductive polymer between the electrode and the electrode active material without using a separate polymer binder in the electrode active material.

Description

리튬폴리머2차전지셀의 적층방법(Method of making a laminated lithum-polymer rechargeable battery cell)Method of making a laminated lithum-polymer rechargeable battery cell

본 발명은 리튬폴리머 2차전지셀의 적층방법에 관한 것으로 특히, 전극과 전극활물질사이의 계면저항을 최소화하므로써 전지성능을 향상시키게 해주는 리튬폴리머 2차전지셀의 적층방법에 관한 것이다.The present invention relates to a method of laminating a lithium polymer secondary battery cell, and more particularly, to a method of laminating a lithium polymer secondary battery cell to improve the battery performance by minimizing the interface resistance between the electrode and the electrode active material.

일반적으로 리튬폴리머 2차전지는 양극과 음극 사이에 폴리머 전해질을 끼워넣고 그 외부를 집전체, 외장재 순으로 씌운 구조로 되어 있다.In general, a lithium polymer secondary battery has a structure in which a polymer electrolyte is sandwiched between a positive electrode and a negative electrode and the outside thereof is covered with a current collector and an exterior material.

이때 상기 폴리머전해질은 통상 모노마, 유기용제, 전해질염 등 3종류의 물질을 혼합해 사용하고, 양극에는 LiCoO2를 사용하고, 음극에는 탄소재료를 주로 사용하게 된다.In this case, the polymer electrolyte is usually used by mixing three kinds of materials such as monoma, an organic solvent, and an electrolyte salt, using LiCoO 2 for the positive electrode and mainly using a carbon material for the negative electrode.

리튬폴리머 2차전지의 장점은 우선 고체나 겔상태의 폴리머를 사용하기 때문에 두께를 1mm이하로 줄일 수 있는 등 제작할 수 있는 두께에서 리튬이온2차전지보다 크게 앞서고, 또한 안정성면에서도 전해질을 점성이 높은 겔상태의 고체폴리머를 사용하기 때문에 전지에 구멍이 나도 용액이 흘러나오지 않아 리튬이온 2차전지와 같은 발화위험이 거의 없는 것이다.The advantage of the lithium polymer secondary battery is that it uses a solid or gel polymer to reduce the thickness to 1 mm or less, so that the lithium polymer secondary battery is significantly ahead of the lithium ion secondary battery in terms of thickness, and the electrolyte has a viscosity. Because of the use of high gel solid polymer, even if the battery has a hole, the solution does not flow out, so there is almost no risk of ignition like a lithium ion secondary battery.

이러한 리튬폴리머 전지셀의 구조는 도 1에 도시된 바와 같이 구리포일(11)과, 이 구리포일(11)의 상부에 음극활물질막(13)이 적층된다.As shown in FIG. 1, the lithium polymer battery cell has a copper foil 11 and a negative electrode active material layer 13 stacked on the copper foil 11.

또한, 상기 음극활물질막(13)위에 전해질격리막(15)을 적층한 후, 양극활물질막(17)이 적층되며, 이 양극활물질막(17)위에 알루미늄포일(19)이 적층되어져 있다.In addition, after the electrolyte isolation film 15 is laminated on the negative electrode active material film 13, the positive electrode active material film 17 is laminated, and the aluminum foil 19 is laminated on the positive electrode active material film 17.

이러한 리튬폴리머전지셀의 종래의 제조방법은 도 2에 도시된 바와 같이, 전지셀을 구성하는 구리포일(11), 음극활물질(13), 전해질격리막(15), 양극활물질막(17) 및 알루미늄포일(19)을 소정온도로 가열되는 오븐(20)내에서 두 개의 압축롤(21, 22) 사이로 동시에 주입하여 통과시키면서 압축하여 제조하고 있었다.As shown in FIG. 2, a conventional method of manufacturing a lithium polymer battery cell includes a copper foil 11, a negative electrode active material 13, an electrolyte isolation film 15, a positive electrode active material film 17, and aluminum constituting the battery cell. The foil 19 was manufactured by compressing the foil 19 while simultaneously injecting and passing between two compression rolls 21 and 22 in the oven 20 heated to a predetermined temperature.

또 다른 종래의 제조방법은 도 3에 도시된 바와 같이, 먼저 1단계로 구리포일(11)과 음극활물질(13)을 2개의 롤(23, 24)로 압축 합판하여 음극판을 제조하고, 알루미늄포일(19)과 양극활물질(17)을 2개의 롤(25, 26)으로 압축합판하여 양극판을 제조한다.In another conventional manufacturing method, as shown in FIG. 3, first, the copper foil 11 and the negative electrode active material 13 are compressed and laminated with two rolls 23 and 24 in one step to prepare a negative electrode plate, and an aluminum foil. (19) and the positive electrode active material 17 are compressed and laminated with two rolls 25 and 26 to produce a positive electrode plate.

그리고 이어서 상기 음극판과 양극판을 전해질격리막(15)을 사이에 두고 120℃의 온도로 가열하면서 다시 2개의 롤(27, 28)로 압축합판하여 제조하고 있었다.Subsequently, the negative electrode plate and the positive electrode plate were compressed and laminated with two rolls 27 and 28 while being heated at a temperature of 120 ° C. with an electrolyte isolation film 15 therebetween.

그러나 이러한 종래의 제조방법에 의하면 전지셀의 전극(11, 19)과 전극활물질(13, 17)의 긴밀한 결합이 이루어지도록 하기 위해 상기 전극활물질(13, 17)로 사용되는 카본이나 산화물에 고분자바인더를 포함하고 있으나, 이 고분자바인더의 농도가 높게 되는 경우에는 전극의 계면저항이 크게 되어 전지효율을 낮추게 되고, 또한 고분자바인더의 농도가 낮은 경우에는 전극활물질과 전극의 부착력이 떨어지는 문제점이 있었다.However, according to the conventional manufacturing method, a polymer binder is used in the carbon or oxide used as the electrode active materials 13 and 17 in order to achieve close coupling between the electrodes 11 and 19 of the battery cell and the electrode active materials 13 and 17. However, when the concentration of the polymer binder is high, the interfacial resistance of the electrode is increased to lower the battery efficiency, and when the concentration of the polymer binder is low, there is a problem that the adhesion between the electrode active material and the electrode is lowered.

이에 본 발명은 전극과 전극활물질간의 계면저항을 최소화시켜주므로써 전지성능을 최대화시켜 주는 리튬폴리머2차전지셀의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a lithium polymer secondary battery cell that maximizes battery performance by minimizing interface resistance between an electrode and an electrode active material.

상기한 목적을 달성하기 위한 본 발명의 리튬폴리머2차전지셀의 제조방법은, 전극과 전극활물질을 폴리아세틸렌, 폴리아닐린, 폴리피롤, 포리티오펜, 폴리아센으로 이루어진 그룹으로부터 선택된 전도성고분자를 매개로 부착시키게 된 것을 특징으로 한다.Method for producing a lithium polymer secondary battery cell of the present invention for achieving the above object, the electrode and the electrode active material is attached via a conductive polymer selected from the group consisting of polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene It is characterized by being made.

이와같은 본 발명의 방법에서는 상기 전도성고분자가 전극과 전극활물질을 부착시켜 주는 바인더로 작용하면서도, 그 자체 전도성을 가지고 있어 전극과 전극활물질간의 계면저항을 최소화하여 전지의 성능이 향상되는 효과가 있다.In the method of the present invention, the conductive polymer acts as a binder for attaching the electrode and the electrode active material, but has its own conductivity, thereby minimizing the interface resistance between the electrode and the electrode active material, thereby improving the performance of the battery.

도 1 은 일반적인 리튬폴리머 2차전지셀의 층상구조를 도시한 사시도,1 is a perspective view showing a layered structure of a typical lithium polymer secondary battery cell,

도 2 는 종래의 2차전지셀의 적층방법을 도시한 도면,2 is a view showing a stacking method of a conventional secondary battery cell,

도 3은 또다른 종래의 2차전지셀의 적층방법을 도시한 단면도,3 is a cross-sectional view showing another conventional secondary battery cell stacking method;

도 4는 본 발명에 따른 전극 과 전극활물질의 적층된 상태를 도시한 단면도이다.4 is a cross-sectional view showing a stacked state of an electrode and an electrode active material according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

11 : 구리포일 13 : 음극활물질막11: copper foil 13: negative electrode active material film

15 : 전해질격리막 17 : 양극활물질막15 electrolyte electrolyte membrane 17 cathode active material membrane

19 : 알루미늄포일 20 : 오븐19: aluminum foil 20: oven

21, 22: 압축롤 23, 24, 25, 26, 27, 28 : 롤21, 22: compression roll 23, 24, 25, 26, 27, 28: roll

30 : 전극 32 : 전극활물질30 electrode 32 electrode active material

34 : 전도성고분자34: conductive polymer

이하, 본 발명의 실시예를 첨부한 예시도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings, an embodiment of the present invention.

도 4은 본 발명에 따른 전극과 전극활물질의 적층상태를 도시한 단면도이다.4 is a cross-sectional view showing the stacked state of the electrode and the electrode active material according to the present invention.

먼저, 전극(30)과 전극활물질(32)은 전도성고분자(34)을 매개로 부착되어 있는 바, 상기 전극(30)은 통상 음극에는 구리포일을 사용하고 양극에는 알루미늄포일을 사용하게 되고, 상기 전극활물질(32)은 통상 음극에는 카본을 사용하고, 양극에는 산화물을 사용하게 된다.First, the electrode 30 and the electrode active material 32 is attached to the conductive polymer 34 through the bar, the electrode 30 is usually used a copper foil for the cathode and aluminum foil for the anode, The electrode active material 32 usually uses carbon for the cathode and oxide for the anode.

그리고, 상기 전도성고분자(34)는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아센등과 같이 전기전도성을 갖는 고분자로서, 그 자체가 바인더역할을 하게 된다.The conductive polymer 34 is a polymer having electrical conductivity such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc., and serves as a binder itself.

이하에서 상기한 구조의 제조과정을 설명한다.Hereinafter, the manufacturing process of the above-described structure will be described.

먼저, 상기한 전도성고분자(34)를 액상으로 준비하여 상기 알루미늄포일 또는 구리포일의 전극(30) 표면에 각각 졸상태로 코팅하여 액상의 졸코팅층을 각각 만들어 주게 된다.First, the conductive polymer 34 is prepared in a liquid state and coated in a sol state on the surface of the electrode 30 of the aluminum foil or copper foil, respectively, to form a sol coating layer of a liquid.

그리고 상기 전극(30)의 상부에 코팅된 전도성고분자(34) 졸코팅층 위에 전극활물질(32)를 부착시키고, 전도성고분자(34)의 졸코팅층을 고체화시켜주게 되면, 상기 전극활물질(32)이 전극(30)에 상기 전도성고분자(34)를 매개로 부착되게 된다.When the electrode active material 32 is attached onto the conductive polymer 34 sol coating layer coated on the electrode 30, and the sol coating layer of the conductive polymer 34 is solidified, the electrode active material 32 is an electrode. 30 is attached to the conductive polymer 34 via the medium.

이렇게 하여 형성된 음극과 양극의 전극판을 각각 전해질격리막을 사이에 두고 가열하여 합판시키게 되면, 소정의 전지셀을 소정온도로 가열하면서 롤을 사용하여 압축합판시키게 되므로써 원하는 리튬폴리머 2차전지셀을 만들 수 있게 되는 것이다.When the electrode plates of the negative electrode and the positive electrode formed in this way are heated and laminated with the electrolyte isolation film interposed therebetween, the desired battery cell is heated to a predetermined temperature and compressed plywood is formed using a roll to make a desired lithium polymer secondary battery cell. It will be possible.

이와같이 본 발명에서는 전극활물질에 별도의 고분자바인더를 사용함이 없이 단지 전극과 전극활물질사이에 저항이 낮은 전도성고분자를 매개로 부차시키게 되어 전극의 계면저항을 최소화시키게 되는 효과가 있는 것이다.As such, in the present invention, there is an effect of minimizing the interfacial resistance of the electrode by adding a low-resistance conductive polymer between the electrode and the electrode active material without using a separate polymer binder for the electrode active material.

Claims (1)

전극(30)과 전극활물질(32)을 폴리아세틸렌, 폴리아닐린, 폴리피롤, 포리티오펜, 폴리아센으로 이루어진 그룹으로부터 선택된 전도성고분자(34)를 매개로 부착시키게 된 것을 특징으로 하는 리튬폴리머 2차전지셀의 적층방법.Lithium polymer secondary battery cell characterized in that the electrode 30 and the electrode active material 32 is attached via a conductive polymer 34 selected from the group consisting of polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene Lamination method.
KR1019970052386A 1997-10-13 1997-10-13 Stacking method of lithium polymer secondary battery cell KR19990031603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970052386A KR19990031603A (en) 1997-10-13 1997-10-13 Stacking method of lithium polymer secondary battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970052386A KR19990031603A (en) 1997-10-13 1997-10-13 Stacking method of lithium polymer secondary battery cell

Publications (1)

Publication Number Publication Date
KR19990031603A true KR19990031603A (en) 1999-05-06

Family

ID=66042095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970052386A KR19990031603A (en) 1997-10-13 1997-10-13 Stacking method of lithium polymer secondary battery cell

Country Status (1)

Country Link
KR (1) KR19990031603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522675B1 (en) * 1998-12-18 2005-12-21 삼성에스디아이 주식회사 Electrodes for lithium secondary battery and lithium secondary battery employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522675B1 (en) * 1998-12-18 2005-12-21 삼성에스디아이 주식회사 Electrodes for lithium secondary battery and lithium secondary battery employing the same

Similar Documents

Publication Publication Date Title
JP5200367B2 (en) Bipolar battery electrode
US5688614A (en) Electrochemical cell having a polymer electrolyte
KR100460570B1 (en) Supercapacitor structure and method of making same
JP5292676B2 (en) Bipolar battery electrode
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
JP2000311719A (en) Lithium polymer battery and its manufacture
KR100497560B1 (en) Battery and electric double layer capacitor
JP3028056B2 (en) Electric double layer capacitor basic cell and electric double layer capacitor
JP3260319B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
JP2018181528A (en) All-solid battery and manufacturing method thereof
WO2004008559A3 (en) Method for the production of devices for storing electric power based on rechargeable lithium polymer cells
JP4929592B2 (en) Energy device manufacturing method
JP2004349306A (en) Electric double layer capacitor and electric double layer capacitor laminate
CN111864211A (en) Electrode for secondary battery, method for manufacturing same, and secondary battery
JP2003197474A (en) Energy device and manufacturing method therefor
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
CN112186130A (en) Bipolar composite electrode plate and preparation method thereof
KR100870604B1 (en) Methods for producing a separator/electrode assembly for electrochemical elements
KR19990031603A (en) Stacking method of lithium polymer secondary battery cell
CN110474105B (en) Laminated battery
KR100251768B1 (en) Method of making a laminated lithium-polymer rechargeable battery cell
JPH11288723A (en) Current collector for electrochemical element
CN219534554U (en) Electrode plate and battery comprising same
US20010008727A1 (en) Lithium polymer battery

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination