KR19990026301A - Manufacturing method of field transistor - Google Patents
Manufacturing method of field transistor Download PDFInfo
- Publication number
- KR19990026301A KR19990026301A KR1019970048369A KR19970048369A KR19990026301A KR 19990026301 A KR19990026301 A KR 19990026301A KR 1019970048369 A KR1019970048369 A KR 1019970048369A KR 19970048369 A KR19970048369 A KR 19970048369A KR 19990026301 A KR19990026301 A KR 19990026301A
- Authority
- KR
- South Korea
- Prior art keywords
- insulating film
- gate
- semiconductor substrate
- insulating
- doped
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 239000004065 semiconductor Substances 0.000 claims abstract description 36
- 238000000059 patterning Methods 0.000 claims abstract description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 10
- 229920005591 polysilicon Polymers 0.000 claims abstract description 10
- 238000005530 etching Methods 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 abstract description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 239000005360 phosphosilicate glass Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- AYHOQSGNVUZKJA-UHFFFAOYSA-N [B+3].[B+3].[B+3].[B+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] Chemical compound [B+3].[B+3].[B+3].[B+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] AYHOQSGNVUZKJA-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823857—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
본 발명에 의한 필드 트랜지스터의 제조방법에 있어서 제 1 도전형 영역과 제 2 도전형 영역을 갖는 반도체기판 상에 제 1 도전형의 불순물이 도핑된 제 1 절연막을 형성하고, 상기 제 1 절연막 상에 식각선택비가 다른 제 2 절연막을 순차적으로 형성하고 상기 제 1 및 제 2 절연막이 상기 반도체기판의 제 1 도전형 영역 상에만 잔류하도록 패터닝하는 공정과, 상기 반도체기판 상에 상기 제 1 및 제 2 절연막을 덮도록 제 2 도전형의 불순물이 도핑된 제 3 절연막을 형성하고 상기 제 3 절연막이 상기 반도체기판의 제 2 도전형 영역 상에만 잔류하도록 패터닝하는 공정과, 상기 제 1 절연막 상의 제 2 절연막을 제거하는 공정과, 상기 제 1 및 제 3 절연막이 형성된 반도체기판 상에 제 4 절연막을 형성하고 상기 제 1 및 제 3 절연막 상과 제 1, 제 2 도전영역의 계면 상에 제 4 절연막이 잔류하도록 패터닝하여 게이트절연막과 필드절연막을 형성하는 공정과, 상기 게이트절연막과 필드절연막을 덮도록 불순물이 도핑된 폴리실리콘을 증착하고 게이트절연막 상에만 잔류하도록 패터닝하여 게이트를 한정한 후에 상기 게이트의 측면에 측벽을 형성하는 공정과, 상기 게이트와 측벽을 마스크로 사용하여 제 1 및 제 2 도전형 영역에 각각 소오스 및 드레인영역을 형성하여 채널영역을 한정함과 동시에 상기 제 1 및 제 3 절연막에 도핑된 불순물을 상기 소오스 및 드레인영역 사이의 채널영역으로 확산시키는 공정을 구비한다. 따라서, 본 발명에 따른 필드 트랜지스터 제조방법은 게이트절연막으로 얇은 기판과 같은 도전형의 불순물이 도핑된 절연막과 상기 기판과 같은 도전형의 불순물이 도핑된 절연막 상에 또 다른 두꺼운 절연막을 형성하여 후속열공정에 의해 얇은 절연막에 도핑된 불순물이 채널영역 내에 확산되어 불순물의 농도를 증가시켜 단위소자의 크기 감소에 의해 채널길이가 감소하여도 펀치쓰루 현상을 방지할 수 있는 잇점이 있다.In the method of manufacturing a field transistor according to the present invention, a first insulating film doped with an impurity of a first conductivity type is formed on a semiconductor substrate having a first conductivity type region and a second conductivity type region, and on the first insulating layer. Forming a second insulating film having a different etching selectivity sequentially and patterning the first and second insulating films so as to remain only on the first conductivity type region of the semiconductor substrate; and forming the first and second insulating films on the semiconductor substrate. Forming a third insulating film doped with a second conductivity type impurity so as to cover the third insulating film, and patterning the third insulating film to remain only on the second conductive type region of the semiconductor substrate; And forming a fourth insulating film on the semiconductor substrate on which the first and third insulating films are formed, and forming an interface between the first and third insulating films and the first and second conductive regions. Patterning the fourth insulating film to remain on the substrate to form a gate insulating film and a field insulating film, and depositing polysilicon doped with impurities to cover the gate insulating film and the field insulating film, and patterning the patterned so as to remain only on the gate insulating film. And forming sidewalls on the sidewalls of the gate, and forming source and drain regions in the first and second conductivity-type regions using the gate and the sidewalls as masks, respectively, to define channel regions and And diffusing the doped impurities in the third insulating film into the channel region between the source and drain regions. Therefore, the field transistor manufacturing method according to the present invention forms a thick insulating film on an insulating film doped with a conductive type impurity such as a thin substrate as a gate insulating film and another thick insulating film on an insulating film doped with a conductive type impurity such as the substrate. Impurity doped in the thin insulating film by the process is diffused in the channel region to increase the concentration of impurities, even if the channel length is reduced by reducing the size of the unit device to prevent the punch-through phenomenon.
Description
본 발명은 필드 트랜지스터의 제조방법에 관한것으로서, 단위소자의 크기 감소에 의해 채널 길이가 감소되어도 펀치쓰루를 방지할 수 있는 필드 트랜지스터의 제조방법에 관한것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a field transistor, and more particularly, to a method of manufacturing a field transistor which can prevent punch-through even if the channel length is reduced by the size of a unit device.
일반적으로, 고전압, 고전류 및 플래쉬 메모리(Flash Memory) 주변의 소거(eraser)동작 필드 트랜지스터로는 게이트절연막을 필드절연막의 두께만큼 두껍게 제조하여 문턱전압(Threshold Voltage)을 높여주는 필드 트랜지스터(Field Transistor)를 사용한다.In general, field transistors for high voltage, high current, and erase operation field transistors around a flash memory are manufactured by increasing the threshold voltage by making the gate insulating layer as thick as the thickness of the field insulating layer. Use
반도체소자가 고집적화 됨에 따라, 단위소자의 크기 특히, 트랜지스터 소자의 크기가 미세해져서 집적도를 높이게 된다.As semiconductor devices are highly integrated, the size of unit devices, in particular, the size of transistor devices, becomes finer, thereby increasing the degree of integration.
도 1a 내지 도 1d은 종래 기술의 실시예에 따른 필드 트렌지스터의 제조방법을 도시한 공정도이다.1A to 1D are flowcharts illustrating a method of manufacturing a field transistor according to an exemplary embodiment of the prior art.
종래 기술에 따르면, 도 1a에 나타낸 바와 같이, N형의 반도체 기판(11)에 P형 불순물을 소정 부분에 선택적으로 이온주입하여 P웰(13)을 형성한다. 그리고, 상기 P웰(13)이 형성된 N형 반도체기판(11) 상에 산화실리콘을 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 두껍게 증착하여 절연막(14)을 형성한다. 그리고, 상기 절연막(14) 상에 포토레지스트(Photoresist)를 도포한 후, 노광 및 현상하여 표면에 형성된 P웰(13)과 N형 반도체기판(11)의 계면부분과 각 계면간의 중간부분에만 잔류하도록 제 1 마스크패턴(mask pattern)(15)을 형성한다.According to the prior art, as illustrated in FIG. 1A, P-type 13 is formed by selectively ion-implanting P-type impurities into a predetermined portion of the N-type semiconductor substrate 11. Then, an insulating layer 14 is formed by thickly depositing silicon oxide on the N-type semiconductor substrate 11 on which the P well 13 is formed by chemical vapor deposition (CVD). After the photoresist is applied on the insulating layer 14, the photoresist is exposed and developed to remain only at the interface between the P well 13 and the N-type semiconductor substrate 11 formed on the surface and between the intermediate portions of each interface. The first mask pattern 15 is formed.
그리고, 도 1b에 나타낸 바와 같이 상기 제 1 마스크패턴(15)을 마스크로 사용하여 절연막(14)을 선택적으로 제거한다. 이 때, 상기 표면에 형성된 P웰(13)과 N형 반도체기판(11)의 계면 상에 잔류하는 절연막(14)은 활성영역을 한정하는 필드절연막(17)이 되고, 상기 각 필드절연막(17) 사이에 잔류하는 절연막(14)은 게이트절연막(19)이 된다. 그리고, 상기 필드절연막(17)과 게이트절연막(19)을 덮도록 반도체기판(11) 상에 CVD 방법으로 불순물이 도핑된 폴리실리콘(Polysilicon : 20)층을 형성하고, 포토레지스트를 도포한 후, 노광 및 현상하여 상기 게이트절연막(19) 상에만 잔류하도록 제 2 마스크패턴(21)을 형성한다.1B, the insulating film 14 is selectively removed using the first mask pattern 15 as a mask. At this time, the insulating film 14 remaining on the interface between the P well 13 and the N-type semiconductor substrate 11 formed on the surface becomes a field insulating film 17 which defines an active region, and each of the field insulating films 17 The insulating film 14 remaining between the layers becomes the gate insulating film 19. After the impurity doped polysilicon layer 20 is formed on the semiconductor substrate 11 so as to cover the field insulating layer 17 and the gate insulating layer 19 by applying a photoresist, The second mask pattern 21 is formed so as to remain only on the gate insulating layer 19 by exposure and development.
도 1c에 나타낸 바와 같이 상기 제 2 마스크패턴(21)을 마스크로 하여 폴리실리콘층(20)을 게이트절연막(19) 상에 잔류하도록 패터닝하여 게이트(23)를 한정하고, 제 2 마스크패턴(21)을 제거한다. 그리고, 상기 게이트(23)가 형성된 반도체기판(11) 상에 산화실리콘 등을 CVD 방법으로 두껍게 증착한 후, 에치백(Ecth-back) 공정을 통해 게이트(23)의 측면에 측벽(Side-Wall)(25)을 형성한다.As shown in FIG. 1C, the polysilicon layer 20 is patterned to remain on the gate insulating layer 19 using the second mask pattern 21 as a mask to define the gate 23, and the second mask pattern 21 is formed. ). Then, after thickly depositing silicon oxide or the like on the semiconductor substrate 11 on which the gate 23 is formed by a CVD method, a side-wall is formed on the side of the gate 23 through an etch-back process. (25).
그리고, 도 1d와 같이 상기 게이트(23)와 측벽(25)을 마스크로 하여 P웰(13)에는 N형 불순물을, N형 반도체기판(11)에는 P형 불순물을 선택적으로 이온주입하여 각각 N형의 제 1 불순물영역(27)과 P형의 제 2 불순물영역(29)을 형성한다.As shown in FIG. 1D, N-type impurities are selectively implanted into the P well 13 and P-type impurities are selectively implanted into the N-type semiconductor substrate 11 using the gate 23 and the sidewall 25 as masks. The first impurity region 27 of the type and the second impurity region 29 of the P type are formed.
상술한 바와 같이, 종래기술에 따른 필드 트랜지스터는 두꺼운 게이트절연막을 형성하고 게이트절연막 상에 폴리실리콘을 증착하고 패터닝하여 게이트를 한정한다. 그리고, 상기 게이트 측면에 측벽을 형성한 후에, 상기 게이트와 측벽을 마스크로하여 선택적으로 이온주입하여 불순물영역을 형성하는 방법으로 필드 트랜지스터를 제조하였다.As described above, the field transistor according to the prior art defines a gate by forming a thick gate insulating film and depositing and patterning polysilicon on the gate insulating film. After forming sidewalls on the sidewalls of the gate, field transistors were fabricated by a method of selectively implanting ions using the gate and the sidewalls as a mask to form impurity regions.
그러나, 종래 기술에 따라 제조된 필드 트랜지스터는 고집적화에 인한 단위소자 크기의 감소에 따라 트랜지스터의 채널 길이가 감소되어 펀치쓰루(Punch-through)가 쉽게 발생되는 문제점이 있다.However, the field transistor manufactured according to the related art has a problem in that punch-through is easily generated because the channel length of the transistor is reduced as the size of the unit device decreases due to high integration.
따라서, 본 발명의 목적은 소오스와 드레인의 간격을 늘리지 않고도 펀치쓰루 현상을 방지할 수 있는 필드 트랜지스터를 제조하는 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a field transistor that can prevent the punch-through phenomenon without increasing the gap between the source and the drain.
상기 목적을 달성하기 위한 본 발명에 의한 필드 트랜지스터의 제조방법은 제 1 도전형 영역과 제 2 도전형 영역을 갖는 반도체기판 상에 제 1 도전형의 불순물이 도핑된 제 1 절연막을 형성하고, 상기 제 1 절연막 상에 식각선택비가 다른 제 2 절연막을 순차적으로 형성하고 상기 제 1 및 제 2 절연막이 상기 반도체기판의 제 1 도전형 영역 상에만 잔류하도록 패터닝하는 공정과, 상기 반도체기판 상에 상기 제 1 및 제 2 절연막을 덮도록 제 2 도전형의 불순물이 도핑된 제 3 절연막을 형성하고 상기 제 3 절연막이 상기 반도체기판의 제 2 도전형 영역 상에만 잔류하도록 패터닝하는 공정과, 상기 제 1 절연막 상의 제 2 절연막을 제거하는 공정과, 상기 제 1 및 제 3 절연막이 형성된 반도체기판 상에 제 4 절연막을 형성하고 상기 제 1 및 제 3 절연막 상과 제 1, 제 2 도전영역의 계면 상에 제 4 절연막이 잔류하도록 패터닝하여 게이트절연막과 필드절연막을 형성하는 공정과, 상기 게이트절연막과 필드절연막을 덮도록 불순물이 도핑된 폴리실리콘을 증착하고 게이트절연막 상에만 잔류하도록 패터닝하여 게이트를 한정한 후에 상기 게이트의 측면에 측벽을 형성하는 공정과, 상기 게이트와 측벽을 마스크로 사용하여 제 1 및 제 2 도전형 영역에 각각 소오스 및 드레인영역을 형성하여 채널영역을 한정함과 동시에 상기 제 1 및 제 3 절연막에 도핑된 불순물을 상기 소오스 및 드레인영역 사이의 채널영역으로 확산시키는 공정을 구비한다.A method of manufacturing a field transistor according to the present invention for achieving the above object is to form a first insulating film doped with impurities of a first conductivity type on a semiconductor substrate having a first conductivity type region and a second conductivity type region, Sequentially forming a second insulating film having a different etching selectivity on the first insulating film and patterning the first and second insulating films so as to remain only on the first conductivity type region of the semiconductor substrate; Forming a third insulating film doped with an impurity of a second conductivity type to cover the first and second insulating films, and patterning the third insulating film to remain only on the second conductive type region of the semiconductor substrate; Removing a second insulating film on the semiconductor substrate; and forming a fourth insulating film on the semiconductor substrate on which the first and third insulating films are formed, and forming the first and third insulating films on the first and third insulating films. Patterning the fourth insulating film to remain on the interface of the second conductive region to form a gate insulating film and a field insulating film, and depositing polysilicon doped with impurities to cover the gate insulating film and the field insulating film and remaining only on the gate insulating film. Forming a sidewall on the side surface of the gate after patterning to define the gate; and defining a channel region by forming source and drain regions in the first and second conductive regions using the gate and the sidewall as masks, respectively. And simultaneously dispersing impurities doped in the first and third insulating layers to the channel region between the source and drain regions.
도 1a 내지 도 1d은 종래기술의 실시예에 따른 필드 트랜지스터의 제조방법을 도시하는 공정도.1A to 1D are process diagrams illustrating a method of manufacturing a field transistor according to an embodiment of the prior art.
도 2a 내지 도 2f는 본 발명의 실시예에 따른 필드 트랜지스터의 제조방법을 도시하는 공정도.2A to 2F are process drawings showing a method of manufacturing a field transistor according to the embodiment of the present invention.
* 도면의 주요부분에 대한 부호의 간단한 설명* Brief description of symbols for the main parts of the drawings
31 : N형 반도체기판 33 : P웰31: N-type semiconductor substrate 33: P well
35 : BSG 41 : PSG35: BSG 41: PSG
46 : 필드절연막 47 : 게이트절연막46: field insulating film 47: gate insulating film
51 : 게이트 53 : 측벽51: gate 53: sidewall
이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 2a 내지 도 2f는 본 발명의 실시예에 따른 필드 트랜지스터 제조방법을 도시하는 공정도이다.2A to 2F are process diagrams illustrating a method of manufacturing a field transistor according to an embodiment of the present invention.
본 방법에 따르면 도 2a에 나타낸 바와 같이, N형의 반도체기판(31) 내에 P형 불순물을 소정 부분에 선택적으로 이온주입하여 P웰(33)을 형성한다. 그리고, 상기 P웰(33)이 형성된 반도체기판(31) 상에 제 1 절연막(35)과 제 2 절연막(37)을 CVD 방법으로 순차적으로 형성한 후에, 상기 제 2 절연막(37) 상에 포토레지스트를 도포한 후, 노광 및 현상하여 상기 제 1 및 제 2 절연막(35)(37)이 P웰(33) 상에만 잔류하도록 제 1 마스크패턴(39)을 형성한다. 여기서 상기 제 1 절연막(35)은 P형의 불순형이 도핑된 절연물질, 예를들면, 붕소 실리케이트 유리(Boro-Silicate Glass : 이하, BSG라 칭함)로 형성하고, 상기 제 2 절연막(37)은 제 1 절연막(35)을 형성하는 BSG 등과 같은 실리케이트 유리와 식각 선택비가 다른 절연물질, 예를 들면, 산화실리콘 또는 질화실리콘 등으로 형성한다.According to this method, as shown in Fig. 2A, P-type 33 is formed by selectively implanting P-type impurities into a predetermined portion in the N-type semiconductor substrate 31. After the first insulating film 35 and the second insulating film 37 are sequentially formed by the CVD method on the semiconductor substrate 31 on which the P well 33 is formed, a photo on the second insulating film 37 is formed. After applying the resist, it is exposed and developed to form the first mask pattern 39 so that the first and second insulating films 35 and 37 remain only on the P well 33. Here, the first insulating layer 35 is formed of an insulating material doped with a P-type impurity, for example, boron-silicate glass (hereinafter referred to as BSG), and the second insulating layer 37 The silver is formed of an insulating material having a different etching selectivity from the silicate glass such as BSG or the like forming the first insulating film 35, for example, silicon oxide or silicon nitride.
그리고, 도 2b와 같이 상기 제 1 마스크패턴(39)을 마스크로 사용하여 제 2 절연막(37)과 제 1 절연막(35)을 순차적으로 이방성 건식식각하여 P웰(33) 상에만 잔류시킨 후에, 제 1 마스크패턴(41)을 제거한다. 그리고, 상기 패터닝된 제 1 및 제 2 절연막(35)(37)과 노출된 반도체기판(31) 상에 제 3 절연막(41)을 CVD 방법으로 형성한다. 그리고, 상기 제 3 절연막(41) 상에 포토레지스트를 도포한 후, 노광 및 현상하여 반도체기판(31)의 제 1 및 제 2 절연막(35)(37)이 형성되지 않은 부분에 제 2 마스크패턴(43)을 형성한다. 상기에서 제 3 절연막(41)을 N형 불순물이 도핑된 절연물질, 예를들어, 인 실리케이트 유리(Phospho-Silicate Glass : 이하, PSG라 칭함)로 형성한다.As shown in FIG. 2B, after the first insulating layer 37 and the first insulating layer 35 are sequentially anisotropically dry-etched using the first mask pattern 39 as a mask, only the P well 33 is left. The first mask pattern 41 is removed. A third insulating film 41 is formed on the patterned first and second insulating films 35 and 37 and the exposed semiconductor substrate 31 by a CVD method. After the photoresist is applied on the third insulating film 41, the photomask is exposed and developed to expose the second mask pattern on the portion where the first and second insulating films 35 and 37 of the semiconductor substrate 31 are not formed. To form 43. The third insulating film 41 is formed of an insulating material doped with N-type impurities, for example, Phospho-Silicate Glass (hereinafter, referred to as PSG).
도 2c에 나타낸 바와 같이, 상기 제 2 마스크패턴(43)을 마스크로 사용하여 제 3 절연막(41)을 패터닝한다. 상기에서 제 2 절연막(37)은 제 1 및 제 3 절연막(35)(41)과 식각선택비가 다르므로 제 3 절연막(41)을 패터닝할 때, 제 2 절연막(37)은 제 1 절연막(35)이 식각되지 않도록 보호한다. 그리고, 제 2 마스크패턴(43)을 제거한 후 제 1 절연막(35) 상에 잔류하는 제 2 절연막(37)을 선택적으로 제거한다.As shown in FIG. 2C, the third insulating film 41 is patterned using the second mask pattern 43 as a mask. Since the second insulating film 37 has an etching selectivity different from that of the first and third insulating films 35 and 41, when the third insulating film 41 is patterned, the second insulating film 37 is formed of the first insulating film 35. ) Is protected from etching. After the second mask pattern 43 is removed, the second insulating film 37 remaining on the first insulating film 35 is selectively removed.
그런 후에, 반도체기판(31) 상에 제 1 및 제 3 절연막(35)(41)을 덮도록 산화실리콘을 CVD 방법으로 두껍게 증착하여 제 4 절연막(44)을 형성하고, 상기 제 4 절연막(44) 상에 포토레지스트를 도포한 후, 노광 및 현상하여 제 1 및 제 3 절연막(35)(41)과 대응하는 부분과 표면에 형성된 P웰(33)과 N형 반도체기판(31)의 계면부분에 잔류하도록 제 3 마스크패턴(45)을 형성한다.Thereafter, silicon oxide is thickly deposited by CVD to cover the first and third insulating films 35 and 41 on the semiconductor substrate 31 to form a fourth insulating film 44, and the fourth insulating film 44 After the photoresist is applied onto the photoresist, the photoresist is exposed and developed to form portions corresponding to the first and third insulating layers 35 and 41 and the interface portions of the P well 33 and the N-type semiconductor substrate 31 formed on the surface thereof. The third mask pattern 45 is formed to remain in the.
그리고, 도 2d와 같이 상기 제 3 마스크패턴(45)을 마스크로 사용하여 제 4 절연막(44)을 선택적으로 제거한다. 이 때, 표면에 형성된 P웰(33)과 N형 반도체기판(31)의 계면 상에 잔류하는 제 4 절연막(44)은 활성영역을 한정하는 필드절연막(46)이 되고, 상기 제 1 및 제 3 절연막(35)(41)과 이 제 1 및 제 3 절연막(35)(41) 상에 잔류하는 제 4 절연막(44)은 게이트절연막(47)이 된다.As shown in FIG. 2D, the fourth insulating layer 44 is selectively removed using the third mask pattern 45 as a mask. At this time, the fourth insulating film 44 remaining on the interface between the P well 33 and the N-type semiconductor substrate 31 formed on the surface becomes the field insulating film 46 defining the active region. The third insulating films 35 and 41 and the fourth insulating film 44 remaining on the first and third insulating films 35 and 41 become the gate insulating film 47.
그 다음에, 상기 필드절연막(46)과 게이트절연막(47)을 덮도록 반도체기판(31) 상에 CVD 방법으로 불순물이 도핑된 폴리실리콘층(48)을 형성한다. 그리고, 상기 폴리실리콘층(48) 상에 포토레지스트를 도포하고, 노광 및 현상하여 상기 게이트절연막(47)과 대응하는 부분만 잔류하도록 제 4 마스크패턴(49)을 형성한다.Next, a polysilicon layer 48 doped with impurities by a CVD method is formed on the semiconductor substrate 31 so as to cover the field insulating film 46 and the gate insulating film 47. Then, a photoresist is applied on the polysilicon layer 48, and the fourth mask pattern 49 is formed to expose only the portion corresponding to the gate insulating layer 47 by exposing and developing the photoresist.
도 2e에 나타낸 바와 같이, 상기 제 4 마스크패턴(49)을 마스크로 사용하여, 폴리실리콘층(48)을 선택적으로 이방성식각하여 게이트(51)를 형성한 후에, 제 4 마스크패턴(49)을 제거한다. 그리고, 상기 게이트(51)가 형성된 반도체기판(31) 상에 산화실리콘을 CVD 방법으로 두껍게 증착한 후 에치백 공정을 행하여 게이트(51)의 측면에 측벽(53)을 형성한다.As shown in FIG. 2E, after the gate layer 51 is formed by selectively anisotropically etching the polysilicon layer 48 using the fourth mask pattern 49 as a mask, the fourth mask pattern 49 is formed. Remove Then, a thick silicon oxide is deposited on the semiconductor substrate 31 on which the gate 51 is formed by a CVD method, followed by an etch back process to form sidewalls 53 on the side surfaces of the gate 51.
그 다음 도 2f에 나타낸 바와 같이 상기 게이트(51)와 측벽(53)을 마스크로 사용하여 P웰(33)에는 N형 불순물을, N형 반도체기판(31)에는 P형 불순물을 선택적으로 이온주입한 후, 주입된 이온이 확산되도록 어닐링하여 각각의 N형의 제 1 불순물영역(55) 및 P형의 제 2 불순물영역(57)을 형성한다. 상기에서 제 1 불순물영역(55) 및 제 2 불순물영역(57)의 사이가 채널영역으로 이용되는 데, 상기 제 1 및 제 2 불순물영역(55)(57)을 형성하기 위해 이온주입하고 주입된 이온을 확산시키기 위해 어닐링할 때 제 1 및 제 3 절연막(35)(41)으로 사용된 BSG층 및 PSG층의 도핑된 불순물이 P웰(33) 및 N형 반도체기판(31)의 채널영역으로 확산되어 불순물농도를 증가시킨다.Next, as shown in FIG. 2F, N-type impurities are selectively implanted into the P well 33 and P-type impurities are selectively implanted into the N-type semiconductor substrate 31 using the gate 51 and the sidewall 53 as a mask. Thereafter, the implanted ions are annealed to diffuse, thereby forming respective N-type first impurity regions 55 and P-type second impurity regions 57. The first impurity region 55 and the second impurity region 57 are used as channel regions, and ion implantation and implantation are performed to form the first and second impurity regions 55 and 57. When annealing to diffuse ions, doped impurities of the BSG layer and the PSG layer used as the first and third insulating layers 35 and 41 are transferred to the channel region of the P well 33 and the N-type semiconductor substrate 31. Diffusion increases the concentration of impurities.
상술한 바와 같이, 본 발명에 따라 제조된 필드 트랜지스터는 게이트절연층을 형성할 때, P웰 상에는 P형 불순물이 도핑된 BSG층을, N웰 상에는 N형 불순물이 도핑된 PSG층을 형성하고, 상기 BSG 및 PSG 상에 두꺼운 절연막을 추가로 형성하여, 후속공정중의 열에 의해 BSG층의 붕소(B)와, PSG층의 인(P)이 N형의 반도체기판과 P웰의 채널영역내에 확산되어 불순물농도가 증가함에 의해 펀치쓰루 현상이 방지되는 필드 트랜지스터의 제조방법이다.As described above, the field transistor manufactured according to the present invention forms a BSG layer doped with P-type impurities on the P wells, and a PSG layer doped with N-type impurities on the N wells when the gate insulating layer is formed. A thick insulating film is further formed on the BSG and PSG, and boron (B) of the BSG layer and phosphorus (P) of the PSG layer diffuse in the channel region of the N-type semiconductor substrate and the P well by heat during the subsequent process. In this way, the punch-through phenomenon is prevented by increasing the impurity concentration.
따라서, 본 발명에 따른 필드 트랜지스터 제조방법은 게이트절연막으로 얇은 기판과 같은 도전형의 불순물이 도핑된 절연막과 상기 기판과 같은 도전형의 불순물이 도핑된 절연막 상에 또 다른 두꺼운 절연막을 형성하여 후속열공정에 의해 얇은 절연막에 도핑된 불순물이 채널영역 내에 확산되어 불순물의 농도를 증가시켜 단위소자의 크기 감소에 의해 채널길이가 감소하여도 펀치쓰루 현상을 방지할 수 있는 잇점이 있다.Therefore, the field transistor manufacturing method according to the present invention forms a thick insulating film on an insulating film doped with a conductive type impurity such as a thin substrate as a gate insulating film and another thick insulating film on an insulating film doped with a conductive type impurity such as the substrate. Impurity doped in the thin insulating film by the process is diffused in the channel region to increase the concentration of impurities, even if the channel length is reduced by reducing the size of the unit device to prevent the punch-through phenomenon.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970048369A KR100231479B1 (en) | 1997-09-24 | 1997-09-24 | Method of fabricating field transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970048369A KR100231479B1 (en) | 1997-09-24 | 1997-09-24 | Method of fabricating field transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990026301A true KR19990026301A (en) | 1999-04-15 |
KR100231479B1 KR100231479B1 (en) | 1999-11-15 |
Family
ID=19521563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970048369A KR100231479B1 (en) | 1997-09-24 | 1997-09-24 | Method of fabricating field transistor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100231479B1 (en) |
-
1997
- 1997-09-24 KR KR1019970048369A patent/KR100231479B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100231479B1 (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6943116B2 (en) | Method for fabricating a p-channel field-effect transistor on a semiconductor substrate | |
US5759900A (en) | Method for manufacturing MOSFET | |
KR100231479B1 (en) | Method of fabricating field transistor | |
KR100873356B1 (en) | Method for forming the high voltage transistor | |
KR100298874B1 (en) | Method for forming transistor | |
KR100249011B1 (en) | Method of mos device | |
KR100929422B1 (en) | Manufacturing method of semiconductor device | |
KR100226496B1 (en) | Method of manufacturing semiconductor device | |
KR0180136B1 (en) | Word line forming method of maskrom | |
KR100269628B1 (en) | A method of fabricating semiconductor device | |
KR100379521B1 (en) | Method for Fabricating of Semiconductor Device | |
KR100253340B1 (en) | Manufacturing method for mos transistor | |
KR100215871B1 (en) | Method for fabricating semiconductor device | |
KR100236073B1 (en) | Method of manufacturing semiconductor device | |
KR100202189B1 (en) | Method of manufacturing semiconductor device | |
KR100249015B1 (en) | Method of fabricating transistor | |
KR100226495B1 (en) | Method of manufacturing semiconductor device | |
KR100236264B1 (en) | Method of manufacturing semiconductor device | |
KR100252857B1 (en) | Method for manufacturing semiconductor device | |
KR100202642B1 (en) | Method for manufacturing mos transistor | |
KR100231131B1 (en) | Manufacturing method of semiconductor | |
KR100439102B1 (en) | Method for manufacturing a semiconductor device | |
KR20020017725A (en) | High voltage Semiconductor device and method for the Same | |
JPH0794734A (en) | Method of manufacturing transistor with high withstanding voltage | |
KR20020010965A (en) | Method of manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080728 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |