KR102697291B1 - 멀티 빔을 갖는 인-렌즈 웨이퍼 사전-충전 및 검사 - Google Patents
멀티 빔을 갖는 인-렌즈 웨이퍼 사전-충전 및 검사 Download PDFInfo
- Publication number
- KR102697291B1 KR102697291B1 KR1020217019271A KR20217019271A KR102697291B1 KR 102697291 B1 KR102697291 B1 KR 102697291B1 KR 1020217019271 A KR1020217019271 A KR 1020217019271A KR 20217019271 A KR20217019271 A KR 20217019271A KR 102697291 B1 KR102697291 B1 KR 102697291B1
- Authority
- KR
- South Korea
- Prior art keywords
- charged particle
- particle beam
- state
- electron beam
- beam source
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title description 41
- 239000002245 particle Substances 0.000 claims abstract description 164
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000005684 electric field Effects 0.000 claims description 11
- 238000010894 electron beam technology Methods 0.000 description 149
- 235000012431 wafers Nutrition 0.000 description 79
- 239000000523 sample Substances 0.000 description 48
- 238000003384 imaging method Methods 0.000 description 24
- 230000003287 optical effect Effects 0.000 description 23
- 230000007547 defect Effects 0.000 description 20
- 238000001514 detection method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000005686 electrostatic field Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/10—Lenses
- H01J37/12—Lenses electrostatic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
- H01J37/1472—Deflecting along given lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/261—Details
- H01J37/265—Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/004—Charge control of objects or beams
- H01J2237/0048—Charging arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/15—Means for deflecting or directing discharge
- H01J2237/1508—Combined electrostatic-electromagnetic means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/25—Tubes for localised analysis using electron or ion beams
- H01J2237/2505—Tubes for localised analysis using electron or ion beams characterised by their application
- H01J2237/2594—Measuring electric fields or potentials
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
하전 입자 빔 시스템은 제1 축 상에 제공되는 제1 하전 입자 빔 소스, 및 제2 축 상에 제공된 제2 하전 입자 빔을 포함할 수 있다. 제1 축 상에 배열된 편향기가 또한 제공될 수 있다. 편향기는 제2 하전 입자 빔 소스로부터 생성된 빔을 샘플을 향해 편향시키도록 구성될 수 있다. 하전 입자 빔 시스템을 동작시키는 방법은 편향기를 동작시키는 제1 상태와 제2 상태 사이에서 스위칭하는 단계를 포함할 수 있다. 제1 상태에서, 제1 하전 입자 빔 소스로부터 생성된 제1 하전 입자 빔은 블랭킹될 수 있고, 제2 하전 입자 빔 소스로부터 생성된 제2 하전 입자 빔은 샘플을 향해 지향될 수 있다. 제2 상태에서, 제2 하전 입자 빔이 블랭킹될 수 있고, 제1 하전 입자 빔은 샘플을 향해 지향될 수 있다.
Description
관련 출원에 대한 교차-참조
본 출원은 2018년 12월 31일에 출원된 미국 출원 62/787,128의 우선권을 주장하며, 이는 그 전문이 본원에 참조로 포함된다.
기술분야
본 명세서에 제공된 실시예는 하나 이상의 하전 입자 빔을 갖는 하전 입자 장치, 예컨대 하나 이상의 전자 빔을 이용하는 전자 현미경 장치에 적용가능한 하전 입자 광학 시스템에 관한 것이다.
집적 회로(IC)를 위한 제조 공정에서, 회로 부품은 설계에 따라 제조되고 결함이 없는 것을 보장하도록 검사될 수 있다. 패턴 결함, 검사되지 않은 입자(예를 들어, 잔류물) 등은 제조 동안 웨이퍼 또는 마스크 상에 나타날 수 있고, 이에 의해 수율을 감소시킬 수 있다. 예를 들어, 눈에 띄지 않는 입자들은 IC 칩들의 점점 더 진보된 성능 요건들을 충족시키기 위해 채택되었을 수도 있는, 더 작은 임계 피처 치수들을 갖는 패턴들에 대해 문제가 될 수도 있다.
나노미터 미만으로 해상도가 내려갈 수 있는, 주사 전자 현미경(SEM) 또는 투과 전자 마이크로스코프(TEM)와 같은 하전 입자(예를 들어, 전자) 빔 마이크로스코프는, 예를 들어, 서브-100 나노미터 스케일로 축소된 피처 크기들을 갖는 IC 컴포넌트들을 검사하기 위한 실용적인 툴로서 역할을 할 수 있다. SEM 툴에서, 상대적으로 높은 에너지를 갖는 1차 전자들의 빔은 상대적으로 낮은 랜딩 에너지에서 샘플 상에 랜딩하도록 감속되고 그 위에 프로브 스폿을 형성하도록 포커싱될 수 있다. 포커싱된 프로브 스폿에서의 샘플 상의 1차 전자의 입사로 인해, 표면으로부터 2차 전자가 생성될 수 있다. 샘플 표면 위의 프로브 스폿을 스캐닝하고 2차 전자를 수집함으로써, 검사 툴은 샘플 표면의 이미지를 획득할 수도 있다.
일부 응용들에서, 샘플 상의 물리적 및 전기적 결함들은 하전 입자 빔 검사 시스템의 전압 콘트라스트 방법을 사용하여 검출될 수 있다. 그러나, 이러한 종래의 시스템에서는 개선이 필요하다.
본 개시내용의 실시예들은, 제1 축 상에 제공되는 제1 하전 입자 빔 소스, 및 제2 축 상에 제공될 수 있는 제2 하전 입자 빔 소스를 포함할 수 있는 하전 입자 광학 시스템을 제공할 수 있다. 제2 하전 입자 빔 소스로부터 생성된 빔을 샘플을 향해 편향시키도록 구성된 제1 축 상에 배열된 컴포넌트가 또한 제공될 수 있다. 제1 하전 입자 빔 소스는 주사 전자 현미경의 1차 전자 빔빔 소스일 수 있다. 컴포넌트는 편향기, 정전 렌즈, 자기 렌즈, Wein 필터 등을 포함할 수 있다.
하전 입자 빔 시스템을 동작시키는 방법이 또한 제공될 수 있다. 방법은 컴포넌트를 동작시키는 제1 상태와 제2 상태 사이에서 스위칭하는 단계를 포함할 수 있다. 컴포넌트는 자기장 또는 전기장을 생성하도록 구성될 수 있다. 제1 상태에서, 제1 하전 입자 빔 소스로부터 생성된 제1 하전된 입자 빔은 블랭크될 수 있고, 제2 하전 입자 빔의 소스로부터 생성된, 제2 하전 입자 빔은 샘플을 향해 지향될 수 있다. 제2 상태에서, 제2 하전 입자 빔이 블랭크될 수 있고, 제1 하전 입자 빔은 샘플을 향해 지향될 수 있다. 제1 상태는 사전-충전(pre-charging) 동작에 대응할 수도 있고, 제2 상태는 이미징 동작에 대응할 수 있다.
일부 실시예들에 따르면, 사전-충전과 이미징 사이의 스위칭은 더 빠르고 더 효율적으로 이루어질 수 있다. 또한, 시스템 설계 유연성이 향상될 수 있다.
개시된 실시예들의 추가적인 목적들 및 이점들은 다음의 설명에서 부분적으로 제시될 것이고, 부분적으로는 설명으로부터 명백할 것이며, 또는 실시예들의 실시에 의해 학습될 수 있다. 개시된 실시예들의 목적들 및 이점들은 본 개시내용에 제시된 엘리먼트들 및 조합들에 의해 실현되고 달성될 수 있다. 그러나, 본 개시내용의 예시적인 실시예들은 그러한 예시적인 목적들 및 이점들을 달성하기 위해 반드시 요구되는 것은 아니며, 일부 실시예들은 언급된 목적들 및 이점들 중 임의의 것을 달성하지 않을 수 있을 것이다.
전술한 일반적인 설명 및 다음의 상세한 설명은 단지 예시적이고 설명적인 것이며 개시된 실시예들을 제한하지 않는다는 것이 이해되어야 한다.
본 개시내용의 상기 및 다른 양상들은 첨부 도면들과 함께 취해진 예시적인 실시예들의 설명으로부터 더 명백해질 것이다.
도 1은 본 개시내용의 실시예에 따른 예시적인 전자 빔 검사(EBI) 시스템을 도시하는 개략도이다.
도 2a 및 도 2b는 본 개시내용의 실시예들에 따른, 도 1의 전자 빔 검사 시스템의 일부일 수 있는 예시적인 전자 빔 툴들을 예시한다.
도 3은 본 개시내용의 실시예들에 따른, 충전 및 검사의 예시적인 시간적 특성들을 예시한다.
도 4는 본 개시내용의 실시예들에 따른, 도 1의 전자 빔 검사 시스템의 일부일 수 있는 예시적인 전자 빔 툴들을 예시한다.
도 1은 본 개시내용의 실시예에 따른 예시적인 전자 빔 검사(EBI) 시스템을 도시하는 개략도이다.
도 2a 및 도 2b는 본 개시내용의 실시예들에 따른, 도 1의 전자 빔 검사 시스템의 일부일 수 있는 예시적인 전자 빔 툴들을 예시한다.
도 3은 본 개시내용의 실시예들에 따른, 충전 및 검사의 예시적인 시간적 특성들을 예시한다.
도 4는 본 개시내용의 실시예들에 따른, 도 1의 전자 빔 검사 시스템의 일부일 수 있는 예시적인 전자 빔 툴들을 예시한다.
이하 예시적인 실시예들을 상세히 참조할 것이며, 그 예들은 첨부 도면들에 예시된다. 이하의 설명은 상이한 도면들에서 동일한 번호들이 달리 표현되지 않는 한 동일하거나 유사한 요소들을 나타내는 첨부 도면들을 참조한다. 예시적인 실시예들의 다음의 설명에서 설명되는 실시예들은 본 발명에 따른 모든 실시예들을 나타내지 않는다. 대신, 이들은 단지 첨부된 청구항들에서 인용된 바와 같은 본 발명에 관련된 양상들에 따른 시스템들, 장치들 및 방법들의 예들일 뿐이다. 도면에서 구성요소들의 상대적인 치수는 명확성을 위해 과장될 수 있다.
전자 디바이스들의 향상된 컴퓨팅 전력은, 디바이스들의 물리적 사이즈를 감소시키면서, IC 칩 상의 트랜지스터들, 커패시터들, 다이오드들 등과 같은 회로 컴포넌트들의 패킹 밀도를 상당히 증가시킴으로써 달성될 수 있다. 예를 들어, 스마트 폰에서, (엄지 손톱의 사이즈일 수도 있는) IC 칩은 20억개 초과의 트랜지스터들을 포함할 수도 있고, 각각의 트랜지스터의 사이즈는 인간 모발의 1/1000 미만이다. 놀랍게도, 반도체 IC 제조는 수백 개의 개별 단계들을 갖는 복잡한 프로세스이다. 심지어 하나의 단계에서의 에러는 최종 생성물의 기능에 극적으로 영향을 미칠 가능성을 갖는다. 심지어 하나의 "킬러 결함"이 디바이스 고장을 야기할 수 있다. 제조 공정의 목적은 공정의 전체 수율을 개선하는 것이다. 예를 들어, 75% 수율을 얻기 위한 50-단계 공정에 대해, 각각의 개별 단계는 99.4% 초과의 수율을 가져야 하고, 개별 단계 수율이 95%인 경우, 전체 공정 수율은 7%로 떨어진다.
높은 스루풋(예를 들어, 시간당 처리되는 웨이퍼의 수로서 정의됨)을 유지하면서 높은 정확도 및 높은 해상도로 결함을 검출하는 능력을 보장하는 것이 점점 더 중요하다. 높은 프로세스 수율 및 높은 웨이퍼 스루풋은, 특히 오퍼레이터 개입이 수반될 때, 결함들의 존재에 의해 영향을 받을 수도 있다. 따라서, 검사 툴(예컨대, SEM)에 의한 마이크로 및 나노 크기의 결함의 검출 및 식별은 높은 수율 및 낮은 비용을 유지하는데 중요하다.
위에서 언급된 바와 같이, 일부 응용들에서, 샘플 상의 물리적 및 전기적 결함들은 하전 입자 빔 검사 시스템의 전압 콘트라스트 방법을 사용하여 검출될 수 있다. 전압 콘트라스트 결함을 검출하기 위해, 전형적으로 사전-충전(pre-charging)이라 불리는 공정이 사용되며, 여기서 하전된 입자는 검사를 수행하기 전에 검사될 영역 상에 적용된다. 사전-충전의 이점은, 무엇보다, 1) 결함 및 주변의 비-결함 피처들이 검사(예를 들어, 전압 콘트라스트 검사) 하에서 상이하게 거동하게 하기에 충분한 웨이퍼의 피처들 상에 전압을 생성하기에 충분한 하전 입자들을 웨이퍼에 공급하는 능력; 및 2) 만족스러운 신호-대-잡음비(SNR)가 획득될 수 있고, 하전 입자 검사 시스템에서 결함들이 쉽게 검출될 수 있도록 결함들의 전압 콘트라스트 신호를 향상시키는 것을 포함할 수 있다.
종래의 시스템들에서, 사전-충전은 검사를 위해 1차 빔(primary beam)을 사용하기 전에 샘플 표면 위에 하전 입자 검사 툴의 1차 빔을 스캐닝함으로써 달성될 수 있다. 대안적으로, 별개의 하전 입자 소스가 웨이퍼 표면을 사전-충전하고 하전 조건들을 설정하기 위해 사용될 수 있다. 전용 e-빔 플러드 건(flood gun)과 같은 별개의 하전 입자 소스가 결함 검출 감도 또는 처리량을 증가시키기 위해 전압 콘트라스트 결함 신호를 향상시키는 데 사용될 수 있다. 플러딩 절차에서, 플러드 건은 미리 정의된 영역을 충전하기 위해 비교적 많은 양의 전자들을 제공하는 데 사용될 수 있다. 그 후에, e-빔 검사 시스템의 1차 전자 소스는 영역의 이미징을 달성하기 위해 사전-충전된 영역 내의 영역을 스캔하도록 적용될 수 있다.
그러나, 현재의 사전-충전 기법들은 다음의 제한들 중 일부에 직면할 수도 있다. 먼저, 일부 애플리케이션들에서 임계 충전 감쇠 시간이 존재할 수도 있다. 예를 들어, 샘플 표면 상의 축적된 전하는 비교적 빠르게 감쇠할 수 있고, 따라서 일부 응용들은 사전-충전으로부터 검사로의 빠른 스위칭을 필요로 할 수 있을 것이다. 이는 검사를 위한 시스템 및 방법에 제약을 부과할 수 있다. 부가적으로, 일부 현재의 기술들은 샘플을 지지하는 스테이지를 물리적으로 이동시키는 것을 수반할 수 있으며, 이는 시간 소모적이고 에러의 소스들을 도입한다.
둘째, 스루풋은 제한될 수 있다. 예를 들어, 3D NAND와 같은 특정 애플리케이션들은 스트립 단위로 사전-충전을 요구할 수 있다. 사전충전과 검사 스캐닝 사이의 빈번한 스위칭이 요구될 수 있다. 스위칭 이벤트들과 연관된 시간 및 비용은 프로세스 스루풋에 부정적인 영향을 미칠 수 있다.
셋째로, 전용 플러드 건이 제공될 때, 그 성능은 비용 제한들에 의해, 하전 입자 검사 시스템에서 다른 서브-시스템들에 종속적인 서브-컴포넌트인 것에 의해, 또는 샘플이 플러드 건의 빔 경로에 있도록 물리적으로 이동되어야 하는 것으로 인해 야기되는 지연에 의해 제한될 수 있다. 또한, 종래의 플러드 건들은, 예를 들어, SEM 1차 빔 소스에 비해 훨씬 더 단순화된 제어들을 가질 수도 있다. 따라서, 플러드 건은 제한된 제어성 및 낮은 정확도를 가질 수도 있다. 또한, 보다 정확한 제어성을 갖도록 전용 플러드 건에 대한 개선을 함으로써 이러한 제한을 해결하려고 시도하는 것은 비현실적으로 비쌀 수 있다. 더욱이, 패키징 제약들은 하전 입자 빔 검사 시스템에서 공간을 차지하는 전용 플러드 건에 가능한 변형의 양을 제한할 수 있다.
넷째로, 검사 시스템의 1차 빔이 사전-충전을 위해 사용될 때, 1차 빔 플러딩은 어퍼처 오염을 야기할 수 있다. 검사 시스템의 1차 빔은 다량의 전자에 어퍼처를 노출시키도록 구성될 수 있고, 어퍼처는 쉽게 오염될 수 있다.
이들 종래의 검사 툴을 요약하면, 샘플의 사전 충전은 이미징을 수행하기 전에 샘플 표면 상에 전하를 증착하는데 사용될 수 있다. 일부 응용들에서, 샘플 상의 축적된 전하는 매우 빠르게 감쇠할 수 있을 것이다. 따라서, 이미징을 계속 수행하기 위하여 샘플 상의 전하의 적절한 레벨을 유지하기 위해 사전-충전 및 이미징 프로세스들 사이에서 전후로 스위칭하는 것이 필요할 수 있다. 그러나, 사전-충전과 이미징 사이의 스위칭은 다수의 복잡함을 수반할 수 있다. 예를 들어, 위에서 논의된 바와 같이, 스위칭은 과도하게 시간 소모적일 수 있고, 스루풋에 해로울 수 있으며, 제어하기가 어려울 수 있고, 어퍼처 오염을 초래할 수 있다. 따라서, 사전-충전 및 이미징을 수행하는데 도움이 될 수 있는 개선된 시스템들 및 방법들이 요구된다.
본 개시내용은 특히 하전 입자 이미징을 위한 시스템들 및 방법들을 제공한다. 일부 실시예들에서, 1차 하전 입자 빔 소스에 추가하여 별개의 전용 2차 하전 입자 빔의 소스가 제공된다. 1차 및 2차 하전 입자 빔 소스들은 단일 대물 렌즈를 공유하도록 구성될 수 있다. 2차 하전 입자 빔 소스는, 그 궤적이 Wein 필터와 같은 정렬 편향기에 의해 조정될 수 있는 빔을 생성할 수 있도록 특정 각도 또는 각도들의 범위로 배열될 수 있다. 또한, 정렬 편향기는 제1 작동 상태 및 제2 작동 상태에서 동작하도록 구성될 수 있고, 제1 작동 상태와 제2 작동 상태 사이의 변경은 정렬 편향기에 인가되는 전압을 조정하는 것을 수반한다. 따라서, 사전-충전이 수행될 수 있는 하전 입자 빔 시스템의 제1 상태와 이미징이 수행되는 제2 상태 사이의 스위칭이 더 빠르게 이루어질 수 있다.
본 개시내용의 범위를 제한하지 않고, 실시예들의 설명들 및 도면들은 전자 빔을 사용하는 것으로 예시적으로 지칭될 수 있다. 그러나, 실시예들은 본 발명을 특정 하전 입자들로 제한하는 데 사용되지 않는다. 예를 들어, 빔 형성을 위한 시스템들 및 방법들은 광자들, x-선들, 및 이온들 등에 적용될 수 있다. 또한, 용어 "빔"은 특히 1차 전자 빔, 1차 전자 빔릿, 2차 전자 빔, 또는 2차 전자 빔릿을 지칭할 수 있다.
본 명세서에 사용된 바와 같이, 달리 구체적으로 언급되지 않는 한, 용어 "또는"은 실행 불가능한 경우를 제외하고는 모든 가능한 조합을 포괄한다. 예를 들어, 구성요소가 A 또는 B를 포함하는 것으로 언급되면, 달리 구체적으로 언급되거나 실행불가능하지 않으면, 구성요소는 A, 또는 B, 또는 A 및 B를 포함할 수 있다. 제2 예로서, 구성요소가 A, B, 또는 C를 포함하는 것으로 언급되면, 달리 구체적으로 언급되거나 실현가능하지 않은 한, 구성요소는 A, 또는 B, 또는 C, 또는 A 및 B, 또는A 및 C, 또는 B 및 C, 또는 A와 B 및C를 포함할 수 있다.
본 개시내용의 실시예들은 아래에서 논의될 다수의 다른 이점을 달성할 수 있다.
이제, 본 개시내용의 실시예들에 따른, 검출기를 포함할 수 있는 예시적인 전자 빔 검사(EBI) 시스템(10)을 예시하는 도 1을 참조한다. EBI 시스템(10)은 이미징을 위해 사용될 수 있다. 도 1에 도시된 바와 같이, EBI 시스템(10)은 메인 챔버(11), 로드/록 챔버(20), 전자 빔 툴(100), 및 장비 전단 모듈(EFEM)(30)을 포함한다. 전자 빔 툴(100)은 메인 챔버(11) 내에 위치된다. EFEM(30)은, 제1 적재 포트(30a)와, 제2 적재 포트에 의해 구성되어 있다. EFEM(30)은 추가적인 로딩 포트(들)를 포함할 수 있다. 제1 로딩 포트(30a) 및 제2 로딩 포트(30b)는 웨이퍼들(예를 들어, 반도체 웨이퍼들 또는 다른 재료(들)로 제조된 웨이퍼들) 또는 검사될 샘플들(웨이퍼들 및 샘플들은 본원에서 집합적으로 "웨이퍼들"로 지칭될 수 있음)을 포함하는 웨이퍼 전면 개방 통합 포드들(FOUPs)을 수용한다.
EFEM(30) 내의 하나 이상의 로봇 아암(미도시)은 웨이퍼를 로드/록 챔버(20)로 운반할 수 있다. 로드/록 챔버(20)는 대기압 미만의 제1 압력에 도달하기 위해 로드/록 챔버(20) 내의 가스 분자들을 제거하는 로드/록 진공 펌프 시스템(미도시)에 연결된다. 제1 압력에 도달한 후에, 하나 이상의 로봇 아암(미도시)이 웨이퍼를 로드/록 챔버(20)로부터 메인 챔버(11)로 이송할 수 있다. 주 챔버(11)는 주 챔버 진공 펌프 시스템(미도시)에 연결되며, 이 진공 펌프 시스템은 제1 압력 미만의 제2 압력에 도달하기 위해 주 챔버의 가스 분자를 제거한다. 제2 압력에 도달한 후, 웨이퍼는 전자 빔 툴(100)에 의해 검사된다. 전자 빔 툴(100)은 단일 빔 시스템 또는 다중 빔 시스템일 수 있다. 제어기(109)는 전자 빔 툴(100)에 전자적으로 연결되고, 또한 다른 컴포넌트들에 전자적으로 연결될 수 있다. 제어기(109)는 EBI 시스템(10)의 다양한 제어들을 실행하도록 구성된 컴퓨터일 수 있을 것이다. 제어기(109)가 메인 챔버(11), 로드/록 챔버(20), 및 EFEM(30)을 포함하는 구조물의 외부에 있는 것으로 도 1에 도시되어 있지만, 제어기(109)는 구조물의 일부일 수 있다는 것이 이해된다.
도 2a는 개시된 실시예들에 따른, EBI 시스템(10)에서 사용될 수 있는 예시적인 전자 빔 툴(100A)을 예시하는 개략도이다. 도 2a에 도시된 바와 같이, 전자 빔 툴(100A)은 모터화된 스테이지(150), 및 검사될 웨이퍼(103)를 유지하기 위해 모터화된 스테이지의 지지에 의해 지지되는 웨이퍼 홀더(102)를 포함한다. 전자 빔 툴(100A)은 복합 대물 렌즈(104), 전자 검출기(106), 대물 어퍼처(108), 콘덴서 렌즈(110), 빔 제한 어퍼처(112), 건 어퍼처(gun aperture)(114), 애노드(116), 및 캐소드(118)를 더 포함하고, 이들 중 하나 이상은 전자 빔 툴을 위한 광학 축(170)과 정렬될 수 있다.
복합 대물 렌즈(104)는, 일부 실시예들에서, 폴 피스(104a), 제어 전극(104b), 편향기 또는 편향기들의 세트(104c), 및 여기 코일(104d)을 포함하는 수정된 스윙 대물 지연 침지 렌즈(SORIL)를 포함할 수 있다. 전자 빔 툴(100A)은 웨이퍼 상의 재료들을 특성화하기 위해 에너지 분산 X-선 분광계(EDS) 검출기(미도시)를 추가로 포함할 수 있다.
1차 전자 빔(120)은 애노드(116)와 캐소드(118) 사이에 전압을 인가함에 의해 캐소드(118)로부터 방출될 수 있다. 1차 전자 빔(120)은 건 어퍼처(114) 및 빔 제한 어퍼처(112)를 통과하고, 이들 모두는 빔 제한 어퍼처(112) 아래에 존재하는 콘덴서 렌즈(110)에 진입하는 전자 빔의 전류를 결정할 수 있다. 콘덴서 렌즈(110)는 복합 대물 렌즈(104)에 진입하기 전에 전자 빔의 전류를 설정하기 위해 빔이 대물 어퍼처(108)에 들어가기 전에 1차 전자 빔(130)을 포커싱할 수 있다.
복합 대물 렌즈(104)는 검사를 위해 웨이퍼(103) 상에 1차 전자 빔(120)을 포커싱할 수 있고, 웨이퍼( 103)의 표면 상에 프로브 스폿(122)을 형성할 수 있을 것이다. 편향기(104c)는 1차 전자 빔(120)을 웨이퍼(103) 위의 프로브 스폿(122)을 스캔하도록 편향시킨다. 예를 들어, 스캐닝 프로세스에서, 편향기(104c)는, 웨이퍼(103)의 상이한 부분들에 대한 이미지 재구성을 위한 데이터를 제공하기 위해, 상이한 시점들에서 1차 전자 빔(120)을 웨이퍼(103)의 상부 표면의 상이한 위치들 상으로 순차적으로 편향시키도록 제어될 수도 있다. 더욱이, 편향기(104c)는 또한 특정 위치에서, 상이한 타이포인트들(tie points)에서 웨이퍼(103)의 상이한 측면들 상으로 1차 전자 빔(120)을 편향시키도록 제어될 수 있어서, 그 위치에서 웨이퍼 구조의 스테레오 이미지 재구성을 위한 데이터를 제공한다. 또한, 일부 실시예들에서, 애노드(116) 및 캐소드(118)는 다수의 1차 전자 빔들(120)을 생성하도록 구성될 수 있고, 전자 빔 툴(100A)은 동시에 웨이퍼(103)의 상이한 부분들 또는 측면들에 다수의 1 차 전자 빔들에 투영하기 위한 복수의 편향기들(104c)을 포함할 수 있다.
전류가 여기 코일(104d) 상에 인가될 때, 축 대칭(즉, 광축(170)을 중심으로 대칭) 자기장이 웨이퍼 표면의 영역에서 생성될 수 있다. 1차 전자 빔(120)에 의해 스캐닝되는 웨이퍼(103)의 일부는 자기장에 침지될 수 있다. 상이한 전압이 웨이퍼(103), 폴 피스(104a) 및 제어 전극(104b) 상에 인가되어, 웨이퍼 표면 근처에 축 대칭 지연 전기장을 생성할 수 있다. 전기장은 웨이퍼(103)와 충돌하기 전에 웨이퍼의 표면 근처에 충돌하는 1차 전자 빔(120)의 에너지를 감소시킬 수 있다. 폴 피스(104a)로부터 전기적으로 절연된 제어 전극(104b)은 웨이퍼의 마이크로-아킹(micro-arcing)을 방지하고 축방향-대칭인 자기장을 함께 갖는 웨이퍼 표면에서 적절한 빔 포커스를 보장하기 위해 웨이퍼 상의 축방향-대칭 전기장을 제어할 수 있다.
2차 전자 빔(130)은 1차 전자 빔(120)을 수용할 때 웨이퍼(103)의 부분으로부터 방출될 수 있을 것이다. 2차 전자 빔(130)은 전자 검출기(106)의 센서 표면들에 의해 수신될 수 있다. 전자 검출기(106)는 2차 전자 빔(130)의 세기를 나타내는 신호(예를 들어, 전압, 전류 등)를 생성할 수 있고, 이 신호를 전자 검출기와 통신할 수 있는 제어기(109)에 제공할 수 있다. 2차 전자 빔(130)의 강도는 웨이퍼(103)의 외부 또는 내부 구조에 따라 변할 수 있다. 더욱이, 위에서 논의된 바와 같이, 1차 전자 빔(120)은 상이한 세기들의 2차 전자 빔들(130)을 생성하기 위해, 웨이퍼(103)의 상부 표면의 상이한 위치들, 또는 특정 위치에서 웨이퍼(103)의 상이한 측면들 상에 투영될 수 있을 것이다. 2차 전자 빔(130)의 세기를 웨이퍼(103)의 위치들과 맵핑함으로써, 제어기(109)는 웨이퍼(103)의 내부 또는 외부 구조들을 반영하는 이미지를 재구성할 수 있을 것이다.
또한, 도 2a는 단일 1차 전자 빔을 사용할 수 있는 전자 빔 툴(100A)의 예를 도시하지만, EBI 시스템(10)은 또한 다수의 1차 전자 빔들을 사용하는 멀티-빔 검사 툴일 수 있는 전자 빔 툴(10)을 포함할 수 있다. 본 출원은 전자 빔 툴(100)에 사용되는 1차 전자 빔의 수를 제한하지 않는다.
예를 들어, 도 2b에 도시된 바와 같이, 전자 소스(202), 건 어퍼처(204), 집광 렌즈(206), 전자 소스로부터 방출된 1차 전자 빔(210), 소스 변환 유닛(212), 1차 전자 빔(210)의 복수의 빔릿(214, 216, 218), 1 차 투영 광학 시스템(220), 웨이퍼 스테이지(도 2b에는 미도시), 다수의 2차 전자 빔들(236, 238, 240), 2차 광학 시스템(242), 및 전자 검출 디바이스(244)를 포함하는 전자 빔 툴(100B)(또한 본 명세서에서 장치(100A)로 지칭됨)이 제공될 수 있다. 제어기, 이미지 프로세싱 시스템 등이 전자 검출 디바이스(244)에 커플링될 수 있다. 1차 투영 광학 시스템(220)은 빔 분리기(222), 편향 스캐닝 유닛(226), 및 대물 렌즈(228)를 포함할 수 있을 것이다. 전자 검출 디바이스(244)는 검출 서브-영역들(246, 248, 250)을 포함할 수 있다.
전자 소스(202), 건 어퍼처(204), 콘덴서 렌즈(206), 소스 변환 유닛(212), 빔 분리기(222), 편향 스캐닝 유닛(226), 및 대물 렌즈(228)는 장치(100A)의 1차 광학 축(260)과 정렬될 수도 있다. 2차 광학 시스템(242) 및 전자 검출 디바이스(244)는 장치(100A)의 2차 광축(252)과 정렬될 수 있다.
전자 소스(202)는 캐소드, 추출기 또는 애노드를 포함할 수 있고, 여기서 1차 전자들은 캐소드로부터 방출되고 크로스오버(가상 또는 실제)(208)를 갖는 1차 전자 빔(210)을 형성하도록 추출 또는 가속될 수 있다. 1차 전자 빔(210)은 크로스오버(208)로부터 방출되는 것으로서 가시화될 수 있을 것이다. 건 어퍼처(204)는 1차 전자 빔(210)의 주변 전자를 차단하여 프로브 스폿(270, 272, 274)의 크기를 감소시킬 수 있다.
소스 변환 유닛(212)은 이미지 형성 요소들의 어레이(도 2b에 미도시) 및 빔 제한 어퍼처들의 어레이(도2b에 미도시)를 포함할 수 있다. 소스 변환 유닛(212)의 예는 미국 특허 9,691,586; 미국 공개특허 2017/0025243; 및 국제 출원 PCT/EP2017/084429에서 발견될 수 있으며, 이들 모두는 그 전문이 참조로 포함된다. 이미지 형성 요소들의 어레이는 마이크로-편향기 또는 마이크로-렌즈의 어레이를 포함할 수 있다. 이미지 형성 요소들의 어레이는 1차 전자 빔(210)의 복수의 빔릿(214, 216, 218)을 갖는 크로스오버(208)의 복수의 평행한 이미지들(가상 또는 실제)을 형성할 수 있다. 빔 제한 어퍼처들의 어레이는 복수의 빔릿(214, 216, 218)을 제한할 수 있다.
콘덴서 렌즈(206)는 1차 전자 빔(210)을 포커싱할 수 있다. 소스 변환 유닛(212)의 다운스트림의 빔렛들(214, 216, 218)의 전류들은 집광 렌즈(206)의 포커싱 파워를 조정함으로써 또는 빔-제한 어퍼처들의 어레이 내의 대응하는 빔-제한 어퍼처들의 방사상 크기들을 변화시킴으로써 변화될 수 있다. 콘덴서 렌즈(206)는 그의 제1 주 평면의 위치가 이동가능하도록 구성될 수 있는 이동가능 콘덴서 렌즈일 수 있다. 이동가능한 콘덴서 렌즈는 자성이도록 구성될 수 있고, 이는 회전 각도들로 빔릿-제한 어퍼처들 상에 랜딩하는 축외 빔릿들(off-axis beamlets)(216, 218)을 초래할 수 있다. 회전각은, 집광력 및 가동 콘덴서 렌즈의 제1 주 평면의 위치에 따라 변화한다. 일부 실시예에서, 이동가능한 콘덴서 렌즈는 이동가능한 제1 주 평면을 갖는 회전 방지 렌즈를 포함하는 이동가능한 회전 방지 콘덴서 렌즈일 수 있다. 이동가능한 콘덴서 렌즈는 미국 공개특허 2017/0025241에서 추가로 설명되며, 그 전문이 참조로 포함된다.
대물 렌즈(228)는 검사를 위해 빔릿(214, 216, 218)을 웨이퍼(230) 상에 포커싱할 수 있고, 웨이퍼(130)의 표면 상에 복수의 프로브 스폿(270, 272, 274)을 형성할 수 있다.
빔 분리기(222)는 정전 쌍극자장(dipole field) 및 자기 쌍극자장을 생성하는 Wien 필터 타입의 빔 분리기일 수 있다. 일부 실시예들에서, 이들이 인가되면, 정전 쌍극자장에 의해 빔릿들(214, 216, 218)의 전자 상에 가해지는 힘은 자기 쌍극자장의 전자에 가해지는 힘과 크기가 동일하고 방향이 반대일 수 있다. 따라서, 빔릿들(214, 216, 218)은 제로 편향 각도로 빔 분리기(222)를 통해 직선으로 통과할 수 있다. 그러나, 빔 분리기(222)에 의해 생성된 빔릿들(214, 216 및 218)의 총 분산은 또한 0이 아닐 수 있다. 빔 분리기(222)는 빔릿들(214, 216, 218)로부터 2차 전자 빔들(236, 238, 240)을 분리할 수 있고, 2차 광학 시스템(242)을 향해 2차 전자 빔들(136, 238, 240)을 지향시킬 수 있을 것이다.
편향 스캐닝 유닛(226)은 웨이퍼(230)의 표면 영역 위에서 프로브 스폿들(270, 272, 274)을 스캐닝하기 위해 빔릿들(214, 216, 218)을 편향시킬 수 있다. 2차 전자 빔(236, 238, 240)은 2차 전자 및 후방 산란 전자를 포함하는 에너지의 분포를 갖는 전자를 포함할 수 있다. 2차 광학 시스템(242)은 2차 전자 빔들(236, 238, 240)을 전자 검출 디바이스(244)의 검출 서브-영역들(246, 248, 250) 상에 포커싱할 수 있다. 검출 서브-영역들(246, 248, 250)은 대응하는 2차 전자 빔들(236, 238, 240)을 검출하고, 웨이퍼(230)의 표면 영역의 이미지를 재구성하기 위해 사용되는 대응하는 신호들을 생성하도록 구성될 수 있다.
이제 충전 및 검사의 예시적인 시간적 특성을 도시하는 도 3을 참조한다. 도 3의 그래프의 횡좌표는 시간을 나타낸다. 도 3의 그래프의 종좌표는 웨이퍼 표면의 전하량을 임의의 단위로 나타내고 있다. 일부 실시예들에서, 웨이퍼 사전-컨디셔닝은, 예를 들어, 검사, 결함 검토, 또는 다른 타입들의 이미징을 수행하기 전에 수행될 수 있다. 사전-컨디셔닝은 웨이퍼 표면을 사전-충전하는 것을 포함할 수 있다. 사전-충전은, 예를 들어, 미국 특허 8,748,815 및 8,759,762에서 논의된 바와 같이, 전압 콘트라스트 타입 결함 신호를 향상시키는데 유용할 수 있으며, 이들 둘 모두는 그 전문이 본원에 참조로 포함된다.
도 3에 도시된 바와 같이, 충전 기간(310)에서, 웨이퍼 표면이 전하를 축적할 수 있다. 충전 기간(310)는 과도 기간(311) 및 정상 상태 기간(312)를 포함할 수도 있다. 과도 기간(311)에서, 전하는 비교적 빠르게 축적될 수 있고; 정상 상태 기간(212)에서, 충전의 레이트는 감소할 수 있고 충전은 최대치에 접근할 수 있다. 충전 주기(310)는 시간 상수에 의해 설명될 수도 있다. 충전 기간(310)는 사전-충전 빔을 웨이퍼에 인가하는 것에 대응할 수 있다.
검사 기간(320)에서, 전하가 소산될 수 있다. 검사 기간(320)은 사전-충전 빔이 더 이상 웨이퍼에 인가되지 않는 시간에 대응할 수도 있다. 일부 실시예들에서, 전하가 웨이퍼 표면으로부터 신속하게 소산되어, 검사를 수행할 시간을 거의 남기지 않을 수 있다. 예를 들어, 사전-충전 빔을 샘플에 인가한 후에, 장비가 사전-충전 빔으로부터 검사 빔으로 스위칭되는 동안 시간이 경과할 수 있고, 검사가 완료될 수 있기 전에 샘플의 표면 전하가 0 또는 거의 0으로 감소하는 시간 Tb에 도달될 수 있으며, 그 결과 전압 콘트라스트 검사 동안과 같은 특정 결함이 검출되지 않는다. 따라서, 사전-충전이 다시 수행될 필요가 있을 수 있다.
부가적으로, 일부 애플리케이션들에서, 검출 성능은, 스위칭 시간으로 또한 지칭되는, 사전-충전과 이미징 사이에서 스위칭하는데 걸리는 시간에 의해 제한될 수도 있다. 검사 빔이 샘플과 결합되기 전에 전하가 소산되는 경우, 스위칭 시간으로 인해, 어떠한 양의 사전-충전도 특정 결함이 검출될 수 있게 하는데 효과적이지 않을 수 있다.
일부 응용들은 검사를 수행하기 전에 웨이퍼 상에 미리 결정된 양의 전하가 남아 있을 것을 요구할 수 있다. 일부 실시예들에서, 충전 감쇠는 이미징을 위한 중요한 파라미터일 수 있다. 특히, 일부 애플리케이션들은 매우 높은 충전 감쇠율을 갖는 샘플들을 사용할 수 있고, 따라서, 사전-충전 모드와 이미징 모드 사이에서 매우 빠르거나 매우 빈번한 스위칭을 요구할 수도 있다.
이제 도 1의 EBI 시스템의 일부일 수도 있는 예시적인 전자 빔 툴(400)을 도시하는 도 4를 참조한다. 전자 빔 툴(400)(또한 본 명세서에서 "장치(400)"로 지칭됨)은 장치(100A 또는 100B)와 유사할 수 있다. 전자 빔 툴(400)은 결함 검사와 같은 이미징을 위해 사용될 수 있는 1차 전자 빔 소스(420)을 포함한다. 1차 전자 빔 소스(410)는 특히 캐소드, 애노드, 및 어퍼처를 포함할 수 있다. 1차 전자 빔 소스(410)는 또한 렌즈들을 포함할 수 있다. 1차 전자 빔 소스(410)는 웨이퍼(403) 상에 투영될 1차 광학 축(470)을 따라 전자들을 방출하도록 구성될 수 있다.
장치(400)에는 또한 2차 전자 빔 소스(420)가 제공될 수 있다. 2차 전자 빔 소스(420)는 1차 전자 빔소스(410)으로부터 분리되고 물리적으로 이격된 별개의 구성요소일 수 있다. 2차 전자 빔 소스(420)는 1차 전자 빔 소스와 유사한 컴포넌트들을 포함할 수 있고, 2차 광학 축을 따라 전자들을 방출하도록 구성될 수 있다. 2차 광학 축은 1차 광학 축(470)과 각도(β)를 형성할 수 있을 것이다. 2차 전자 빔 소스(420)는 장치(400)의 1차 컬럼에 대해 특정 각도가 형성되도록 장착될 수 있다. 일부 실시예에서, 각도(β)는 30도 이하일 수 있다. 각도(β)는 패키징 제약들에 기초하여 결정될 수 있다. 일부 실시예들에서, 각도 β는 10-20도 이내일 수 있다. 2차 전자 빔 소스(420)는 웨이퍼(403)의 사전충전과 같은 사전=컨디셔닝을 위해 사용될 수 있다.
2차 전자 빔 소스(420)는 건 어퍼처(421), 렌즈(422), 및 블랭커(423)를 포함할 수 있다. 렌즈(422)는 정전 렌즈일 수 있다. 렌즈(422)는 2차 전자 빔 소스(420)에 의해 생성된 전자 빔의 스폿 크기를 제어하는 데 사용될 수 있다. 일부 실시예들에서, 렌즈(422)는 자기 렌즈일 수 있다. 블랭커(423)는 2차 전자 빔 소스(420)로부터 생성된 빔을 온 상태로부터 오프 상태로 스위칭하도록 구성될 수도 있다.
일부 실시예들에서, 하전 입자 빔 시스템은 제1 시간에 샘플을 이미징하기 위해 제1 하전 입자들을 제공하도록 구성된 제1 하전 입자 빔 소스를 포함할 수 있다. 예를 들어, 장치(400)는 웨이퍼(403)를 이미징하는데 사용될 수 있는 1차 전자들을 제공하도록 구성될 수 있는, 1차 전자 빔 소스(410)를 포함할 수 있다. 하전 입자 빔 시스템은 또한 제2 시간에 샘플을 사전 컨디셔닝하기 위해 제2 하전 입자들을 제공하도록 구성된 제2 하전 입자 빔 소스를 포함할 수 있다. 예를 들어, 장치(400)는 웨이퍼(403)에 플러딩 전자들을 제공하도록 구성될 수 있는 2차 전자 빔 소스(420)을 포함할 수 있다. 하전 입자 빔 시스템은 제1 시간에 샘플에 충돌하도록 제1 하전 입자들에 영향을 주고 제2 시간에 샘플에 충돌하는 것에 영향을 주도록 정전기 또는 자기장을 생성하도록 구성된 컴포넌트를 더 포함할 수 있다.
장치(400)는 정렬 편향기(430), 스캐닝 편향기(432), 및 대물 렌즈(435)를 포함하는 하부 칼럼을 포함할 수 있고, 이들 중 전부 또는 일부는 1차 광학 축(470)과 정렬될 수 있을 것이다. 정렬 편향기(430)는 정전기장 또는 자기장을 생성하도록 구성된 구성요소를 포함할 수 있다. 컴포넌트는 정전기장 및 자기장 둘 다를 생성할 수 있고, 하전 입자들에 대한 속도 필터로서 사용될 수 있다. 정렬 편향기(430)는 자기 렌즈를 포함할 수 있다. 정렬 편향기(430)는 정전 렌즈를 포함할 수 있다. 일부 실시예에서, 정렬 편향기(430)는 Wien 필터를 포함할 수 있다. 정렬 편향기(430)는 서로 상이한 속도를 갖는 하전 입자들을 분리하기 위한 빔 분리기로서 사용될 수 있다. 정렬 편향기(430)는 그를 통해 이동하는 하전 입자들에 영향을 미칠 수 있을 것이다. 일부 실시예에서, 정렬 편향기(430)의 영향은 전자가 정렬 편향기를 통해 직선으로 이동할 수 있게 하는 것을 포함할 수 있다. 예를 들어, 정렬 편향기(430)는 1차 전자 빔 소스(410)로부터 1차 광축(470)을 따라 웨이퍼(403)를 향해 이동하는 전자들이 정렬 편향기를 통해 직선으로 이동하는 것이 허용되는 한편, 웨이퍼(403)로부터 다시 이동하는 2차 또는 후방 산란 전자들이 편향되도록 구성될 수 있다. 도 2b의 예에서, 빔 분리기(222)는 전자 검출 디바이스(244)를 향해 각도 α만큼 2차 빔을 전환함으로써 2차 빔에 영향을 주도록 구성될 수 있다.
도 4로 돌아가서, 장치(400)는 대물 렌즈(435)를 또한 포함할 수 있다. 2차 전자 빔 소스(420)는 인-렌즈(in-lens) 시스템으로서 구성될 수 있다. 예를 들어, 1차 전자 빔 소스(410) 및 2차 전자 빔 소스(420) 둘 모두에 대해 제공되는 단지 하나의 대물 렌즈가 존재할 수 있다. 제 2 전자 빔 소스(420)는 1차 전자 빔 소스(410)를 위해 제공될 수 있는 컬럼 어퍼처(411)를 우회할 수 있을 것이다. 따라서, 2차 전자 빔 소스(420)의 이미징 조건의 제어는 1차 전자 빔 소스(410)와는 별도로 수행될 수 있다. 상대적으로 민감할 수 있는 1차 전자 빔 소스(410)에 대해 사용되는 이미징 조건들은 그대로 남겨질 수 있는 반면, 2차 전자 빔 소스들(420)에 대한 조건들은 1차 전자 빔 소스(410)에 영향을 주지 않고 조작될 수 있다. 예를 들어, 빔 전류 및 포커스의 레벨들은 독립적으로 조정될 수 있다.
2차 전자 빔 소스(420)는 1차 전자 빔 소스(410)로부터 차폐될 수 있다. 예를 들어, 전자기 차폐는 2차 전자 빔 소스(420)에 포함된 일부 또는 모든 컴포넌트들 주위에 제공될 수 있다. 일부 실시예들에서, 2차 전자 빔 소스(420)의 렌즈(422)는 정전 렌즈로서 제공될 수 있다. 정전 렌즈는, 예를 들어, 자기 렌즈에 비해 1차 전자 빔 소스(410)와의 간섭을 감소시킬 수 있다. 일부 실시예들에서, 전자기 차폐 튜브는 2차 전자 빔 소스(420)의 일부 또는 모든 컴포넌트들 주위에, 또는 전자기 간섭으로부터 빔을 차폐하기 위해 빔 주위에 제공될 수 있다.
2차 전자 빔 소스(420)의 건 어퍼처(421)는 조정가능한 어퍼처를 포함할 수 있다. 조정가능한 어퍼처는 웨이퍼(403)를 플러딩하기 위한 상이한 빔 전류를 선택하기 위해 사용될 수 있는 복수의 어퍼처 홀들을 포함하는 이동가능 어퍼처일 수 있다. 블랭커(423)는 특정 시간에 2차 전자 빔 소스(420)의 빔을 블랭크하는데 사용될 수 있는데, 예를 들어 이미지 스캐닝이 1차 전자 빔 소스(410)에 의해 수행되는 시간 동안 웨이퍼(403)로부터 2차 전자 빔 소스(320)의 빔의 방향을 바꾼다.
동작시, 장치(400)는 예를 들어 다음과 같이 2개의 상태로 제어될 수 있다. 제1 상태는 사전-충전을 포함할 수도 있고 제2 상태는 이미징을 포함할 수 있다. 제1 상태에서, 1차 전자 빔 소스(410)는 1차 광축(470)을 따라 1차 전자 빔을 생성하는 데 사용될 수 있다. 1차 전자 빔은 블랭크될 수 있다. 예를 들어, 1차 전자 빔이 1차 광축(470)에 평행한 궤적으로부터 전환되도록 제어되는 편향기가 제공될 수 있다. 따라서, 1차 전자 빔은 웨이퍼(403)와 같은 샘플로부터 멀어지게 전환될 수 있다. 1차 전자 빔 소스(410)로부터의 빔이 블랭크되는 동안, 2차 전자 빔 소스(420)은 전자 빔을 생성할 수 있다. 2차 전자 빔 소스(420)에 의해 생성된 빔은 웨이퍼(403)의 사전-충전을 위해 사용될 수 있다. 사전-충전 동안, 정렬 편향기(430)는 제1 동작 상태로 설정될 수 있다. 정렬 편향기(430)는 제1 동작 상태에서 2차 전자 빔 소스(420)에 의해 생성된 빔이 웨이퍼(403)로 향하도록 구성될 수 있다. 예를 들어, 정렬 편향기(430)는 전압 및 전류의 제1 미리 결정된 세팅으로 설정될 수 있을 것이다.
제2 상태에서, 사전-충전 후에, 2차 전자 빔 소스(420)에 의해 생성된 빔은 블랭크될 수 있고, 1차 전자 빔 소스(410)에 의해 생성되는 1차 빔은 웨이퍼(403)의 표면 상의 관심 지점(POI)을 스캔하기 시작할 수 있다. 제2 상태 동안, 정렬 편향기(430)는 제2 동작 상태로 설정될 수 있다. 정렬 편향기(430)는 제2 동작 상태에서 1차 전자 빔 소스(410)에 의해 생성된 빔이 웨이퍼(403)로 지향되도록 구성될 수 있다. 예를 들어, 정렬 편향기(430)는 전압 및 전류의 제2 미리 결정된 세팅으로 설정될 수 있다.
1차 전자 빔 소스(410)에서의 컴포넌트들의 설정들은 제1 상태 및 제2 상태 둘 다에서 유지될 수 있을 것이다. 예를 들어, 콘덴서 렌즈는 제1 상태 및 제2 상태에서 동일한 작동 조건으로 작동될 수 있다. 또한, 다른 컴포넌트들도 그들의 설정을 유지할 수 있다. 예를 들어, 대물 렌즈(435)는 제1 상태 및 제2 상태에서 동일한 동작 조건들로 동작될 수 있을 것이다. 대물 렌즈(435)는 제2 상태에서 웨이퍼(403) 상에 프로브 스폿을 형성하기 위해 1차 전자 빔 소스(410)로부터 생성된 빔을 포커싱하도록 구성될 수도 있다.
제1 상태에서, 위에서 논의된 바와 같이, 전자 빔 툴은 도 3을 참조하여 위에서 논의된 것과 같이 충전 기간(310)에서 동작하도록 구성될 수 있다. 한편, 제2 상태에서, 전자 빔 툴은 도 3을 참조하여 위에서 논의된 바와 같이 검사 기간(320)에서 동작하도록 구성될 수 있다.
일부 실시예들에서, EBI 시스템(10)의 컴포넌트들은 제1 상태와 제2 상태 사이에서 스위칭하도록 구성될 수 있다. 예를 들어, 제어기(109)는 동작 상태들을 스위칭하도록 구성될 수 있다. 제어기(109)는 하전 입자 빔 시스템의 다양한 컴포넌트들, 이를테면 전자 빔 툴(100A), 전자 빔 툴(100B), 또는 전자 빔 툴(400)를 포함하는 시스템들에 명령들을 전송할 수 있다. 빔 분리기, 정렬 편향기, 또는 Wein 필터는 제1 동작 상태와 제2 동작 상태 사이에서 스위칭하도록 구성될 수 있다. 예를 들어, 정렬 편향기(430)는 동작 전압을 제1 전압으로부터 제2 전압으로 변경하도록 구성될 수 있다. 제1 전압은 제1 동작 상태에서 사용될 수 있고, 제2 동작 상태에서 이용될 수 있는 제2 전압보다 클 수 있다. 제1 상태와 제2 상태 사이의 스위칭은, 정렬 편향기(430)의 동작 전압을 변경하고 1차 전자 빔 소스(410) 및 2차 전자 빔 소스들(420)의 블랭커들의 상태를 변경함으로써 달성될 수 있고, 이에 의해 1차 전자 빔 소스(410)와 2차 전자 빔 소스(420)에 의해 생성된 빔들 중 어느 것이 웨이퍼(403)로 지향되는지를 토글링한다.
제1 상태와 제2 상태 사이의 스위칭은 정렬 편향기(430)의 전압만을 변경하는 것으로 이루어질 수 있다. 정렬 편향기(430)에 인가되는 전류 레벨은 제1 상태와 제2 상태 사이에서 일정하게 유지될 수 있다. 정렬 편향기(430)가 정전기 및 자기장 둘 다를 생성하도록 구성될 수 있지만, 제1 상태와 제2 상태 사이의 스위칭은 정렬 편향기에 인가되는 전압을 변경하는 것만을 필요로 할 수 있고, 따라서 정렬 편향기에 의해 생성되는 필드들의 정전기 부분만을 변경한다. 한편, 정렬 편향기(430)에 의해 생성된 자기장은 제1 상태와 제2 상태 사이에서 일정하게 유지될 수 있다.. 일부 실시예들에서, 자기장을 변경하는 것은 히스테리시스 효과들을 수반할 수 있고, 필드들이 안정화되기 전에 비교적 긴 시간을 요구할 수 있다. 그러나, 본 개시내용의 일부 실시예들에서, 제1 상태와 제2 상태 사이의 스위칭은 정전기장만을 변화시킴으로써 달성될 수 있다. 정전기장을 변화시키는 것은 히스테리시스 없이 신속하게 수행될 수 있다. 따라서, 정렬 편향기(430)를 통과하는 빔들에 대한 외부 영향들이 최소화될 수 있다.
예를 들어, 일부 실시예들에서, 200 V 내지 800 V의 값들 사이에서 정렬 편향기(430)에 인가되는 전압을 변경하는 것은 0.1 내지 0.2 ms의 변경 시간이 걸릴 수 있다. 비교적, 자기 렌즈에 의해 생성된 자기장을 조정하는 데 수초가 걸릴 수 있다.
일부 실시예에서, 각도 β는 다양한 기준을 고려하여 최소화되도록 설정될 수 있다. 예를 들어, 낮은 각도(β)는 정렬 편향기(430)의 스위칭 동작 상태에서 요구되는 전압차가 적다. 동작 상태들 사이의 전압의 더 낮은 차이는 스위칭에 요구되는 더 낮은 속도에 대응할 수 있다. 또한, 더 높은 각도는 더 높은 전압을 요구할 수 있으며, 이는 하전 입자 빔 시스템의 컴포넌트들에 대한 증가된 제조 제약들을 야기할 수 있다. 예를 들어, 더 높은 전압을 위해 설계된 컴포넌트들을 사용하는 것은 제조 및 설계 복잡도들을 수반할 수 있다. 일부 실시예에서, 각도(β)는 정렬 편향기(430)의 정전기 성분만이 웨이퍼(403)에 도달하기 위해 2차 전자 빔 소스(420)로부터 생성된 빔을 전환시키도록 조정될 필요가 있도록 설정될 수 있다.
또한, 제1 상태 동안, 사전-충전이 수행되고 있는 경우, 신호 검출은 무시되지 않을 수 있다. 2차 전자 빔 소스(420)로부터 생성된 빔은 사전-충전을 수행하기 위해 웨이퍼(403)에 인가될 수 있지만, 사전-충전 동안, 신호들을 측정할 필요가 없을 수 있다. 따라서, 2차 전자 빔 소스(420)로부터 생성된 빔과 웨이퍼(403)의 표면과의 상호작용으로부터 많은 수의 전자가 생성될 수 있더라도, 2차 또는 후방 산란 전자의 수집은 문제가 되지 않을 수 있다. 따라서, 웨이퍼(403)로부터 이동하는 전자들은 장치(400)의 다른 영역들을 향해 지향될 수 있다. 제1 상태의 웨이퍼(403)로부터 검출기(444)로 2차 전자를 지향시킬 필요가 없을 수 있다. 반대로, 많은 수의 전자들이 웨이퍼(403) 상에 입사될 수 있기 때문에, 검출기(444)의 오염을 방지하기 위해 2차 또는 후방 산란 전자들이 전환되고 검출기(444)에 도달하는 것이 방지되는 것이 유익할 수 있다.
정렬 편향기(430)가 웨이퍼(403)에 도달하기 위해 2차 전자 빔 소스(420)로부터 생성된 빔을 전환하도록 구성될 때, 정렬 편향기(430)로부터 생성된 정전기 및 자기장은 불평형일 수 있다. 따라서, 웨이퍼(403)의 표면과 1차 전자 빔의 상호작용으로부터 생성된 전자는 정렬 편향기(430)를 다시 통과할 때 검출기(444)로부터 멀어지는 방향으로 이동하게 될 수 있다. 따라서, 정렬 편향기(430)가 웨이퍼(403)에 도달하기 위해 2차 전자 빔 소스(420)로부터 생성된 빔을 전환하도록 구성될 때, 다른 전자들이 검출기(444)에 도달하는 것이 방해되는 것이 보장될 수도 있다.
예를 들어, 정렬 편향기(430)의 기본 설정은, 1차 전자 빔 소스(410)로부터 생성된 전자 빔이 그의 궤적이 실질적으로 변화되지 않고 정렬 편향기를 통해 곧바로 이동할 수 있도록 정전기 및 자기장이 균형잡히는 것일 수 있다. 웨이퍼(403)의 표면과 상호작용하면, 2차 또는 후방 산란 전자와 같은 2차 하전 입자는 반대 방향으로 1차 전자 빔 소스(410)를 향해 다시 지향될 수 있다. 일부 실시예들에서, 2차 하전 입자들은 도 4에 도시된 바와 같이, 검출기(444)와 같은 온-축(on-axis) 검출기 쪽으로 지향될 수도 있다. 다른 실시예들에서, 2차 하전 입자들은 도 2b에 도시된 바와 같이, 전자 검출 디바이스(244)와 같은 축외(off-axis) 검출기를 향해 지향될 수 있다. 정렬 편향기는, 제2 상태에서, 2차 하전 입자들이 검출기를 향해 지향되는 한편, 제1 상태에서, 2차 하전 입자들은 검출기 이외의 위치들로 지향되도록 구성될 수 있다.
일부 실시예들에서, 1차 전자 빔 소스(410)를 사용하여 사전-충전을 수행할 필요가 회피될 수 있다. 따라서, 칼럼 어퍼처(411)의 오염이 감소될 수 있다. 예를 들어, 일부 실시예들에서, 1차 전자 빔 소스(410)가 비교적 넓은 빔을 생성하도록 구성될 때, 빔의 일부 부분들은 컬럼 어퍼처(411)의 상부 표면 상에 입사될 수 있을 것이다. 1차 전자 빔은 전류가 높을 수 있고, 따라서, 특히 1차 전자 빔이 플러딩을 수행하도록 구성될 때, 컬럼 어퍼처(411) 상에 높은 열 및 높은 오염을 야기할 수 있다.
2차 전자 빔 소스(420)는 1차 전자 빔 소스(410)와 비교하여 상이한 설계 요건들을 가질 수 있다. 예를 들어, 2차 전자 빔 소스(420)가 사전-충전을 위해서만 사용될 수 있고, 상세한 검사를 위해서가 아니므로, 1차 전자 빔 소스의 설계 기준은 단지 미리 결정된 수의 전자들이 샘플에 도달하는 것을 보장하는 것을 포함할 수 있다. 빔 형상 및 크기와 같은 파라미터는 특히 관련이 없을 수 있다. 일부 실시예들에서, 직경이 수 마이크로미터인 거친 빔 형상이 사전-충전 빔으로서 사용하기에 적합할 수 있다. 따라서, 2차 전자 빔 소스(420)에서 사용되는 컴포넌트들의 선택은 1차 전자 빔 소스(410)에 비해 반드시 엄격하지는 않을 수 있고, 1차 전자 빔 소스(412)은 저렴하게 그리고 더 큰 설계 유연성을 갖고 제공될 수 있다. 또한, 일부 실시예들에서, 샘플을 가로질러 스캔하기 위한 사전-충전 빔이 필요하지 않을 수 있기 때문에, 2차 전자 빔 소스(420)로부터 스캐닝 편향기가 생략될 수 있다.
일부 실시예들에서, 사전-충전 모드와 이미징 모드 사이의 스위칭에 필요한 시간은 실질적으로 감소될 수 있다. 예를 들어, 스위칭 시간은 나노초 정도로 감소될 수 있다. 제1 상태와 제2 상태 사이의 스위칭은 단지 Wein 필터와 같은 정렬 편향기에 인가되는 전압을 조정함으로써 달성될 수 있다. 이미징 듀티 사이클 및 사전-충전의 시간은 더 큰 유연성을 갖는 애플리케이션들에 따라 최적화될 수 있다.
실시예들은 다음의 조항들을 사용하여 추가로 설명될 수 있다:
1. 하전 입자 빔 시스템(charged particle beam system)으로서,
제1 축 상에 제공되는 제1 하전 입자 빔 소스;
제2 하전 입자 빔 소스; 및
상기 제1 축 상에 배열된 컴포넌트(component)를 포함하고, 상기 컴포넌트는 상기 제2 하전 입자 빔 소스로부터 생성된 빔을 샘플을 향해 편향시키도록 구성되는, 하전 입자 빔 시스템.
2. 조항 1에 있어서, 상기 컴포넌트는 자기장 또는 전기장을 생성하도록 구성되는, 하전 입자 빔 시스템.
3. 조항 2에 있어서, 자기장 또는 전기장을 생성하도록 구성된 상기 컴포넌트는 자기장 및 전기장을 생성하도록 구성되는 편향기를 포함하는, 하전 입자 빔 시스템.
4. 선행하는 조항들 중 어느 한 조항에 있어서, 상기 컴포넌트는 대물 렌즈의 영역에 배열되는, 하전 입자 빔 시스템.
5. 조항 4에 있어서, 단지 하나의 대물 렌즈가 하전 입자 빔 시스템에 제공되는, 하전 입자 빔 시스템.
6. 선행하는 조항들 중 어느 한 조항에 있어서, 조절 가능한 전압을 상기 구성요소에 공급하도록 구성된 구동기를 더 포함하는, 하전 입자 빔 시스템.
7. 선행하는 조항들 중 어느 한 조항에 있어서, 상기 하전 입자 빔 시스템은 제1 상태와 제2 상태 사이에서 스위칭하도록 구성되고, 제2 상태에서, 제1 하전 입자 빔의 소스로부터 생성된 제1 하전 입자 빔은 샘플을 향해 지향되고, 제1 상태에서, 상기 제2 하전 입자 빔 소스로부터 생성된 제2 하전 입자 빔은 시료를 향해 지향되는, 하전 입자 빔 시스템.
8. 조항 7에 있어서, 상기 컴포넌트는 제1 상태와 제2 상태 사이에서 스위칭하도록 구성되는, 하전 입자 빔 시스템.
9. 조항 8에 있어서, 상기 컴포넌트를 제1 상태와 제2 상태 사이에서 스위칭하도록 구성된 제어기를 추가로 포함하는, 하전 입자 빔 시스템.
10. 선행하는 조항들 중 어느 한 조항에 있어서, 상기 제2 하전 입자 빔 소스가 제공되는 제2 축과 상기 제1 축 사이의 각도는 30도 미만인, 하전 입자 빔 시스템.
11. 조항 10에 있어서, 상기 각도는 10 내지 20도인, 하전 입자 빔 시스템.
12. 선행하는 조항들 중 어느 한 조항에 있어서, 상기 제2 하전 입자 빔 소스에 제공된 정전 렌즈를 더 포함하고, 정전 렌즈는 그로부터 생성된 빔을 포커싱하도록 구성된, 하전 입자 빔 시스템.
13. 하전 입자 빔 시스템을 작동시키는 방법으로서,
자기장 및 전기장을 생성하도록 구성된 컴포넌트를 동작시키는 제1 상태와 제2 상태 사이에서 스위칭하는 단계를 포함하고,
제1 상태에서, 제1 하전 입자 빔 소스로부터 생성된 제1 하전 입자 빔이 블랭크되고, 제2 하전 입자 빔 소스로부터 생성된 제2 하전 입자 빔이 샘플을 향해 지향되고, 그리고
제2 상태에서, 제2 하전 입자 빔이 블랭크되고 제1 하전 입자 빔은 샘플을 향해 지향되는, 방법.
14. 조항 13에 있어서,
제1 상태에서 컴포넌트에 제1 전압을 공급하는 단계; 및
제2 상태에서 컴포넌트에 제2 전압을 공급하는 단계를 포함하는, 방법.
15. 조항 14에 있어서, 제1 전압은 제2 전압보다 작은, 방법.
16. 하전 입자 빔 시스템으로서,
제1 시간에 샘플을 이미징하기 위해 제1 하전 입자를 제공하도록 구성된 제1 하전 입자 빔 소스;
제2 시간에 상기 샘플을 사전컨디셔닝(precondition)하기 위한 제2 하전 입자를 제공하도록 구성되는 제2 하전 입자 빔 소스; 및
상기 제1 시간에 상기 샘플에 충돌하는 상기 제1 하전 입자에 영향을 주고 상기 제2 시간에 샘플에 충돌하는 상기 제2 하전 입자에 영향을 주는 정전기 또는 자기장을 생성하도록 구성된 컴포넌트를 포함하는, 하전 입자 빔 시스템.
17. 조항 16에 있어서, 컴포넌트는 자기 렌즈인, 하전 입자 빔 시스템.
18. 조항 16에 있어서, 컴포넌트는 편향기인, 하전 입자 빔 시스템.
19. 조항 16에 있어서, 컴포넌트는 정전 렌즈인, 하전 입자 빔 시스템.
20. 조항 16에 있어서, 컴포넌트는 Wien 필터인, 하전 입자 빔 시스템.
21. 조항 16에 있어서, 정전기 또는 자기장을 생성하도록 구성되는 컴포넌트는 정전기 및 자기장을 생성하도록 구성된 컴포넌트를 포함하는, 하전 입자 빔 시스템.
22. 조항16 내지 21중 어느 한 조항에 있어서, 상기 컴포넌트는 대물 렌즈의 영역에 배열되는, 하전 입자 빔 시스템.
23. 조항 22에 있어서, 단지 하나의 대물 렌즈만이 하전 입자 빔 시스템에 제공되는, 하전 입자 빔 시스템.
24. 조항 16 내지 23 중 어느 한 조항에 있어서, 조정가능한 전압을 상기 컴포넌트에 공급하도록 구성된 드라이버를 더 포함하는, 하전 입자 빔 시스템.
25. 조항 16 내지 24 중 어느 한 조항에 있어서, 하전 입자 빔 시스템은 제1 상태와 제2 상태 사이에서 스위칭하도록 구성되고, 제2 상태에서 제1 하전 입자는 샘플을 향해 지향되고, 제1 상태에서, 제2 하전 입자는 샘플을 향해 지향되는, 하전 입자 빔 시스템.
26. 조항 25에 있어서, 컴포넌트는 제1 상태와 제2 상태 사이에서 스위칭하도록 구성되는, 하전 입자 빔 시스템.
27. 조항 26에 있어서, 제1 상태와 제2 상태 사이에서 컴포넌트를 스위칭하도록 구성된 제어기를 추가로 포함하는, 하전 입자 빔 시스템.
28. 조항 16 내지 27 중 어느 한 조항에 있어서, 제1 하전 입자 빔 소스가 제공되는 제1 축과 제2 하전 입자 빔 소스는 제공되는 제2 축 사이의 각도는 30도 미만인, 하전 입자 빔 시스템.
29. 조항 28에 있어서, 상기 각도는 10 내지 20도인, 하전 입자 빔 시스템.
30. 조항 16 내지 29 중 어느 한 조항에 있어서, 제2 하전 입자 빔 소스에 제공된 정전 렌즈를 더 포함하고, 정전 렌즈는 그로부터 생성된 빔을 포커싱하도록 구성되는, 하전 입자 빔 시스템.
본 개시내용의 양태들은, 예를 들어, 3D NAND 및 DRAM과 같은 애플리케이션에 유리하게 적용될 수 있으며, 여기서, 감쇠 시간은 임계 파라미터일 수 있고, 따라서, 사전-충전과 이미징 사이의 스위칭 시간의 단락은 다수의 이점들을 생성할 수 있다. 또한, 본 개시의 양상들은, 예를 들어, 단락된 게이트들, 플로팅 게이트들 및 오픈 인터커넥트들을 포함하는 전압 접촉 결함들과 같은 특정 타입들의 결함 검사에 특히 적용가능할 수도 있다.
일부 실시예들에서, 하전 입자 빔 시스템을 제어하기 위해 제어기가 제공될 수 있다. 예를 들어, 도 1은 EBI 시스템(10)에 연결된 제어기(109)를 도시한다. 제어기는 하전 입자 빔을 생성하기 위해 하전 입자 빔 소스를 제어하는 것, 샘플에 걸쳐 하전 입자 빔의 스캔을 위해 편향기를 제어하는 것과, 제1 상태와 제2 상태 사이의 스위칭을 제어하는 것 및 정렬 편향기와 같은 렌즈들 또는 다른 컴포넌트들에 전압 또는 다른 신호들을 인가하기 위해 드라이버들을 제어하는 것과 같은 다양한 기능들을 수행하도록 하전 입자 빔 시스템의 컴포넌트들에 명령할 수 있다. 제어기는 또한 다양한 후처리 기능, 이미지 획득, 이미지 세분, 이미지 처리, 윤곽 생성, 획득된 이미지에 대한 표시자 중첩 등을 수행할 수 있다. 제어기는 하드 디스크, 클라우드 저장소, 랜덤 액세스 메모리(RAM), 다른 유형의 컴퓨터 판독가능 메모리 등과 같은 저장 매체인 저장소를 포함할 수 있다. 저장소는 스캐닝된 원 이미지 데이터를 원래의 이미지로서 저장하기 위해, 또는 후처리된 이미지를 저장하기 위해 사용될 수 있다. 제어기는 클라우드 스토리지와 통신할 수 있다. 본 개시내용에 따른 빔 형성, 렌즈 제어, 또는 다른 기능들 및 방법들을 수행하기 위한 제어기(109)의 프로세서에 대한 명령들을 저장하는 비-일시적 컴퓨터 판독가능 매체가 제공될 수 있다. 비-일시적 매체들의 일반적인 형태들은, 예를 들어, 플로피 디스크, 플렉시블 디스크, 하드 디스크, 솔리드 스테이트 드라이브, 자기 테이프, 또는 임의의 다른 자기 데이터 저장 매체, CD-ROM, 임의의 다른 광학 데이터 스토리지 매체, 홀들의 패턴들을 갖는 임의의 물리적 매체, RAM, PROM, 및 EPROM, FLASH-EPROM 또는 어떠한 다른 플래시 메모리, NVRAM, 캐시, 레지스터, 어떠한 다른 메모리 칩 또는 카트리지, 및 이들의 네트워킹된 버전들을 포함한다.
본 발명이 몇몇 예시적인 실시예들과 관련하여 설명되었지만, 이후에 청구되는 바와 같은 본 발명의 사상 및 범위를 벗어나지 않으면서 다른 수정들 및 변형들이 이루어질 수 있다는 것이 이해되어야 한다. 예를 들어, 복합 렌즈가 제1 줌 렌즈로서의 적용을 참조하여 논의되었지만, 복합 렌즈는 제2 줌 렌즈, 또는 입자-광학 시스템에서의 다른 렌즈로서 적용될 수 있다. 또한, 하나 이상의 렌즈 또는 다른 광학 컴포넌트가 다양한 지점에서 본 명세서에 논의된 예시적인 입자-광학 시스템의 특정 구성에 추가될 수 있다. 광학 컴포넌트들은 예를 들어, 확대, 주밍, 및 이미지 반-회전 등을 위해 제공될 수도 있다.
Claims (15)
- 하전 입자 빔 시스템(charged particle beam system)으로서,
제1 축 상에 제공되는 제1 하전 입자 빔 소스;
제2 하전 입자 빔 소스; 및
상기 제1 축 상에 배열된 컴포넌트를 포함하고,
상기 컴포넌트는 상기 제2 하전 입자 빔 소스로부터 생성된 빔을 샘플을 향해 편향시키도록 구성되며,
상기 하전 입자 빔 시스템은 제1 상태와 제2 상태 사이에서 스위칭하도록 구성되고,
상기 제2 상태에서, 상기 제1 하전 입자 빔 소스로부터 생성된 제1 하전 입자 빔은 상기 샘플을 향해 지향되고, 그리고 상기 제1 상태에서, 상기 제2 하전 입자 빔 소스로부터 생성된 제2 하전 입자 빔이 상기 샘플을 향하여 지향되며,
상기 제1 상태 및 상기 제2 상태 모두에서, 상기 제1 하전 입자 빔 소스의 대물 렌즈 및 컨덴서 렌즈의 작동 조건이 유지되며,
상기 제1 하전 입자 빔 소스와 상기 제2 하전 입자 빔 소스는 상기 대물 렌즈를 공유하는, 하전 입자 빔 시스템. - 제1 항에 있어서,
상기 컴포넌트는 자기장 또는 전기장을 생성하도록 구성되는, 하전 입자 빔 시스템. - 제2 항에 있어서,
상기 자기장 또는 상기 전기장을 생성하도록 구성되는 컴포넌트는, 상기 자기장 및 상기 자기장을 생성하도록 구성되는 편향기를 포함하는, 하전 입자 빔 시스템. - 제1 항에 있어서,
상기 컴포넌트는 대물 렌즈의 영역에 배열되는, 하전 입자 빔 시스템. - 제4 항에 있어서,
상기 하전 입자 빔 시스템에는 하나의 대물 렌즈만이 제공되는, 하전 입자 빔 시스템. - 제1 항에 있어서,
상기 컴포넌트에 조정가능한 전압을 공급하도록 구성된 드라이버를 더 포함하는, 하전 입자 빔 시스템. - 삭제
- 제1 항에 있어서,
상기 컴포넌트는 상기 제1 상태와 상기 제2 상태 사이에서 스위칭하도록 구성되는, 하전 입자 빔 시스템. - 제8 항에 있어서,
상기 제1 상태와 상기 제2 상태 사이에서 상기 컴포넌트를 스위칭하도록 구성된 제어기를 더 포함하는, 하전 입자 빔 시스템. - 제1 항에 있어서,
상기 제2 하전 입자 빔 소스가 제공되는 제2 축과 상기 제1 축 사이의 각도는 30도 미만인, 하전 입자 빔 시스템. - 제10 항에 있어서,
상기 각도는 10 내지 20도인, 하전 입자 빔 시스템. - 제1 항에 있어서,
상기 제2 하전 입자 빔 소스에 제공된 정전 렌즈를 더 포함하고, 상기 정전 렌즈는 생성된 빔을 포커싱하도록 구성되는, 하전 입자 빔 시스템. - 하전 입자 빔 시스템을 작동시키는 방법으로서,
자기장 및 전기장을 발생시키도록 구성된 컴포넌트를 작동시키는 제1 상태와 제2 상태 사이에서 스위칭하는 단계를 포함하고,
상기 제1 상태에 있을 때, 제1 하전 입자 빔 소스로부터 발생된 제1 하전 입자 빔이 블랭크되고 제2 하전 입자 빔을 샘플을 향해 지향되고,
상기 제2 상태에 있을 때, 제2 하전 입자 빔이 블랭크되고 제1 하전 입자 빔은 샘플을 향해 지향되고,
상기 제1 상태 및 상기 제2 상태 모두에서, 상기 제1 하전 입자 빔 소스의 대물 렌즈 및 컨덴서 렌즈의 작동 조건이 유지되며,
상기 제1 하전 입자 빔 소스와 상기 제2 하전 입자 빔 소스는 상기 대물 렌즈를 공유하는, 방법. - 제13 항에 있어서,
상기 제1 상태에서 상기 컴포넌트에 제1 전압을 공급하는 단계; 및
상기 제2 상태에서 상기 컴포넌트에 제2 전압을 공급하는 단계를 포함하는, 방법. - 제14 항에 있어서,
상기 제1 전압은 상기 제2 전압보다 작은, 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862787128P | 2018-12-31 | 2018-12-31 | |
US62/787,128 | 2018-12-31 | ||
PCT/EP2019/082179 WO2020141030A1 (en) | 2018-12-31 | 2019-11-22 | In-lens wafer pre-charging and inspection with multiple beams |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210092815A KR20210092815A (ko) | 2021-07-26 |
KR102697291B1 true KR102697291B1 (ko) | 2024-08-22 |
Family
ID=68654497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217019271A KR102697291B1 (ko) | 2018-12-31 | 2019-11-22 | 멀티 빔을 갖는 인-렌즈 웨이퍼 사전-충전 및 검사 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11152191B2 (ko) |
JP (1) | JP7231738B2 (ko) |
KR (1) | KR102697291B1 (ko) |
TW (2) | TW202223962A (ko) |
WO (1) | WO2020141030A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL292290A (en) * | 2019-10-18 | 2022-06-01 | Asml Netherlands Bv | Systems and methods for stress contrast defect detection |
US11335608B2 (en) | 2020-04-15 | 2022-05-17 | Kla Corporation | Electron beam system for inspection and review of 3D devices |
CN117015714A (zh) * | 2021-03-08 | 2023-11-07 | Asml荷兰有限公司 | 在带电粒子系统中通过偏转器控制进行检查的系统和方法 |
DE102021112503A1 (de) * | 2021-05-12 | 2022-11-17 | Carl Zeiss Microscopy Gmbh | Teilchenstrahlvorrichtung mit einer Ablenkeinheit |
US11640896B2 (en) * | 2021-05-13 | 2023-05-02 | Nuflare Technology, Inc. | Method and apparatus for Schottky TFE inspection |
WO2023280551A1 (en) * | 2021-07-07 | 2023-01-12 | Asml Netherlands B.V. | Charged particle apparatus and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006234789A (ja) * | 2005-01-26 | 2006-09-07 | Hitachi High-Technologies Corp | 帯電制御装置及び帯電制御装置を備えた計測装置 |
US20090218506A1 (en) | 2005-07-26 | 2009-09-03 | Ebara Corporation | Electron beam apparatus |
US20170092459A1 (en) | 2014-05-13 | 2017-03-30 | Hitachi High-Technologies Corporation | Charged-particle-beam device |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4417203A (en) * | 1981-05-26 | 1983-11-22 | International Business Machines Corporation | System for contactless electrical property testing of multi-layer ceramics |
JPH08195345A (ja) * | 1994-11-18 | 1996-07-30 | Hitachi Ltd | 電子ビーム描画装置 |
TW461008B (en) * | 1997-01-13 | 2001-10-21 | Schlumberger Technologies Inc | Method and apparatus for detecting defects in wafers |
US6344750B1 (en) * | 1999-01-08 | 2002-02-05 | Schlumberger Technologies, Inc. | Voltage contrast method for semiconductor inspection using low voltage particle beam |
US6252412B1 (en) * | 1999-01-08 | 2001-06-26 | Schlumberger Technologies, Inc. | Method of detecting defects in patterned substrates |
US6232787B1 (en) * | 1999-01-08 | 2001-05-15 | Schlumberger Technologies, Inc. | Microstructure defect detection |
US6586733B1 (en) * | 1999-05-25 | 2003-07-01 | Kla-Tencor | Apparatus and methods for secondary electron emission microscope with dual beam |
US6894435B2 (en) * | 2002-11-06 | 2005-05-17 | Applied Materials, Inc. | Method and device for rastering source redundancy |
EP1517354B1 (en) * | 2003-09-11 | 2008-05-21 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Double stage charged particle beam energy width reduction system for charged particle beam system |
TWI415162B (zh) * | 2005-03-03 | 2013-11-11 | Toshiba Kk | 映像投影型電子線裝置及使用該裝置之缺陷檢查系統 |
US7205542B1 (en) * | 2005-11-14 | 2007-04-17 | Kla-Tencor Technologies Corporation | Scanning electron microscope with curved axes |
US7560939B1 (en) * | 2006-02-17 | 2009-07-14 | Kla-Tencor Technologies Corporation | Electrical defect detection using pre-charge and sense scanning with prescribed delays |
US7947951B2 (en) * | 2006-07-21 | 2011-05-24 | National University Of Singapore | Multi-beam ion/electron spectra-microscope |
US8748815B2 (en) | 2006-08-31 | 2014-06-10 | Hermes Microvision, Inc. | Method and system for detecting or reviewing open contacts on a semiconductor device |
JP5227512B2 (ja) * | 2006-12-27 | 2013-07-03 | 株式会社日立ハイテクノロジーズ | 電子線応用装置 |
DE102008001812B4 (de) * | 2008-05-15 | 2013-05-29 | Carl Zeiss Microscopy Gmbh | Positioniereinrichtung für ein Teilchenstrahlgerät |
EP2128885A1 (en) * | 2008-05-26 | 2009-12-02 | FEI Company | Charged particle source with integrated energy filter |
US8759762B2 (en) | 2009-06-11 | 2014-06-24 | Hermes Microvision, Inc. | Method and apparatus for identifying plug-to-plug short from a charged particle microscopic image |
US8258474B1 (en) * | 2011-03-24 | 2012-09-04 | Electron Optica, Inc. | Compact arrangement for dual-beam low energy electron microscope |
US8592785B2 (en) * | 2011-09-22 | 2013-11-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-ion beam implantation apparatus and method |
KR101914231B1 (ko) | 2012-05-30 | 2018-11-02 | 삼성디스플레이 주식회사 | 주사 전자 현미경을 이용한 검사 시스템 |
KR20160066028A (ko) * | 2013-10-03 | 2016-06-09 | 오르보테크 엘티디. | 검사, 시험, 디버그 및 표면 개질을 위한 전자빔 유도성 플라스마 프로브의 적용 |
EP2924708A1 (en) * | 2014-03-25 | 2015-09-30 | Fei Company | Imaging a sample with multiple beams and multiple detectors |
US9691588B2 (en) | 2015-03-10 | 2017-06-27 | Hermes Microvision, Inc. | Apparatus of plural charged-particle beams |
US9922799B2 (en) | 2015-07-21 | 2018-03-20 | Hermes Microvision, Inc. | Apparatus of plural charged-particle beams |
KR20240042242A (ko) | 2015-07-22 | 2024-04-01 | 에이에스엠엘 네델란즈 비.브이. | 복수의 하전 입자 빔을 이용하는 장치 |
US9984848B2 (en) * | 2016-03-10 | 2018-05-29 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Multi-beam lens device, charged particle beam device, and method of operating a multi-beam lens device |
-
2019
- 2019-11-22 WO PCT/EP2019/082179 patent/WO2020141030A1/en active Application Filing
- 2019-11-22 JP JP2021531898A patent/JP7231738B2/ja active Active
- 2019-11-22 KR KR1020217019271A patent/KR102697291B1/ko active IP Right Grant
- 2019-12-05 TW TW111107327A patent/TW202223962A/zh unknown
- 2019-12-05 TW TW108144443A patent/TWI759658B/zh active
- 2019-12-27 US US16/729,177 patent/US11152191B2/en active Active
-
2021
- 2021-10-05 US US17/494,518 patent/US20220102111A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006234789A (ja) * | 2005-01-26 | 2006-09-07 | Hitachi High-Technologies Corp | 帯電制御装置及び帯電制御装置を備えた計測装置 |
US20090218506A1 (en) | 2005-07-26 | 2009-09-03 | Ebara Corporation | Electron beam apparatus |
US20170092459A1 (en) | 2014-05-13 | 2017-03-30 | Hitachi High-Technologies Corporation | Charged-particle-beam device |
Also Published As
Publication number | Publication date |
---|---|
US11152191B2 (en) | 2021-10-19 |
CN113228219A (zh) | 2021-08-06 |
WO2020141030A1 (en) | 2020-07-09 |
TWI759658B (zh) | 2022-04-01 |
TW202223962A (zh) | 2022-06-16 |
US20220102111A1 (en) | 2022-03-31 |
KR20210092815A (ko) | 2021-07-26 |
JP2022515037A (ja) | 2022-02-17 |
US20200211818A1 (en) | 2020-07-02 |
TW202029262A (zh) | 2020-08-01 |
JP7231738B2 (ja) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102697291B1 (ko) | 멀티 빔을 갖는 인-렌즈 웨이퍼 사전-충전 및 검사 | |
US10522327B2 (en) | Method of operating a charged particle beam specimen inspection system | |
US11929232B2 (en) | Systems and methods for charged particle flooding to enhance voltage contrast defect signal | |
JP6099113B2 (ja) | ツインビーム荷電粒子ビームコラム及びその作動方法 | |
JP7505078B2 (ja) | 複数の荷電粒子ビームのための装置 | |
US10103004B2 (en) | System and method for imaging a secondary charged particle beam with adaptive secondary charged particle optics | |
US11513087B2 (en) | Systems and methods for voltage contrast defect detection | |
US7560691B1 (en) | High-resolution auger electron spectrometer | |
TW202034367A (zh) | 複數帶電粒子束之裝置 | |
KR102634195B1 (ko) | 하전 입자의 빔 조건을 조정하기 위한 방법 및 장치 | |
CN113228219B (zh) | 带电粒子束系统及其操作方法 | |
US20240379325A1 (en) | Systems and methods for charged particle flooding to enhance voltage contrast defect signal | |
US20240006147A1 (en) | Flood column and charged particle apparatus | |
US20240021404A1 (en) | Charged-particle beam apparatus with beam-tilt and methods thereof | |
WO2023078620A2 (en) | Multiple charged-particle beam apparatus and methods of operating the same | |
KR20220143942A (ko) | 플러드 컬럼, 하전 입자 툴, 및 샘플의 하전 입자 플러딩 방법 | |
TW202405856A (zh) | 具有大視場之帶電粒子束設備及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right |