KR19980068279A - Manufacturing method of crosslinked polyamide reverse osmosis membrane - Google Patents
Manufacturing method of crosslinked polyamide reverse osmosis membrane Download PDFInfo
- Publication number
- KR19980068279A KR19980068279A KR1019970004794A KR19970004794A KR19980068279A KR 19980068279 A KR19980068279 A KR 19980068279A KR 1019970004794 A KR1019970004794 A KR 1019970004794A KR 19970004794 A KR19970004794 A KR 19970004794A KR 19980068279 A KR19980068279 A KR 19980068279A
- Authority
- KR
- South Korea
- Prior art keywords
- reverse osmosis
- crosslinked polyamide
- composite membrane
- solution
- polyfunctional
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 기존의 분리막에 비해 비교적 높은 염배제율을 지니면서도 고유량의 특성을 지닌 가교 폴리아미드계 복합소재 역삼투 분리막에 관한 것이다.The present invention relates to a crosslinked polyamide-based composite reverse osmosis membrane having a relatively high salt rejection rate and a high flow rate compared to a conventional separator.
본 발명은 구체적으로 미세다공 폴리술폰이 코팅된 부직포기질 표면에 다관능성 아민 용액을 침지한 후 압착방법으로 물층을 제거하고 다관능성할로겐화합물 용액 하에서 계면중합시켜 얻어지는 가교 폴리아미드계 역삼투 복합막의 제조시, 다관능성아민혼합용액의 조성에 m-페닐렌디아민 또는 p-페닐렌디아민이 함유되어 있고, 다관능성산할로겐화합물 용액이 아실할라이드가 소량 함유된 용액이며, 계면중합시 사용되는 용매로 지방족 탄화수소 용매를 사용하여 제조하는 것을 특징으로 한 가교 폴리아미드계 역삼투 복합막의 제조방법에 관한 것으로서, 이와 같은 방법에 의해 제조된 복합막은 우수한 염배제율과 고유량의 특성을 지닌다.The present invention specifically prepares a crosslinked polyamide reverse osmosis composite membrane obtained by immersing a polyfunctional amine solution on the surface of a non-porous substrate coated with a microporous polysulfone, and then removing the water layer by a compression method and interfacially polymerizing it under a polyfunctional halogenated compound solution. The polyfunctional amine mixture solution contains m-phenylenediamine or p-phenylenediamine, and the polyfunctional acid halide compound solution is a solution containing a small amount of acyl halide. The present invention relates to a method for producing a crosslinked polyamide-based reverse osmosis composite membrane, which is prepared using a hydrocarbon solvent. The composite membrane prepared by the above method has excellent salt rejection rate and high flow rate.
Description
본 발명은 기존의 분리막에 비해 고유량의 특성을 지닌 가교 폴리아미드계 복합소재 역삼투 분리막의 제조방법에 관한 것이다.The present invention relates to a method for producing a crosslinked polyamide-based composite reverse osmosis membrane having a high flow rate characteristics compared to a conventional separator.
역삼투 분리막은 1960년대 초에 로브(Loeb)와 소리라잔(Sourirajan)이 최초의 역삼투막인 비대칭형 셀룰로우즈디아세테이트막을 개발한 이래 이에 대한 연구가 활발히 행해져 왔다. 셀룰로우즈디아세테이트막은 가격이 저렴하다는 장점이 있으나, 미생물에 대해 취약하고 강염기하에서 쉽게 가수분해되며 사용온도와 pH의 범위가 좁다는 단점이 있어 셀룰로우즈의 개질과 여러 셀룰로우즈의 합금을 통해 사용되고 있지만 이들 단점을 완전히 극복하지는 못하였다. 그 후 셀룰로우즈막의 단점을 보완하기 위해 폴리아미드계, 폴리우레탄계, 방향족 폴리술폰계, 방향족 폴리아미드계 등을 대상으로 연구가 활발히 진행되어지고 있다.Reverse osmosis membranes have been actively studied since Loeb and Sourirajan developed the first reverse osmosis membrane, an asymmetric cellulose diacetate membrane. Cellulose diacetate membranes have the advantages of low cost, but they are vulnerable to microorganisms, easily hydrolyzed under strong bases, and have a narrow range of operating temperature and pH, which leads to the modification of cellulose and alloys of various celluloses. Although it is being used through, it has not completely overcome these disadvantages. Since then, researches have been actively conducted on polyamides, polyurethanes, aromatic polysulfones, aromatic polyamides, and the like to supplement the disadvantages of the cellulose membrane.
이들 중에서 방향족 폴리술폰을 다공성 지지막으로 하고 폴리아미드계를 지지층으로 하는 복합막이 개발되어 실용화되고 있는 실정이다. 이와 같은 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어져 있다. 복합막의 제조방법은 박층 분산법, 침지 코팅법, 기상 증착법, 랭그미르-블로제트(Langmuir-Blodgett)법, 계면 중합법 등이 있으며, 특히 근래 개발된 나노 또는 역삼투 복합막에서는 미국 특허 4,277,344에 개시되어 있는 계면 증합법이 복합막의 제조에 주로 이용되고 있다. 계면 중합법에 의한 복합막의 시초는 다공성 폴리술폰 지지체에 폴리에틸렌아민 수용액과 헥산 중의 톨루엔 디아이소시아네이트를 반응시켜 제조된 상품명 NS-100으로서, NS-100의 개발 이후 이러한 계면 중합법에 여러종류의 지방족 아민, 방향족 아민이 사용되어 다양한 특성의 막이 제조되었다. 그러나, NS-100의 개발자인 캐도트(Cadotte)에 의해 폴리피페라진아미드 활성층을 가진 NS-300이 나오면서 비로소 계면 중합법에 의한 진정한 의미의 복합막이 나오기 시작했다. NS-300막은 나노미터급의 용질에 대한 특이한 선택적 분리 능력을 가진 것으로서, NS-300의 개발 당시에 폴리피페라진아미드는 2가 이온과 단당류에 대해 95%이상의 높은 배제율과 염화나트륨에 대해서는 40∼95%의 비교적 넓은 범위의 배제율을 가진 막들이 개발되었는데, 이같은 특성은 주로 폴리술폰계의 미소다공성기질을 피페라진과 알카리성 촉매가 섞인 다관능성 아민 용액에 함침시키고 그 기질상에 다관능성 산할로겐화합물을 도포하여 계면중합을 발생시켜 얻어진다. 이런 막의 주된 배제율 조절 방법은 산할로겐 화합물을 테레프타로일클로라이드, 이소프타로일클로라이드, 트리메조일클로라이드 용액을 적절한 비율로 혼합해가며 사용하는 방법으로 이 혼합비율에 배제율이 비례하는 방식이다. 나노 복합막의 제조방법중 미국특허 4,259,138에는 피페라진과 촉매로는 N,N'-디메틸 피페라진, 수산화나트륨 등을 쓰고 이소프타로일클로라이드와 트리메조일클로라이드를 혼합 사용해 계면중합을 행하며, 이때 산할로겐화합물의 용매로는 n-헥산을 사용한다. 한편, 미국특허 4,619,767에서는 폴리술폰위에 폴리비닐알콜을 먼저 코팅시키고 다시 피페라진 혹은 피페라진 구조를 포함한 디아민과 트리메조일클로라이드/이소프탈로일클로라이드의 혼합물을 사용해 계면중합시키고, 용매로 n-헥산을 사용하고 있다.Among them, a composite membrane having an aromatic polysulfone as a porous support membrane and a polyamide-based support layer has been developed and put into practical use. Such a composite membrane consists of a support layer for maintaining mechanical strength and an active layer with selective permeability. The manufacturing method of the composite film includes a thin layer dispersion method, an immersion coating method, a vapor deposition method, a Langmuir-Blodgett method, an interfacial polymerization method, and in particular, in the recently developed nano or reverse osmosis composite membrane, US Pat. No. 4,277,344. The interfacial deposition method disclosed is mainly used for the manufacture of a composite film. The start of the composite membrane by the interfacial polymerization method is NS-100, which is prepared by reacting an aqueous polyethyleneamine solution with toluene diisocyanate in hexane to a porous polysulfone support, and after the development of NS-100, various kinds of aliphatic amines Aromatic amines have been used to prepare membranes of various properties. However, NS-300 with polypiperazineamide active layer came out by Cadette, the developer of NS-100, and finally the composite film by the interfacial polymerization method was started. The NS-300 membrane has specific selective separation ability for nanometer solutes. At the time of NS-300 development, polypiperazineamide has a high exclusion rate of more than 95% for divalent ions and monosaccharides and 40-95 for sodium chloride. Membranes with a relatively broad range of rejection rates have been developed, which are mainly impregnated with polysulfone microporous substrates in a polyfunctional amine solution mixed with piperazine and an alkaline catalyst, and on the substrate a polyfunctional acid halogen compound. It is obtained by apply | coating an interpolymerization by apply | coating this. The main method of controlling the rejection rate of membranes is to mix the acid halide compound with terephthaloyl chloride, isophthaloyl chloride, and trimezoyl chloride solution in an appropriate ratio, and the exclusion ratio is proportional to this mixing ratio. . In US Pat. No. 4,259,138 of the method for preparing nanocomposite membranes, piperazine and N, N'-dimethyl piperazine, sodium hydroxide, etc. are used as catalysts, and interfacial polymerization is performed by mixing isophthaloyl chloride and trimesoyl chloride. N-hexane is used as a solvent of a compound. On the other hand, U.S. Patent 4,619,767 first coated polyvinyl alcohol on polysulfone, and then interpolymerized with a mixture of diamine and trimesoyl chloride / isophthaloyl chloride containing piperazine or piperazine structure, and n-hexane as a solvent. I use it.
또한, 이런 나노막에 비해 유량은 떨어지나 이온 상태의 무기물들을 거의 98% 이상 분리할 수 있는 능력을 갖는 역삼투 분리막이 개발되었는데, 이러한 역삼투 분리막은 반투과막으로 염들이 녹아있는 수용액의 한쪽 방향에서 가압을 할 경우 용액과 용질의 분리가 일정 방향으로 일어난다는 원리를 이용한 것으로 고압에도 견디고, 내구성, 내화학성이 뛰어난 재질의 고기능 분리막이다. 역삼투 분리막의 중요한 특성으로는 염배제율(SALT REJECTION : 용매로부터 용질의 분리능 정도를 나타내는 수치)와 유량(FLUX : 일정시간동안 일정압력에서 분리막을 통하여 나오는 용매의 유량)이 있다. 박막 복합 재료의 역삼투 분리막으로는 계면중합에서 얻어지는 폴리아미드가 일반적으로 사용된다. 수용성 아민에서 미세 고분자 지지층(주로 폴리술폰계)을 잠기게 한후 얻어진 층을 다시 유기층의 아실클로라이드가 녹아있는 용액층에 잠기게 함으로써 계면중합이 이루어지는데, 이때 사용되는 유기 용매는 주로 폴리아미드화 반응에 영향을 주지 않으며 적당량의 기질을 녹일 수 있는 용매가 바람직하다.In addition, a reverse osmosis membrane was developed, which has a lower flow rate than the nano-membrane but has the ability to separate almost 98% of ionic minerals. The reverse osmosis membrane is a semi-permeable membrane in one direction of an aqueous solution in which salts are dissolved. It is a high-performance separator made of a material that withstands high pressure, and has excellent durability and chemical resistance. Important characteristics of the reverse osmosis membrane include salt rejection (SALT REJECTION), and flow rate (FLUX: flow rate of solvent exiting the membrane at constant pressure for a certain time). As the reverse osmosis membrane of the thin film composite material, polyamide obtained by interfacial polymerization is generally used. Interfacial polymerization is achieved by submerging the fine polymer support layer (primarily polysulfone) in a water-soluble amine and then submerging the obtained layer in a solution layer in which the acyl chloride of the organic layer is dissolved. In this case, the organic solvent used is mainly a polyamide reaction. Solvents that do not affect the ability to dissolve an appropriate amount of substrate are preferred.
지금까지 가장 널리 사용되어진 용매는 1,1,2-트리클로로트리플로오르에탄(1,1,2-TRICHLOROTRIFLUOROETHANE)으로 일반적으로 CFC-113으로 불리어지는 용매이나, 값이 비싸고 오존층 파괴 등 환경에 악영향을 주는 것으로 알려져 있다.The most widely used solvent so far is 1,1,2-trichlorotrifluoroethane (1,1,2-TRICHLOROTRIFLUOROETHANE), which is generally called CFC-113, but is expensive and adversely affects the environment such as destruction of the ozone layer. It is known to give.
그로인해 환경 친화적인 용매의 사용에 관한 연구가 최근 활발히 진행되었는데, 미국 특허 4,005,012, 미국 특허4,259,813, 미국 특허 4,360,434, 미국 특허 4,606,943, 미국 특허 4,737,325, 미국 특허 4,282,708, 미국 특허 5,258,203 등은 1,1,2-트리클로로트리플로오르에탄을 사용하지 않고 지방족 탄화수소 용매로 대체하여 분리막을 제조하는 방법을 제시하였다. 그러나, 헥산 같은 지방족 반응용매들의 사용은 유량을 떨어뜨리는 결과로 상업적 사용이 제한되어왔다. 때문에 좋은 염배제율과 충분한 유량을 얻기위한 연구들이 진행되어 왔는데, 조액 시 첨가하는 물질들을 개발하는 연구(미국 특허 5,234,598, 미국 특허 5,258,203), 폴리아미드 반응에 첨가하는 단량체들의 구조를 바꾸는 연구(미국 특허 4,761,234, 미국 특허 4,643,829, 미국 특허 5,019,264, 미국 특허 5,160,619, 미국 특허 5,271,843, 미국 특허 5,336,409), 후처리를 통한 유량증가 방법에 관한 연구(미국특허 4,938,872, 미국 특허 4,927,540)등이 제안되어 있다.As a result, studies on the use of environmentally friendly solvents have been actively conducted in recent years, including US Patent 4,005,012, US Patent 4,259,813, US Patent 4,360,434, US Patent 4,606,943, US Patent 4,737,325, US Patent 4,282,708, US Patent 5,258,203, etc. A method of preparing a separator by using an aliphatic hydrocarbon solvent without using 2-trichlorotrifluoroethane is provided. However, the use of aliphatic reaction solvents such as hexane has limited commercial use as a result of lowering the flow rate. Because of this, studies have been conducted to obtain a good salt rejection rate and a sufficient flow rate, a study of developing materials to be added to the crude liquid (US Pat. No. 5,234,598, US Pat. No. 5,258,203), and a study of changing the structure of the monomers added to the polyamide reaction (US Patents 4,761,234, U.S. Patent 4,643,829, U.S. Patent 5,019,264, U.S. Patent 5,160,619, U.S. Patent 5,271,843, U.S. Pat.
본 발명은 CFC-113과 같은 용매를 사용하지 않는 대신 지방족 탄화수소 용매를 사용하여 염배제율이 좋고 고유량의 특성을 지닌 폴리아미드계 역삼투 분리막의 제조방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for producing a polyamide reverse osmosis membrane having a high salt rejection rate and a high flow rate by using an aliphatic hydrocarbon solvent instead of using a solvent such as CFC-113.
본 발명은 미세다공 폴리술폰이 코팅된 부직포 기질표면에 다관능성아민용액을 침지한 후 압착방법으로 표면의 물층을 제거하고 다관능성산할로겐화합물 용액하에서 계면중합시켜 얻어지는 가교 폴리아미드계 역삼투 복합막을 제조시, 다관능성아민혼합용액의 조성에서 메타-페닐렌디아민 및/또는 파라-페닐렌디아민이 0∼75중량% 함유되어 있고 다관능성산할로겐화합물용액이 아실할라이드가 0.01∼1중량% 함유된 것이며, 지방족 탄화수소 용매를 가지는 계를 사용하여 계면중합을 행하는 것을 특징으로 한 가교 폴리아미드계 역삼투 분리막의 제조방법에 관한 것이다.The present invention provides a crosslinked polyamide reverse osmosis composite membrane obtained by immersing a polyfunctional amine solution on a surface of a non-porous substrate coated with a microporous polysulfone, and then removing the water layer on the surface by a crimping method and interfacially polymerizing it under a polyfunctional acid halide compound solution. In the preparation, 0-75% by weight of meta-phenylenediamine and / or para-phenylenediamine are contained in the composition of the polyfunctional amine mixed solution, and 0.01-1% by weight of the acyl halide is contained in the polyfunctional acid halogenated compound solution. The present invention relates to a method for producing a crosslinked polyamide reverse osmosis membrane, characterized in that interfacial polymerization is carried out using a system having an aliphatic hydrocarbon solvent.
본 발명에서 산할로겐화합물의 용매로는 탄소수 5∼12개인 n-알칸과 탄소수 8개인 포화 및 불포화 탄화수소의 구조이성질체를 혼합사용하거나 탄소수 5∼7개의 고리 탄화수소가 사용된다.In the present invention, as the solvent of the acid halogen compound, structural isomers of n-alkanes having 5 to 12 carbon atoms and saturated and unsaturated hydrocarbons having 8 carbon atoms are used or mixed, or ring hydrocarbons having 5 to 7 carbon atoms are used.
본 발명에서 분리막 제조시 폴리에스터 부직포상에 폴리술폰을 캐스팅한 후 이 지지층을 0.1∼10중량%의 아민 수용액(pH 5∼9)에 30초∼10분간 침지한 후 압착기로 수분을 충분히 제거하는데, 이때 사용되는 아민으로는 주로 메타페닐렌디아민, 파라페닐렌디아민이 사용되며 이 아민 용액은 강산과 그 짝염기를 넣어주고 그 산으로 다시 pH를 조절하여 제조된다. 또한, 본 발명에 사용되는 적당한 아실 할라이드로는 트리메조일클로라이드, 이소프탈로일클로라이드 등이 있으며, 그외 1,3,5-시클로헥산트리카보닐클로라이드, 1,2,3,4,-시클로헥산테트라카보닐클로라이드 등이 쉽게 별다른 제약없이 사용되어질 수 있으나, 트리메조일클로라이드가 물성상 가장 바람직하다.In the present invention, after the polysulfone is cast on a polyester nonwoven fabric in the preparation of the separator, the support layer is immersed in 0.1 to 10% by weight of an aqueous amine solution (pH 5 to 9) for 30 seconds to 10 minutes, and then sufficiently removed with a press. In this case, as the amine used, metaphenylenediamine and paraphenylenediamine are mainly used. The amine solution is prepared by adding a strong acid and its base, and adjusting the pH again with the acid. In addition, suitable acyl halides used in the present invention include trimezoyl chloride, isophthaloyl chloride and the like, and others 1,3,5-cyclohexanetricarbonyl chloride, 1,2,3,4, -cyclohexane Tetracarbonyl chloride and the like can be easily used without any restriction, but trimethoyl chloride is most preferable in terms of physical properties.
지방족 탄화수소 용매는 아실할라이드를 0.1∼1% 이상 녹일 수 있어야 하고 계면중합 반응에 참가하지 않고 아실할라이드와 화학적 결합이 없어야 하며 다공성 지지층에 손상을 입히지 않는 것이 사용되는데, 이와 같이 아실할라이드가 0.01∼1중량% 녹아있는 비극성 지방족 유기용액에 아민 수용액층이 코팅되어 있는 막을 1∼10분간 침지 시킨 후 꺼내어 상온에서 어느정도 건조하고 다시 60∼120℃의 상태에서 30초∼10분간 완전 건조시키고, 이 막을 다시 상온으로 식힌 후 40∼90℃의 탄산 나트륨 수용액에서 30분∼4시간 동안 세정한 후 순수에 넣어서 보관한다.Aliphatic hydrocarbon solvents should be capable of dissolving more than 0.1 to 1% of acyl halides, not participating in interfacial polymerization, without chemical bonding with acyl halides, and not damaging the porous support layer. After immersing the membrane coated with the amine aqueous solution for 1 to 10 minutes in the dissolved non-polar aliphatic organic solution by weight%, take it out and dry it to some extent at room temperature, and completely dry it for 30 seconds to 10 minutes at 60 to 120 ° C. After cooling to room temperature, it is washed for 30 minutes to 4 hours in an aqueous solution of sodium carbonate at 40 to 90 ° C, and then stored in pure water.
본 발명에서는 복합막 제조시 여러 첨가제가 사용될 수 있는데, 아민혼합용액에 사용되는 첨가제로는 탄소수 6∼12의 3급 아민 0.5∼5중량%, 또는 탄소수 6∼12의 시클로알킬유기산 1∼10중량%가 사용될 수 있는데, 특히 고리내에 질소 원자가 4개 이상의 아민을 갖는 폴리아자마크로시클로화합물 유도체와 같은 특정구조의 3급 아민이 효과면에서 바람직하다.In the present invention, various additives may be used in the preparation of the composite membrane. The additive used in the amine mixture solution may be 0.5 to 5 wt% of a tertiary amine having 6 to 12 carbon atoms, or 1 to 10 wt% of a cycloalkyl organic acid having 6 to 12 carbon atoms. Percentages may be used, in particular tertiary amines of a particular structure, such as polyazamacrocyclo compound derivatives having a nitrogen atom of 4 or more amines in the ring, are preferred in view of effectiveness.
이하에서 실시예를 들어 본 발명을 좀 더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예 1∼9]EXAMPLES 1-9
폴리에스터 부직포상에 디메틸포름아미드와 폴리술폰 20중량% 용액을 두께가 약 125±10㎛로 캐스트하고, 즉시 이것을 30℃온도의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미소다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후, 상온에서 건조하고 순수에 보관하였다. 이렇게 얻어진 폴리술폰 미세다공성 기질을 농도가 2.0중량%인 m-페닐렌디아민과 하기 표1에 나타낸 바와 같은 (실시예 1∼9)유기산 및 3급 다중 아민 염기의 첨가제를 가한 용액에 침지하는데, 이때 유기산은 알드리치사 순도 98%이상의 시약급을 사용하였다. 이어서 pH를 8.7로 조정한 수용액에 30분 침지한 후 압착 방법으로 표면의 물층을 제거한 후 기질층을 농도가 1중량%인 트리메조일클로라이드 유기용액(n-옥탄 : 시클로헥산 : 디에틸에테르 = 75 : 20 : 5의 비율로 된 용매)에 5분간 함침시켜 계면중합이 발생하도록 하였다. 이렇게 제조된 복합막을 상온에서 10분간, 95℃에서 5분간 완전 건조시킨 후 90℃ 약알카리 수용액으로 충분히 수세하고 상온에서 순수로 다시 세정하였으며, 염배제율과 유량을 측정하여 그 결과를 표1에 나타내었다.Cast 20% by weight of a solution of dimethylformamide and polysulfone to a thickness of about 125 ± 10 μm on a polyester nonwoven fabric, immediately immerse it in a distilled water bath at 30 ° C. to solidify it, and then sufficiently prepare the nonwoven reinforced polysulfone microporous substrate. After washing with water to replace the solvent and water in the substrate, it was dried at room temperature and stored in pure water. The polysulfone microporous substrate thus obtained was immersed in a solution to which m-phenylenediamine having a concentration of 2.0% by weight and additives of organic acids and tertiary polyamine bases (Examples 1 to 9) as shown in Table 1 below were added. At this time, the organic acid used a reagent grade of Aldrich Company purity of 98% or more. Subsequently, it was immersed in an aqueous solution adjusted to pH 8.7 for 30 minutes, and then the water layer on the surface was removed by a compression method, and then the substrate layer was trimmed with an organic solution of 1% by weight of trimezoyl chloride (n-octane: cyclohexane: diethyl ether = 75: 20: 5 (solvent ratio) was impregnated for 5 minutes to cause interfacial polymerization. The composite membrane thus prepared was completely dried at room temperature for 10 minutes, at 95 ° C for 5 minutes, washed with 90 ° C weak alkaline solution and washed with pure water at room temperature, and then the salt excretion rate and flow rate were measured. Indicated.
[비교예 1∼6]Comparative Examples 1 to 6
폴리에스터 부직포상에 디메틸포름아미드와 폴리술폰 20중량% 용액을 두께가 약 125±10㎛로 캐스트하고, 즉시 이것을 30℃온도의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미소다공성 기질을 충분히 수세하여 기질중의용매와 물을 치환한 후, 상온에서 건조하고 순수에 보관하였다. 이렇게 얻어진 폴리술폰 미소다공성 기질을 농도가 2.0중량%인 m-페닐렌디아민과 하기 표1에 나타낸 바와 같은(비교예 1∼6) 황산 또는 유기산과 다중 3급 아민 또는 트리에틸아민인 염기의 첨가제를 가한 수용액에 30분간 침지한 후 압착 방법으로 표면의 물층을 제거하였다. 이 기질층을 농도가 1중량%인 트리메조일클로라이드 유기용액(n-헵탄 : 시클로헥산 : 디에틸에테르 = 75 : 20 : 5의 비율로 된 용매)에 5분간 함침시켜 계면중합이 발생하도록 하였다. 이렇게 제조된 복합막을 95℃에서 5분간 건조시킨 후 90℃ 약알카리 수용액으로 충분히 수세한 후 순수로 세정하였으며, 염배제율과 유량을 측정하여 그 결과를 표1에 나타내었다.Cast 20% by weight of a solution of dimethylformamide and polysulfone to a thickness of about 125 ± 10 μm on a polyester nonwoven fabric, immediately immerse it in a distilled water bath at 30 ° C. to solidify it, and then sufficiently prepare the nonwoven reinforced polysulfone microporous substrate. After washing with water, the solvent and water in the substrate were replaced, dried at room temperature and stored in pure water. The polysulfone microporous substrate thus obtained was added with m-phenylenediamine having a concentration of 2.0% by weight, and a sulfuric acid or organic acid as shown in Table 1 below (Comparative Examples 1 to 6) and a base which is a multi-tertiary amine or triethylamine. It was immersed in the aqueous solution added for 30 minutes and then the water layer on the surface was removed by the compression method. This substrate layer was immersed in an organic solution of 1% by weight of trimezoyl chloride (n-heptane: cyclohexane: diethyl ether = 75: 20: 5) for 5 minutes to cause interfacial polymerization. . The composite membrane thus prepared was dried at 95 ° C. for 5 minutes, washed sufficiently with 90 ° C. weak alkaline solution, washed with pure water, and the salt excretion rate and flow rate were measured.
- 성능 측정 방법 --How to measure performance-
위와같은 방법으로 만들어진 용매로 제조된 막의 유량은 농도가 2,000ppm인 염화나트륨 수용액을 25℃, 225psig에서 측정하였고, 염배제율은 다음의 식에 의하여 계산되었다. 여기에서 R은 염배제율, Cf는공급수중의 용질의 농도이며 Cp는는 투과수중의 용질 농도이다.The flow rate of the membrane prepared with the solvent produced by the above method was measured at 225 psig at 25 ° C. in an aqueous sodium chloride solution having a concentration of 2,000 ppm, and the salt rejection rate was calculated by the following equation. Where R is the salt excretion rate, C f is the concentration of the solute in the feed water and C p is the concentration of the solute in the permeate.
[표 1a]TABLE 1a
[표 1b]TABLE 1b
* 화합물 1 : H2SO4 Compound 1: H 2 SO 4
* 화합물 2 :Compound 2:
* 화합물 3 :Compound 3:
* 화합물 4 : N-(methyl)4〔12〕aneN4 Compound 4: N- (methyl) 4 [12] aneN 4
* 화합물 5 : N-(methyl)4〔14〕aneN4 Compound 5: N- (methyl) 4 [14] aneN 4
* 화합물 6 : N-(methyl)2(N1-Ethylene-N6)bicyclo〔14〕aneN4 Compound 6: N- (methyl) 2 (N 1 -Ethylene-N 6 ) bicyclo [14] aneN 4
상기 실시예 및 비교예에서도 확인되듯이 본 발명에 따라 제조된 가교 폴리아미드계 복합소재 역삼투 분리막은 계면중합시 유기용매로 지방족 탄화수소를 가지는 계를 사용하면서도 염배제율이 좋고 고유량을 나타내는 유용성을 지닌다.As can be seen from the above examples and comparative examples, the crosslinked polyamide-based composite reverse osmosis membrane prepared according to the present invention has good salt excretion rate and high flow rate while using a system having an aliphatic hydrocarbon as an organic solvent during interfacial polymerization. Has
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970004794A KR100211338B1 (en) | 1997-02-17 | 1997-02-17 | Producing method of the polyamide type crosslinked reverse osmosis separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970004794A KR100211338B1 (en) | 1997-02-17 | 1997-02-17 | Producing method of the polyamide type crosslinked reverse osmosis separation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980068279A true KR19980068279A (en) | 1998-10-15 |
KR100211338B1 KR100211338B1 (en) | 1999-08-02 |
Family
ID=19497279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970004794A KR100211338B1 (en) | 1997-02-17 | 1997-02-17 | Producing method of the polyamide type crosslinked reverse osmosis separation membrane |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100211338B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990070134A (en) * | 1998-02-17 | 1999-09-15 | 한형수 | Manufacturing Method of Polyamide Composite Membrane |
KR100506537B1 (en) * | 1997-08-28 | 2005-11-08 | 주식회사 새 한 | Manufacturing method of crosslinked polyamide reverse osmosis membrane |
KR100587815B1 (en) * | 2004-12-10 | 2006-06-12 | 주식회사 새 한 | Producing method of the polyamid membrane having high performance |
KR20120027748A (en) * | 2010-09-13 | 2012-03-22 | 주식회사 효성 | Method for manufacturing polyamide-based reverse osmosis membrane having antifouling property |
WO2012033321A3 (en) * | 2010-09-06 | 2012-06-28 | 주식회사 엘지화학 | Separator, production method for same and electrochemical device equipped with same |
WO2016175499A1 (en) * | 2015-04-29 | 2016-11-03 | 고려대학교산학협력단 | Method for manufacturing separator using selective layer prepared through support-free interfacial polymerization |
CN113070022A (en) * | 2021-03-22 | 2021-07-06 | 齐齐哈尔大学 | Batch circulating type ultrathin film unfolding preparation device |
CN113769593A (en) * | 2021-07-09 | 2021-12-10 | 上海唯赛勃环保科技股份有限公司 | Nanofiltration membrane for extracting lithium from salt lake and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101103384B1 (en) | 2009-11-23 | 2012-01-06 | 한국화학연구원 | High chlorine resistant and hydrophilic reverse osmosis membrane and method of preparing the same |
KR101258431B1 (en) * | 2010-07-14 | 2013-04-26 | 웅진케미칼 주식회사 | Forward osmosis membrane with high flux and manufacturing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01180208A (en) * | 1988-01-11 | 1989-07-18 | Toray Ind Inc | Production of compound semipermeable membrane |
US5258203A (en) * | 1991-02-04 | 1993-11-02 | E. I. Du Pont De Nemours And Company | Process for the manufacture of thin film composite membranes |
-
1997
- 1997-02-17 KR KR1019970004794A patent/KR100211338B1/en not_active IP Right Cessation
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100506537B1 (en) * | 1997-08-28 | 2005-11-08 | 주식회사 새 한 | Manufacturing method of crosslinked polyamide reverse osmosis membrane |
KR19990070134A (en) * | 1998-02-17 | 1999-09-15 | 한형수 | Manufacturing Method of Polyamide Composite Membrane |
KR100587815B1 (en) * | 2004-12-10 | 2006-06-12 | 주식회사 새 한 | Producing method of the polyamid membrane having high performance |
WO2012033321A3 (en) * | 2010-09-06 | 2012-06-28 | 주식회사 엘지화학 | Separator, production method for same and electrochemical device equipped with same |
KR20120027748A (en) * | 2010-09-13 | 2012-03-22 | 주식회사 효성 | Method for manufacturing polyamide-based reverse osmosis membrane having antifouling property |
WO2016175499A1 (en) * | 2015-04-29 | 2016-11-03 | 고려대학교산학협력단 | Method for manufacturing separator using selective layer prepared through support-free interfacial polymerization |
US10786786B2 (en) | 2015-04-29 | 2020-09-29 | Korea University Research And Business Foundation | Method for manufacturing membrane using selective layer prepared through support-free interfacial polymerization |
CN113070022A (en) * | 2021-03-22 | 2021-07-06 | 齐齐哈尔大学 | Batch circulating type ultrathin film unfolding preparation device |
CN113070022B (en) * | 2021-03-22 | 2023-02-17 | 齐齐哈尔大学 | Batch circulating type ultrathin film unfolding preparation device |
CN113769593A (en) * | 2021-07-09 | 2021-12-10 | 上海唯赛勃环保科技股份有限公司 | Nanofiltration membrane for extracting lithium from salt lake and preparation method thereof |
CN113769593B (en) * | 2021-07-09 | 2023-12-29 | 上海唯赛勃环保科技股份有限公司 | Nanofiltration membrane for extracting lithium from salt lake and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100211338B1 (en) | 1999-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6833073B2 (en) | Composite nanofiltration and reverse osmosis membranes and method for producing the same | |
US4960517A (en) | Treatment of composite polyamide membranes via substitution with amine reactive reagents | |
US5246587A (en) | Interfacially synthesized reverse osmosis membranes and processes for preparing the same | |
JP4472028B2 (en) | Composite reverse osmosis membrane and method for producing the same | |
EP0085111B1 (en) | Composite semipermeable membrane, process for its production, and method of its use | |
KR19990019008A (en) | Manufacturing method of high flow rate reverse osmosis membrane | |
EP0432358A1 (en) | Treated composite polyamide membranes to separate concentrated solute | |
US4960518A (en) | Treatment of composite polyamide membranes with compatible oxidants | |
KR100211338B1 (en) | Producing method of the polyamide type crosslinked reverse osmosis separation membrane | |
KR102101061B1 (en) | Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module | |
KR100506537B1 (en) | Manufacturing method of crosslinked polyamide reverse osmosis membrane | |
JP4563093B2 (en) | Method for producing high salt rejection composite reverse osmosis membrane | |
US4749488A (en) | Multilayer reverse osmosis membrane in which one layer is poly-meta-phenylene tetrahydrofuran-2,3,4,5-tetracarboxamide | |
KR100666483B1 (en) | Producing method of polyamide reverse osmosis membrane having high salt rejection property | |
KR100322235B1 (en) | Fabrication of high permeable reverse osmosis membranes | |
KR0170072B1 (en) | Method for manufacturing polyamide nano composite membrane | |
KR100238700B1 (en) | Method for preparation of reverse osmosis membrane by polyamide system | |
KR20070018529A (en) | Method of producing reverse osmosis membrane with boron removal effect | |
KR100477591B1 (en) | Composite polyamide reverse osmosis membrane and method of producing the same | |
KR100477592B1 (en) | Composite polyamide reverse osmosis membrane and producing method of the same | |
KR19980068295A (en) | Polyamide Type Membrane Manufacturing Method | |
KR19990070134A (en) | Manufacturing Method of Polyamide Composite Membrane | |
KR20000031681A (en) | Process for the preparation of polyamide composite separating film | |
KR100460011B1 (en) | Post Treatment Process of Polyamide Reverse Osmosis Membrane | |
KR19980068304A (en) | Performance Improvement Method of Polyamide Reverse Osmosis Composite Membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130503 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20140422 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20150506 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20160503 Year of fee payment: 18 |
|
EXPY | Expiration of term |