KR102729734B1 - Method for producing nitrogen monoxide and nitrogen monoxide produced by the method - Google Patents
Method for producing nitrogen monoxide and nitrogen monoxide produced by the method Download PDFInfo
- Publication number
- KR102729734B1 KR102729734B1 KR1020230102198A KR20230102198A KR102729734B1 KR 102729734 B1 KR102729734 B1 KR 102729734B1 KR 1020230102198 A KR1020230102198 A KR 1020230102198A KR 20230102198 A KR20230102198 A KR 20230102198A KR 102729734 B1 KR102729734 B1 KR 102729734B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- temperature
- bar
- mixed gas
- nitrogen monoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 64
- 239000007788 liquid Substances 0.000 claims abstract description 62
- 239000000126 substance Substances 0.000 claims abstract description 41
- 238000000926 separation method Methods 0.000 claims abstract description 38
- 238000001179 sorption measurement Methods 0.000 claims abstract description 35
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000004821 distillation Methods 0.000 claims abstract description 28
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 21
- 239000003463 adsorbent Substances 0.000 claims abstract description 19
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 239000007791 liquid phase Substances 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 238000009835 boiling Methods 0.000 claims description 21
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 239000012071 phase Substances 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000004880 explosion Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/20—Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
- C01B21/24—Nitric oxide (NO)
- C01B21/26—Preparation by catalytic or non-catalytic oxidation of ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/006—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/20—Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
- C01B21/38—Nitric acid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0009—Physical processing
- C01B2210/0014—Physical processing by adsorption in solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0009—Physical processing
- C01B2210/0014—Physical processing by adsorption in solids
- C01B2210/0015—Physical processing by adsorption in solids characterised by the adsorbent
- C01B2210/0018—Zeolites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0051—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0075—Nitrogen oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
본 발명은 1) 암모니아와 산소를 반응시켜 질산을 생산하는 공정에서 발생한 혼합가스를 1 내지 20 bar의 압력 및 -20 내지 30℃의 온도 조건에서 기액분리 공정을 수행하는 단계; 2) 상기 기액분리에 의해 분리된 혼합 가스를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 분리하는 단계; 3) 상기 흡착 단계에서 얻은 혼합가스를 고비물 증류탑에서 NO가 기화가능한 압력 및 온도 조건에서 증류하여 액상으로 존재하는 고비물을 제거하는 단계; 4) 상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에 공급하고, NO가 기화되지 않는 압력 및 온도 조건에서 증류하여 가스상의 저비물을 제거하는 단계; 및 5) 상기 저비물이 제거된 NO를 회수하는 단계;를 포함하는 일산화질소의 제조방법 및 이 방법으로 제조된 일산화질소를 제공한다.The present invention provides a method for producing nitrogen monoxide, including the steps of: 1) performing a gas-liquid separation process under conditions of a pressure of 1 to 20 bar and a temperature of -20 to 30°C on a mixed gas generated in a process of producing nitric acid by reacting ammonia and oxygen; 2) supplying the mixed gas separated by the gas-liquid separation to an adsorption tower filled with an adsorbent to separate impurities; 3) distilling the mixed gas obtained in the adsorption step in a high-boiler distillation tower under pressure and temperature conditions at which NO can be vaporized to remove high-boiler substances existing in a liquid phase; 4) supplying the mixed gas from which the liquid high-boiler substances have been removed to a low-boiler distillation tower, and distilling it under pressure and temperature conditions at which NO does not vaporize to remove low-boiler substances in a gas phase; and 5) recovering the NO from which the low-boiler substances have been removed;
Description
본 발명은 안전하고 효율적으로 일산화질소를 제조하는 방법 및 이 방법으로 제조된 고순도의 일산화질소에 관한 것이다. The present invention relates to a method for safely and efficiently producing nitrogen monoxide and high-purity nitrogen monoxide produced by the method.
고순도 일산화질소는 반도체 가스 및 의료용 가스 등 다양한 곳에서 사용된다. 특히 반도체 가스로 일산화질소가 사용되는 경우, 99.95% 이상의 고순도가 요구된다.High purity nitrogen monoxide is used in various places such as semiconductor gas and medical gas. In particular, when nitrogen monoxide is used as a semiconductor gas, a high purity of 99.95% or higher is required.
일산화질소는 일반적으로 암모니아산화법, 아질산나트륨과 황산과의 반응, 아질산나트륨과 염화제이철과의 반응으로 제조되고 있다. 상기 암모니아산화법에서 암모니아 산화 및 그와 동시에 일어나는 화학 반응은 다음과 같다.Nitrogen monoxide is generally produced by ammonia oxidation, reaction of sodium nitrite with sulfuric acid, and reaction of sodium nitrite with ferric chloride. In the ammonia oxidation method, ammonia oxidation and the chemical reactions occurring simultaneously are as follows.
NH3 + 2O2 → HNO3 + H2O (바람직한 전체 반응식)NH 3 + 2O 2 → HNO 3 + H 2 O (preferred overall reaction)
4NH3 + 7O2 → 4NO2 + 6H2O (과량의 O2 사용 시 바람직한 반응식)4NH 3 + 7O 2 → 4NO 2 + 6H 2 O (preferred reaction equation when using excess O 2 )
3NO2 + 3O2 → 2HNO3 + NO (NO2 흡수과정에서 바람직한 반응식)3NO 2 + 3O 2 → 2HNO 3 + NO (preferred reaction equation in the NO 2 absorption process)
4NH3 + 3O2 → 2N2 + 6H2O (바람직하지 않은 반응식)4NH 3 + 3O 2 → 2N 2 + 6H 2 O (unfavorable reaction)
4NH3 + 4O2 → 2N2O + 6H2O (바람직하지 않은 반응식)4NH 3 + 4O 2 → 2N 2 O + 6H 2 O (unfavorable reaction)
2NH3 + 8NO → 5N2O + 3H2O (바람직하지 않은 반응식)2NH 3 + 8NO → 5N 2 O + 3H 2 O (unfavorable reaction)
암모니아산화법에 의해 일산화질소를 제조하는 경우, 위와 같은 다양한 반응이 일어나므로 생산효율이 낮다. 또한, 고순도의 암모니아를 사용해야 하므로 제조 단가가 높고, 미반응 암모니아를 제거하기 위하여 KMnO4 수용액 등을 사용하므로 폐수 처리 비용이 높다는 단점을 갖는다.When producing nitrogen monoxide by the ammonia oxidation method, various reactions as mentioned above occur, so the production efficiency is low. In addition, since high-purity ammonia must be used, the production cost is high, and since KMnO 4 aqueous solution, etc. is used to remove unreacted ammonia, there are disadvantages in that the wastewater treatment cost is high.
한편, 일산화질소는 열역학적으로 불안정한 물질로 아래와 같이 반응하여 질소산화물(NOx)로 존재한다. 따라서 일산화질소의 순도가 저하되어 고순도 일산화질소 정제가 어렵다.On the other hand, nitrogen monoxide is a thermodynamically unstable substance and exists as nitrogen oxide (NOx) by reacting as follows. Therefore, the purity of nitrogen monoxide is reduced, making it difficult to purify high-purity nitrogen monoxide.
2NO + O2 → 2NO2 2NO + O 2 → 2NO 2
NO2 + NO ↔ N2O3 NO 2 + NO ↔ N 2 O 3
2NO2 ↔ N2O4 2NO 2 ↔ N 2 O 4
종래의 기술은 대부분 NxOy 및 NOx 계열 물질을 제거하기 위하여 초저온으로 냉각하여 일산화질소를 고순도로 정제 및 보관한다. 즉, 초저온으로 냉각하면 기체 상태였던 일산화질소가 고체 상태가 되고, 일산화질소보다 저비물은 기체상태로 존재한다. 따라서 불순물인 가스를 제거하고 고상인 일산화질소를 얻는다. 그러나, 이 방법에 의해 얻은 고상의 일산화질소는 사용시 기체 상태로 상변환을 시켜야 하는데, 이 때 급속한 부피 팽창 등에 의한 폭발의 가능성이 높으며, 실제 미국에서 폭발 사례가 존재한다. Conventional technology mostly cools to ultra-low temperatures to remove NxOy and NOx series substances, and then purifies and stores nitrogen monoxide with high purity. That is, when cooled to ultra-low temperatures, nitrogen monoxide in a gaseous state becomes a solid state, and substances with lower boiling points than nitrogen monoxide exist in a gaseous state. Therefore, impurity gases are removed, and solid nitrogen monoxide is obtained. However, solid nitrogen monoxide obtained by this method must be phase-transformed to a gaseous state when used, and at this time, there is a high possibility of explosion due to rapid volume expansion, etc., and there have actually been cases of explosions in the United States.
또한, 종래의 일산화질소 제조방법은 NOx 가스 배출 등의 환경 문제로 대량 생산이 불가능하다. In addition, conventional nitrogen monoxide manufacturing methods cannot be mass-produced due to environmental problems such as NOx gas emissions.
그러므로, 이러한 문제들의 개선이 요구되고 있다. Therefore, improvements to these problems are required.
본 발명은 종래기술의 상기와 같은 문제를 해소하기 위하여 안출된 것으로서, The present invention has been devised to solve the above problems of the prior art.
일산화질소의 상변이에 의한 폭발 위험이 방지되며, NOx 가스 발생이 최소화 되며, 폐수 및 폐가스 등의 부산물을 재순환하여 사용할 수 있는 안전성 및 효율성이 우수한 고순도 일산화질소의 제조방법 및 이 방법으로 제조된 고순도의 일산화질소를 제공하는 것을 목적으로 한다.The purpose is to provide a method for producing high-purity nitrogen monoxide with excellent safety and efficiency, which prevents the risk of explosion due to phase transformation of nitrogen monoxide, minimizes the generation of NOx gas, and enables recycling and use of by-products such as wastewater and waste gas, and high-purity nitrogen monoxide produced by the method.
본 발명은 The present invention
1) 암모니아와 산소를 반응시켜 질산을 생산하는 공정에서 발생한 혼합가스를 1 내지 20 bar의 압력 및 -20 내지 30℃의 온도 조건에서 기액분리 공정을 수행하는 단계; 1) A step of performing a gas-liquid separation process on a mixed gas generated in a process of producing nitric acid by reacting ammonia and oxygen under conditions of a pressure of 1 to 20 bar and a temperature of -20 to 30°C;
2) 상기 기액분리에 의해 분리된 혼합 가스를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 분리하는 단계;2) A step of supplying the mixed gas separated by the above gas-liquid separation to an adsorption tower filled with an adsorbent to separate impurities;
3) 상기 흡착 단계에서 얻은 혼합가스를 고비물 증류탑에서 NO가 기화가능한 압력 및 온도 조건에서 증류하여 액상으로 존재하는 고비물을 제거하는 단계; 및3) A step of removing the high-temperature substance present in the liquid phase by distilling the mixed gas obtained in the above adsorption step in a high-temperature distillation tower under the pressure and temperature conditions where NO can be vaporized; and
4) 상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에 공급하고, NO가 기화되지 않는 압력 및 온도 조건에서 증류하여 가스상의 저비물을 제거하는 단계; 및 4) A step of supplying the mixed gas from which the liquid high-boiling substances have been removed to a low-boiling substance distillation tower and removing the gaseous low-boiling substances by distillation under pressure and temperature conditions at which NO is not vaporized; and
5) 상기 저비물이 제거된 NO를 회수하는 단계;를 포함하는 일산화질소의 제조방법을 제공한다.5) A method for producing nitrogen monoxide is provided, including a step of recovering NO from which the above low-cost substances have been removed.
또한 본 발명은In addition, the present invention
상기 제조방법 중 4) 단계 후에After step 4) of the above manufacturing method
상기에서 얻어진 액상의 NO를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 정제하는 단계를 더 포함하는 일산화질소의 제조방법을 제공한다.The present invention provides a method for producing nitrogen monoxide, which further includes a step of supplying the liquid NO obtained above to an adsorption tower filled with an adsorbent to purify impurities.
또한, 본 발명은In addition, the present invention
상기 방법으로 제조된 일산화질소를 제공한다.Nitrogen monoxide manufactured by the above method is provided.
본 발명의 일산화질소의 제조방법에 의하면, 일산화질소의 상변이에 의한 폭발의 위험이 방지되며, NOx 가스 발생이 최소화 되며, 폐수 및 폐가스 등의 부산물을 재순환하여 사용할 수 있으므로, 일산화질소 제조의 안전성 및 효율성이 크게 증가된다. 또한, 고순도의 일산화질소 제조가 가능하다.According to the method for producing nitrogen monoxide of the present invention, the risk of explosion due to phase change of nitrogen monoxide is prevented, NOx gas generation is minimized, and by-products such as wastewater and waste gas can be recycled and used, so the safety and efficiency of nitrogen monoxide production are greatly increased. In addition, high-purity nitrogen monoxide production is possible.
또한, 상기 방법에 의해 제조된 본 발명의 일산화질소는 순도가 매우 높으므로, 고순도의 일산화질소가 요구되는 분야에서 효율적으로 사용될 수 있다.In addition, since the nitrogen monoxide of the present invention manufactured by the above method has very high purity, it can be efficiently used in fields requiring high-purity nitrogen monoxide.
도 1은 본 발명의 일산화질소 제조에 사용되는 플랜트의 일 실시형태를 도시한다.Figure 1 illustrates one embodiment of a plant used for producing nitrogen monoxide of the present invention.
이하에서 본 발명을 자세하게 설명한다. The present invention is described in detail below.
본 발명의 일산화질소의 제조방법은 다음 단계를 포함하는 특징을 갖는다.The method for producing nitrogen monoxide of the present invention has the characteristics of including the following steps.
1) 암모니아와 산소를 반응시켜 질산을 생산하는 공정에서 발생한 혼합가스를 1 내지 20 bar의 압력 및 -20 내지 30℃의 온도 조건에서 기액분리 공정을 수행하는 단계; 1) A step of performing a gas-liquid separation process on a mixed gas generated in a process of producing nitric acid by reacting ammonia and oxygen under conditions of a pressure of 1 to 20 bar and a temperature of -20 to 30°C;
2) 상기 기액분리에 의해 분리된 혼합 가스를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 분리하는 단계;2) A step of supplying the mixed gas separated by the above gas-liquid separation to an adsorption tower filled with an adsorbent to separate impurities;
3) 상기 흡착 단계에서 얻은 혼합가스를 고비물 증류탑에서 NO가 기화가능한 압력 및 온도 조건에서 증류하여 액상으로 존재하는 고비물을 제거하는 단계; 3) A step of removing the high-temperature substances present in a liquid phase by distilling the mixed gas obtained in the above adsorption step in a high-temperature distillation tower under pressure and temperature conditions where NO can be vaporized;
4) 상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에 공급하고, NO가 기화되지 않는 압력 및 온도 조건에서 증류하여 가스상의 저비물을 제거하는 단계; 및 4) A step of supplying the mixed gas from which the liquid high-boiling substances have been removed to a low-boiling substance distillation tower and removing the gaseous low-boiling substances by distillation under pressure and temperature conditions at which NO is not vaporized; and
5) 상기 저비물이 제거된 NO를 회수하는 단계.5) Step of recovering NO from which the above low-cost substances have been removed.
상기 1) 단계에서 암모니아와 산소를 반응시켜 질산을 생산하는 공정에서 발생한 혼합 가스는 N2, O2, NO, N2O, NO2, N2O3, N2O4, HNO3, 및 H2O 중 6개 이상을 포함하는 것일 수 있으며, 모두를 포함하는 것일 수도 있다.The mixed gas generated in the process of producing nitric acid by reacting ammonia and oxygen in step 1) above may contain six or more of N 2, O 2, NO, N 2 O, NO 2, N 2 O 3, N 2 O 4, HNO 3, and H 2 O, and may also contain all of them.
상기 1) 단계에서 상기 기액분리는 기액분리기를 1 내지 20 bar의 압력 및 -20 내지 20℃의 온도 조건으로 수행될 수 있으며, 바람직하게는 10 내지 20 bar의 압력 및 -20 내지 20℃의 온도 조건으로 수행될 수 있다. 상기 기액분리기에 의해 물, NO2, 질산 등을 분리하여 제거할 수 있다. 이 때, 상기 압력 및 온도 조건에서 기액분리에 의한 성분 분리가 NO 제조에 유리하게 효율적으로 이루어질 수 있다.In the above step 1), the gas-liquid separation can be performed under conditions of a pressure of 1 to 20 bar and a temperature of -20 to 20°C using a gas-liquid separator, and preferably under conditions of a pressure of 10 to 20 bar and a temperature of -20 to 20°C. Water, NO 2 , nitric acid, etc. can be separated and removed by the gas-liquid separator. At this time, component separation by gas-liquid separation under the above pressure and temperature conditions can be efficiently performed advantageously for NO production.
또한, 상기 기액분리는 기액분리기를 4 내지 10 bar의 압력 및 0 내지 20℃의 온도 조건으로 수행될 수 있다. 이러한 조건의 경우, 보통 질산 공정이 5 내지 10 bar에서 운전되므로 이와 동일하거나 낮은 압력에서 수행되므로 경제적으로 유리할 수 있다.In addition, the above-mentioned gas-liquid separation can be performed under the conditions of a gas-liquid separator at a pressure of 4 to 10 bar and a temperature of 0 to 20° C. Under these conditions, since the nitric acid process is usually operated at 5 to 10 bar, it can be economically advantageous to perform the process at the same or lower pressure.
상기 2) 단계에서 상기 흡착 공정은 상기 기액분리기에서 분리된 혼합 가스를 상기 흡착탑에 충진된 흡착제를 통과하도록 공급하고, 상기 흡착제를 통하여 불순물인 미량의 물과, 질산, NO2 등을 제거하도록 수행된다. 이 때, 흡착탑의 운전 조건은 5 ~ 40 bar의 압력 하에서 흡착탑 상부의 온도를 22 내지 32℃로 하고 하부의 온도를 24 내지 34℃로 설정할 수 있다.In the above step 2), the adsorption process is performed by supplying the mixed gas separated in the gas-liquid separator through an adsorbent filled in the adsorption tower, and removing impurities such as trace amounts of water, nitric acid, and NO 2 through the adsorbent. At this time, the operating conditions of the adsorption tower may be set such that the temperature at the top of the adsorption tower is 22 to 32°C and the temperature at the bottom is 24 to 34°C under a pressure of 5 to 40 bar.
상기 흡착제는 제올라이트일 수 있으며, 예를 들어, 3A, 4A, 5A, 13X, 및 Zeolite-Y로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The above adsorbent may be a zeolite, for example, at least one selected from the group consisting of 3A, 4A, 5A, 13X, and Zeolite-Y.
상기 3) 단계에서 NO가 기화가능한 압력 및 온도 조건은 5 내지 20 bar 및 -130 내지 -30℃일 수 있으며, 더 바람직하게는 10 내지 20bar 및 -110 내지 -30℃일 수 있다.In the above step 3), the pressure and temperature conditions at which NO can be vaporized may be 5 to 20 bar and -130 to -30°C, and more preferably 10 to 20 bar and -110 to -30°C.
상기 고비물은 N2O, CO2 등 NO보다 비점이 높은 물질일 수 있다.The above-mentioned substances may be substances with a boiling point higher than NO, such as N2O and CO2 .
상기 4) 단계에서 NO가 기화되지 않는 압력 및 온도 조건은 5 내지 20 bar 및 -198 내지 -120℃일 수 있으며, 더 바람직하게는 10 내지 20 bar 및 -160 내지 -120℃일 수 있다.The pressure and temperature conditions at which NO is not vaporized in step 4) above may be 5 to 20 bar and -198 to -120°C, more preferably 10 to 20 bar and -160 to -120°C.
상기 저비물은 N2, O2 등일 수 있다.The above low-cost substances may be N 2 , O 2 , etc.
본 발명의 일 실시형태에 있어서, 상기 각 단계에서 분리된 불순물들은 모두 질산 제조 공정으로 보내 질산 제조에 재활용할 수 있다.In one embodiment of the present invention, all impurities separated at each step can be sent to the nitric acid manufacturing process and recycled in the nitric acid manufacturing.
또한, 본 발명의 일산화질소의 제조방법은 다음 단계를 포함하여 수행될 수 있다.In addition, the method for producing nitrogen monoxide of the present invention can be performed including the following steps.
1) 암모니아와 산소를 반응시켜 질산을 생산하는 공정에서 발생한 혼합가스를 1 내지 20 bar의 압력 및 -20 내지 20℃의 온도 조건에서 기액분리 공정을 수행하는 단계;1) A step of performing a gas-liquid separation process on a mixed gas generated in a process of producing nitric acid by reacting ammonia and oxygen under conditions of a pressure of 1 to 20 bar and a temperature of -20 to 20°C;
2) 상기 기액분리에 의해 분리된 혼합 가스를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 분리하는 단계;2) A step of supplying the mixed gas separated by the above gas-liquid separation to an adsorption tower filled with an adsorbent to separate impurities;
3) 상기 흡착 단계에서 얻은 혼합가스를 고비물 증류탑에서 NO가 기화가능한 압력 및 온도 조건에서 증류하여 액상으로 존재하는 고비물을 제거하는 단계; 3) A step of removing the high-temperature substances present in a liquid phase by distilling the mixed gas obtained in the above adsorption step in a high-temperature distillation tower under pressure and temperature conditions where NO can be vaporized;
4) 상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에 공급하고, NO가 기화되지 않는 압력 및 온도 조건에서 증류하여 가스상의 저비물을 제거하는 단계; 4) A step of supplying the mixed gas from which the liquid high-boiling substances have been removed to a low-boiling substance distillation tower, and distilling it under pressure and temperature conditions at which NO is not vaporized to remove the gaseous low-boiling substances;
5) 상기에서 얻어진 액상의 NO를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 정제하는 단계; 및5) A step of supplying the liquid NO obtained above to an adsorption tower filled with an adsorbent to purify impurities; and
6) 정제된 NO를 회수하는 단계.6) Step of recovering purified NO.
상기 1) 내지 4) 단계는 위에서 설명된 것과 동일하게 실시될 수 있으므로, 상세한 설명은 생략한다.Since steps 1) to 4) above can be performed in the same manner as described above, a detailed description is omitted.
상기 5) 단계에서 흡착 공정은 상기 저비물 증류탑에서 저비물이 제거된 액상의 고순도 NO에 포함된 미량의 불순물을 제거 하기 위한 공정이다. In the above step 5), the adsorption process is a process for removing trace impurities contained in the high-purity liquid NO from which low-content substances have been removed in the low-content distillation tower.
구체적으로, 저비물 증류탑에서 저비물이 제거된 액상의 고순도 NO가 상기 흡착탑에 충진된 흡착제를 통과하도록 공급하고, 상기 흡착제를 통하여 불순물인 미량의 N2O와 CO2 등을 제거한다. 이 때, 흡착탑의 운전 조건은 1 ~ 20 bar의 압력 하에서 흡착탑 상부의 온도를 -45 내지 10℃로 하고 하부의 온도를 -50 내지 10℃로 설정할 수 있다.Specifically, high-purity liquid NO from which low-content substances have been removed in a low-content distillation tower is supplied to pass through an adsorbent packed in the adsorption tower, and trace amounts of impurities such as N 2 O and CO 2 are removed through the adsorbent. At this time, the operating conditions of the adsorption tower may be set such that the temperature at the top of the adsorption tower is -45 to 10°C and the temperature at the bottom is -50 to 10°C under a pressure of 1 to 20 bar.
상기 흡착제는 제올라이트일 수 있으며, 예를 들어, 3A, 4A, 5A,13X 및 zeolite-Y 타입으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The above adsorbent may be a zeolite, for example, at least one selected from the group consisting of types 3A, 4A, 5A, 13X and zeolite-Y.
본 발명의 일 실시형태에 있어서, 상기 각 단계에서 분리된 불순물들은 모두 질산 제조 공정으로 보내 질산 제조에 재활용할 수 있다.In one embodiment of the present invention, all impurities separated at each step can be sent to the nitric acid manufacturing process and recycled in the nitric acid manufacturing.
이하에서 도 1에 도시된 일산화탄소 제조 플렌트를 통하여 본 발명의 제조방법을 구체적으로 예시하여 설명한다.Hereinafter, the manufacturing method of the present invention will be specifically explained by way of example through the carbon monoxide manufacturing plant illustrated in Fig. 1.
질산 제조 공정이 이루어지는 질산제조반응기(100)로부터 1 ~ 20 bar, 온도 20~500℃로 크루드(crude) NO2를 공급(10) 받는다. 이 때, 질산 공정 각 단계에서 공급되는 크루드 NO의 조성은 다르지만, N2가 1 ~ 99%이며, 나머지 조성은 O2, NO, NO2, N2O 등으로 구성된다. 이렇게 공급받은 크루드 NO는 기액분리기(200)로 공급(10)되고 기액분리기(200)와 열교환기(210)에서 물, NO2, 질산 등을 분리한다. 이 때 압력은 1 ~ 20 bar이며, 온도는 -20 ~ 20℃로 유지된다. 이렇게 물과 질산, NO2를 제거한 크루드 NO(20)는 증류탑에 공급되기 전 흡착탑(300)에서 미량의 물과, 질산, NO2를 제거한다. 이 때 미량의 수분과 질산은 완전히 제거되고, N2O 역시 미량 흡착된다. 건조된 크루드 NO(30)는 고비물 증류탑(500)으로 공급되고 잔존하는 N2O와, CO2 등 NO보다 고비물인 물질들이 제거된다. 상기 고비물이 제거된 크루드 NO(50)는 저비물 증류탑(600)으로 공급되고 NO보다 저비물인 N2, O2 등이 제거된다. 이 후, 고순도 NO(60)는 흡착탑(700)으로 공급되고 흡착 공정에 의해 미량의 N2O와 CO2 등이 제거(7)된다. 이후, buffer(800)를 거쳐(80) 콤프레서(900)를 통하여 충전용기에 충전(1000)된다.Crude NO 2 is supplied (10) from a nitric acid manufacturing reactor (100) where a nitric acid manufacturing process takes place at 1 to 20 bar and a temperature of 20 to 500°C. At this time, the composition of the crude NO supplied at each stage of the nitric acid process is different, but N 2 is 1 to 99%, and the remaining composition is composed of O 2 , NO, NO 2 , N 2 O, etc. The crude NO supplied in this manner is supplied (10) to a gas-liquid separator (200), and water, NO 2 , nitric acid, etc. are separated in the gas-liquid separator (200) and the heat exchanger (210). At this time, the pressure is 1 to 20 bar, and the temperature is maintained at -20 to 20°C. The crude NO (20) from which water, nitric acid, and NO 2 are removed in this manner has a trace amount of water, nitric acid, and NO 2 removed in an adsorption tower (300) before being supplied to a distillation tower. At this time, trace amounts of moisture and nitric acid are completely removed, and a trace amount of N 2 O is also adsorbed. The dried crude NO (30) is supplied to a high-volume distillation tower (500), and the remaining N 2 O and CO 2 , etc., which are higher in volume than NO, are removed. The crude NO (50) from which the high-volume substances have been removed is supplied to a low-volume distillation tower (600), and N 2 , O 2 , etc., which are lower in volume than NO, are removed. Thereafter, the high-purity NO (60) is supplied to an adsorption tower (700), and trace amounts of N 2 O and CO 2 , etc. are removed (7) by the adsorption process. Thereafter, it passes through a buffer (800) (80) and is charged (1000) into a charging tank through a compressor (900).
상기 공정은 다음과 같이 조건 하에 이루어질 수 있다.The above process can be performed under the following conditions.
이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다. Hereinafter, the present invention will be described in more detail through examples. However, the following examples are intended to explain the present invention more specifically, and the scope of the present invention is not limited by the following examples. The following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.
실시예1: 질산 공정 가스 분석Example 1: Nitric acid process gas analysis
질산 제조 공정에서 NO2 및 NO가 포함된 혼합가스를 공급받아 혼합가스 분석을 실시하였다. 상기 분석은 FT-IR, GC, 습식 분석 등을 통하여 수행되였으며, 분석 결과는 다음과 같았다.In the nitric acid manufacturing process, a mixed gas containing NO2 and NO was supplied and a mixed gas analysis was performed. The analysis was performed using FT-IR, GC, wet analysis, etc., and the analysis results were as follows.
(%)Components
(%)
실시예 2: NO 기액 분리Example 2: NO gas-liquid separation
실시예 1에서 분석한 혼합 가스를 공급받아, 기액분리기를 통하여 수분, 질산, NO2 등을 제거하였다. 이 때 기액분리기는 1 ~ 20 bar 및 -20 ~ 20℃조건을 유지하였으며, 온도 유지를 위하여 기액 분리기 상부에 열교환기를 설치하였다. 상기 기액분리 후 성분을 G.C, FT-IR, 습식분석을 통하여 분석하였으며, 분석 결과는 다음 표 3 내지 5와 같았다.The mixed gas analyzed in Example 1 was supplied, and moisture, nitric acid, NO2 , etc. were removed through a gas-liquid separator. At this time, the gas-liquid separator was maintained at 1 to 20 bar and -20 to 20℃ conditions, and a heat exchanger was installed on the top of the gas-liquid separator to maintain the temperature. After the gas-liquid separation, the components were analyzed through GC, FT-IR, and wet analysis, and the analysis results were as shown in Tables 3 to 5 below.
실시예 3: 흡착제를 이용하여 건조 및 불순물 제거Example 3: Drying and removal of impurities using an adsorbent
실시예 2에서 기액 분리 후 나온 혼합 가스를 흡착제를 이용하여 건조 및 불순물을 제거를 수행하였다. In Example 2, the mixed gas produced after gas-liquid separation was dried and impurities were removed using an adsorbent.
구체적으로, 기액 분리 후 나온 혼합 가스를 MS-13X, MS-5A, 또는 Zeolite-Y 가 충진된 흡착탑으로 공급하고, 통과시켜서 불순물인 미량의 물과, 질산, NO2 등 및 불순물을 제거하였다.Specifically, the mixed gas produced after gas-liquid separation was supplied to an adsorption tower filled with MS-13X, MS-5A, or Zeolite-Y, and passed through to remove impurities such as trace amounts of water, nitric acid, NO2 , etc.
상기 결과물을 G.C, FT-IR, 습식분석을 통하여 분석하였으며, 분석 결과는 다음 표 6와 같았다.The above results were analyzed using G.C, FT-IR, and wet analysis, and the analysis results were as shown in Table 6 below.
실시예 4: 고비물 및 저비물 제거Example 4: Removal of high and low-density substances
실시예 3에서 건조된 혼합가스를 증류탑을 통하여 고비물 및 저비물을 제거하여 정제하였다. In Example 3, the dried mixed gas was purified by removing high and low boiling points through a distillation tower.
<고비물 제거 공정><Process for removing waste>
상기 혼합가스를 고비물 증류탑에서 15 bar 및 상부 -124℃ 및 하부 -20℃로 증류하여 액상으로 존재하는 고비물을 제거하였다. The above mixed gas was distilled in a high-temperature distillation tower at 15 bar, -124°C at the top, and -20°C at the bottom to remove high-temperature substances existing in a liquid phase.
<저비물 제거 공정><Low-cost removal process>
상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에서 14 bar 및 상부 -172℃, 하부 -120℃로 증류하여 가스상의 저비물을 제거하였다.The mixed gas from which the liquid high-boiling substances were removed was distilled in a low-boiling substance distillation tower at 14 bar, -172°C at the top, and -120°C at the bottom to remove the low-boiling substances in the gaseous phase.
상기 정제 후, 성분비를 G.C, FT-IR 로 분석하였으며, 그 결과는 다음 표 7과 같았다.After the above purification, the component ratio was analyzed by G.C and FT-IR, and the results were as shown in Table 7 below.
(고비물 제거)High-quality distillation tower
(Removing the sediment)
(저비물 제거)low-carbon distillation tower
(Remove low-cost items)
실시예 5: 흡착 정제Example 5: Adsorption purification
실시예 4에서 나온 고순도 NO에 포함된 미량의 불순물을 제거 하기 위하여 흡착제를 이용하였다. An adsorbent was used to remove trace impurities contained in the high-purity NO from Example 4.
구체적으로, 상기 NO 액상을 MS-13X, MS-5A, 또는 Zeolite-Y 흡착제가 구비된 흡착탑으로 공급하여, 미량의 N2O와 CO2 등을 제거하였다.Specifically, the NO liquid phase was supplied to an adsorption tower equipped with MS-13X, MS-5A, or Zeolite-Y adsorbent to remove trace amounts of N 2 O and CO 2 .
상기 결과물을 G.C, FT-IR, 습식분석을 통하여 분석하였으며, 분석 결과는 다음 표 8과 같았다.The above results were analyzed using G.C, FT-IR, and wet analysis, and the analysis results were as shown in Table 8 below.
100: 질산제조반응기
200: 기액분리기
210: 열교환기
300, 700: 흡착탑 (PSA 흡착탑)
400, 900: 콤프레서
500: 고비물 증류탑
600: 저비물 증류탑
800: buffer
1000: 충전용기100: Nitric acid production reactor
200: Gas-liquid separator
210: Heat exchanger
300, 700: Adsorption tower (PSA adsorption tower)
400, 900: Compressor
500: High-altitude distillation tower
600: Low-carbon distillation tower
800: buffer
1000: Charging container
Claims (15)
2) 상기 기액분리에 의해 분리된 혼합 가스를 제올라이트 3A, 4A, 5A, 및 Zeolite-Y로 이루어진 군으로부터 선택되는 1종 이상의 흡착제가 충진된 흡착탑으로 공급하여, 5 ~ 40 bar의 압력 하에서 흡착탑 상부의 온도를 22 내지 32℃로 하고 하부의 온도를 24 내지 34℃로 하여 불순물을 분리하는 단계;
3) 상기 흡착 단계에서 얻은 혼합가스를 고비물 증류탑에서 NO가 기화가능한 5 내지 20 bar의 압력 및 -130 내지 -30℃의 온도 조건에서 증류하여 액상으로 존재하는 고비물을 제거하는 단계;
4) 상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에 공급하고, NO가 기화되지 않는 10 내지 20 bar의 압력 및 -160 내지 -120℃의 온도 조건에서 증류하여 가스상의 저비물을 제거하는 단계; 및
5) 상기 저비물이 제거된 NO를 회수하는 단계;를 포함하는 일산화질소의 제조방법.1) A step of performing a gas-liquid separation process on a mixed gas generated in a process of producing nitric acid by reacting ammonia and oxygen under conditions of a pressure of 10 to 20 bar and a temperature of -20 to 20°C;
2) A step of supplying the mixed gas separated by the above gas-liquid separation to an adsorption tower filled with one or more adsorbents selected from the group consisting of zeolite 3A, 4A, 5A, and Zeolite-Y, and separating impurities by setting the temperature at the top of the adsorption tower to 22 to 32°C and the temperature at the bottom to 24 to 34°C under a pressure of 5 to 40 bar;
3) A step of distilling the mixed gas obtained in the above adsorption step in a high-volume distillation tower under the conditions of a pressure of 5 to 20 bar and a temperature of -130 to -30°C where NO can be vaporized, thereby removing high-volume substances existing in a liquid phase;
4) A step of supplying the mixed gas from which the liquid high-boiling substances have been removed to a low-boiling substance distillation tower and distilling it under the conditions of a pressure of 10 to 20 bar and a temperature of -160 to -120°C at which NO is not vaporized to remove the gaseous low-boiling substances; and
5) A method for producing nitrogen monoxide, comprising: a step of recovering NO from which the above low-carbon substances have been removed.
상기 3) 단계에서 NO가 기화가능한 압력 및 온도 조건은 10 내지 20 bar 및 -110 내지 -30℃인 것을 특징으로 하는 일산화질소의 제조방법.In the first paragraph,
A method for producing nitrogen monoxide, characterized in that the pressure and temperature conditions at which NO can be vaporized in step 3) above are 10 to 20 bar and -110 to -30°C.
상기 1) 내지 4) 단계에서 분리된 불순물들은 질산 제조 공정으로 회수되는 것을 특징으로 하는 일산화질소의 제조방법.In the first paragraph,
A method for producing nitrogen monoxide, characterized in that the impurities separated in steps 1) to 4) above are recovered by a nitric acid manufacturing process.
2) 상기 기액분리에 의해 분리된 혼합 가스를 제올라이트 3A, 4A, 5A, 및 Zeolite-Y로 이루어진 군으로부터 선택되는 1종 이상의 흡착제가 충진된 흡착탑으로 공급하여, 5 ~ 40 bar의 압력 하에서 흡착탑 상부의 온도를 22 내지 32℃로 하고 하부의 온도를 24 내지 34℃로 하여 불순물을 분리하는 단계;
3) 상기 흡착 단계에서 얻은 혼합가스를 고비물 증류탑에서 NO가 기화가능한 5 내지 20 bar의 압력 및 -130 내지 -30℃의 온도 조건에서 증류하여 액상으로 존재하는 고비물을 제거하는 단계;
4) 상기 액상의 고비물이 제거된 혼합가스를 저비물 증류탑에 공급하고, NO가 기화되지 않는 10 내지 20 bar의 압력 및 -160 내지 -120℃의 온도 조건에서 증류하여 가스상의 저비물을 제거하는 단계;
5) 상기에서 얻어진 액상의 NO를 흡착제가 충진된 흡착탑으로 공급하여 불순물을 정제하는 단계; 및
6) 정제된 NO를 회수하는 단계;를 포함하는 일산화질소의 제조방법.1) A step of performing a gas-liquid separation process on a mixed gas generated in a process of producing nitric acid by reacting ammonia and oxygen under conditions of a pressure of 10 to 20 bar and a temperature of -20 to 20°C;
2) A step of supplying the mixed gas separated by the above gas-liquid separation to an adsorption tower filled with one or more adsorbents selected from the group consisting of zeolite 3A, 4A, 5A, and Zeolite-Y, and separating impurities by setting the temperature at the top of the adsorption tower to 22 to 32°C and the temperature at the bottom to 24 to 34°C under a pressure of 5 to 40 bar;
3) A step of distilling the mixed gas obtained in the above adsorption step in a high-volume distillation tower under the conditions of a pressure of 5 to 20 bar and a temperature of -130 to -30°C where NO can be vaporized, thereby removing high-volume substances existing in a liquid phase;
4) A step of supplying the mixed gas from which the liquid high-boiling substances have been removed to a low-boiling substance distillation tower, and distilling it under the conditions of a pressure of 10 to 20 bar and a temperature of -160 to -120°C at which NO is not vaporized, thereby removing the gaseous low-boiling substances;
5) A step of supplying the liquid NO obtained above to an adsorption tower filled with an adsorbent to purify impurities; and
6) A method for producing nitrogen monoxide, comprising: a step of recovering purified NO.
상기 1) 내지 5) 단계에서 분리된 불순물들은 질산 제조 공정으로 회수되는 것을 특징으로 하는 일산화질소의 제조방법.In Article 11,
A method for producing nitrogen monoxide, characterized in that the impurities separated in steps 1) to 5) above are recovered in a nitric acid manufacturing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230102198A KR102729734B1 (en) | 2023-08-04 | 2023-08-04 | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230102198A KR102729734B1 (en) | 2023-08-04 | 2023-08-04 | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102729734B1 true KR102729734B1 (en) | 2024-11-13 |
Family
ID=93458624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230102198A Active KR102729734B1 (en) | 2023-08-04 | 2023-08-04 | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102729734B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060134126A (en) * | 2004-03-30 | 2006-12-27 | 타이요 닛폰 산소 가부시키가이샤 | Pretreatment of air liquefaction separator, hydrocarbon adsorbent, raw material air pretreatment method |
KR100976373B1 (en) * | 2009-10-06 | 2010-08-18 | (주)원익머트리얼즈 | Manufacture apparatus of high purity nitrogen monoxide |
KR101257794B1 (en) | 2012-03-30 | 2013-05-07 | (주)제니스텍 | Using cryogenic cold trap device manufacturing method of nitric oxide |
KR101540383B1 (en) * | 2014-03-19 | 2015-08-06 | 대성산업가스 주식회사 | NO generating apparatus using activity degradation catalysts and NO generating method |
KR20190040584A (en) * | 2017-10-11 | 2019-04-19 | 김영래 | Method and apparatus for producing high purity nitric oxide for semiconductor using the nitric acid production process |
KR102048024B1 (en) * | 2019-04-10 | 2019-11-22 | 주식회사 한화 | Appratus and method for purifying the nitrogen dioxide using the nitric acid production process |
-
2023
- 2023-08-04 KR KR1020230102198A patent/KR102729734B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060134126A (en) * | 2004-03-30 | 2006-12-27 | 타이요 닛폰 산소 가부시키가이샤 | Pretreatment of air liquefaction separator, hydrocarbon adsorbent, raw material air pretreatment method |
KR100976373B1 (en) * | 2009-10-06 | 2010-08-18 | (주)원익머트리얼즈 | Manufacture apparatus of high purity nitrogen monoxide |
KR101257794B1 (en) | 2012-03-30 | 2013-05-07 | (주)제니스텍 | Using cryogenic cold trap device manufacturing method of nitric oxide |
KR101540383B1 (en) * | 2014-03-19 | 2015-08-06 | 대성산업가스 주식회사 | NO generating apparatus using activity degradation catalysts and NO generating method |
KR20190040584A (en) * | 2017-10-11 | 2019-04-19 | 김영래 | Method and apparatus for producing high purity nitric oxide for semiconductor using the nitric acid production process |
KR102048024B1 (en) * | 2019-04-10 | 2019-11-22 | 주식회사 한화 | Appratus and method for purifying the nitrogen dioxide using the nitric acid production process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210331919A1 (en) | Method and system for producing high-purity hydrogen chloride | |
KR102084294B1 (en) | Method and apparatus for producing high purity nitric oxide for semiconductor using the nitric acid production process | |
KR100347092B1 (en) | Method for Separation of Gas Mixtures Using Hydrate Promoter | |
CA1090535A (en) | Preparation of nitrogen trifluoride | |
TWI542404B (en) | System and process for recovery and purification of nitrous oxide | |
KR20140064883A (en) | Improved nitric acid production | |
KR20110009124A (en) | Purification method of N20 | |
CA2669854C (en) | Process for isolating n2o | |
KR101812532B1 (en) | Purification process of nitrous oxide | |
KR102094740B1 (en) | A sf6 refinement system and method including hybrid reactors utilizing gas hydrate formation | |
KR102729734B1 (en) | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method | |
KR102729733B1 (en) | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method | |
KR102764251B1 (en) | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method | |
KR102729732B1 (en) | Method for producing nitrogen monoxide and nitrogen monoxide produced by the method | |
US20240082786A1 (en) | Stable isotope enrichment device and stable isotope enrichment method | |
KR101170731B1 (en) | a manufacturing method of a nitric oxide | |
KR20160063194A (en) | Process for manufacturing nitrogen tetroxide | |
KR20080024162A (en) | How to Regenerate Zirconium Tetrafluoride to Form Zirconia | |
KR101609011B1 (en) | Process for producing high-purity chlorine | |
KR102797737B1 (en) | A method of manufacturing high purity xenon or krypton from semiconductor etching process waste gas | |
JP2572646B2 (en) | Nitrogen peroxide production method | |
US12297106B2 (en) | Methods and systems for producing sulfur-containing products | |
CN112827322B (en) | Method for recycling and recycling tail gas FTrPSA of chlorine-based SiC-CVD (silicon carbide-chemical vapor deposition) epitaxial process by reacting ethylene with silane | |
RU2175638C1 (en) | Method of preparing nitrous oxide | |
CN115304040A (en) | Preparation and purification method of high-purity nitric oxide gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230804 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230804 Comment text: Patent Application |
|
PA0302 | Request for accelerated examination |
Patent event date: 20230804 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20230804 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240418 Patent event code: PE09021S01D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240814 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241108 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20241108 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |