KR102718350B1 - Manufacturing method of NbSi superalloy and NbSi superalloy made by the method - Google Patents
Manufacturing method of NbSi superalloy and NbSi superalloy made by the method Download PDFInfo
- Publication number
- KR102718350B1 KR102718350B1 KR1020220170627A KR20220170627A KR102718350B1 KR 102718350 B1 KR102718350 B1 KR 102718350B1 KR 1020220170627 A KR1020220170627 A KR 1020220170627A KR 20220170627 A KR20220170627 A KR 20220170627A KR 102718350 B1 KR102718350 B1 KR 102718350B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- niobium
- silicon alloy
- milling
- nbh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims description 17
- 229910000601 superalloy Inorganic materials 0.000 title description 5
- 239000004094 surface-active agent Substances 0.000 claims abstract description 16
- 229910000676 Si alloy Inorganic materials 0.000 claims abstract description 15
- LIZIAPBBPRPPLV-UHFFFAOYSA-N niobium silicon Chemical compound [Si].[Nb] LIZIAPBBPRPPLV-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000003856 thermoforming Methods 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims description 33
- 238000003801 milling Methods 0.000 claims description 29
- 239000011812 mixed powder Substances 0.000 claims description 21
- 239000011863 silicon-based powder Substances 0.000 claims description 15
- 238000005551 mechanical alloying Methods 0.000 claims description 14
- 235000021355 Stearic acid Nutrition 0.000 claims description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 7
- 239000008117 stearic acid Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000011084 recovery Methods 0.000 abstract description 10
- 239000012535 impurity Substances 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000003701 mechanical milling Methods 0.000 abstract description 4
- 239000007858 starting material Substances 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 description 24
- 239000000956 alloy Substances 0.000 description 24
- 239000010955 niobium Substances 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 10
- 229910052758 niobium Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- -1 for example Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/103—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/108—Mixtures obtained by warm mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/03—Press-moulding apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본 발명은 니오븀-실리콘 합금의 제조 방법에 관한 기술로서, NbH를 출발 물질로 하여, 계면활성제를 추가하고, 기계적 밀링 및 열성형 단계를 통해 회수율이 높고, 불순물이 적은 니오븀-실리콘 합금을 제조하는 방법에 관한 것이다.The present invention relates to a technology relating to a method for producing a niobium-silicon alloy, and relates to a method for producing a niobium-silicon alloy having a high recovery rate and low impurities by using NbH as a starting material, adding a surfactant, and performing mechanical milling and thermoforming steps.
Description
본 발명은 초내열 합금인 Nb계 합금에 관한 기술로서, 보다 구체적으로는 NbSi 합금에 관한 신규한 제조 방법에 관한 기술이다. The present invention relates to a technology for a Nb-based alloy, which is a super heat-resistant alloy, and more specifically, to a technology for a novel manufacturing method for a NbSi alloy.
초내열 합금(superalloy)이란 고온에서도 일정 수준 이상의 기계적 강도와 크리프 저항성(creep resistance) 등을 지닌 합금을 의미한다. 이때 고온의 범위에 대해서 정확히 정의된 바는 없으나, 일반적으로 약 700℃ 이상의 온도를 말한다. 일반 강재는 이러한 온도 영역에서는 필연적으로 기계적 강도의 저하나 산화 등으로 인한 문제가 발생하며, 약 1000℃ 이상에서는 심각한 특성 저하로 인해Superalloy refers to an alloy that has a certain level of mechanical strength and creep resistance even at high temperatures. Although the range of high temperatures is not precisely defined, it generally refers to a temperature of about 700℃ or higher. In general, steel inevitably experiences problems such as a decrease in mechanical strength or oxidation in this temperature range, and above about 1000℃, it suffers from serious deterioration of properties.
사용 자체가 불가능하므로 대체 재료로 초내열 합금을 사용하고 있다. Since the use itself is impossible, super heat-resistant alloys are being used as alternative materials.
초내열 합금의 주요 응용 분야는 가스터빈 엔진, 로켓 부품, 원자로, 산업용 용광로, 열교환기, 석유화학 장비, 자동차 터보차저 등 고온환경에서 재료가 노출되는 아주 넓은 분야에서 사용되고 있다. 또한, 고온재료 수요가 지속적으로 늘어가고 있어 산업적으로 초내열 합금은 고부가가치 소재로 각광받고 있다.The main application areas of super heat-resistant alloys are gas turbine engines, rocket parts, nuclear reactors, industrial furnaces, heat exchangers, petrochemical equipment, and automobile turbochargers, etc., and they are used in a very wide range of fields where materials are exposed to high-temperature environments. In addition, as the demand for high-temperature materials continues to increase, super heat-resistant alloys are attracting attention as high value-added materials in the industrial sector.
초내열 합금으로 Fe계, Ni계, Cr계 초내열 합금이 상업적으로 가장 많이 쓰이고 있으며, 이 중에서 가장 상용화된 초내열 합금인 Ni계 합금은 우수한 온도 대비 강도 수준을 가지고 있어, 초고온에서 안정적인 온도 수용성을 가지고 있다. 이러한 Ni계 초내열 합금은 진공 주조법의 발달로 인해 Al, Ti를 첨가하여 금속의 강화기구 중 하나인 석출 강화를 이용하여, -Ni3(Al,Ti)상을 석출시킴으로써 초고온용 소재 분야를 크게 발전시켰으며, 사용온도 1300℃ 이하에서 난융금속과 세라믹 소재를 제외하고 상업적으로 가장 많이 사용되는 기지 금속이다. Among the super heat-resistant alloys, Fe-based, Ni-based, and Cr-based super heat-resistant alloys are the most widely used commercially, and among them, Ni-based alloys, which are the most commercialized super heat-resistant alloys, have excellent strength-to-temperature levels and stable temperature acceptance at ultra-high temperatures. These Ni-based super heat-resistant alloys have been developed by adding Al and Ti due to the development of vacuum casting methods, and are utilizing precipitation strengthening, which is one of the strengthening mechanisms of metals. - It has greatly advanced the field of ultra-high temperature materials by precipitating the Ni 3 (Al, Ti) phase, and is the most commercially used base metal, excluding refractory metals and ceramic materials, at a service temperature of 1300℃ or lower.
본 발명은 니오븀(Nb)계 초내열 합금에 관한 기술로서, Nb은 높은 융점(2475℃)으로 인해 1300℃ 이상 초고온 환경에서 사용이 가능한 합금으로 개발되었으나, Nb 산화물은 높은 포화증기압으로 고온에서 휘발하는 특성이 있어 고온에서 산화되므로, 고온 내산화성 특성이 좋지 않고, 상온 취성이 있어 초내열 합금으로 적용이 어려운 문제점이 있어, 다른 금속과의 합금, 예를 들어, Si과의 합금이 제안되었다.The present invention relates to a technology for a niobium (Nb)-based superheat-resistant alloy. Nb has been developed as an alloy that can be used in an ultra-high temperature environment of 1300°C or higher due to its high melting point (2475°C). However, Nb oxide has the characteristic of volatilizing at high temperatures due to its high saturated vapor pressure, so it oxidizes at high temperatures, has poor high-temperature oxidation resistance, and is brittle at room temperature, making it difficult to apply as a superheat-resistant alloy. Therefore, alloys with other metals, for example, alloys with Si, have been proposed.
Nb와 Si의 합금의 제조는 일반적으로 주조방법으로 아크용융, 플라즈마용융과 존멜팅, 초크라스키 성장법과 같은 방향성 응고로 제조되고 있다. 주조로 제조된 합금들의 미세구조는 조대한 Nb 기지와 미세한 NbSi와 같은 공정조직(Eutectic)과 함께 존재하는 불균일한 입자크기를 가지고 있다. The production of alloys of Nb and Si is generally done by casting methods such as arc melting, plasma melting, zone melting, and directional solidification such as Czochrski growth method. The microstructure of alloys produced by casting has a heterogeneous grain size with coarse Nb matrix and fine NbSi eutectic structure.
Nb와 Si의 초내열 합금의 균질성을 향상시킬 수 있도록 분말야금 기술과 기존의 Fe와 Ni계 초내열합금의 성형 기술을 사용하여 조밀하고 최종 형상 제품에 근접한 부품제조 방법이 요구되고 있어, 이에 대한 연구 결과 본 발명을 완성하게 되었다.In order to improve the homogeneity of superalloys of Nb and Si, a method for manufacturing parts that are dense and close to the final shape product is required using powder metallurgy technology and molding technology of existing Fe and Ni-based superalloys. As a result of research on this, the present invention has been completed.
본 발명의 니오븀 분말과 실리콘 분말의 기계적 합금화를 진행하고 성형화하는 데 있어서, 기계적 밀링 시 분말의 회수를 저해하는 데드존(dead zone)이 최소화할 수 있는 신규한 합금 방법을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a novel alloying method capable of minimizing a dead zone that impedes the recovery of powder during mechanical milling in mechanical alloying and molding of niobium powder and silicon powder.
특히, 본 발명은 니오븀 분말과 실리콘 분말의 성형 소결 시에 불순물을 저감하고 수소가 남아 있지 않는 신규한 합금 방법을 제공하는 것을 목적으로 한다.In particular, the present invention aims to provide a novel alloying method that reduces impurities and leaves no hydrogen remaining during the molding and sintering of niobium powder and silicon powder.
본 발명은 니오븀-실리콘 합금(NbSi)을 제조하는 방법에 있어서, NbH 분말 및 Si 분말을 혼합하여 혼합 분말을 제조하는 단계(1); 상기 혼합 분말에 기계적 합금화 밀링을 실행하는 단계(2); 및 상기 기계적 합금화 밀링 후 회수된 혼합 분말의 열성형 단계(3)를 포함하는 니오븀-실리콘 합금의 제조 방법을 제공한다.The present invention provides a method for producing a niobium-silicon alloy (NbSi), comprising the steps of: (1) mixing NbH powder and Si powder to produce a mixed powder; (2) performing mechanical alloying milling on the mixed powder; and (3) performing thermoforming on the mixed powder recovered after the mechanical alloying milling.
특히, 상기 혼합 분말 중 Si 분말 1 중량부에 대해 NbH 분말은 4 ~ 9 중량부 포함할 수 있다. In particular, the NbH powder may be included in an amount of 4 to 9 parts by weight per 1 part by weight of the Si powder in the mixed powder.
특히, 상기 단계(1)에서 계면활성제를 더 포함할 수 있다.In particular, the step (1) may further include a surfactant.
특히, 상기 계면활성제는 스테아린산일 수 있다.In particular, the surfactant may be stearic acid.
특히, 상기 계면활성제는 상기 혼합 분말 총량 중 0.01 ~ 1 wt.%로 포함될 수 있다.In particular, the surfactant may be included in an amount of 0.01 to 1 wt.% of the total amount of the mixed powder.
특히, 상기 단계(2)는 밀링, 냉각 및 정지시간을 1 사이클로 하여 상기 사이클을 반복할 수 있다.In particular, the above step (2) can be repeated by making the milling, cooling and stopping time one cycle.
특히, 상기 단계(2)는 20 ~ 650 rpm 및 1 ~ 60 G에서 행해질 수 있다.In particular, the above step (2) can be performed at 20 to 650 rpm and 1 to 60 G.
특히, 상기 열성형 단계(3)은 진공상태에서 400 ~ 600℃로 1차 가온하여 혼합 분말에 포함된 계면활성제를 기화하는 단계(3-1); 및 상기 단계(3-1) 이후 승온하여 1300 ~ 1500℃을 유지하는 단계(3-2)를 포함할 수 있다.In particular, the thermoforming step (3) may include a step (3-1) of first heating to 400 to 600°C in a vacuum state to vaporize the surfactant included in the mixed powder; and a step (3-2) of maintaining the temperature at 1300 to 1500°C after the step (3-1).
특히, 상기 단계(3-2)는 가압 조건에서 행해질 수 있다.In particular, the above step (3-2) can be performed under pressurized conditions.
또한, 본 발명은 또한 상기 방법에 의해 제조된 니오븀-실리콘 합금을 제공한다.In addition, the present invention also provides a niobium-silicon alloy manufactured by the above method.
본 발명은 니오븀 분말과 실리콘 분말의 기계적 합금화를 위한 기계적 합금화 밀링 시 데드존(dead zone)이 최소화할 수 있어 분말의 회수를 최대화할 수 있는 장점이 있다. 또한, NbH에 포함된 H는 열성형 단계의 고온에서 모두 휘발되어 사라지면서 불순물을 함께 제거하는 효과를 갖는다. The present invention has an advantage in that the dead zone can be minimized during mechanical alloying milling for mechanical alloying of niobium powder and silicon powder, thereby maximizing powder recovery. In addition, H contained in NbH completely volatilizes and disappears at the high temperature of the thermoforming step, thereby having the effect of removing impurities together.
도 1은 본 발명의 실험에서 사용한 NbH 분말과 Si 분말의 PSA 결과이다.
도 2는 본 발명의 실험에서 사용한 NbH 분말과 Si 분말의 SEM 측정 결과이다.
도 3은 비교예의 방법으로 제조된 샘플(NbSi) 및 본 발명의 실시예로 제조된 샘플(NbHSi)의 밀링 후의 회수율을 비교한 그래프이다.
도 4는 NbH 분말, NbHSi 밀링 후의 분말, 열간성형 후의 분말(도면에서 NbH-Si sintered sample)의 XRD 분석 결과이다.
도 5는 본 발명에 의해 제조된 NbSi 합금에 대한 TG 분석 결과이다. Figure 1 shows the PSA results of NbH powder and Si powder used in the experiment of the present invention.
Figure 2 shows the SEM measurement results of NbH powder and Si powder used in the experiment of the present invention.
Figure 3 is a graph comparing the recovery rate after milling of a sample (NbSi) manufactured by a comparative example and a sample (NbHSi) manufactured by an example of the present invention.
Figure 4 shows the XRD analysis results of NbH powder, powder after NbHSi milling, and powder after hot forming (NbH-Si sintered sample in the figure).
Figure 5 shows the TG analysis results for the NbSi alloy manufactured by the present invention.
본 발명은 니오븀-실리콘 합금(이하, "NbSi"라 약칭)의 신규한 제조 방법에 관한 기술로서, 본 발명은 NbH 분말 및 Si 분말을 혼합하여 혼합 분말을 제조하는 단계(1); 상기 혼합 분말에 기계적 합금화 밀링을 실행하는 단계(2); 및 상기 기계적 밀링 후 회수된 혼합 분말의 열성형 단계(3)를 포함한다.The present invention relates to a novel method for producing a niobium-silicon alloy (hereinafter, abbreviated as "NbSi"), comprising the steps of (1) mixing NbH powder and Si powder to produce a mixed powder; (2) performing mechanical alloying milling on the mixed powder; and (3) performing thermoforming of the mixed powder recovered after the mechanical milling.
이하에서는 각 단계에 대해 보다 자세히 설명하기로 한다.Below, each step is explained in more detail.
단계(1) : 혼합 분말Step (1): Mixing powder
본 발명에서는 NbH를 출발물질로 사용하는 것을 특징으로 하는데, NbH는 상온에서 β-NbH으로 존재하며, 열성형 단계에서 고온으로 올라가면 Nbss BCC 상으로 변화하며 H가 사라지게 된다. 본 발명에서는 NbH를 이용하여 저온에서 수소기가 붙어 있음에 따라 금속-금속 결합을 방해하고 기계적 합금화 공정 시 회수율을 높이기 위해, 데드존(Deadzone)이 형성되지 않게 하기 위해 사용된다. 또한, 열간 성형 시에 발생할 수 있는 C, O 성분들에 의한 분말의 산화를 방지할 뿐만 아니라 불순물을 저감하는 역할을 한다.The present invention is characterized by using NbH as a starting material. NbH exists as β-NbH at room temperature, and when it rises to a high temperature in the thermoforming step, it changes into the Nbss BCC phase and H disappears. In the present invention, NbH is used to prevent metal-metal bonding by attaching hydrogen groups at a low temperature, to increase the recovery rate during the mechanical alloying process, and to prevent the formation of a dead zone. In addition, it prevents oxidation of the powder by C and O components that may occur during hot forming, and also plays a role in reducing impurities.
본 발명에서 상기 NbH와 Si 분말의 혼합비는, Si 분말 1 중량부를 기준으로, NbH는 4 ~ 9 중량부로 포함할 수 있다. In the present invention, the mixing ratio of the NbH and Si powder may include 4 to 9 parts by weight of NbH based on 1 part by weight of Si powder.
또한, 상기 혼합 분말에 계면활성제를 전체 혼합 분말 중량 중 0.01 ~ 1 wt.%로 포함할 수 있으나, 필요에 따라 상기 범위 이외로 가감할 수 있다. 이하 실험에서는 대표적인 화합물인 스테아린산을 이하 실험에서 계면활성제로 사용했다.In addition, the above mixed powder may contain a surfactant in an amount of 0.01 to 1 wt.% of the total mixed powder weight, but may be increased or decreased outside the above range as needed. In the following experiments, stearic acid, a representative compound, was used as a surfactant in the following experiments.
단계(2) : 기계적 합금화 밀링Step (2): Mechanical alloy milling
상기 혼합 분말에 대해 기계적 합금화 밀링을 수행한다. 특히, 상기 밀링 공정은 밀링, 냉각 및 정지 단계를 1 사이클로 하여, 상기 사이클을 반복할 수 있다. 또한, 상기 밀링은 20 ~ 650 rpm 및 1 ~ 60 G에서 행해질 수 있다Mechanical alloy milling is performed on the above mixed powder. In particular, the milling process can repeat the cycle by performing milling, cooling, and stopping steps as one cycle. In addition, the milling can be performed at 20 to 650 rpm and 1 to 60 G.
이하 실험에서는, 기계적 밀링은 Ar 퍼징 글로브 박스에서 냉각 방열 챔버에서 상기 분말을 장입 후에, 400 rpm(30 G(중력가속도))으로 4분 밀링 후, 20 rpm으로 1분 냉각 후, 정지 1 분을 1 사이클(총 6분)로 하여, 상기 사이클을 40회 반복하여 총 4시간 밀링을 수행하였다. In the following experiments, mechanical milling was performed by loading the powder into a cooling radiator chamber in an Ar purging glove box, milling at 400 rpm (30 G (gravitational acceleration)) for 4 minutes, cooling at 20 rpm for 1 minute, and stopping for 1 minute, which is 1 cycle (total 6 minutes), and repeating the above cycle 40 times to perform milling for a total of 4 hours.
단계(3) : 열성형Step (3): Thermoforming
본 발명에서 열성형 단계(3)은 진공상태에서 400 ~ 600℃로 1차 가온하여 혼합 분말에 포함된 계면활성제를 기화하는 단계(3-1); 및 상기 단계(3-1) 이후 승온하여 1300 ~ 1500℃을 유지하는 단계(3-2)를 포함할 수 있다. In the present invention, the thermoforming step (3) may include a step (3-1) of first heating to 400 to 600°C in a vacuum state to vaporize a surfactant included in the mixed powder; and a step (3-2) of maintaining the temperature at 1300 to 1500°C after the step (3-1).
본 발명의 단계(3-1)에서 진공, 예를 들어, 1 ~ 9.8 x 10-2 torr에서 행할 수 있다. 또한, 목표 온도까지 일정한 온도로 승온할 수 있다. 이하 실험에서는 분당 10℃ 상승하여, 500℃에서 30분간 유지하였다. 상기 온도에서 계면활성제는 모두 기화된다. In step (3-1) of the present invention, it can be performed in a vacuum, for example, 1 to 9.8 x 10 -2 torr. In addition, the temperature can be increased at a constant temperature up to the target temperature. In the following experiment, the temperature was increased at 10°C per minute and maintained at 500°C for 30 minutes. At this temperature, all surfactants are vaporized.
본 발명의 단계(3-2)는 1300 ~ 1500℃로 다시 승온하여 열성형을 마무리하는 단계로서, 단계(3-2)는 가압 조건에서 행해질 수 있다. 이하 실험에서는 50 MPa에서 실험을 하였다.Step (3-2) of the present invention is a step of finishing thermoforming by re-heating to 1300 to 1500°C, and step (3-2) can be performed under pressurized conditions. In the following experiments, the experiments were performed at 50 MPa.
실시예Example
실시예로서 NbH 83.5 wt. Si 15.5 wt, 계면활성제로 스테아린산 1 wt.%의 혼합 분말을 만든 후, 기계적 합금화 밀링(TMHP-100, 태명과학, WC(Tungsten carbide) 5Φ ball 사용, BPR(Ball to powder ratio)= 10:1(Ball 500g, 혼합 분말 50g), 400 rpm, 4시간 밀링, 30G 값 적용)을 하였다. 이후, 회수된 분말의 열성형 공정(1 ~ 9.8 x 10-2 torr, 분당 10℃ 상승, 500℃에서 30분 유지 후, 1500℃ 및 50 MPa에서 30분 유지)을 하여 본 발명의 NbSi 합금을 제조하였다. As an example, a mixed powder of NbH 83.5 wt. Si 15.5 wt., and stearic acid 1 wt.% as a surfactant was prepared, and mechanical alloying milling was performed (TMHP-100, Taemyung Scientific, using WC (Tungsten carbide) 5Φ ball, BPR (Ball to powder ratio) = 10:1 (Ball 500 g, mixed powder 50 g), 400 rpm, milling for 4 hours, 30 G value applied). Thereafter, the recovered powder was subjected to a thermoforming process (1 to 9.8 x 10 -2 torr, 10℃ increase per minute, maintained at 500℃ for 30 minutes, and then maintained at 1500℃ and 50 MPa for 30 minutes), thereby manufacturing the NbSi alloy of the present invention.
한편, 비교예로서, Nb와 Si의 혼합 분말에 계면활성제로 스테아린산을 포함하였으며, 나머지 조건은 위 실시예와 동일하게 하여 비교예의 샘플을 제조하였다.Meanwhile, as a comparative example, a sample of the comparative example was prepared by including stearic acid as a surfactant in a mixed powder of Nb and Si and maintaining the remaining conditions the same as in the above example.
실험예 1 : XRF 분석Experimental Example 1: XRF Analysis
표 1은 본 발명의 실험에서 사용한 NbH와 Si 분말의 XRF 분석 결과이다. Fe 및 Mn, Ca, Ti, Ni 등의 성분은 불순물로 전체 밀링 후 1 wt.% 이하의 조성을 유지하고 있다. Table 1 shows the XRF analysis results of the NbH and Si powders used in the experiments of the present invention. Components such as Fe, Mn, Ca, Ti, and Ni are impurities and maintain a composition of less than 1 wt.% after full milling.
실험예 2 : PSA(Particle Size Analyzer) 분석 결과 및 SEM 측정 결과Experimental Example 2: PSA (Particle Size Analyzer) analysis results and SEM measurement results
도 1은 본 발명의 실험에서 사용한 NbH와 Si 분말의 PSA 결과이며, 도 2는 SEM 측정 결과이다.Figure 1 shows the PSA results of NbH and Si powders used in the experiment of the present invention, and Figure 2 shows the SEM measurement results.
도 1 및 2를 참고하면, NbH 분말은 전체 100 ㎛ 이하로, D50 24.53 ㎛의 입도를 가지고 있으며, 전체적인 형상은 파쇄된 분말의 형태로 불규칙한 형상을 보였다. Si 분말은 전체 20 ㎛ 이하로, D50 9.29 ㎛의 입도를 가지고 있으며, 전체적인 형상은 파쇄된 분말의 불규칙한 형상을 보였다. Referring to FIGS. 1 and 2, the NbH powder had a particle size of less than 100 ㎛ overall, a D 50 of 24.53 ㎛, and an irregular shape in the form of crushed powder overall. The Si powder had a particle size of less than 20 ㎛ overall, a D 50 of 9.29 ㎛, and an irregular shape in the form of crushed powder overall.
실험예 3 : 밀링 후 회수율 결과Experimental Example 3: Results of recovery rate after milling
도 3은 비교예의 방법으로 제조된 샘플(NbSi)과 본 발명의 실시예로 제조된 샘플(NbHSi)의 밀링 후의 회수율을 비교한 그래프이다. 도 3에 나타난 바와 같이 일반 Nb 분말을 이용한 기계적 합금화 밀링 방법은 데드존의 형성으로 분말의 회수가 실질적으로 불가능하였으며, 그럼에도 불구하고 클리닝 공정을 이용해 분말의 회수가 가능하나, 클리닝 공정으로 인해 분말의 오염이 발생하여 분말의 사용이 불가능했다.Fig. 3 is a graph comparing the recovery rate after milling of a sample (NbSi) manufactured by a comparative example and a sample (NbHSi) manufactured by an example of the present invention. As shown in Fig. 3, in the mechanical alloying milling method using general Nb powder, recovery of the powder was practically impossible due to the formation of a dead zone; nevertheless, recovery of the powder was possible using a cleaning process, but the cleaning process caused contamination of the powder, making it impossible to use the powder.
한편, 본 NbHSi 분말은 밀링 후에도 금속의 연성보다 취성이 강함에 따라 분말의 회수가 양호하여 회수율(Yield rate)이 80.77%로 매우 높게 나타났다. 이러한 높은 회수율은 본 발명에서 Nb가 아닌 NbH를 원료로 사용했기 때문이다.Meanwhile, since the NbHSi powder has a stronger brittleness than ductility of metal even after milling, the powder recovery is good and the yield rate is very high at 80.77%. This high yield rate is because NbH, not Nb, was used as a raw material in the present invention.
실험예 4 : XRD 분석 결과Experimental Example 4: XRD Analysis Results
도 4는 NbH 분말, NbHSi 밀링 후의 분말, 열간성형 후의 분말(NbH-Si sintered sample)의 XRD 분석 결과이다.Figure 4 shows the XRD analysis results of NbH powder, powder after NbHSi milling, and powder after hot forming (NbH-Si sintered sample).
XRD 분석에서 밀링 전 NbH 분말의 피크가 명확히 구분되었으며, 83.5 wt.%의 NbH 분말과 15.5 wt.%의 Si 분말의 밀링 후에는 Si 피크가 미량 검출되며, NbH의 피크는 격자의 내부 스트레인이 들어감에 따라 넓어지면서 피크가 유지되어 NbH 상이 유지되고 있는 것으로 확인할 수 있었다. 이후 핫프레스를 이용하여 열간 성형 후 샘플의 XRD 분석을 진행한 결과, NbH 피크는 사라지고, Nb 및 Nb5Si3의 상으로 검출되었다. 이에 따라 기계적 합금화 공정에 Nb의 취성을 부여하는 H기가 열간 성형 공정 후 NbH 상이 Nb5Si3 상으로 변화하면서 내부에 있던 H 기가 사라짐을 확인하였다. In the XRD analysis, the peaks of the NbH powder before milling were clearly distinguished, and a trace amount of Si peak was detected after milling of 83.5 wt.% NbH powder and 15.5 wt.% Si powder, and the peak of NbH broadened as the internal strain of the lattice entered, confirming that the NbH phase was maintained because the peak was maintained. Afterwards, XRD analysis was performed on the sample after hot forming using a hot press, and the NbH peak disappeared, and Nb and Nb 5 Si 3 phases were detected. Accordingly, it was confirmed that the H group, which imparts brittleness to Nb in the mechanical alloying process, disappeared as the NbH phase changed into the Nb 5 Si 3 phase after the hot forming process.
위 XRD 결과와 같이, 수소(H)는 대표적인 환원 처리를 수행하는 원소로 Nb와 결합 중 고온에서 분해되어 나오게 되며, 이에 나오는 H는 주변 불순물 또는 산화물과 반응하여 제거되는 공정을 수행함에 따라 불순물 저감과 열간 고온 성형 시에 발생하는 Nb의 산화를 방지할 수 있는 효과가 있다.As shown in the XRD results above, hydrogen (H) is a representative element that performs reduction processing, and is decomposed at high temperatures while combining with Nb. The H that is released reacts with surrounding impurities or oxides and is removed, thereby reducing impurities and preventing oxidation of Nb that occurs during hot, high-temperature forming.
실험예 5 : TG 분석Experimental Example 5: TG Analysis
도 5는 본 발명에 의해 제조된 NbSi 합금에 대한 TG 분석 결과이다. TG 분석 결과 기계적 합금화 시에 포함된 NbH, Si 외의 스테아린산은 녹는점 69.3℃, 끓는점 361℃이며, 기계적 합금화 밀링 시 계면활성제 역할로 분말과 밀링 챔버 및 매체와의 윤활작용을 도와주는 화합물로 화학식은 C17H35CO2H이다. 열간 성형 공정 중 500℃, 30분을 유지 할 때에, 진공도가 7.2 x 10-2 토르에서 내부 스테아르산의 휘발에 의한 진공도가 다시 상압까지 상승한다. 이후 1,500℃로 승온하여 30분간 압력이 유지되며 펀치의 압력과 열이 가해지며 분말의 벌크화가 진행되는 열간 성형이 완료된다.FIG. 5 shows the TG analysis results for the NbSi alloy manufactured by the present invention. The TG analysis results show that stearic acid, other than NbH and Si included during mechanical alloying, has a melting point of 69.3°C and a boiling point of 361°C, and is a compound that helps lubricate the powder, milling chamber, and medium as a surfactant during mechanical alloying milling, and its chemical formula is C 17 H 35 CO 2 H. When the temperature is maintained at 500°C for 30 minutes during the hot forming process, the vacuum level increases again to normal pressure due to the volatilization of internal stearic acid at 7.2 x 10 -2 torr. Thereafter, the temperature is increased to 1,500°C, the pressure is maintained for 30 minutes, and the hot forming in which the pressure and heat of the punch are applied and the bulking of the powder proceeds is completed.
Claims (10)
Si 분말 및 Si 분말 1 중량부에 대해 4 ~ 9 중량부의 NbH 분말을 혼합하여 혼합 분말을 제조하는 단계(1);
상기 혼합 분말에 기계적 합금화 밀링을 수행하는 단계(2); 및
상기 기계적 합금화 밀링 후 회수된 혼합 분말의 열성형 단계(3)를 포함하는, 니오븀-실리콘 합금의 제조 방법.
A method for manufacturing a niobium-silicon alloy (NbSi),
Step (1) of preparing a mixed powder by mixing 4 to 9 parts by weight of NbH powder per 1 part by weight of Si powder;
Step (2) of performing mechanical alloying milling on the above mixed powder; and
A method for producing a niobium-silicon alloy, comprising a thermoforming step (3) of the mixed powder recovered after the mechanical alloying milling.
In the first paragraph, a method for producing a niobium-silicon alloy, further comprising a surfactant in the step (1).
A method for producing a niobium-silicon alloy, wherein in the third paragraph, the surfactant is stearic acid.
A method for producing a niobium-silicon alloy, wherein in the third paragraph, the surfactant is included in an amount of 0.01 to 1 wt.% of the total amount of the mixed powder.
In the first paragraph, the step (2) is a method for manufacturing a niobium-silicon alloy, wherein the milling, cooling and stopping steps are repeated as one cycle.
In the sixth paragraph, the step (2) is a method for producing a niobium-silicon alloy, which is performed at 20 to 650 rpm and 1 to 60 G.
A method for manufacturing a niobium-silicon alloy, wherein in the first paragraph, the thermoforming step (3) comprises a step (3-1) of first heating to 400 to 600°C in a vacuum state to vaporize a surfactant included in the mixed powder; and a step (3-2) of heating after the step (3-1) and maintaining the temperature at 1300 to 1500°C.
In the 8th paragraph, the step (3-2) is a method for producing a niobium-silicon alloy, which is performed under pressurized conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220170627A KR102718350B1 (en) | 2022-12-08 | 2022-12-08 | Manufacturing method of NbSi superalloy and NbSi superalloy made by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220170627A KR102718350B1 (en) | 2022-12-08 | 2022-12-08 | Manufacturing method of NbSi superalloy and NbSi superalloy made by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240085596A KR20240085596A (en) | 2024-06-17 |
KR102718350B1 true KR102718350B1 (en) | 2024-10-17 |
Family
ID=91714115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220170627A Active KR102718350B1 (en) | 2022-12-08 | 2022-12-08 | Manufacturing method of NbSi superalloy and NbSi superalloy made by the method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102718350B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100456234B1 (en) | 2003-12-31 | 2004-11-09 | 주식회사 케이메트로 | Method for manufacturing magnetic abrasive particle by mechanical alloying |
JP2017186600A (en) | 2016-04-04 | 2017-10-12 | 東京印刷機材トレーディング株式会社 | Manufacturing method of alloy and alloy powder |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101167057B1 (en) | 2010-09-29 | 2012-07-27 | 현대제철 주식회사 | MANUFACTURING METHOD OF Nb ADDED ALLOY STEEL |
ITUB20150793A1 (en) | 2015-05-22 | 2016-11-22 | Nuovo Pignone Srl | COMPOSITE SILICIDE BASED MATERIAL AND PROCESS TO PRODUCE IT |
JP7002978B2 (en) * | 2018-03-28 | 2022-01-20 | 株式会社日立製作所 | Data integration system and data integration method |
KR102172394B1 (en) | 2018-11-30 | 2020-10-30 | 한국생산기술연구원 | Manufacturing method of Niobium alloy enhanced high temperature oxidation resistance and Niobium alloy manufactured thereby |
-
2022
- 2022-12-08 KR KR1020220170627A patent/KR102718350B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100456234B1 (en) | 2003-12-31 | 2004-11-09 | 주식회사 케이메트로 | Method for manufacturing magnetic abrasive particle by mechanical alloying |
JP2017186600A (en) | 2016-04-04 | 2017-10-12 | 東京印刷機材トレーディング株式会社 | Manufacturing method of alloy and alloy powder |
Non-Patent Citations (1)
Title |
---|
Microstructures and Mechanical Properties of Nb/Nb-Silicide in-situ Composite Synthesized by Reative Hot Pressing of Ball Milled Powders. Materials Transactions, JIM, Vol. 41, No.3(2000), pp.444-451. |
Also Published As
Publication number | Publication date |
---|---|
KR20240085596A (en) | 2024-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Juan et al. | Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys | |
US5366570A (en) | Titanium matrix composites | |
KR102301075B1 (en) | Co-Ni-Cr-Fe HIGH ENTROPY ALLOY AND METHOD FOR MANUFACTURING THE SAME | |
EP3124641B1 (en) | Method of manufacturing ni alloy part | |
JP2017122279A (en) | Method for producing member made of titanium-aluminum based alloy, and the member | |
JP5972548B2 (en) | Method for producing dense solidified body of Fe-based powder with excellent high-temperature strength | |
JP5596697B2 (en) | Aluminum oxide forming nickel base alloy | |
JP3774758B2 (en) | TiB particle reinforced Ti2AlNb intermetallic compound matrix composite and production method thereof | |
US20170260609A1 (en) | Precipitate strengthened nanostructured ferritic alloy and method of forming | |
CN111004957A (en) | A kind of non-equiatomic ratio high entropy alloy and preparation method thereof | |
EP0217304B1 (en) | Tri-nickel aluminide compositions and their material processing to increase strength | |
CN114929912B (en) | Nickel-based superalloy | |
JP6552137B2 (en) | Oxide particle dispersion strengthened Ni base super alloy | |
US10179943B2 (en) | Corrosion resistant article and methods of making | |
WO2016118358A1 (en) | Corrosion resistant article and methods of making | |
KR102718350B1 (en) | Manufacturing method of NbSi superalloy and NbSi superalloy made by the method | |
JPH0832934B2 (en) | Manufacturing method of intermetallic compounds | |
EP3653322A1 (en) | Sintered materials of austenite steel powder and turbine members | |
JP4582365B2 (en) | Method for producing TiAl intermetallic compound heat-resistant material having high creep rupture strength, TiAl intermetallic compound powder and method for producing the same | |
EP3060366B1 (en) | Ferritic alloys and methods for preparing the same | |
KR20250081181A (en) | Manufacturing method of Nb super alloy and Nb super alloy made by the method | |
JP4276853B2 (en) | Niobium-based composite material | |
Polozov et al. | Effect of heat treatment on microstructure and properties of Ti-22Al-25Nb alloy fabricated by selective laser melting | |
JP6232098B2 (en) | Fe-based powder compacted compact with excellent high-temperature strength | |
JP4481075B2 (en) | High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20221208 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240829 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241007 |
|
PG1601 | Publication of registration |