[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102729591B1 - Preparing method of porous ceramic made of magnesium silicate - Google Patents

Preparing method of porous ceramic made of magnesium silicate Download PDF

Info

Publication number
KR102729591B1
KR102729591B1 KR1020220014687A KR20220014687A KR102729591B1 KR 102729591 B1 KR102729591 B1 KR 102729591B1 KR 1020220014687 A KR1020220014687 A KR 1020220014687A KR 20220014687 A KR20220014687 A KR 20220014687A KR 102729591 B1 KR102729591 B1 KR 102729591B1
Authority
KR
South Korea
Prior art keywords
magnesium silicate
porous ceramic
manufacturing
paragraph
temperature
Prior art date
Application number
KR1020220014687A
Other languages
Korean (ko)
Other versions
KR20230118728A (en
Inventor
권수일
임동욱
Original Assignee
주식회사 이엠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠텍 filed Critical 주식회사 이엠텍
Priority to KR1020220014687A priority Critical patent/KR102729591B1/en
Priority to PCT/KR2023/001619 priority patent/WO2023149760A1/en
Publication of KR20230118728A publication Critical patent/KR20230118728A/en
Application granted granted Critical
Publication of KR102729591B1 publication Critical patent/KR102729591B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • B28B7/384Treating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 미세입자 발생장치의 기화부에 관한 것이다. 더욱 상세하게는 가열 코일과 열 전달률의 차이가 적은 재료가 액상을 머금고 있어 탄화를 방지할 수 있는 미세입자 발생장치의 기화부에 관한 것이다.
본 발명은 실리게이트, 바인더, 조공제 혼합하여 슬러리로 제조하고 성형, 건조 및 소결하여 제조되는 다공성 세라믹; 및 다공성 세라믹에 결합되어, 전류가 인가되면 발열하며 다공성 세라믹을 가열하는 저항가열체;를 포함하며, 발열체의 발열에 의해 다공성 세라믹에 담지된 액상을 기화시키는 것을 특징으로 하는 미세입자 발생장치의 다공성 세라믹 히터를 제공한다.
The present invention relates to a vaporizing unit of a fine particle generating device. More specifically, the present invention relates to a vaporizing unit of a fine particle generating device capable of preventing carbonization by containing a liquid material having a small difference in heat transfer rate with respect to a heating coil.
The present invention provides a porous ceramic heater of a microparticle generating device, comprising: a porous ceramic manufactured by mixing silicate, a binder, and a pore forming agent into a slurry, and molding, drying, and sintering the mixture; and a resistance heater bonded to the porous ceramic, which generates heat when current is applied and heats the porous ceramic; and characterized in that a liquid phase supported on the porous ceramic is vaporized by the heat generation of the heater.

Description

규산 마그네슘을 이용한 다공성 세라믹 제조 방법{PREPARING METHOD OF POROUS CERAMIC MADE OF MAGNESIUM SILICATE}{PREPARING METHOD OF POROUS CERAMIC MADE OF MAGNESIUM SILICATE}

본 발명은 규산 마그네슘을 이용한 다공성 세라믹 제조 방법에 관한 것이다. The present invention relates to a method for manufacturing porous ceramics using magnesium silicate.

도 1은 종래 기술에 따른 액상 카트리지를 이용하는 미세입자 발생장치의 사시도이다. Figure 1 is a perspective view of a fine particle generating device using a liquid cartridge according to the prior art.

종래 기술에 따른 미세입자 발생장치는, 배터리(미도시), 제어 회로(미도시) 등이 구비된 본체(3)의 상부와, 액상을 저장하는 액상 저장 탱크와 액상 저장 탱크로부터 액상을 공급받아 액상을 무화시키는 무화기가 구비되는 카트리지(1)를 구비한다. 본체(3)의 상부에 카트리지(1)가 교체식으로 탈부착되며, 본체(3)로부터 전력을 공급받아 액상을 가열하여 미세입자를 발생한다. A fine particle generating device according to the prior art comprises an upper part of a main body (3) equipped with a battery (not shown), a control circuit (not shown), etc., a liquid storage tank for storing liquid, and a cartridge (1) equipped with an atomizer for receiving liquid from the liquid storage tank and atomizing the liquid. The cartridge (1) is detachably and replaceably attached to the upper part of the main body (3), and receives power from the main body (3) to heat the liquid and generate fine particles.

도 2는 종래 기술에 따른 액상 카트리지의 분해도이다. Figure 2 is an exploded view of a liquid cartridge according to the prior art.

카트리지는 액상을 저장하는 액상 저장 하우징(3001), 액상 저장 하우징(3001) 내에 설치되며 액상 저장 공간과 무화 공간을 구획하는 엘라스토머 캡 (3011), 엘라스토머 캡(3011) 하부에 설치되는 액상 저장 하우징(3001)의 일 단부에 설치되는 심지/코일 조립체(3002), 심지/코일 조립체(3002)를 고정하는 심지 하우징(3005), 엘라스토머 캡(3011)과 액상 저장 공간을 관통하는 캐뉼라(3009), 캐뉼라(3009)를 통과한 미세입자를 흡입하기 위해 탱크로부터 분리 된 마우스 피스(3017)와 마우스 피스(3017) 내에 설치되어 액적을 흡수하는 하나 이상의 흡수성 패드 (3019)를 포함한다. The cartridge includes a liquid storage housing (3001) for storing liquid, an elastomer cap (3011) installed in the liquid storage housing (3001) and dividing a liquid storage space and an atomizing space, a wick/coil assembly (3002) installed at one end of the liquid storage housing (3001) installed under the elastomer cap (3011), a wick housing (3005) for fixing the wick/coil assembly (3002), a cannula (3009) penetrating the elastomer cap (3011) and the liquid storage space, a mouth piece (3017) separated from the tank for inhaling fine particles passing through the cannula (3009), and one or more absorbent pads (3019) installed in the mouth piece (3017) for absorbing liquid droplets.

심지/코일 조립체(3002)의 코일과 연결되며, 본체로부터 전력을 전달받기 위한 접촉 단자(3007)가 한 쌍 구비된다. 접촉 단자(3007)는 액상 저장 하우징(3001)을 관통하여, 일부는 하우징(3001) 밖으로 노출되며 나머지는 하우징(3001) 내에 위치한다. A pair of contact terminals (3007) are provided to be connected to the coil of the wick/coil assembly (3002) and to receive power from the main body. The contact terminals (3007) penetrate the liquid storage housing (3001), with some being exposed outside the housing (3001) and the rest being located within the housing (3001).

또한 카트리지가 본체에 결합되기 전 하우징(3001) 외부로 노출된 접촉 단자(3007)를 보호하고, 액상이 누출되는 것을 방지하기 위해 커버(3015)가 하우징(3001)의 하부에 결합될 수 있다. Additionally, a cover (3015) may be attached to the lower portion of the housing (3001) to protect the contact terminal (3007) exposed to the outside of the housing (3001) before the cartridge is attached to the main body and to prevent liquid from leaking.

엘라스토머 캡(3011) 하부에 심지/코일 조립체(3002)가 설치되면, 하우징(3001) 하부에 형성된 기공을 통해 공기가 유입되어 심지/코일 조립체(3002)에서 액상을 무화시켜 형성된 미세입자와 함께 캐뉼라(3009)를 통해 흡입한다. When the wick/coil assembly (3002) is installed at the bottom of the elastomer cap (3011), air is introduced through the pores formed at the bottom of the housing (3001) and atomizes the liquid in the wick/coil assembly (3002) and is inhaled through the cannula (3009) together with the formed fine particles.

도 3은 종래 기술에 따른 액상 카트리지가 구비하는 심지/코일 조립체를 도시한 도면이다. 코일/심지 조립체(3002)는 실리카윅이나 스폰지 발포체 물질, 섬유 물질 등으로 제조된 심지(3002a) 외부에 코일(3002b)이 감긴 형태로, 전원이 인가되면 코일(3002b)이 발열하여 심지(3002a)가 머금고 있는 액상을 기화시킨다. 이때, 심지(3002a)와 코일(3002b)의 열전달 속도 차이로 인하여 액상과 심지(3002a)의 국부적인 탄화가 발생할 가능성이 있다. 액상이나 심지(3002a)가 탄화될 경우, 사용자가 흡입 시에 불쾌감을 유발할 수 있으며 만족감을 떨어트리게 된다. 따라서, 발열부의 탄화를 방지할 수 있는 구조의 개발이 요구된다. FIG. 3 is a drawing illustrating a wick/coil assembly provided in a liquid cartridge according to the prior art. The coil/wick assembly (3002) is formed by winding a coil (3002b) around a wick (3002a) made of silica wick, sponge foam material, fiber material, etc. When power is applied, the coil (3002b) generates heat and vaporizes the liquid contained in the wick (3002a). At this time, there is a possibility that local carbonization of the liquid and the wick (3002a) may occur due to the difference in heat transfer speed between the wick (3002a) and the coil (3002b). If the liquid or the wick (3002a) is carbonized, it may cause discomfort to the user when inhaling and reduce satisfaction. Therefore, the development of a structure capable of preventing carbonization of the heating part is required.

이를 해결하기 위해, 액상이나 심지 대신 액상을 머금을 수 있는 다공성 세라믹 소재를 이용하는 발열부가 개발되고 있다. To solve this problem, a heating element is being developed that uses a porous ceramic material that can hold liquid instead of a liquid or wick.

대한민국 등록특허 10-2017920Republic of Korea registered patent 10-2017920

본 발명은 세라믹 히터로 활용가능한 규산 마그네슘을 이용한 다공성 세라믹을 제공하는 것을 목적으로 한다. The purpose of the present invention is to provide a porous ceramic using magnesium silicate that can be utilized as a ceramic heater.

본 발명은 규산 마그네슘 원료 분말과 조공제를 혼합하여 혼합제를 마련하는 단계; 혼합제를 금형에 장입하는 단계; 금형에 장입된 혼합제를 일축 가압하고 가압 상태를 유지하여 다공성 세라믹을 성형하는 단계; 및 금형으로부터 성형된 다공성 세라믹 성형체를 탈형하는 단계;를 포함하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. The present invention provides a method for manufacturing a porous ceramic using magnesium silicate, characterized by including the steps of: mixing a magnesium silicate raw material powder and a porous agent to prepare a mixture; loading the mixture into a mold; uniaxially pressing the mixture loaded into the mold and maintaining the pressurized state to form a porous ceramic; and demolding the porous ceramic molded body formed from the mold.

본 발명의 다른 일 예로, 규산 마그네슘 원료 분말은 구형 입자로 마련되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. As another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the magnesium silicate raw material powder is prepared in the form of spherical particles.

또한 본 발명의 다른 일 예로, 구형 입자의 지름은 75~ 120㎛인 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the diameter of the spherical particles is 75 to 120 ㎛.

또한 본 발명의 다른 일 예로, 조공제는 아크릴 중합체인 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the forming agent is an acrylic polymer.

또한 본 발명의 다른 일 예로, 조공제는 규산 마그네슘 원료 분말 대비 20wt% 이하로 첨가되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the coagulant is added in an amount of 20 wt% or less relative to the magnesium silicate raw material powder.

또한 본 발명의 다른 일 예로, 조공제는 20㎛ 이상의 지름을 가지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the pore forming agent has a diameter of 20㎛ or more.

또한 본 발명의 다른 일 예로, 슬러리를 마련하는 단계에 다공성 세라믹의 결합 강도를 증가시키기 위해 바인더가 첨가되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that a binder is added in the step of preparing a slurry to increase the bonding strength of the porous ceramic.

또한 본 발명의 다른 일 예로, 바인더는 규산 마그네슘 원료 분말 대비 10wt%이하로 첨가되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the binder is added in an amount of 10 wt% or less relative to the magnesium silicate raw material powder.

또한 본 발명의 다른 일 예로, 슬러리를 금형에 장입하는 단계의 수행 전에 금형 내면에 윤활제 코팅이 이루어지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that a lubricant coating is formed on the inner surface of a mold before performing a step of charging slurry into the mold.

또한 본 발명의 다른 일 예로, 윤활제는 BN-spray, GL-2002와 같은 윤활제가 이용되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that a lubricant such as BN-spray or GL-2002 is used.

또한 본 발명의 다른 일 예로, 다공성 세라믹 성형체를 탈형 후 소결 공정을 수행하는 단계;를 더 포함하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that it further includes a step of performing a sintering process after demolding the porous ceramic molded body.

또한 본 발명의 다른 일 예로, 소결 공정을 수행하는 단계는, 일정한 승온 속도로 제1 온도까지 승온시킨 후 제1 시간 동안 탈바인딩(de-binding)하는 과정, 제1 온도보다 높은 제2 온도까지 일정한 승온 속도로 승온시킨 후 제2 온도를 제2시간 동안 유지하는 과정 및 로냉(furnace cooling) 과정을 포함하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the step of performing a sintering process includes a process of heating to a first temperature at a constant heating rate and then de-binding for a first hour, a process of heating to a second temperature higher than the first temperature at a constant heating rate and then maintaining the second temperature for a second hour, and a furnace cooling process.

또한 본 발명의 다른 일 예로, 소결 공정에서 제1 온도, 제2 온도, 제1 시간 및 제2 시간, 승온 속도를 조절함으로써 세라믹 성형체의 기공률 및 압축 강도를 조절하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the porosity and compressive strength of a ceramic molded body are controlled by controlling a first temperature, a second temperature, a first time, a second time, and a heating rate in a sintering process.

또한 본 발명의 다른 일 예로, 소결 공정에 의해 다공성 세라믹 성형체가 5~90MPa의 압축 강도를 가지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the porous ceramic molded body has a compressive strength of 5 to 90 MPa through a sintering process.

또한 본 발명의 다른 일 예로, 소결 공정에 의해 바인더가 제거되고 다공성 세라믹 성형체는 10~55%의 기공률을 가지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that a binder is removed by a sintering process and the porous ceramic molded body has a porosity of 10 to 55%.

또한 본 발명의 다른 일 예로, 소결 공정 후 다공성 세라믹 성형체의 수축율은 10% ~ 25%(지름1.5cm 높이 1cm인 성형체 기준)인 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the shrinkage ratio of the porous ceramic molded body after the sintering process is 10% to 25% (based on a molded body having a diameter of 1.5 cm and a height of 1 cm).

또한 본 발명의 다른 일 예로, 규산 마그네슘 원료 분말은 밀링 공정에 의해 미립화되어 제공될 수 있는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the magnesium silicate raw material powder can be provided in a fine particle form by a milling process.

또한 본 발명의 다른 일 예로, 규산 마그네슘 원료 분말은 나노 기공 및 거친 표면을 가져 평균 입도 대비 높은 비표면적을 가지는 것을 이용하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 제공한다. In addition, as another example of the present invention, a method for manufacturing a porous ceramic using magnesium silicate is provided, characterized in that the magnesium silicate raw material powder has nanopores and a rough surface and thus has a high specific surface area compared to the average particle size.

본 발명이 제공하는 다공성 세라믹 제조 방법은, 규산 마그네슘 원료를 이용한 다공성 세라믹을 제조하는 방법을 제공한다.The method for manufacturing a porous ceramic provided by the present invention provides a method for manufacturing a porous ceramic using a magnesium silicate raw material.

또한 본 발명이 제공하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법은, 합성에 필요한 모든 원료를 국내에서 수급할 수 있어, 원료의 수급이 안정적이며 따라서 안정적인 생산이 가능하다는 장점이 있다. 또한, 다른 소재들에 비해 규산 마그네슘은 제조 단가가 저렴하며, 다른 소재들에 비해 낮은 온도(1000℃ 이하)에서 소결할 수 있어 다공성 세라믹 성형체의 생산 단가를 절감할 수 있다는 장점이 있다. In addition, the method for manufacturing a porous ceramic using magnesium silicate provided by the present invention has the advantage that all raw materials required for synthesis can be supplied domestically, so that the supply of raw materials is stable and therefore stable production is possible. In addition, compared to other materials, magnesium silicate has a low manufacturing cost and can be sintered at a lower temperature (1000℃ or less) than other materials, so that the production cost of a porous ceramic molded body can be reduced.

또한, 본 발명이 제공하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법에 사용되는 원료인 규산 마그네슘은 식품 첨가제, 화장품, 의약용 제품군에 첨가가 가능할 정도로 유해성이 낮고 인체 안정성이 높다는 장점이 있다. In addition, magnesium silicate, which is a raw material used in the method for manufacturing a porous ceramic using magnesium silicate provided by the present invention, has the advantage of low toxicity and high safety for the human body to the extent that it can be added to food additives, cosmetics, and pharmaceutical products.

또한 본 발명이 제공하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법은, 낮은 소결 온도에서도 소결체가 높은 강도와 기공률을 가진다는 장점이 있다. In addition, the method for manufacturing a porous ceramic using magnesium silicate provided by the present invention has the advantage that the sintered body has high strength and porosity even at a low sintering temperature.

도 1은 종래 기술에 따른 액상 카트리지를 이용하는 미세입자 발생장치의 사시도,
도 2는 종래 기술에 따른 액상 카트리지의 분해도,
도 3은 종래 기술에 따른 액상 카트리지가 구비하는 심지/코일 조립체를 도시한 도면,
도 4는 본 발명의 제1 실시예에 따른 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 도시한 플로우 차트,
도 5는 본 발명의 제2 실시예에 따른 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 도시한 플로우 차트,
도 6은 소결 공정을 수행하는 단계(S5)에서 시간에 따른 로 내의 온도를 도시한 그래프,
도 7은 소성 온도에 따른 세라믹 소결 성형체의 압축 강도 변화를 나타낸 그래프,
도 8은 세라믹 소결 성형체의 기공 특성을 분석한 그래프.
Figure 1 is a perspective view of a fine particle generating device using a liquid cartridge according to the prior art.
Figure 2 is an exploded view of a liquid cartridge according to the prior art;
Figure 3 is a drawing showing a wick/coil assembly provided in a liquid cartridge according to the prior art;
FIG. 4 is a flow chart illustrating a method for manufacturing a porous ceramic using magnesium silicate according to the first embodiment of the present invention.
FIG. 5 is a flow chart illustrating a method for manufacturing a porous ceramic using magnesium silicate according to a second embodiment of the present invention.
Figure 6 is a graph showing the temperature inside the furnace over time in step (S5) of performing the sintering process.
Figure 7 is a graph showing the change in compressive strength of a ceramic sintered body according to the firing temperature.
Figure 8 is a graph analyzing the pore characteristics of a ceramic sintered body.

이하, 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the drawings.

도 4는 본 발명의 제1 실시예에 따른 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 도시한 플로우 차트이다. FIG. 4 is a flow chart illustrating a method for manufacturing a porous ceramic using magnesium silicate according to the first embodiment of the present invention.

본 발명이 제공하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법은, 규산 마그네슘 원료 분말과 조공제를 혼합하여 혼합제를 마련하는 단계(S1), 혼합제를 금형에 장입하는 단계(S2), 금형에 장입된 혼합제를 일축 가압하고 가압 상태를 유지하여 다공성 세라믹을 성형하는 단계(S3) 및 금형으로부터 성형된 다공성 세라믹 성형체를 탈형하는 단계(S4)를 포함한다. The method for manufacturing a porous ceramic using magnesium silicate provided by the present invention includes a step (S1) of preparing a mixture by mixing a magnesium silicate raw material powder and a porous agent, a step (S2) of loading the mixture into a mold, a step (S3) of uniaxially pressing the mixture loaded into the mold and maintaining the pressurized state to form a porous ceramic, and a step (S4) of demolding the porous ceramic molded body formed from the mold.

이때, 규산 마그네슘 원료 분말은 구형 입자로, 지름이 75~ 120㎛인 것이 바람직하다. 규산 마그네슘 원료 분말을 미립화하기 위해, 볼밀과 같은 밀링 장치에서 미립화되는 밀링 공정을 수행한 후 제공될 수 있다. 규산 마그네슘 원료 분말은 나노 기공 및 거친 표면을 가져 평균 입도 대비 높은 비표면적을 가지는 것을 이용하는 것이 바람직하다. At this time, the magnesium silicate raw material powder is preferably a spherical particle with a diameter of 75 to 120 μm. In order to make the magnesium silicate raw material powder fine, it can be provided after performing a milling process in which the powder is made fine in a milling device such as a ball mill. It is preferable to use the magnesium silicate raw material powder having nanopores and a rough surface and a high specific surface area compared to the average particle size.

또한, 조공제는 아크릴 산으로 유도되는 아크릴 중합체인 것이 바람직하다. 조공제는 20㎛ 이상의 지름을 가지며, 규산 마그네슘 원료 분말 대비 20wt% 이하로 첨가되는 것이 바람직하다. 조공제는 In addition, it is preferable that the co-polymer is an acrylic polymer derived from acrylic acid. The co-polymer has a diameter of 20㎛ or more and is preferably added in an amount of 20 wt% or less relative to the magnesium silicate raw material powder. The co-polymer

한편 혼합제를 마련하는 단계(S1)에서, 마그네슘 원료 분말과 조공제 외에, 다공성 세라믹 분말들의 결합 강도를 증가시키기 위해 바인더가 첨가될 수 있다. 바인더는 규산 마그네슘 원료 분말 대비 10wt%이하로 첨가되는 것이 바람직하다. Meanwhile, in the step (S1) of preparing a mixture, in addition to the magnesium raw material powder and the forming agent, a binder may be added to increase the bonding strength of the porous ceramic powders. It is preferable that the binder be added in an amount of 10 wt% or less relative to the magnesium silicate raw material powder.

또한 혼합제를 금형에 장입하는 단계(S2)에서, 혼합제가 금형에 장입되기 전에 금형 내면에 성형체의 탈형을 돕는 윤활제 코팅이 이루어지는 것이 바람직하다. 윤활제로는 BN-spray, GL-2002 등이 이용될 수 있다. In addition, in the step (S2) of charging the mixture into the mold, it is preferable that a lubricant coating is formed on the inner surface of the mold before the mixture is charged into the mold to help demold the molded body. BN-spray, GL-2002, etc. can be used as the lubricant.

도 5는 본 발명의 제2 실시예에 따른 규산 마그네슘을 이용한 다공성 세라믹 제조 방법을 도시한 플로우 차트이다.FIG. 5 is a flow chart illustrating a method for manufacturing a porous ceramic using magnesium silicate according to a second embodiment of the present invention.

본 발명의 제2 실시예에 따른 규산 마그네슘을 이용한 다공성 세라믹 제조 방법은, 제1 실시예에 따른 방법과 같이 규산 마그네슘 원료 분말과 조공제를 혼합하여 혼합제를 마련하는 단계(S1), 혼합제를 금형에 장입하는 단계(S2), 금형에 장입된 혼합제를 일축 가압하고 가압 상태를 유지하여 다공성 세라믹을 성형하는 단계(S3) 및 금형으로부터 성형된 다공성 세라믹 성형체를 탈형하는 단계(S4)를 수행한 후, 소결 공정을 수행하는 단계(S5)를 더 포함한다. A method for manufacturing a porous ceramic using magnesium silicate according to a second embodiment of the present invention further includes a step (S1) of preparing a mixture by mixing a magnesium silicate raw material powder and a pore-forming agent like the method according to the first embodiment, a step (S2) of loading the mixture into a mold, a step (S3) of uniaxially pressing the mixture loaded into the mold and maintaining the pressurized state to form a porous ceramic, and a step (S4) of demolding the porous ceramic molded body formed from the mold, and then a step (S5) of performing a sintering process.

도 6은 소결 공정을 수행하는 단계(S5)에서 시간에 따른 로 내의 온도를 도시한 그래프이다. Figure 6 is a graph showing the temperature inside the furnace over time in step (S5) of performing the sintering process.

소결 공정을 수행하는 단계(S5)는, 일정한 승온 속도로 제1 온도까지 승온시킨 후 제1 시간 동안 탈바인딩(de-binding)하는 과정, 제1 온도보다 높은 제2 온도까지 일정한 승온 속도로 승온시킨 후 제2 온도를 제2시간 동안 유지하는 과정 및 로냉(furnace cooling) 과정을 포함한다. The step (S5) of performing a sintering process includes a process of heating to a first temperature at a constant heating rate and then debinding for a first hour, a process of heating to a second temperature higher than the first temperature at a constant heating rate and then maintaining the second temperature for a second hour, and a furnace cooling process.

그래프에 도시된 예에서 제1 온도는 550℃, 제1 시간은 2시간이며, 제2 온도는 1300℃~1500℃, 제2 시간은 1시간이었다. 그러나, 제1 온도, 제1 시간, 제2 온도, 제2 시간은 이에 한정된 것이 아니며, 소결 공정에서 제1 온도, 제2 온도, 제1 시간 및 제2 시간, 승온 속도를 조절함으로써 세라믹 성형체의 기공률 및 압축 강도를 조절할 수 있다. In the example shown in the graph, the first temperature was 550°C, the first time was 2 hours, the second temperature was 1300°C to 1500°C, and the second time was 1 hour. However, the first temperature, the first time, the second temperature, and the second time are not limited thereto, and the porosity and the compressive strength of the ceramic molded body can be controlled by controlling the first temperature, the second temperature, the first time, the second time, and the heating rate in the sintering process.

도 7은 소성 온도에 따른 세라믹 소결 성형체의 압축 강도 변화를 나타낸 그래프, 도 8은 세라믹 소결 성형체의 기공 특성을 분석한 그래프이다. Figure 7 is a graph showing the change in compressive strength of a ceramic sintered body according to the firing temperature, and Figure 8 is a graph analyzing the pore characteristics of a ceramic sintered body.

소결 공정에 의해 다공성 세라믹 성형체가 5~90MPa의 압축 강도를 가지는 것이 바람직하며, 소결 공정에 의해 바인더가 제거되고 다공성 세라믹 성형체는 10~55%의 기공률을 가지는 것이 바람직하다. It is preferable that the porous ceramic molded body has a compressive strength of 5 to 90 MPa through the sintering process, and it is preferable that the binder is removed through the sintering process and the porous ceramic molded body has a porosity of 10 to 55%.

다음 표는 소결 온도에 따른 기공률을 정리한 것이다. The following table summarizes the porosity according to sintering temperature.

한편 소결 공정 후 다공성 세라믹 성형체의 수축율은 10% ~ 25%(지름1.5cm 높이 1cm인 성형체 기준)인 것이 바람직하다. Meanwhile, it is desirable that the shrinkage rate of the porous ceramic molded body after the sintering process be 10% to 25% (based on a molded body with a diameter of 1.5 cm and a height of 1 cm).

규산 마그네슘은 합성에 필요한 모든 원료를 국내에서 수급할 수 있어, 원료의 수급이 안정적이며 따라서 안정적인 생산이 가능하다는 장점이 있다. 또한, 다른 소재들에 비해 규산 마그네슘은 제조 단가가 저렴하며, 다른 소재들에 비해 낮은 온도(1000℃ 이하)에서 소결할 수 있어 다공성 세라믹 성형체의 생산 단가를 절감할 수 있다. Magnesium silicate has the advantage of being able to obtain all the raw materials needed for its synthesis domestically, which allows for stable supply of raw materials and therefore stable production. In addition, compared to other materials, magnesium silicate has a low manufacturing cost and can be sintered at a lower temperature (1000℃ or less) than other materials, which reduces the production cost of porous ceramic molded bodies.

또한, 규산 마그네슘은 식품 첨가제, 화장품, 의약용 제품군에 첨가가 가능할 정도로 유해성이 낮고 인체 안정성이 높다는 장점이 있다. Additionally, magnesium silicate has the advantage of being low in toxicity and high in safety for the human body, so that it can be added to food additives, cosmetics, and pharmaceutical products.

한편, 규산 마그네슘 소재는 평균70㎛의 입자 크기를 가지지만 200m2/g 이상의 높은 비표면적을 보이며, 소결 시편 제작 시 1,000℃ 이하의 낮은 소결 온도에서도 소결체가 높은 강도와 기공률을 보여주었다. Meanwhile, magnesium silicate material has an average particle size of 70㎛ but exhibits a high specific surface area of over 200m2 /g, and when producing sintered specimens, the sintered body exhibited high strength and porosity even at a low sintering temperature of 1,000℃ or less.

Claims (18)

규산 마그네슘 원료 분말과 조공제를 혼합하여 혼합제를 마련하는 단계;
혼합제를 금형에 장입하는 단계;
금형에 장입된 혼합제를 일축 가압하고 가압 상태를 유지하여 다공성 세라믹을 성형하는 단계;
금형으로부터 성형된 다공성 세라믹 성형체를 탈형하는 단계; 및
탈형한 다공성 세라믹 성형체를 1,000℃ 이하의 온도에서 소결하는 단계;를 포함하되,
소결된 다공성 세라믹은 40 - 55%의 기공률을 갖는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
A step of preparing a mixture by mixing magnesium silicate raw material powder and a forming agent;
Step of loading the mixture into the mold;
A step of uniaxially pressurizing a mixture loaded into a mold and maintaining the pressurized state to form a porous ceramic;
A step of demolding a porous ceramic molded body formed from a mold; and
A step of sintering a de-molded porous ceramic molded body at a temperature of 1,000°C or less; including:
A method for manufacturing a porous ceramic using magnesium silicate, wherein the sintered porous ceramic has a porosity of 40 to 55%.
제1항에 있어서,
규산 마그네슘 원료 분말은 구형 입자로 마련되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing porous ceramics using magnesium silicate, characterized in that the magnesium silicate raw material powder is prepared in the form of spherical particles.
제2항에 있어서,
구형 입자의 지름은 75~ 120㎛인 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the second paragraph,
A method for manufacturing porous ceramics using magnesium silicate, characterized in that the diameter of the spherical particles is 75 to 120 μm.
제1항에 있어서,
조공제는 아크릴 중합체인 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing porous ceramics using magnesium silicate, characterized in that the filler is an acrylic polymer.
제1항에 있어서,
조공제는 규산 마그네슘 원료 분말 대비 20wt% 이하로 첨가되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing porous ceramics using magnesium silicate, characterized in that the filler is added in an amount of 20 wt% or less relative to the magnesium silicate raw material powder.
제1항에 있어서,
조공제는 20㎛ 이상의 지름을 가지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing a porous ceramic using magnesium silicate, wherein the porous ceramic has a diameter of 20㎛ or more.
제1항에 있어서,
슬러리를 마련하는 단계에 다공성 세라믹의 결합 강도를 증가시키기 위해 바인더가 첨가되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing a porous ceramic using magnesium silicate, characterized in that a binder is added in the step of preparing a slurry to increase the bonding strength of the porous ceramic.
제7항에 있어서,
바인더는 규산 마그네슘 원료 분말 대비 10wt%이하로 첨가되는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In Article 7,
A method for manufacturing porous ceramics using magnesium silicate, characterized in that the binder is added in an amount of 10 wt% or less relative to the magnesium silicate raw material powder.
제1항에 있어서,
슬러리를 금형에 장입하는 단계의 수행 전에 금형 내면에 윤활제 코팅이 이루어지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing a porous ceramic using magnesium silicate, characterized in that a lubricant coating is formed on the inner surface of a mold before performing a step of charging slurry into the mold.
제1항에 있어서,
소결 공정을 수행하는 단계는, 일정한 승온 속도로 제1 온도까지 승온시킨 후 제1 시간 동안 탈바인딩(de-binding)하는 과정, 제1 온도보다 높은 제2 온도까지 일정한 승온 속도로 승온시킨 후 제2 온도를 제2시간 동안 유지하는 과정 및 로냉(furnace cooling) 과정을 포함하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing a porous ceramic using magnesium silicate, characterized in that the step of performing a sintering process includes a process of heating to a first temperature at a constant heating rate and then performing de-binding for a first hour, a process of heating to a second temperature higher than the first temperature at a constant heating rate and then maintaining the second temperature for a second hour, and a furnace cooling process.
제10항에 있어서,
소결 공정에서 제1 온도, 제2 온도, 제1 시간 및 제2 시간, 승온 속도를 조절함으로써 세라믹 성형체의 기공률 및 압축 강도를 조절하는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In Article 10,
A method for manufacturing a porous ceramic using magnesium silicate, characterized in that the porosity and compressive strength of a ceramic molded body are controlled by controlling a first temperature, a second temperature, a first time, a second time, and a heating rate in a sintering process.
제1항에 있어서,
소결 공정에 의해 다공성 세라믹 성형체가 5~90MPa의 압축 강도를 가지는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing a porous ceramic using magnesium silicate, characterized in that the porous ceramic molded body has a compressive strength of 5 to 90 MPa through a sintering process.
제1항에 있어서,
소결 공정 후 다공성 세라믹 성형체의 수축율은 10% ~ 25%(지름1.5cm 높이 1cm인 성형체 기준)인 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing a porous ceramic using magnesium silicate, characterized in that the shrinkage rate of the porous ceramic molded body after the sintering process is 10% to 25% (based on a molded body having a diameter of 1.5 cm and a height of 1 cm).
제1항에 있어서,
규산 마그네슘 원료 분말은 밀링 공정에 의해 미립화되어 제공될 수 있는 것을 특징으로 하는 규산 마그네슘을 이용한 다공성 세라믹 제조 방법.
In the first paragraph,
A method for manufacturing porous ceramics using magnesium silicate, characterized in that the magnesium silicate raw material powder can be provided in a fine particle form by a milling process.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020220014687A 2022-02-04 2022-02-04 Preparing method of porous ceramic made of magnesium silicate KR102729591B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220014687A KR102729591B1 (en) 2022-02-04 2022-02-04 Preparing method of porous ceramic made of magnesium silicate
PCT/KR2023/001619 WO2023149760A1 (en) 2022-02-04 2023-02-03 Method for manufacturing porous ceramic by using magnesium silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220014687A KR102729591B1 (en) 2022-02-04 2022-02-04 Preparing method of porous ceramic made of magnesium silicate

Publications (2)

Publication Number Publication Date
KR20230118728A KR20230118728A (en) 2023-08-14
KR102729591B1 true KR102729591B1 (en) 2024-11-14

Family

ID=87552687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220014687A KR102729591B1 (en) 2022-02-04 2022-02-04 Preparing method of porous ceramic made of magnesium silicate

Country Status (2)

Country Link
KR (1) KR102729591B1 (en)
WO (1) WO2023149760A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519321A (en) * 2008-04-30 2011-07-07 コーニング インコーポレイテッド Method for manufacturing ceramic article
US20150279559A1 (en) 2012-10-18 2015-10-01 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
JP2018001194A (en) * 2016-06-29 2018-01-11 京セラ株式会社 End tab for welding

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071995A1 (en) * 2003-02-12 2004-08-26 Toagosei Co., Ltd. Method for producing porous ceramic
JP2010195634A (en) * 2009-02-25 2010-09-09 Sumitomo Chemical Co Ltd Method for producing aluminum titanate-based ceramic sintered body and aluminum titanate-based ceramic sintered body
WO2011030461A1 (en) * 2009-09-14 2011-03-17 イビデン株式会社 Method for manufacturing honeycomb structure
WO2012051548A2 (en) * 2010-10-15 2012-04-19 Celanese Acetate Llc Apparatuses, systems, and associated methods for forming porous masses for smoke filter
JP5689325B2 (en) * 2011-01-20 2015-03-25 一般財団法人ファインセラミックスセンター Degreasing method and degreasing apparatus for ceramic molded body
DE102011081536A1 (en) * 2011-08-25 2013-02-28 Robert Bosch Gmbh Ceramic composition
UA112883C2 (en) 2011-12-08 2016-11-10 Філіп Морріс Продактс С.А. DEVICE FOR THE FORMATION OF AEROSOL WITH A CAPILLARY BORDER LAYER
DE102013216187A1 (en) * 2013-08-14 2015-02-19 Robert Bosch Gmbh Zinc-doped magnesium silicate
CH710934A1 (en) * 2015-04-01 2016-10-14 Reishauer Ag Open-pored, ceramic-bonded grinding tool, process for its production and pore-forming mixtures used for its production.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519321A (en) * 2008-04-30 2011-07-07 コーニング インコーポレイテッド Method for manufacturing ceramic article
US20150279559A1 (en) 2012-10-18 2015-10-01 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
JP2018001194A (en) * 2016-06-29 2018-01-11 京セラ株式会社 End tab for welding

Also Published As

Publication number Publication date
KR20230118728A (en) 2023-08-14
WO2023149760A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
EP3563701B1 (en) Heater, cartridge, atomizer and electronic cigarette having same
CN109608048B (en) Sintered body with electrically conductive coating
US20150359262A1 (en) Preparation method of porous ceramic, porous ceramic, and electronic cigarette
KR102530887B1 (en) A vaporizing part of a microparticle generator
CN209376686U (en) Porous heater, the atomizer comprising porous heater
US5030396A (en) Process for production of porous ceramic article
CN115124323B (en) Porous ceramic heating element and preparation method thereof
KR102729591B1 (en) Preparing method of porous ceramic made of magnesium silicate
CN113429217A (en) Preparation method of porous ceramic matrix, atomizing core, atomizer and electronic cigarette
EP4437884A1 (en) Porous ceramic heater, and liquid cartridge comprising same
CN111423247A (en) Porous ceramic, preparation method and heating element thereof
CN111434252A (en) Liquid container, gas mist generating device and manufacturing method of liquid container
CN116687063A (en) Apparatus for a gasifier arrangement
JP2000093495A (en) Aromatic carbon sintered compact
JPH09157066A (en) Production of porous ceramic sintered body
CN117796568A (en) Atomizer, electronic atomizing device, porous body and preparation method
EP4445758A1 (en) Porous body, atomizer and electronic atomization device
CN117796569A (en) Atomizer, electronic atomization device and porous body for electronic atomization device
JP3661956B2 (en) Method for producing porous superabrasive melamine bond wheel
KR102754424B1 (en) Ceramic liquid cartridge for aerosol-generating device with hydrophilic and hydrophobic properties
US20240041106A1 (en) Aerosol generator and flavor aspirator
JP2759147B2 (en) Method for producing porous ceramic body
KR20230136436A (en) Porous ceramic heater for aerosol generator
CN115104789B (en) Preparation method of carbon fiber ceramic body and porous ceramic heating element
KR102716854B1 (en) Preparing method of high strength ceramic liquid absorber

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20220204

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240227

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20241107

PG1601 Publication of registration