[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102682305B1 - Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient - Google Patents

Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient Download PDF

Info

Publication number
KR102682305B1
KR102682305B1 KR1020220007048A KR20220007048A KR102682305B1 KR 102682305 B1 KR102682305 B1 KR 102682305B1 KR 1020220007048 A KR1020220007048 A KR 1020220007048A KR 20220007048 A KR20220007048 A KR 20220007048A KR 102682305 B1 KR102682305 B1 KR 102682305B1
Authority
KR
South Korea
Prior art keywords
tm4sf5
exosomes
liver
cells
exosome
Prior art date
Application number
KR1020220007048A
Other languages
Korean (ko)
Other versions
KR20220105602A (en
Inventor
이정원
정재우
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of KR20220105602A publication Critical patent/KR20220105602A/en
Application granted granted Critical
Publication of KR102682305B1 publication Critical patent/KR102682305B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/12Purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cardiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

본 발명은 간혈관폐쇄회로 시스템을 이용한 간 유래 엑소좀 추출방법 및 간 혹은 간상피세포 유래 엑소좀을 유효성분으로 함유하는 당뇨 관련 질환 치료용 약학적 조성물에 관한 것으로, 본 발명자들은 간 혹은 간상피세포에서 특이적으로 유래되는 TM4SF5가 탑재된 엑소좀이 근육 세포, 지방 세포, 근육 조직 또는 지방 조직에서의 혈액 내 포도당 흡수를 촉진할 수 있음을 확인하였는 바, 본 발명의 간혈관폐쇄회로 시스템 및 이를 이용한 간 유래 엑소좀 추출 방법을 통해 간에서 특이적으로 유래되는 TM4SF5 탑재 엑소좀을 효율적으로 추출할 수 있고, 그 엑소좀들의 특성 및 분비의 특성을 세포외액 속의 영양분 수준 혹은 존재 유무에 따른 분비 측면에서 확인하여, 상기 추출된 엑소좀을 유효성분으로 포함하는 조성물은 당뇨 관련 질환의 치료제로 유용하게 사용될 수 있다. The present invention relates to a method for extracting liver-derived exosomes using a hepatic vascular occlusive circuit system and a pharmaceutical composition for treating diabetes-related diseases containing exosomes derived from liver or liver epithelial cells as an active ingredient. It was confirmed that exosomes loaded with TM4SF5, which is specifically derived from cells, can promote glucose absorption into the blood in muscle cells, adipocytes, muscle tissue, or adipose tissue, and the hepatic vascular occlusive circuit system of the present invention and Through this liver-derived exosome extraction method, TM4SF5-loaded exosomes specifically derived from the liver can be efficiently extracted, and the characteristics and secretion characteristics of the exosomes are secreted according to the level or presence of nutrients in the extracellular fluid. From this point of view, a composition containing the extracted exosomes as an active ingredient can be usefully used as a treatment for diabetes-related diseases.

Description

간혈관폐쇄회로 시스템을 이용한 간 유래 엑소좀 추출방법 및 간 유래 엑소좀을 유효성분으로 함유하는 당뇨 관련 질환 치료용 약학적 조성물{Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient}Method for extracting liver-derived exosomes using the liver-vein closed circulation system and pharmaceutical composition for treating diabetes-related diseases containing liver-derived exosomes as an active ingredient {Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient}

본 발명은 간혈관폐쇄회로 시스템을 이용한 간 유래 엑소좀 추출방법 및 간 유래 엑소좀을 유효성분으로 함유하는 당뇨 관련 질환 치료용 약학적 조성물에 관한 것이다.The present invention relates to a method for extracting liver-derived exosomes using a hepatic vascular occlusive circuit system and a pharmaceutical composition for treating diabetes-related diseases containing liver-derived exosomes as an active ingredient.

세포외 소포(extracellular vesicle)는 세포에서 방출 또는 분비되는 엑소좀(exosome), 엑토좀(ectosome), 미세소포(microvesicle) 및 세포자멸사 소체(apoptotic body)를 포함한 개념으로 그중 엑소좀은 30-200nm의 크기를 가지며 세포 내 다소포체(Multi vesicular bodies; MVB)로부터 생성되는 생체 나노 입자이다. 엑소좀(exosome)은 세포에서 세포밖 공간(extracellular space)으로 방출되고, 세포에서 유래한 특정 단백질, mRNA 또는 microRNA 등을 담은 채 방출되어 인접 세포 또는 멀리 있는 세포까지 이를 운반하여 신호를 전달하는 역할을 한다. 이러한 세포 간 신호전달 역할을 하면서 엑소좀은 다양한 장기에서 정상 생리적인 신호전달뿐 아니라 병적인 상태의 신호전달까지 광범위한 역할을 담당하고 있다.Extracellular vesicles include exosomes, ectosomes, microvesicles, and apoptotic bodies released or secreted from cells. Exosomes are 30-200nm long. It is a biological nanoparticle that has the size of and is produced from intracellular multivesicular bodies (MVB). Exosomes are released from cells into the extracellular space and contain specific proteins, mRNA, or microRNA derived from cells and transport them to adjacent cells or distant cells to transmit signals. Do it. While playing a role in signaling between cells, exosomes play a wide range of roles, ranging from normal physiological signaling in various organs to signaling in pathological conditions.

따라서, 엑소좀은 많은 연구가 진행되고 있지만, 엑소좀 연구는 다음과 같은 기술적 한계로 인해 어려움을 겪고 있다. 첫번째 한계는 다양한 크기를 분획하여 분석하는 것이 어렵다는 것이고, 두번째는 in vivo에서의 엑소좀 채집기술이 발전되지 않았다는 것이다. 첫번째 한계의 경우 비록 시작 단계이긴 하지만, 크로마토그래피와 장흐름 분획(Field-Flow Fractionation)을 이용한 기술들로 연구가 되고 있는 반면, 두번째 한계는 아직 큰 발전이 없다. 대부분의 엑소좀 연구는 배양된 세포주 혹은 체액/혈액에서 획득한 엑소좀을 연구하는데 체외에서 배양된 세포에서 얻는 엑소좀의 양은 매우 제한적이고 체내의 다양한 환경을 대변하기 어렵다. 또한, 체액 및 혈액에서 채취한 엑소좀은 매우 간단하게 구할 수 있으나 몸 안에 다양한 장기에서 나온 엑소좀이 섞여 있어서 특정 장기에서의 엑소좀의 성질과 기능을 특정하여 연구하기 어려운 문제를 안고 있다. 다양한 장기에서 다양한 상황에 따라 분비되는 엑소좀의 특성을 파악할 수 있다면 체액에서 얻어지는 엑소좀에서 변화로 손쉬운 진단을 할 수 있을 것이다.Therefore, although much research is being conducted on exosomes, exosome research is experiencing difficulties due to the following technical limitations. The first limitation is that it is difficult to fractionate and analyze various sizes, and the second is that in vivo exosome collection technology has not been developed. The first limitation, although in its infancy, is being studied with techniques using chromatography and field-flow fractionation, while the second limitation has not yet made much progress. Most exosome research studies exosomes obtained from cultured cell lines or body fluids/blood, but the amount of exosomes obtained from cells cultured in vitro is very limited and difficult to represent the various environments in the body. In addition, exosomes collected from body fluids and blood can be obtained very easily, but because exosomes from various organs in the body are mixed, it is difficult to specifically study the properties and functions of exosomes in specific organs. If we can determine the characteristics of exosomes secreted from various organs in various situations, we will be able to easily diagnose changes in exosomes obtained from body fluids.

한편, Transmembrane 4 L six family member 5 (TM4SF5)는 세포막을 4번 통과하는 테트라스파닌(tetraspanin)으로서 본 발명자들은 만성적 간상피세포의 손상에 따른 다양한 사이토카인 및 케모카인의 작용으로 간상피세포 및 대식세포에서 발현이 높아지는 것을 확인하였고, 따라서 간상피세포와 대식세포의 상호작용은 TM4SF5의 발현에 의존하여 간의 염증 반응 및 면역 환경을 재구성(remodeling)하여 지방간염을 넘어서 간 섬유화 또는 간 경화를 유발할 수 있음을 확인한 바 있다.On the other hand, Transmembrane 4 L six family member 5 (TM4SF5) is a tetraspanin that passes through the cell membrane four times. The present inventors have shown that it can damage liver epithelial cells and liver epithelial cells through the action of various cytokines and chemokines following chronic damage to liver epithelial cells. It was confirmed that expression was increased in phagocytes, and therefore, the interaction between liver epithelial cells and macrophages depends on the expression of TM4SF5, which can lead to liver fibrosis or cirrhosis beyond steatohepatitis by remodeling the inflammatory response and immune environment of the liver. It has been confirmed that it exists.

TM4SF5와 관련된 선행문헌으로는, TM4SF5가 과발현시 지방간 및 지방간염이 유발됨을 개시하고 있는 대한민국 등록특허 제10-2112760호, TM4SF5 단백질에 대한 항체를 포함하는 간섬유화증, 간경변증 또는 알코올성 간손상 진단용 키트를 개시하고 있는 대한민국 등록특허 제10-1368871호가 있으나, TM4SF5를 탑재한 엑소좀의 근육 및 지방 세포 또는 조직의 혈액 내 포도당 흡수 촉진 작용에 대해서는 개시된 바 없다.Prior literature related to TM4SF5 includes Republic of Korea Patent No. 10-2112760, which discloses that overexpression of TM4SF5 causes fatty liver and steatohepatitis, and a kit for diagnosing liver fibrosis, cirrhosis, or alcoholic liver damage containing an antibody against TM4SF5 protein. There is Korean Patent No. 10-1368871, which discloses, but the action of exosomes loaded with TM4SF5 to promote glucose absorption in the blood by muscle and fat cells or tissues has not been disclosed.

이에, 본 발명자들은 TM4SF5를 발현하는 간상피세포에서 분비된 엑소좀이 다른 장기 특히 근육 및 지방 조직에 접근하여 근육 및 지방 세포의 포도당 흡수를 긍정적으로 도와줄 수 있음을 확인하였고, 상기 엑소좀을 고효율로 수득하기 위해 생쥐의 살아있는 간 조직만으로부터 엑소좀을 획득하는 시스템인 "간혈관폐쇄회로 시스템(liver vein-closed circulation system)을 구축함으로써 본 발명을 완성하였다.Accordingly, the present inventors confirmed that exosomes secreted from liver epithelial cells expressing TM4SF5 can access other organs, especially muscle and fat tissue, and positively help muscle and fat cells absorb glucose, and the exosomes In order to obtain exosomes with high efficiency, the present invention was completed by constructing a “liver vein-closed circulation system”, a system for obtaining exosomes only from living liver tissue of mice.

본 발명은 당뇨 관련 질환의 치료 물질인 TM4SF5 단백질을 포함하는 엑소좀을 고효율로 수득하기 위한, 간상피세포 혹은 간 유래 엑소좀을 추출하기 위한 간혈관폐쇄회로 시스템, 이를 이용한 간 유래 엑소좀 추출방법, 특성 분석, 및 상기 엑소좀을 유효성분으로 함유하는 당뇨 관련 질환 치료용 약학적 조성물을 제공하는 것을 목적으로 한다.The present invention provides a hepatic vascular occlusion circuit system for extracting hepatic epithelial cell or liver-derived exosomes to obtain exosomes containing TM4SF5 protein, a treatment substance for diabetes-related diseases, with high efficiency, and a liver-derived exosome extraction method using the same. The purpose is to provide a pharmaceutical composition for treating diabetes-related diseases containing the exosome as an active ingredient, and analyzing its characteristics.

상기 목적을 달성하기 위하여,In order to achieve the above purpose,

본 발명은 간 유래 엑소좀을 추출하기 위한 간혈관폐쇄회로 시스템에 있어서,The present invention relates to a liver vascular occlusion circuit system for extracting liver-derived exosomes,

상기 간혈관폐쇄회로를 순환시키기 위한 연동펌프;A peristaltic pump for circulating the hepatic vascular occlusive circuit;

상기 연동펌프에 의해 상기 간혈관폐쇄회로를 따라 순환되는 엑소좀 순환 미디어 및 플러싱 버퍼;Exosome circulating media and flushing buffer circulated along the hepatic vascular occlusive circuit by the peristaltic pump;

상기 엑소좀 순환 미디어 및 플러싱 버퍼의 순환을 조절하는 스위치를 포함하는 3방향 커넥터;A three-way connector including a switch to control circulation of the exosome circulation media and flushing buffer;

상기 연동 펌프의 투입구를 상기 3방향 커넥터와 연결하고, 상기 연동 펌프의 투출구를 제3 튜빙과 연결하는 제1 튜빙;a first tubing connecting the inlet of the peristaltic pump with the three-way connector and connecting the outlet of the peristaltic pump with a third tubing;

상기 엑소좀 순환 미디어 및 상기 플러싱 버퍼를 상기 3방향 커넥터와 각각 연결하는 제2 튜빙;A second tubing connecting the exosome circulation media and the flushing buffer with the three-way connector, respectively;

개체의 간문맥에 삽입하는 제1 카테터;A first catheter inserted into the subject's portal vein;

상기 제1 카테터와 상기 제1 튜빙을 연결하는 제3 튜빙;a third tubing connecting the first catheter and the first tubing;

상기 제1 카테터와 상기 제3 튜빙을 연결하는 제1 커넥터;A first connector connecting the first catheter and the third tubing;

개체의 하대 정맥에 삽입하는 제2 카테터;a second catheter inserted into the subject's inferior vena cava;

상기 제2 카테터와 상기 엑소좀 순환 미디어를 연결하는 제4 튜빙;A fourth tubing connecting the second catheter and the exosome circulation media;

상기 제2 카테터와 상기 제4 튜빙을 연결하는 제2 커넥터; 및A second connector connecting the second catheter and the fourth tubing; and

상기 엑소좀 순환 미디어 및 플러핑 버퍼를 산소통과 연결하는 제5 튜빙;A fifth tubing connecting the exosome circulation media and fluffing buffer with an oxygen tank;

을 포함하는, 간혈관폐쇄회로 시스템을 제공한다.It provides a hepatic vascular occlusive circuit system including.

또한, 본 발명은 상기 간혈관폐쇄회로 시스템을 이용하여 간 유래 엑소좀을 추출하는 간 유래 엑소좀 추출 방법에 관한 것으로,In addition, the present invention relates to a method of extracting liver-derived exosomes using the liver vascular occlusion circuit system,

개체의 간문맥에 상기 제1 카테터를 삽입하는 단계;inserting the first catheter into the subject's portal vein;

상기 연동펌프를 작동시키는 단계;Operating the peristaltic pump;

상기 제1 카테터와 상기 펌프에 연결된 제1 커넥터를 체결하는 단계;Connecting the first catheter and a first connector connected to the pump;

개체의 하대 정맥에 상기 제2 카테터를 삽입하는 단계;inserting the second catheter into the inferior vena cava of the subject;

상기 제2 카테터를 제4 튜빙에 연결하고, 상기 제4 튜빙의 다른 끝부분을 상기 엑소좀 순환 미디어 튜브에 연결하는 단계;Connecting the second catheter to a fourth tubing and connecting the other end of the fourth tubing to the exosome circulating media tube;

상기 연동펌프를 중단하고 상기 엑소좀 순환 미디어가 펌프에 공급되도록 상기 3방향 커넥터의 스위치를 돌리는 단계;stopping the peristaltic pump and turning the switch on the three-way connector to supply the exosome circulating media to the pump;

상기 엑소좀 순환 미디어 및 플러싱 버퍼를 산소통과 연결하는 단계;Connecting the exosome circulation media and flushing buffer with an oxygen tank;

상기 연동펌프를 다시 작동시켜 상기 엑소좀 순환 미디어를 순환시키는 단계;Reactivating the peristaltic pump to circulate the exosome circulation media;

상기 순환된 엑소좀 순환 미디어를 원심분리하여 상층액을 분리하는 단계;Centrifuging the circulated exosome circulation media to separate the supernatant;

상기 분리된 상층액을 농축하는 단계; 및Concentrating the separated supernatant; and

상기 농축된 상층액으로부터 엑소좀을 분리하는 단계;를 포함하는 간 유래 엑소좀 추출 방법을 제공한다.It provides a liver-derived exosome extraction method comprising the step of isolating exosomes from the concentrated supernatant.

또한, 본 발명은 TM4SF5(Transmembrane 4 L6 family member 5) 단백질을 포함하는 엑소좀(exosome)을 함유하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating diabetes-related diseases, containing exosomes containing TM4SF5 (Transmembrane 4 L6 family member 5) protein.

본 발명자들은 간에서 특이적으로 유래되는 TM4SF5가 탑재된 엑소좀이 근육 세포, 지방 세포, 근육 조직 또는 지방 조직에서의 혈액 내 포도당 흡수를 촉진할 수 있음을 확인하였는 바, 본 발명의 간혈관폐쇄회로 시스템 및 이를 이용한 간 혹은 간상피세포 유래 엑소좀 추출 방법을 통해 간에서 특이적으로 유래되는 TM4SF5 탑재 엑소좀을 효율적으로 추출할 수 있고, 상기 추출된 엑소좀을 유효성분으로 포함하는 조성물은 당뇨 관련 질환의 치료제로 유용하게 사용될 수 있다. The present inventors confirmed that exosomes loaded with TM4SF5, which is specifically derived from the liver, can promote glucose absorption into the blood in muscle cells, adipocytes, muscle tissue, or adipose tissue, and the hepatic vascular occlusion of the present invention TM4SF5-loaded exosomes specifically derived from the liver can be efficiently extracted through a circuit system and a method of extracting exosomes derived from liver or liver epithelial cells using the same, and a composition containing the extracted exosomes as an active ingredient is effective in treating diabetes. It can be useful as a treatment for related diseases.

도 1은 본 발명의 간혈관폐쇄회로 시스템(Liver vein-closed circulation system)을 도식화한 도이다.
도 2a는 간상피세포 SNU449에 TM4SF5-APEX2 플라스미드를 형질주입(transfection)한 후, DAB 염색한 다음 상기 세포의 다소포체(multivesicular body, MVB) 내에 APEX2-표지된 TM4SF5(TM4SF5-APEX2)의 발현을 투과전자현미경(transmission electron microscope, TEM)을 통해 확인한 도이다.
도 2b는 상기 도 2a의 세포로부터 분리한 엑소좀 내의 TM4SF5-APEX2를 초저온전자현미경(cryo-electron microscopy, cryo-EM)을 통해 확인한 도이다.
도 3은 간혈관폐쇄회로 시스템을 이용하여 정상 C57BL/6 마우스로부터 샘플을 얻은 후, 투과전자현미경을 통해 샘플 내 간 유래 엑소좀을 확인한 도이다.
도 4a는 나노입자 추적 분석(nonoparticle tracking analysis, NTA)을 이용하여 간 유래 엑소좀의 크기를 확인한 도이다.
도 4b는 정상마우스, Tm4sf5 녹아웃(knock-out, KO) 마우스(Tm4sf5-/-) 및 간상피세포 특이적 Tm4sf5 과발현 마우스(Alb-Tm4sf5-FLAG TG)에서 분리한 간 유래 엑소좀 크기를 비교한 그래프이다.
도 4c는 마우스의 혈장 유래 엑소좀의 크기를 나노입자 추적 분석을 이용하여 확인한 도이다.
도 5a는 Tm4sf5 녹아웃(knock-out, KO) 마우스(Tm4sf5-/-) 및 간상피세포 특이적 Tm4sf5 과발현 마우스(Alb-Tm4sf5-FLAG)에서 분리한 primary 간상피세포에서의 Tm4sf5 발현 정도를 확인한 도이다.
도 5b는 간혈관폐쇄회로 시스템을 이용하여 Alb-Tm4sf5-FLAG 마우스로부터 엑소좀 샘플을 얻은 후, 샘플에서 엑소좀의 마커인 Alix, TSG101 및 Flottlin의 발현 정도를 확인한 도이다.
도 5c는 간상피세포 SNU449 세포에 대조군벡터 (EV, empty vector), TM4SF5 발현 벡터 (TM4SF5)를 주입하여 발현을 유발한 후, TM4SF5(-Strep)와 엑소좀마커 CD54 및 ALIX의 발현 정도를 확인한 도이다.
도 5d는 간상피세포 SNU449 세포에 대조군벡터, TM4SF5 발현 벡터를 주입시키고, 대조군 siRNA (NS, non-specific) 혹은 siTM4SF5 (TM4SF5의 #4 서열을 타깃으로 하는 siRNA)을 동시에 주입시키면서 TM4SF5의 발현을 제어한 후, TM4SF5, GLUT1 및 ALIX의 발현 정도를 확인한 도이다.
도 5e는 상기 도 5a의 간상피세포 및 상기 도 5b의 엑소좀 샘플에서의 Tm4sf5, Alix, TSG101, CD63, CD81 및 CD9의 발현 정도를 확인한 도이다.
도5f는 간상피세포 Huh7 세포를 Glucose가 없는 세포배양액에서 24시간동안 유지하다가 Glucose를 주어진 농도로 2시간동안 처리한 후, TM4SF5, CD63, ALIX, 및 CD54의 발현 정도를 확인한 도이다.
도5g는 간상피세포 Huh7 세포를 Glucose가 없는 세포배양액에서 24시간동안 유지하다가 Glucose를 25mM 농도로 주어진 시간동안 처리한 후, 세포푸출액 혹은 간상피세포 유래 엑소좀에서 TM4SF5, CD63 및 ALIX의 발현 정도를 확인한 도이다.
도5h는 간상피세포 SNU449 세포에 CD151-strep 혹은 TM4SF5-strep 발현 벡터를 HA-GLUT1 발현 벡터와 함께 transfection 시킨 후, Glucose가 없는 세포배양액에서 24시간동안 유지하다가 (-) serum (10%), Glucose를 25mM, 아미노산 혹은 아르지닌 10 mM로 24 시간동안 처리한 후 (+), 세포푸출액을 얻어 Strep-tagged 단백질을 avidin-sephrose bead로 침강시켜, 그 침강물에 HA-GLUT1이 함께 침강되었음을 웨스턴블랏을 통해 확인한 도이다.
도5i는 간상피세포 SNU449 세포에 TM4SF5-Strep WT, 혹은 여러 돌연변이를 발현시킨 후, 도 5h와 같은 실험 조건에서 GLUT1과 TM4SF5와의 결합 정도를 확인한 도이다.
도5j는 간상피세포 Hep3B 세포에 대조군 shRNA, 또는 ShTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, Glucose가 없는 세포배양액에서 4시간동안 유지하다가 (0) Glucose를 25mM로 주어진 시간동안 (10 혹은 20분) 처리한 후, S6K1(ribosomal protein S6 kinase beta-1) 및 AMPKα(catalytic subunit of AMP-activated protein kinase, AMPK)의 인산화 정도와 TM4SF5의 발현 정도를 확인한 도이다.
도5k는 간상피세포 Huh7 세포를 Glucose가 있는 (No Starv.) 또는 없는 세포배양액에서 24시간동안 유지하다가 Glucose를 25mM 농도로 주어진 시간동안 처리한 후, AMPK, ACCα(acetyl CoA carboxylase α), mTOR(mechanistic target of rapamycin) 및 S6K1의 인산화 정도 및 엑소좀 마커들의 발현을 확인한 도이다.
도5l은 간상피세포 Huh7 세포에 대조군 shRNA, 또는 ShTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, 세포를 glucose가 포함된 RPMI 배양액에서 정상적으로 키우거나 (RPMI), 세포배양액 내의 glucose를 24시간동안 배제한 후, 다시 25 mM로 24 시간동안 처리하지 않거나(glu-) 처리한 후(Glu+), 분리한 엑소좀의 평균크기를 나노입자 추적 분석을 이용하여 나타낸 도이다.
도5m는 간상피세포 Huh7 세포에 대조군 shRNA, 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, 세포를 RPMI 배양액에서 정상적으로 키우거나 (RPMI), 세포배양액 내의 glucose를 24시간동안 배제한 후, 다시 25 mM로 24 시간동안 처리하지 않거나(glu-) 처리한 후(Glu+), 분리한 엑소좀의 평균크기를 turnable resistive pulse sensing (TRPS)으로 분석하여 나타낸 도이다.
도5n은 도5m의 조건에서 Huh7 세포 유래 엑소좀을 size-exclusion chromatography를 거친 후 크기와 농도를 single angle dynamic light scattering (DLS) 방법을 통하여 확인한 도이다.
도5o는 간상피세포 Huh7 세포에 대조군 shRNA 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, 엑소좀을 분리하였다. 분리한 엑소좀에 존재하는 단백질들을 MALDI-TOF(matrix-assisted laser desorption/ionization time-of-flight) 기기를 이용하여 분석한 도이다. 도5o a는 대조군 shRNA를 주입한 TM4SF5를 발현하는 세포로부터 분리한 엑소좀에 존재하는 단백질들에 대한 생물학적 과정을 위한 유전자 온톨로지 분석을 동반한 PANDER (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org) 분석(PANDER-GO-slim)을 나타낸 도이다. 도5o b와 c는 shTM4SF5 (#4 혹은 #12 서열을 각각 표적)을 주입한 세포로부터 얻은 엑소좀의 단백질을 동일하게 분석한 도이다. 도5o a에서 빨간색으로 열거된 단백질들은, TM4SF5가 발현하는 세포로부터 얻은 엑소좀에만 존재하는 단백질들이다.
도5p는 HEK293FT 세포주에 대조군 Strep-벡터 또는 Strep이 연결된 TM4SF1, TM4SF4, TM4SF5, TM4SF18, TM4SF20, CD9, CD151를 각각 HA-GLUT4와 함께 주입하여 발현되게 한 후, Strep-연결된 단백질들의 precipitates (침강물) 속에 HA-GLUT4가 존재함을 웨스턴블랏으로 확인함으로써 서로 결합하는 정도 (왼쪽) 혹은 HA-GLUT4 및 Strep의 발현 정도(오른쪽)를 확인한 도이다. EV 주입 조건에서 보이는 밴드(*)는 비특정적 인자이다.
도 6a는 간혈관폐쇄회로 시스템을 이용하여 정상 식이를 한 3마리의 정상 마우스(#1~#3) 및 24시간 사료를 제한하여 굶긴 2마리의 정상 마우스(#4, #5)로부터 간 유래 엑소좀을 분리한 후, 엑소좀의 크기를 확인한 도이다.
도 6b는 간혈관폐쇄회로 시스템을 이용하여 동일 마우스에서 엑소좀 순환 미디어를 관류(perfusion)할 때 포도당이 존재하는 미디어를 1 시간 흘러보내면서 얻은 엑소좀과, 그후 포도당이 포함되지 않은 미디어를 흘러보내면서 얻은 엑소좀 크기를 포도당의 존재 여부에 따라 확인한 도이다.
도6c는 HEK293FT 세포주에 대조군 Strep-벡터 또는 Strep-TM4SF5를 HA-GLUT1, HA-GLUT2, HA-GLUT3, HA-GLUT4, 혹은 HA-GLUT9과 함께 주입하여 발현되게 한 후, 세포배양액 내에 glucose를 배제하거나(-) 25 mM로 24시간 처리한 후(+), Strep-TM4SF5의 precipitates (침강물) 속에 HA-GLUTs가 존재함을 웨스턴블랏으로 확인함으로써 서로 결합하는 정도 (윗쪽) 혹은 HA-GLUTs 및 Strep-TM4SF5의 발현 정도(아래쪽)를 확인한 도이다.
도6d는 SNU449 세포주에 TM4SF5-FLAG및 HA-GLUT1을 동시에 주입하여 발현시킨 후, 형광면역염색법을 통하여 TM4SF5-FLAG (빨간색) 및 HA-GLUT1(녹색)의 분포위치를 확인한 도이다. 서로 색깔이 겹치는 부분이 존재함으로써, 서로가 결합하는 부위를 나타낸다.
도6e는 간상피세포 Huh7 세포에 대조군 shRNA 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절하거나, 100 μM fasentin (GLUT1/4 특이적 억제제)를 처리한 후, 그 세포 내부로의 glucose 흡수를 측정한 결과를 나타낸 도이다.
도6f는 마우스의 정상간상피세포인 AML12세포에 대조군벡터 또는 TM4SF5-HA를 주입하여 발현시킨 후, Seahorse XFe24 분석기 (Agilent, USA)를 이용하여 glucose 10 mM, oligomycin 1 μM, 및 50 mM 2-deoxy-D-glucose를 차례로 처리하면서 ECAR(extracellular acidification rate)를 측정하여 glycolytic stress test를 수행한 결과를 나타낸 도이다.
도6g는 AML12세포에 대조군벡터 또는 TM4SF5-HA를 주입하여 발현시킨 후, 대조군벡터(EV) 혹은 TM4SF5-HA를 주입하여 발현시킨 후, oligomycin 1 μM 처리하고서 점점 증가하는 농도의 glucose를 처리해가며 ECAR를 측정하여 glucose sensitivity를 확인한 결과를 나타낸 도이다.
도6h는 AML12세포에 대조군벡터, 대조군 siRNA, Glut1, Glut2, 또는 Glut4 siRNA를 주입한 후 엑소좀을 분리하고, 7일동안 분화시킨 정상 마우스의 갈색지방조직(BAT)세포와 분리한 엑소좀을 반응시킨 후, BAT 세포에 glucose, oligomycin, 및 2-DG를 차례대로 첨가하면서 ECAR를 측정한 결과를 나타낸 도이다.
도6i AML12세포에 대조군벡터, 대조군 siRNA, Glut1, Glut2, 또는 Glut4 siRNA를 주입한 후 엑소좀을 분리하고, 7일동안 분화시킨 정상 마우스의 갈색지방조직(BAT)세포와 분리한 엑소좀을 반응시킨 후, BAT 세포에 oligomycin 1.0 μM과 함께 glucose 0.5 mM을 처리하다가 약 30분마다 glucose의 농도를 1.0, 2.0, 및 5.0으로 높여 첨가하면서 ECAR를 측정하여 glucose sensitivity를 확인한 결과를 나타낸 도이다.
도6j는 대조군벡터(EV) 또는 Tm4sf5-Strep을 발현하는 AML12세포에서 분리한 엑소좀을 DMSO 혹은 TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone, TM4SF5 특이적 억제제]와 함께 갈색지방조직(BAT)세포에 처리한 후, BAT 세포추출액에서 strep-TM4SF5의 침강물 속에 존재하는 Strep 및 Glut4의 발현 정도를 확인함으로써 Strep-TM4SF5과 GLUT4의 결합을 확인한 도이다.
도6k는 대조군벡터(EV) 또는 Tm4sf5-Strep을 발현하는 AML12세포에서 분리한 엑소좀을 갈색지방조직세포에 처리한 후, Glucose Uptake-Glo?? Assay (J1343, Promega, WI)를 이용하여 glucose 흡수를 측정한 결과를 나타낸 도이다.
도7a는 간상피세포 특이적 Tm4sf5 과발현 마우스 및 Tm4sf5-/- 마우스(각 10여 마리로 매주 반복적 측정을 통한 단일코호트 연구)에 glucose를 2.0, 4.0, 1.0, 및 0.5 g/kg의 농도로 변화주면서 매주 한 번씩 주사한 후, 혈중 포도당 수준을 반복적으로 조사한 결과를 나타낸 도이다. 초기 4회에 걸친 분석 후, AAV8-Tbg-EV 혹은 AAV8-Tbg-Tm4sf5-HA (간상피세포 특이적 thyroxine binding globulin (Tbg) promoter와 연결된 HA-tagged Tm4sf5 gene을 encoding하는 adeno-associated virus subtype 8 (AAV8) 바이러스를 IV 주사하여 5주를 기다렸다가 16주령의 동물이 되었을 때, 2주에 걸쳐 2.0 및 4.0 g/kg의 glucose를 매주 한 번씩 주사한 후, 혈중 포도당 수준을 조사한 결과를 나타낸 도이다.
도 7b는 간상피세포 특이적 Tm4sf5 과발현 마우스(Alb-Tm4sf5 TG)로부터 분리한 간 유래 엑소좀을 처리하지 않았을 때, Tm4sf5-/- 마우스 및 대조군 정상마우스의 혈중 포도당 수준을 glucose(2g/kg)을 복강주사한 후 시간 별로 조사결과를 나타낸 도이다.
도 7c는 간상피세포 특이적 Tm4sf5 과발현 마우스(Alb-Tm4sf5 TG)로부터 분리한 간 유래 엑소좀을 처리하였을 때, Tm4sf5-/- 마우스 및 대조군 정상마우스의 혈중 포도당 수준을 glucose(2 g/kg)을 복강주사한 후 시간 별로 조사 결과를 나타낸 도이다.
도 8은 간혈관폐쇄회로 시스템을 이용하여 Alb-Tm4sf5 TG 마우스 또는 Tm4sf5-/- KO 마우스로부터 얻은 엑소좀을 IV 주사 24시간 후, 정상마우스의 여러 장기로 이동하는 정도를 각 장기들을 수술하여 확보하여 in vivo 동물이미징 장비를 이용하여 확인한 도이다.
도 9a는 Tm4sf5-HA를 발현하는 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, BAT로부터 분리하여 분화시킨 지방세포에 처리하고 Seahorse 장비를 이용하여 다양한 약물을 첨가한 상태에서 BAT 지방세포의 세포외부 용액의 산성화를 측정함으로써, 엑소좀 처리에 의한 지방세포의 해당작용(glycolysis) stress test를 수행한 결과를 나타낸 도이다.
도 9b는 Tm4sf5-HA를 발현하는 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, 갈색지방조직으로부터 분리하여 분화시킨 지방세포에 처리하고 Seahorse 장비를 이용하여 다양한 농도의 glucose를 추가적으로 첨가하면서 해당작용(glycolysis)에 의한 세포외부 용액의 산성화를 측정하여, 해당작용 기능의 활성화 정도를 측정한 결과를 나타낸 도이다.
도9c는 HA-Tm4sf5을 발현하는 AML12세포에서 분리한 엑소좀(AML12-sEVHA-Tm4sf5)을 4 x 108 particle/condition의 농도로 정상마우스에서 분리하여 분화시킨 갈색지방조직세포에 24시간 동안 처리하고 Glut1(왼쪽) 또는 Glut4(오른쪽)은 빨간색, HA-Tm4sf5는 녹색으로 염색한 후, 공촛점형광현미경으로 관찰한 결과를 나타낸 도이다.
도9d는 대조군 바이러스 AAV8-EV 혹은 Tm4sf5-HA 유전자를 발현하는 AAV8-Tbg-Tm4sf5-HA를 주사하고 3주 후 정상 WT 마우스 혹은 KO 마우스로부터 분리한 갈색지방조직세포를 이용하여 H&E 염색과 더불어 HA-Tm4sf5을 면역염색하여 염색된 정도를 관찰한 결과를 나타낸 도이다.
도9e는 도9d에서 확보한 갈색지방조직세포에서 개선된 열발생과 관련된 신호전달 인자, mTOR의 발현과 인산화, 그리고 UCP1(uncoupling Protein-1)의 발현을 확인한 결과를 나타낸 도이다.
도 10a는 Tm4sf5-HA를 발현하는 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을 C2C12 근육세포에 처리하고 근육세포 내로의 glucose uptake 정도를 분석한 결과를 나타낸 도이다.
도 10b는 TM4SF5를 원래 발현하는 인간 간상피세포 Huh7를 정상적인 RPMI-1640 배양액에서 배양한 상태에서 분리확보한 TM4SF5-엑소좀(Huh7-Exo-from cells in RPMI), Glucose가 배제된 배양액에서 배양된 후 분리한 TM4SF5-엑소좀(Huh7-Exo-from cells in glu- media), Glucose 25 mM가 포함된 배양액에서 배양된 후 분리한 TM4SF5-엑소좀(Huh7-Exo-from cells in glu+ media)를 각각 A204 근육세포에 45분간 처리한 후, 다양한 glucose 농도에 대한 glycoysis의 sensitivity를 확인한 결과를 나타낸 도이다.
Figure 1 is a schematic diagram of the liver vein-closed circulation system of the present invention.
Figure 2a shows the expression of APEX2-tagged TM4SF5 (TM4SF5-APEX2) in the multivesicular body (MVB) of the cells after transfection of TM4SF5-APEX2 plasmid into liver epithelial cells SNU449, followed by DAB staining. This is a diagram confirmed through a transmission electron microscope (TEM).
Figure 2b is a diagram confirming TM4SF5-APEX2 in exosomes isolated from the cells of Figure 2a through cryo-electron microscopy (cryo-EM).
Figure 3 is a diagram showing liver-derived exosomes in the sample obtained through a transmission electron microscope after obtaining a sample from a normal C57BL/6 mouse using the liver vascular occlusion circuit system.
Figure 4a is a diagram confirming the size of liver-derived exosomes using nanoparticle tracking analysis (NTA).
Figure 4b compares the sizes of liver-derived exosomes isolated from normal mice, Tm4sf5 knock-out (KO) mice (Tm4sf5 -/- ), and mice overexpressing liver epithelial cell-specific Tm4sf5 (Alb-Tm4sf5-FLAG TG). It's a graph.
Figure 4c is a diagram confirming the size of mouse plasma-derived exosomes using nanoparticle tracking analysis.
Figure 5a shows the level of Tm4sf5 expression in primary hepatic epithelial cells isolated from Tm4sf5 knockout (KO) mice (Tm4sf5 -/- ) and hepatic epithelial cell-specific Tm4sf5 overexpressing mice (Alb-Tm4sf5-FLAG). am.
Figure 5b is a diagram confirming the expression level of exosome markers Alix, TSG101, and Flottlin in the sample after obtaining exosome samples from Alb-Tm4sf5-FLAG mice using the hepatic vascular occlusion circuit system.
Figure 5c shows the expression level of TM4SF5 (-Strep) and exosome markers CD54 and ALIX after injecting control vector (EV, empty vector) and TM4SF5 expression vector (TM4SF5) into liver epithelial SNU449 cells to induce expression. It's a degree.
Figure 5d shows the expression of TM4SF5 by injecting a control vector and a TM4SF5 expression vector into liver epithelial SNU449 cells, and simultaneously injecting control siRNA (NS, non-specific) or siTM4SF5 (siRNA targeting #4 sequence of TM4SF5). This is a diagram confirming the expression levels of TM4SF5, GLUT1, and ALIX after control.
Figure 5e is a diagram confirming the expression levels of Tm4sf5, Alix, TSG101, CD63, CD81, and CD9 in the liver epithelial cells of Figure 5a and the exosome sample of Figure 5b.
Figure 5f is a diagram confirming the expression levels of TM4SF5, CD63, ALIX, and CD54 after liver epithelial Huh7 cells were maintained in a glucose-free cell culture medium for 24 hours and then treated with glucose at a given concentration for 2 hours.
Figure 5g shows the expression of TM4SF5, CD63, and ALIX in cell exudate or liver epithelial cell-derived exosomes after hepatic epithelial Huh7 cells were maintained in a glucose-free cell culture medium for 24 hours and then treated with glucose at a concentration of 25mM for a given time. This is a degree that confirms the degree.
Figure 5h shows liver epithelial SNU449 cells transfected with CD151-strep or TM4SF5-strep expression vector together with HA-GLUT1 expression vector, and then maintained in cell culture medium without glucose for 24 hours with (-) serum (10%). After treatment with 25mM of glucose and 10mM of amino acid or arginine for 24 hours (+), the cell exudate was obtained and the Strep-tagged protein was precipitated with avidin-sephrose beads. Western analysis showed that HA-GLUT1 was co-precipitated in the precipitate. This is a diagram confirmed through blotting.
Figure 5i is a diagram confirming the degree of binding between GLUT1 and TM4SF5 under the same experimental conditions as Figure 5h after expressing TM4SF5-Strep WT or several mutants in liver epithelial SNU449 cells.
Figure 5j shows that after controlling the expression of TM4SF5 by injecting control shRNA or ShTM4SF5 into liver epithelial Hep3B cells, the expression was maintained in cell culture medium without glucose for 4 hours, and then (0) glucose was added to 25mM for a given time (10 or 20 minutes) After treatment, the degree of phosphorylation of S6K1 (ribosomal protein S6 kinase beta-1) and AMPKα (catalytic subunit of AMP-activated protein kinase, AMPK) and the expression level of TM4SF5 were confirmed.
Figure 5k shows that liver epithelial Huh7 cells were maintained in cell culture medium with or without glucose (No Starv.) for 24 hours, and then treated with glucose at a concentration of 25mM for a given time, and then AMPK, ACCα (acetyl CoA carboxylase α), and mTOR. This is a diagram confirming the degree of phosphorylation of (mechanistic target of rapamycin) and S6K1 and the expression of exosomal markers.
Figure 5l shows that after controlling the expression of TM4SF5 by injecting control shRNA or ShTM4SF5 into hepatic epithelial Huh7 cells, the cells were grown normally in RPMI culture medium containing glucose (RPMI) or glucose in the cell culture medium was excluded for 24 hours. This figure shows the average size of the isolated exosomes after treatment (Glu+) or untreated (Glu-) with 25 mM for 24 hours using nanoparticle tracking analysis.
Figure 5m shows that after controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial cells Huh7 cells, cells were grown normally in RPMI culture medium (RPMI), or glucose in the cell culture medium was excluded for 24 hours, and then grown again at 25 This figure shows the average size of isolated exosomes analyzed by turnable resistive pulse sensing (TRPS) without treatment (glu-) or after treatment (Glu+) with mM for 24 hours.
Figure 5n is a diagram showing the size and concentration of exosomes derived from Huh7 cells after undergoing size-exclusion chromatography under the conditions of Figure 5m, and confirming the size and concentration using the single angle dynamic light scattering (DLS) method.
Figure 5o shows exosomes were isolated after controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial Huh7 cells. This is a diagram showing the analysis of proteins present in isolated exosomes using a MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) device. Figure 5o a shows PANDER (Protein Analysis Through Evolutionary Relationships, http://pantherdb. org) analysis (PANDER-GO-slim). Figure 5o b and c show the same analysis of the proteins of exosomes obtained from cells injected with shTM4SF5 (targeting #4 or #12 sequences, respectively). The proteins listed in red in Figure 5o a are proteins that exist only in exosomes obtained from cells expressing TM4SF5.
Figure 5p shows the precipitates (precipitates) of Strep-linked proteins after expression by injecting the control Strep-vector or Strep-linked TM4SF1, TM4SF4, TM4SF5, TM4SF18, TM4SF20, CD9, and CD151 together with HA-GLUT4, respectively, into the HEK293FT cell line. This is a diagram confirming the degree of binding to each other (left) or the level of expression of HA-GLUT4 and Strep (right) by confirming the presence of HA-GLUT4 in the genus by Western blot. The band (*) visible under EV injection conditions is a non-specific factor.
Figure 6a shows livers derived from three normal mice (#1 to #3) fed a normal diet and two normal mice (#4, #5) starved by restricting food for 24 hours using a hepatic vascular occlusive circuit system. This is a diagram showing the size of the exosomes after isolating them.
Figure 6b shows exosomes obtained by flowing media containing glucose for 1 hour when perfusing exosome circulating media in the same mouse using a hepatic vascular occlusion system, and then flowing media without glucose. This is a diagram in which the size of exosomes obtained during sending was confirmed based on the presence or absence of glucose.
Figure 6c shows control Strep-vector or Strep-TM4SF5 was injected together with HA-GLUT1, HA-GLUT2, HA-GLUT3, HA-GLUT4, or HA-GLUT9 into the HEK293FT cell line to express it, and then glucose was excluded from the cell culture medium. Or (-) after treatment with 25 mM for 24 hours (+), the presence of HA-GLUTs in the precipitates (precipitates) of Strep-TM4SF5 was confirmed by Western blot to show the degree of binding to each other (top) or HA-GLUTs and Strep -This is a diagram confirming the expression level of TM4SF5 (bottom).
Figure 6d is a diagram confirming the distribution location of TM4SF5-FLAG (red) and HA-GLUT1 (green) through fluorescence immunostaining after TM4SF5-FLAG and HA-GLUT1 were simultaneously injected and expressed in the SNU449 cell line. The presence of areas where colors overlap each other indicates the area where they combine.
Figure 6e shows the results of measuring glucose uptake into the cells after controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial Huh7 cells or treating them with 100 μM fasentin (a GLUT1/4 specific inhibitor). This is a diagram showing .
Figure 6f shows AML12 cells, which are normal liver epithelial cells in mice, were expressed by injecting a control vector or TM4SF5-HA, and then using a Seahorse This diagram shows the results of a glycolytic stress test by measuring ECAR (extracellular acidification rate) while sequentially treating deoxy-D-glucose.
Figure 6g shows ECAR by injecting control vector or TM4SF5-HA into AML12 cells and expressing them, followed by expression by injecting control vector (EV) or TM4SF5-HA, followed by treatment with oligomycin 1 μM and treatment with increasing concentrations of glucose. This diagram shows the results of measuring and confirming glucose sensitivity.
Figure 6h shows exosomes isolated after injecting control vector, control siRNA, Glut1, Glut2, or Glut4 siRNA into AML12 cells, and exosomes isolated from normal mouse brown adipose tissue (BAT) cells differentiated for 7 days. This diagram shows the results of measuring ECAR while sequentially adding glucose, oligomycin, and 2-DG to BAT cells after reaction.
Figure 6i After injecting control vector, control siRNA, Glut1, Glut2, or Glut4 siRNA into AML12 cells, exosomes were isolated and reacted with normal mouse brown adipose tissue (BAT) cells differentiated for 7 days. After treatment, BAT cells were treated with 1.0 μM of oligomycin and 0.5 mM of glucose. The concentration of glucose was increased to 1.0, 2.0, and 5.0 every 30 minutes, and ECAR was measured to confirm glucose sensitivity.
Figure 6j shows exosomes isolated from AML12 cells expressing control vector (EV) or Tm4sf5-Strep with DMSO or TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone, TM4SF5 specific inhibitor] in brown adipose tissue. This is a diagram confirming the binding of Strep-TM4SF5 and GLUT4 by checking the expression level of Strep and Glut4 present in the precipitate of Strep-TM4SF5 in BAT cell extract after treatment with (BAT) cells.
Figure 6k shows Glucose Uptake-Glo?? after exosomes isolated from AML12 cells expressing control vector (EV) or Tm4sf5-Strep were treated with brown adipose tissue cells. This diagram shows the results of measuring glucose absorption using Assay (J1343, Promega, WI).
Figure 7a shows changes in glucose concentrations of 2.0, 4.0, 1.0, and 0.5 g/kg in hepatic epithelial cell-specific Tm4sf5-overexpressing mice and Tm4sf5 -/- mice (single-cohort study with repeated weekly measurements of about 10 mice each). This diagram shows the results of repeatedly examining blood glucose levels after injections once a week. After the initial four rounds of analysis, AAV8-Tbg-EV or AAV8-Tbg-Tm4sf5-HA (adeno-associated virus subtype 8 encoding the HA-tagged Tm4sf5 gene linked to the liver epithelial cell-specific thyroxine binding globulin (Tbg) promoter) (AAV8) This diagram shows the results of examining blood glucose levels after IV injection of the virus, waiting for 5 weeks, and then injecting 2.0 and 4.0 g/kg of glucose once a week for 2 weeks when the animal became 16 weeks old. .
Figure 7b shows the blood glucose levels of Tm4sf5 -/- mice and control normal mice when liver-derived exosomes isolated from liver epithelial cell-specific Tm4sf5 overexpressing mice (Alb-Tm4sf5 TG) were not treated with glucose (2 g/kg). This diagram shows the results of the investigation by time after intraperitoneal injection.
Figure 7c shows the blood glucose levels of Tm4sf5 -/- mice and control normal mice when treated with liver-derived exosomes isolated from liver epithelial cell-specific Tm4sf5 overexpressing mice (Alb-Tm4sf5 TG) using glucose (2 g/kg). This diagram shows the results of the investigation by time after intraperitoneal injection.
Figure 8 shows the extent to which exosomes obtained from Alb-Tm4sf5 TG mice or Tm4sf5 -/- KO mice migrate to various organs of normal mice 24 hours after IV injection using the hepatic vascular occlusion circuit system by performing surgery on each organ. This was confirmed using in vivo animal imaging equipment.
Figure 9a shows exosomes isolated from the AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector, separated from BAT, treated with differentiated adipocytes, and treated with BAT using Seahorse equipment with various drugs added. This diagram shows the results of a glycolysis stress test of adipocytes by exosome treatment by measuring the acidification of the extracellular solution of adipocytes.
Figure 9b shows that exosomes isolated from the AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector were treated with adipocytes isolated from brown adipose tissue and differentiated, and various concentrations of glucose were added using Seahorse equipment. This diagram shows the results of measuring the degree of activation of the glycolysis function by measuring the acidification of the extracellular solution due to glycolysis during addition.
Figure 9c shows exosomes (AML12-sEV HA-Tm4sf5 ) isolated from AML12 cells expressing HA-Tm4sf5 at a concentration of 4 x 10 8 particles/condition and incubated in brown adipose tissue cells differentiated from normal mice for 24 hours. This diagram shows the results observed with a confocal fluorescence microscope after processing and staining Glut1 (left) or Glut4 (right) in red and HA-Tm4sf5 in green.
Figure 9d shows H&E staining and HA using brown adipose tissue cells isolated from normal WT mice or KO mice 3 weeks after injection of the control virus AAV8-EV or AAV8-Tbg-Tm4sf5-HA expressing the Tm4sf5-HA gene. This diagram shows the results of observing the degree of staining by immunostaining -Tm4sf5.
Figure 9e is a diagram showing the results of confirming the expression of signaling factors related to improved thermogenesis, mTOR expression and phosphorylation, and UCP1 (uncoupling protein-1) expression in the brown adipose tissue cells obtained in Figure 9d.
Figure 10a shows the results of treating C2C12 muscle cells with exosomes isolated from the AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector and analyzing the degree of glucose uptake into the muscle cells.
Figure 10b shows TM4SF5-exosomes (Huh7-Exo-from cells in RPMI) isolated from human liver epithelial cells Huh7, which originally express TM4SF5, were cultured in normal RPMI-1640 culture medium, and cultured in glucose-excluded culture medium. TM4SF5-exosomes (Huh7-Exo-from cells in glu-media), isolated after culturing in a culture medium containing 25 mM glucose, and TM4SF5-exosomes (Huh7-Exo-from cells in glu+ media), respectively. This diagram shows the results of confirming the sensitivity of glycolysis to various glucose concentrations after treating A204 muscle cells for 45 minutes.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 간 유래 엑소좀을 추출하기 위한 간혈관폐쇄회로 시스템에 있어서,The present invention relates to a liver vascular occlusion circuit system for extracting liver-derived exosomes,

상기 간혈관폐쇄회로를 순환시키기 위한 연동펌프;A peristaltic pump for circulating the hepatic vascular occlusive circuit;

상기 연동펌프에 의해 상기 간혈관폐쇄회로를 따라 순환되는 엑소좀 순환 미디어 및 플러싱 버퍼;Exosome circulating media and flushing buffer circulated along the hepatic vascular occlusive circuit by the peristaltic pump;

상기 엑소좀 순환 미디어 및 플러싱 버퍼의 순환을 조절하는 스위치를 포함하는 3방향 커넥터;A three-way connector including a switch to control circulation of the exosome circulation media and flushing buffer;

상기 연동 펌프의 투입구를 상기 3방향 커넥터와 연결하고, 상기 연동 펌프의 투출구를 제3 튜빙과 연결하는 제1 튜빙;a first tubing connecting the inlet of the peristaltic pump with the three-way connector and connecting the outlet of the peristaltic pump with a third tubing;

상기 엑소좀 순환 미디어 및 상기 플러싱 버퍼를 상기 3방향 커넥터와 각각 연결하는 제2 튜빙;A second tubing connecting the exosome circulation media and the flushing buffer with the three-way connector, respectively;

개체의 간문맥에 삽입하는 제1 카테터;A first catheter inserted into the subject's portal vein;

상기 제1 카테터와 상기 제1 튜빙을 연결하는 제3 튜빙;a third tubing connecting the first catheter and the first tubing;

상기 제1 카테터와 상기 제3 튜빙을 연결하는 제1 커넥터;A first connector connecting the first catheter and the third tubing;

개체의 하대 정맥에 삽입하는 제2 카테터;a second catheter inserted into the subject's inferior vena cava;

상기 제2 카테터와 상기 엑소좀 순환 미디어를 연결하는 제4 튜빙;A fourth tubing connecting the second catheter and the exosome circulation media;

상기 제2 카테터와 상기 제4 튜빙을 연결하는 제2 커넥터; 및A second connector connecting the second catheter and the fourth tubing; and

상기 엑소좀 순환 미디어 및 플러핑 버퍼를 산소통과 연결하는 제5 튜빙;A fifth tubing connecting the exosome circulation media and fluffing buffer with an oxygen tank;

을 포함하는, 간혈관폐쇄회로 시스템을 제공한다.It provides a hepatic vascular occlusive circuit system including.

상기 엑소좀은 신체의 모든 세포에 의해 방출되는 엔도솜 유래의 지질 이중층을 갖는 작은 막 소포를 말한다. 엑소좀은 세포 간 신호를 전달하기 위하여, 단백질, DNA, RNA 등을 가지고 세포 밖으로 분비되는 작은 소낭을 가리킬 수 있으며, 예컨대 단백질, 지질, mRNA, 마이크로RNA (miRNA) 및 게놈 DNA를 포함할 수 있다. 또한, 엑소좀은 다른 세포 및 조직에 결합하여 막 구성요소, 단백질, RNA를 전달하는 등의 다양한 역할을 하는 것으로 알려져 있다.The exosomes refer to small membrane vesicles with a lipid bilayer derived from endosomes that are released by all cells in the body. Exosomes may refer to small vesicles secreted outside the cell with proteins, DNA, RNA, etc. in order to transmit signals between cells, and may include, for example, proteins, lipids, mRNA, microRNA (miRNA), and genomic DNA. . In addition, exosomes are known to play a variety of roles, such as binding to other cells and tissues and delivering membrane components, proteins, and RNA.

본 발명의 구체적인 실시예에서 엑소좀은 간조직, 간조직/세포외액 (liver/extracellular fluid), 간상피세포 및 간세포로 이루어진 군으로부터 선택되는 어느 하나 이상으로부터 유래된 것일 수 있고, 바람직하게는 마우스의 간조직, 간상피세포 및 간세포로 이루어진 군으로부터 선택되는 어느 하나 이상으로부터 유래된 것일 수 있으나, 이에 제한되지 않는다.In a specific embodiment of the present invention, exosomes may be derived from any one or more selected from the group consisting of liver tissue, liver tissue/extracellular fluid, liver epithelial cells, and hepatocytes, and are preferably mouse. It may be derived from any one or more selected from the group consisting of liver tissue, liver epithelial cells, and hepatocytes, but is not limited thereto.

상기 플러싱 버퍼는 항온수조에 담겨 있을 수 있다. 상기 항온수조는 40℃내지 45℃의 온도를 유지할 수 있고, 바람직하게는 상기 항온수조는 42℃의 온도를 유지할 수 있다.The flushing buffer may be contained in a constant temperature water bath. The constant temperature water tank can maintain a temperature of 40°C to 45°C, and preferably, the constant temperature water tank can maintain a temperature of 42°C.

상기 엑소좀 순환 미디어 및 상기 플러싱 버퍼는 산소통과 연결할 수 있다.The exosome circulation media and the flushing buffer may be connected to an oxygen tank.

또한, 본 발명은 상기 간혈관폐쇄회로 시스템을 이용하여 간 유래 엑소좀을 추출하는 간 유래 엑소좀 추출 방법에 관한 것으로,In addition, the present invention relates to a method of extracting liver-derived exosomes using the liver vascular occlusion circuit system,

개체의 간문맥에 상기 제1 카테터를 삽입하는 단계;inserting the first catheter into the subject's portal vein;

상기 연동펌프를 작동시키는 단계;Operating the peristaltic pump;

상기 제1 카테터와 상기 펌프에 연결된 제1 커넥터를 체결하는 단계;Connecting the first catheter and a first connector connected to the pump;

개체의 하대 정맥에 상기 제2 카테터를 삽입하는 단계;inserting the second catheter into the inferior vena cava of the subject;

상기 제2 카테터를 제4 튜빙에 연결하고, 상기 제4 튜빙의 다른 끝부분을 상기 엑소좀 순환 미디어 튜브에 연결하는 단계;Connecting the second catheter to a fourth tubing and connecting the other end of the fourth tubing to the exosome circulating media tube;

상기 연동펌프를 중단하고 상기 엑소좀 순환 미디어가 펌프에 공급되도록 상기 3방향 커넥터의 스위치를 돌리는 단계;stopping the peristaltic pump and turning the switch on the three-way connector to supply the exosome circulating media to the pump;

상기 엑소좀 순환 미디어 및 플러싱 버퍼를 산소통과 연결하는 단계;Connecting the exosome circulation media and flushing buffer with an oxygen tank;

상기 연동펌프를 다시 작동시켜 상기 엑소좀 순환 미디어를 순환시키는 단계;Reactivating the peristaltic pump to circulate the exosome circulation media;

상기 순환된 엑소좀 순환 미디어를 원심분리하여 상층액을 분리하는 단계;Centrifuging the circulated exosome circulation media to separate the supernatant;

상기 분리된 상층액을 농축하는 단계; 및Concentrating the separated supernatant; and

상기 농축된 상층액으로부터 엑소좀을 분리하는 단계;를 포함하는 간 유래 엑소좀 추출 방법을 제공한다.It provides a liver-derived exosome extraction method comprising the step of isolating exosomes from the concentrated supernatant.

상기 엑소좀 순환 미디어를 순환시키는 단계는 30분 내지 90분동안 순환시킬 수 있고, 바람직하게는 45분 내지 75분동안 순환시킬 수 있고, 더욱 바람직하게는 50분 내지 70분동안 순환시킬 수 있으나, 이에 제한되지 않는다.The step of circulating the exosome circulation media may be performed for 30 to 90 minutes, preferably for 45 to 75 minutes, and more preferably for 50 to 70 minutes. It is not limited to this.

상기 순환된 엑소좀 순환 미디어를 원심분리하여 상층액을 분리하는 단계는 2,000 x g의 원심력으로 5분 내지 20분, 및 10,000 x g의 원심력으로 30분 내지 60분동안 원심분리기를 작동할 수 있고, 바람직하게는 2,000 x g의 원심력으로 7분 내지 15분, 및 10,000 x g의 원심력으로 40분 내지 50분동안 원심분리기를 작동할 수 있으며, 더욱 바람직하게는 2,000 x g의 원심력으로 10분, 및 10,000 x g의 원심력으로 45분동안 원심분리기를 작동할 수 있으나, 이에 제한되지 않는다.In the step of centrifuging the circulated exosome circulation media to separate the supernatant, the centrifuge may be operated at a centrifugal force of 2,000 x g for 5 to 20 minutes, and a centrifugal force of 10,000 x g for 30 to 60 minutes. Typically, the centrifuge can be operated for 7 to 15 minutes at a centrifugal force of 2,000 x g, and for 40 to 50 minutes at a centrifugal force of 10,000 The centrifuge can be operated for 45 minutes, but is not limited to this.

상기 분리된 상층액을 농축하는 단계는 분리된 엑소좀이 담겨진 미디어의 부피가 100 내지 1,000μl이 되도록 2000 x g 에서 10분간 4℃에서 원심분리하여 상층액을 얻고 이를 0.2μm 주사기필터를 이용하여 여과한다. 여과된 상층액을 10,000 x g에서 45분간 4℃에서 원심분리한 후 엑소좀 이외의 용액을 제거한 후, 새로운 튜브에 옮기고 50 kDa membrane 원심분리 농축기(Sartorius, VS2032)를 이용하여 원심분리하여 바람직하게는 200 내지 700μl로 농축할 수 있으며, 더욱 바람직하게는 400 내지 600μl를 얻어 약 5Х109particle/ml로 농축할 수 있으나, 이에 제한되지 않는다.In the step of concentrating the separated supernatant, the supernatant is obtained by centrifuging at 4°C for 10 minutes at 2000 do. The filtered supernatant was centrifuged at 10,000 It can be concentrated to 200 to 700 μl, and more preferably, 400 to 600 μl can be obtained and concentrated to about 5Х10 9 particles/ml, but is not limited thereto.

상기 엑소좀을 분리하는 단계는 크기 배제 크로마토그래피(size exclusion chromatography)를 이용하여 분리할 수 있으나, 이에 제한되지 않는다.The step of separating exosomes may be performed using size exclusion chromatography, but is not limited thereto.

상기 간 유래 엑소좀은 평균 크기의 분포 영역이 200 nm 이하로 좁아질 수 있고, 또한 200 nm보다 작은 크기를 포함하는 넓은 분포 영역의 엑소좀을 일컬을 수 있다.The liver-derived exosomes may have an average size distribution area narrowed to 200 nm or less, and may also refer to exosomes with a wide distribution area including a size smaller than 200 nm.

또한, 본 발명은 TM4SF5(Transmembrane 4 L6 family member 5) 단백질을 포함하는 엑소좀(exosome)을 함유하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating diabetes-related diseases, containing exosomes containing TM4SF5 (Transmembrane 4 L6 family member 5) protein.

상기 엑소좀은 간조직, 간세포외액, 간상피세포(hepatocyte) 및 간세포로 이루어진 군으로부터 선택되는 어느 하나 이상으로부터 유래될 수 있고, 상기 엑소좀은 혈당량을 조절할 수 있으며, 바람직하게는 상기 엑소좀은 근육 세포, 지방 세포, 근육 조직 또는 지방 조직의 혈액 내 포도당 흡수를 촉진하여 항상성(homeostasis)을 조절할 수 있다. The exosome may be derived from any one or more selected from the group consisting of liver tissue, liver extracellular fluid, liver epithelial cells (hepatocytes), and hepatocytes, and the exosome is capable of controlling blood sugar levels. Preferably, the exosome is It can regulate homeostasis by promoting glucose uptake in the blood by muscle cells, adipocytes, muscle tissue, or adipose tissue.

상기 엑소좀은 탑재된 TM4SF5가 Glut1과 결합을 하거나, Glut1의 활성을 필요로 하거나, 혈액 내 포도당을 간상피세포로 흡수를 촉진하거나, 간상피세포의 해당작용을 활성화하거나, 또는 혈액 내 포도당 항상성(homeostasis)을 조절할 수 있다.The exosomes allow the loaded TM4SF5 to bind to Glut1, require the activity of Glut1, promote the uptake of glucose in the blood into liver epithelial cells, activate glycolysis in liver epithelial cells, or regulate glucose homeostasis in the blood. (homeostasis) can be controlled.

상기 엑소좀은 탑재된 TM4SF5가 Glut4와 결합을 하거나, Glut4의 활성을 필요로 하거나, 혈액 내 포도당을 근육세포/조직 혹은 지방세포/조직으로 흡수를 촉진하거나, 근육 혹은 지방 조직 및 세포의 해당작용을 활성화하거나, 또는 혈액 내 포도당 항상성(homeostasis)을 조절할 수 있다.The exosomes allow the loaded TM4SF5 to bind to Glut4, require the activity of Glut4, promote the absorption of glucose in the blood into muscle cells/tissues or fat cells/tissues, or promote glycolysis in muscle or fat tissues and cells. It can activate or regulate glucose homeostasis in the blood.

상기 간 유래 엑소좀은 평균 크기의 분포 영역이 200 nm 이하로 좁아질 수 있고, 또한 200 nm보다 작은 크기를 포함하는 넓은 분포 영역의 엑소좀을 일컬을 수 있다.The liver-derived exosomes may have an average size distribution area narrowed to 200 nm or less, and may also refer to exosomes with a wide distribution area including a size smaller than 200 nm.

상기 당뇨 관련 질환은 지방간, 지방간염, 당뇨병, 고지혈증, 고혈압, 비만, 미세혈관 손상, 신경 손상, 케톤산혈증, 동맥경화, 심혈관질환 및 뇌혈관질환으로 이루어진 군으로부터 선택되는 어느 하나 이상의 질환일 수 있고, 바람직하게는 상기 당뇨 관련 질환은 당뇨병이나, 이에 제한되지 않는다.The diabetes-related disease may be any one or more diseases selected from the group consisting of fatty liver, steatohepatitis, diabetes, hyperlipidemia, hypertension, obesity, microvascular damage, nerve damage, ketoacidosis, arteriosclerosis, cardiovascular disease, and cerebrovascular disease, , Preferably, the diabetes-related disease is diabetes, but is not limited thereto.

본 발명의 구체적인 실시예에서, 인간의 간상피세포에 존재하는 엑소좀 내에 TM4SF5 단백질이 탑재되어 있는지 여부를 확인하기 위해 간상피세포 SNU449에 TM4SF5-APEX2 플라스미드를 형질주입(transfection)한 후, 48시간 후 DAB 염색을 하고 투과전자현미경으로 APEX2(ascorbate peroxidase 2)로 표지된 TM4SF5 단백질(TM4SF5-APEX2 단백질)의 발현 및 위치를 확인한 결과, 상기 간상피세포의 다소포체(multivesicular body, MVB) 내에서 검은 색으로 염색된 TM4SF5-APEX2 단백질이 막에 의해 둘러쌓여 있는 것을 확인하였고(도 2a 참조), 상기 간상피세포로부터 엑소좀을 분리하여 초저온전자현미경을 통해 TM4SF5 단백질 존재 여부를 확인한 결과, 상기 엑소좀 내에서 검은 색으로 염색된 TM4SF5-APEX2 단백질이 확인되었다(도 2b 참조). In a specific example of the present invention, to confirm whether TM4SF5 protein is loaded in exosomes present in human liver epithelial cells, TM4SF5-APEX2 plasmid is transfected into liver epithelial cells SNU449, and then 48 hours. After DAB staining and transmission electron microscopy, the expression and location of TM4SF5 protein (TM4SF5-APEX2 protein) labeled with APEX2 (ascorbate peroxidase 2) was confirmed. As a result, black was found within the multivesicular body (MVB) of the liver epithelial cells. It was confirmed that the color-stained TM4SF5-APEX2 protein was surrounded by a membrane (see Figure 2a), and as a result of separating exosomes from the liver epithelial cells and confirming the presence of TM4SF5 protein through cryo-electron microscopy, the exosomes TM4SF5-APEX2 protein stained black was confirmed within (see Figure 2b).

또한, 간혈관폐쇄회로 시스템을 통해 얻은 샘플에서 엑소좀이 존재하는지 여부를 확인하기 위해, 정상 마우스(C57BL/6)의 간을 이용하여 간혈관폐쇄회로 시스템을 통해 간혈관폐쇄회로를 1시간동안 순환시켜 샘플을 얻고, 얻은 샘플에서 엑소좀의 존재를 투과전자현미경을 통해 확인한 결과, 상기 샘플 내에서 엑소좀이 존재하는 것을 확인하였고, 엑소좀들은 일반적으로 200nm 이하의 지름을 가지는 것으로 확인되었다(도 3 참조).In addition, in order to confirm whether exosomes are present in the sample obtained through the hepatic vascular occlusion system, the liver of a normal mouse (C57BL/6) was used and the liver occlusion was performed for 1 hour through the hepatic vascular occlusion system. As a result of obtaining a sample by circulating it and confirming the presence of exosomes in the obtained sample through a transmission electron microscope, it was confirmed that exosomes were present in the sample, and the exosomes were generally confirmed to have a diameter of 200 nm or less ( 3).

또한, 혈장(serum)으로부터 얻어지는 일반적인 엑소좀과 간혈관폐쇄회로를 1시간동안 순환시켜 얻은 간 유래 엑소좀 사이의 물리적인 특성 차이를 확인하기 위해, 간 유래 엑소좀과 혈장 유래 엑소좀의 크기를 측정 비교한 결과, 정상 마우스에 비하여 Tm4sf5 KO 마우스의 간 유래 엑소좀의 크기가 대체적으로 더 큰 것으로 확인되었다(도 4a 참조). 또한, 간상피세포에서의 Tm4sf5의 발현이 높을수록 간상피세포유래 엑소좀의 크기가 작아짐이 확인되었으며 (도 4b 참조), 정상 마우스의 혈장으로부터 얻은 엑소좀의 평균 크기는 상대적으로 상기 간 유래 엑소좀과 비교하여 더 작은 것으로 확인되었다(도 4c 참조).In addition, in order to confirm the difference in physical properties between general exosomes obtained from plasma (serum) and liver-derived exosomes obtained by circulating in the liver vascular occlusion circuit for 1 hour, the sizes of liver-derived exosomes and plasma-derived exosomes were measured. As a result of the measurement comparison, it was confirmed that the size of exosomes derived from the liver of Tm4sf5 KO mice was generally larger than that of normal mice (see Figure 4a). In addition, it was confirmed that the higher the expression of Tm4sf5 in liver epithelial cells, the smaller the size of liver epithelial cell-derived exosomes (see Figure 4b), and the average size of exosomes obtained from the plasma of normal mice was relatively higher than that of the liver-derived exosomes. It was confirmed to be smaller compared to the moth (see Figure 4c).

또한, Tm4sf5 KO 마우스(Tm4sf5-/-) 및 Tm4sf5 유전자가 간상피세포에서 존재하는 Albumin 유전자의 프로모터에 연결되어 동물의 간상피세포에서만 Tm4sf5 유전자가 과발현되도록 만든 형질전환 마우스(Alb-Tm4sf5-FLAG)에서 분리한 일차 간상피세포(primary hepatocyte)를 이용하여 웨스턴블랏을 수행한 결과, 상기 일차 간상피세포에 TM4SF5 단백질이 발현되는 것을 확인하였고(도 5a 참조), Alb-Tm4sf5 마우스를 실시예 2의 방법으로 간혈관폐쇄회로를 1시간동안 순환시키고 샘플을 분리한 후, 분리된 샘플에 포함된 엑소좀에서 발현되는 단백질을 확인하기 위해, 웨스턴블랏을 수행한 결과, 엑소좀의 마커로 잘 알려진 Alix, TSG101 및 Flottlin 단백질의 발현이 확인되었으며(도 5b 참조), 간상피세포 SNU449 세포에 대조군벡터 (EV, empty vector), TM4SF5 발현 벡터 (TM4SF5)를 주입하여 발현을 유발한 후, TM4SF5(-Strep)와 엑소좀마커 CD54 및 ALIX의 발현 정도를 확인한 결과, TM4SF5의 Glycosylation가 불가능한 N138A/N155Q 돌연변이는 엑소좀에 존재하지 않았다. 반면, TM4SF5가 존재할 경우, ALIX의 존재가 현저히 줄어듦을 확인하였다 (도 5c 참조). 간상피세포 SNU449 세포에 대조군벡터, TM4SF5 발현 벡터를 주입시키고, 대조군 siRNA (NS, non-specific) 혹은 siTM4SF5 (TM4SF5의 #4 서열을 타깃으로 하는 siRNA)을 동시에 주입시키면서 TM4SF5의 발현을 제어한 후, TM4SF5, GLUT1 및 ALIX의 발현 정도를 확인한 결과, 엑소좀에서의 TM4SF5의 존재가 늘어나는 경우, GLUT1 및 ALIX의 발현량이 줄어들었고, TM4SF5의 존재가 (siTM4SF5에 의해) 줄어든 경우에서는 GLUT1 및 ALIX이 존재량이 감소하지 않았다 (도 5d 참조).In addition, Tm4sf5 KO mice (Tm4sf5 -/- ) and transgenic mice (Alb-Tm4sf5-FLAG) in which the Tm4sf5 gene is linked to the promoter of the albumin gene present in liver epithelial cells, causing the Tm4sf5 gene to be overexpressed only in the liver epithelial cells of the animal. As a result of performing a Western blot using primary hepatocytes isolated from After circulating the hepatic vascular occlusive circuit for 1 hour and separating the samples, Western blotting was performed to identify proteins expressed in exosomes contained in the separated samples. As a result, Alix, a well-known marker for exosomes, was used. , Expression of TSG101 and Flottlin proteins was confirmed (see Figure 5b), and expression was induced by injecting control vector (EV, empty vector) and TM4SF5 expression vector (TM4SF5) into hepatic epithelial SNU449 cells, and then TM4SF5 (-Strep) ) and the expression level of exosome markers CD54 and ALIX, the N138A/N155Q mutation, which is unable to glycosylate TM4SF5, was not present in exosomes. On the other hand, when TM4SF5 was present, it was confirmed that the presence of ALIX was significantly reduced (see Figure 5c). The control vector and TM4SF5 expression vector were injected into liver epithelial SNU449 cells, and the expression of TM4SF5 was controlled by simultaneously injecting control siRNA (NS, non-specific) or siTM4SF5 (siRNA targeting #4 sequence of TM4SF5). , As a result of checking the expression levels of TM4SF5, GLUT1, and ALIX, when the presence of TM4SF5 in exosomes increased, the expression levels of GLUT1 and ALIX decreased, and when the presence of TM4SF5 was decreased (by siTM4SF5), GLUT1 and ALIX were present. The amount did not decrease (see Figure 5d).

상기 일차 간상피세포 및 상기 간혈관폐쇄회로 시스템을 통해 분리한 엑소좀에서 발현되는 여러 단백질을 확인한 결과, 일차 간상피세포에는 Tm4sf5(-FLAG), TSG101 및 ALIX가 발현되는 것을 확인하였고, 간혈관폐쇄회로 시스템을 통해 분리한 엑소좀에서는 Tm4sf5, TSG101, ALIX, CD63 및 CD81이 발현되는 것을 확인하였다(도 5e참조).As a result of confirming several proteins expressed in the primary liver epithelial cells and exosomes isolated through the liver vascular occlusive circuit system, it was confirmed that Tm4sf5(-FLAG), TSG101, and ALIX were expressed in the primary liver epithelial cells, and the liver blood vessels It was confirmed that Tm4sf5, TSG101, ALIX, CD63, and CD81 were expressed in exosomes isolated through a closed-circuit system (see Figure 5e).

간상피세포 SNU449 세포에 대조군벡터, TM4SF5 발현 벡터를 주입시키고, 대조군 siRNA (NS, non-specific) 혹은 siTM4SF5 (TM4SF5의 #4 서열을 타깃으로 하는 siRNA)을 동시에 주입시키면서 TM4SF5의 발현을 제어한 후, TM4SF5, GLUT1 및 ALIX의 발현 정도를 확인한 결과, TM4SF5 및 CD63은 glucose를 처리한 후 시간이 지남에 따라 엑소좀에 탑재한 양이 서서히 증가하는 추세였지만, ALIX는 약하게 증가하다가 감소하는 경향을 보였다 (도5f 참조).The control vector and TM4SF5 expression vector were injected into liver epithelial SNU449 cells, and the expression of TM4SF5 was controlled by simultaneously injecting control siRNA (NS, non-specific) or siTM4SF5 (siRNA targeting #4 sequence of TM4SF5). , As a result of checking the expression levels of TM4SF5, GLUT1, and ALIX, the amount of TM4SF5 and CD63 loaded into exosomes gradually increased over time after glucose treatment, but ALIX showed a weak increase and then a tendency to decrease. (See Figure 5f).

간상피세포 Huh7 세포를 Glucose가 없는 세포배양액에서 24시간동안 유지하다가 Glucose를 25 mM로 주어진 시간동안 처리한 후, TM4SF5, CD63 및 ALIX의 발현 정도를 확인한 결과, TM4SF5 및 CD63은 glucose를 처리한 후 시간이 지남에 따라 엑소좀에 탑재한 양이 서서히 증가하는 추세이었지만, ALIX는 좀 더 약하게 증가하는 경향을 보였다 (도5g 참조).Liver epithelial cells Huh7 cells were maintained in a cell culture medium without glucose for 24 hours and then treated with 25 mM glucose for a given period of time. As a result of checking the expression levels of TM4SF5, CD63, and ALIX, TM4SF5 and CD63 were observed after treatment with glucose. Although the amount loaded into exosomes tended to gradually increase over time, ALIX showed a tendency to increase more weakly (see Figure 5g).

간상피세포 Huh7 세포를 Glucose가 없는 세포배양액에서 24시간동안 유지하다가 Glucose를 25mM 농도로 주어진 시간 동안 처리한 후, TM4SF5, CD63 및 ALIX의 발현 정도를 확인한 결과, 세포 외부에 glucose를 배제할 경우 TM4SF5가 GLUT1와의 결합이 잘 이루어지는 것에 대비하여, glucose를 공급하였을 경우(즉, TM4SF5-탑재한 엑소좀이 분비되는 경우) 그 결합이 억제됨을 확인하였다 (도5h 참조).Liver epithelial Huh7 cells were maintained in cell culture medium without glucose for 24 hours and then treated with glucose at a concentration of 25mM for a given period of time. As a result of checking the expression levels of TM4SF5, CD63, and ALIX, when glucose was excluded from the outside of the cells, TM4SF5 In contrast to the fact that the binding to GLUT1 was successful, it was confirmed that the binding was inhibited when glucose was supplied (i.e., when TM4SF5-loaded exosomes were secreted) (see Figure 5h).

간상피세포 SNU449 세포에 CD151-strep 혹은 TM4SF5-strep 발현 벡터를 HA-GLUT1을 transfection 시킨 후, HA-GLUT1의 발현 정도를 확인한 결과, WT, 혹은 Pro153Ala, Val156Ala 돌연변이 TM4SF5는 세포 외부 glucose의 처리에 따라 GLUT1과 결합력을 잃었으나, Thr157Ala 돌연변이 TM4SF5는 결합력이 유지됨을 확인하였다 (도5i 참조).After transfecting HA-GLUT1 with a CD151-strep or TM4SF5-strep expression vector into hepatic epithelial SNU449 cells, the expression level of HA-GLUT1 was confirmed. As a result, WT, Pro153Ala, and Val156Ala mutant TM4SF5 were affected by treatment with extracellular glucose. It was confirmed that the binding affinity to GLUT1 was lost, but the binding affinity of the Thr157Ala mutant TM4SF5 was maintained (see Figure 5i).

간상피세포 SNU449 세포에 TM4SF5-Strep WT, 혹은 여러 돌연변이를 발현시킨 후, GLUT1의 발현 정도를 확인한 결과, TM4SF5가 발현하는 경우, 발현억제된 경우에 대비하여, S6K1(ribosomal protein S6 kinase beta-1)의 인산화가 증가하였고 AMPKα(catalytic subunit of AMP-activated protein kinase, AMPK)의 인산화가 감소하여 고에너지상태를 확보함을 확인하였다 (도5j 참조).After expressing TM4SF5-Strep WT or several mutants in hepatic epithelial cells SNU449 cells, the expression level of GLUT1 was checked. As a result, in case of TM4SF5 expression, in case of expression repression, S6K1 (ribosomal protein S6 kinase beta-1) ) phosphorylation increased, and phosphorylation of AMPKα (catalytic subunit of AMP-activated protein kinase, AMPK) decreased, thereby ensuring a high-energy state (see Figure 5j).

간상피세포 Hep3B 세포에 대조군 shRNA, 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, S6K1(ribosomal protein S6 kinase beta-1), ACCα(acetyl CoA carboxylase α), mTOR, AKT 및 AMPKα(catalytic subunit of AMP-activated protein kinase, AMPK)의 인산화 정도 및 엑소좀의 바이오마커들의 발현을 확인하였다. Glucose를 처리하고 점진적으로 시간이 지남에 따라, 처리하지 않았을 경우에 대비하여, AMPK 및 ACC의 인산화가 감소함으로써 고에너지상태임을 나타내었고, 또한 mTOR(mechanistic target of rapamycin), S6K1, 및 AKT의 인산화가 증가하였다 (도5k 참조).After controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into liver epithelial Hep3B cells, S6K1 (ribosomal protein S6 kinase beta-1), ACCα (acetyl CoA carboxylase α), mTOR, AKT and AMPKα (catalytic subunit of The degree of phosphorylation of AMP-activated protein kinase (AMPK) and the expression of exosome biomarkers were confirmed. Compared to the case where glucose was not treated, the phosphorylation of AMPK and ACC gradually decreased over time, indicating a high energy state, and the phosphorylation of mTOR (mechanistic target of rapamycin), S6K1, and AKT. increased (see Figure 5k).

간상피세포 Huh7 세포에 대조군 shRNA, 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, 세포를 RPMI 배양액에서 정상적으로 키우거나 (RPMI), 세포배양액 내의 glucose를 24시간동안 배제한 후, 다시 25 mM로 24 시간동안 처리하지 않거나(glu-) 처리한 후(Glu+), 분리한 엑소좀의 평균 크기를 나노입자 추적 분석을 한 결과, TM4SF5가 발현하는 경우, glucose를 배제했을 경우에 비하여 다시 처리할 경우 엑소좀의 평균 크기가 줄어들었으나, TM4SF5의 발현이 억제된 경우에는 그러한 현상이 보이지 않았다 (도5l 참조).After controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial Huh7 cells, the cells were grown normally in RPMI culture medium (RPMI), or glucose in the cell culture medium was excluded for 24 hours, and then grown again at 25 mM for 24 hours. As a result of nanoparticle tracking analysis of the average size of exosomes isolated after treatment (Glu-) or treatment (Glu+) for a period of time, when TM4SF5 was expressed, exosomes were larger when treated again compared to when glucose was excluded. The average size of the moths was reduced, but this phenomenon was not observed when the expression of TM4SF5 was suppressed (see Figure 5l).

간상피세포 Huh7 세포에 대조군 shRNA, 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, 세포를 RPMI 배양액에서 정상적으로 키우거나 (RPMI), 세포배양액 내의 glucose를 24시간동안 배제한 후, 다시 25 mM로 24 시간동안 처리하지 않거나(glu-) 처리한 후(Glu+), 분리한 엑소좀의 turnable resistive pulse sensing (TRPS)으로 분석한 결과, glucose의 처리에 따라 엑소좀의 크기가 줄어듦을 확인하였다 (도5m 참조).After controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial Huh7 cells, the cells were grown normally in RPMI culture medium (RPMI), or glucose in the cell culture medium was excluded for 24 hours, and then grown again at 25 mM for 24 hours. As a result of analyzing exosomes isolated for a period of time without treatment (glu-) or after treatment (Glu+), it was confirmed that the size of exosomes decreased with glucose treatment (Figure 5m). reference).

도 5m과 동일한 조건에서 size-exclusion chromatography를 거친 Huh7 세포 유래 엑소좀의 크기와 농도를 single angle dynamic light scattering (DLS) 방법을 통하여 분석한 결과, 간상피세포에서 분비되는 TM4SF5 탑재 엑소좀은 세포 외부에 glucose를 배제하였다가 고농도롤 처리하였을 경우에 분비되는 데, 평균 크기가 훨씬 작게 분비됨을 확인하였다 (도5n 참조).As a result of analyzing the size and concentration of Huh7 cell-derived exosomes that underwent size-exclusion chromatography under the same conditions as in Figure 5M using single angle dynamic light scattering (DLS), it was found that TM4SF5-loaded exosomes secreted from liver epithelial cells were outside the cell. When glucose was excluded and treated with high concentration, it was secreted, and it was confirmed that the average size was much smaller (see Figure 5n).

간상피세포 Huh7 세포에 대조군 shRNA 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절한 후, 엑소좀을 분리하였다. 분리한 엑소좀에 존재하는 단백질들을 MALDI-TOF(matrix-assisted laser desorption/ionization time-of-flight) 기기를 이용하여 분석한 결과, TM4SF5가 발현하는 세포에서 분리한 엑소좀(a)에는 TM4SF5가 발현하지 않는 세포에게서 얻은 엑소좀(b 및 c)에 비하여, biological adhesion에 관련한 단백질들(빨간색으로 나열)이 추가적으로 존재함을 확인하였다 (도5o 참조).After controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial Huh7 cells, exosomes were isolated. As a result of analyzing the proteins present in the isolated exosomes using a MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) device, TM4SF5 was present in the exosome (a) isolated from cells expressing TM4SF5. Compared to exosomes obtained from non-expressing cells (b and c), it was confirmed that proteins related to biological adhesion (listed in red) were additionally present (see Figure 5o).

HEK293FT 세포주에 대조군 Strep-벡터 또는 Strep이 연결된 TM4SF1, TM4SF4, TM4SF5, TM4SF18, TM4SF20, CD9, CD151를 각각 HA-GLUT4와 함께 주입하여 발현되게 한 후, HA-GLUT4 및 Strep-연결된 단백질들과의 결합 정도를 확인한 결과, GLUT4에 TM4SF5는 TM4SF18과 CD151과 달리, TM4SF1, TM4SF4, TM4SF20와 CD9와 더불어 잘 결합함을 확인하였다 (도5p 참조).HEK293FT cell line was injected with a control Strep-vector or Strep-linked TM4SF1, TM4SF4, TM4SF5, TM4SF18, TM4SF20, CD9, and CD151, respectively, together with HA-GLUT4, and then combined with HA-GLUT4 and Strep-linked proteins. As a result of confirming the extent, it was confirmed that TM4SF5 binds well to GLUT4, unlike TM4SF18 and CD151, with TM4SF1, TM4SF4, TM4SF20, and CD9 (see Figure 5p).

또한, 포도당의 혈중 농도에 따른 간 유래 엑소좀의 변화 여부를 확인하기 위해 간혈관폐쇄회로 시스템을 이용하여 포도당 혈중 농도에 따른 엑소좀의 물리적 변화를 측정한 결과, 정상식이 조건의 정상 마우스 3마리로부터 분리한 간 유래 엑소좀의 평균 크기는 179.433±11.272nm인 반면, 사료를 제한한 조건의 정상마우스 2마리로부터 분리한 간 유래 엑소좀의 경우는 평균 276.9±3.818nm의 크기를 가져 정상식이 조건 마우스의 엑소좀 대비 엑소좀의 크기 분포가 매우 넓게 퍼져 있는 것을 확인하였고(도 6a 참조), 동일한 정상 마우스에서 엑소좀 순환 미디어를 관류(perfusion)할 때 포도당이 존재하는 미디어를 1 시간 흘러보내면서 얻은 엑소좀과, 그후 포도당이 포함되지 않은 미디어를 흘러보내면서 얻은 엑소좀 크기를 포도당의 존재 여부에 따라 확인한 결과, 포도당이 존재하는 상태에서 존재하지 않는 상태로 전환되었을 때 엑소좀의 크기 분포가 넓어지는 것을 확인하였다(도 6b 참조). In addition, in order to determine whether liver-derived exosomes change depending on the blood concentration of glucose, physical changes in exosomes according to the blood glucose concentration were measured using a hepatic vascular occlusion system. As a result, three normal mice under normal diet conditions were found. The average size of liver-derived exosomes isolated from 179.433 ± 11.272 nm was 179.433 ± 11.272 nm, while the average size of liver-derived exosomes isolated from 2 normal mice under feed-restricted conditions was 276.9 ± 3.818 nm, which is equivalent to the average size of 276.9 ± 3.818 nm under normal diet conditions. It was confirmed that the size distribution of exosomes was very wide compared to mouse exosomes (see Figure 6a), and when perfusion of exosome circulation media in the same normal mouse, media containing glucose was flowed for 1 hour. As a result of checking the size of the obtained exosomes and the exosomes obtained by flowing media that did not contain glucose according to the presence or absence of glucose, the size distribution of the exosomes when converted from the state in which glucose was present to the state in which it was not present was found to be It was confirmed that it was widening (see Figure 6b).

HEK293FT 세포주에 대조군 Strep-벡터 또는 Strep-TM4SF5를 HA-GLUT1, HA-GLUT2, HA-GLUT3, HA-GLUT4, HA-GLUT9과 함께 주입하여 발현되게 한 후, 세포배양액 내에 glucose를 배제하거나(-) 25 mM로 24시간 처리한 후(+), HA-연결 단백질(들)과 Strep-TM4SF5의 결합을 확인한 결과, TM4SF5는 GLUT1, GLUT4, GLUT9과 결합함을 확인하였다 (도6c 참조).After injecting the control Strep-vector or Strep-TM4SF5 together with HA-GLUT1, HA-GLUT2, HA-GLUT3, HA-GLUT4, and HA-GLUT9 into the HEK293FT cell line to express them, glucose was excluded from the cell culture medium or (-) After treatment with 25 mM for 24 hours (+), the binding of HA-linked protein(s) and Strep-TM4SF5 was confirmed, and it was confirmed that TM4SF5 bound to GLUT1, GLUT4, and GLUT9 (see Figure 6c).

SNU449 세포주에 TM4SF5-FLAG및 HA-GLUT1을 동시에 주입하여 발현시킨 후, 형광면역염색법을 통하여 TM4SF5-FLAG 및 및 HA-GLUT1의 분포 위치를 확인한 결과, TM4SF5와 GLUT1이 간상피세포 막에서 서로 함께 존재함으로써 결합할 수 있음을 확인하였다 (도6d 참조).After TM4SF5-FLAG and HA-GLUT1 were simultaneously injected and expressed in the SNU449 cell line, the distribution location of TM4SF5-FLAG and HA-GLUT1 was confirmed through fluorescence immunostaining, and the results showed that TM4SF5 and GLUT1 coexist in the liver epithelial cell membrane. It was confirmed that binding was possible by doing this (see Figure 6d).

간상피세포 Huh7 세포에 대조군 shRNA 또는 shTM4SF5를 주입하여 TM4SF5의 발현을 조절하거나, 100 μM fasentin를 처리한 후, 그 세포 내부로의 glucose 흡수를 측정한 결과, TM4SF5가 발현 억제되었거나 GLUT1/4 억제제(fasentin)가 처리되었을 경우에 Glucose 흡수가 저하되는 것을 확인하였다 (도6e 참조).After controlling the expression of TM4SF5 by injecting control shRNA or shTM4SF5 into hepatic epithelial Huh7 cells or treating them with 100 μM facentin, glucose uptake into the cells was measured, and results showed that TM4SF5 expression was suppressed or GLUT1/4 inhibitor ( It was confirmed that glucose absorption was reduced when treated with fasentin (see Figure 6e).

마우스의 정상간상피세포인 AML12세포에 대조군벡터 또는 TM4SF5-HA를 주입하여 발현시킨 후, glycolytic stress test를 수행한 결과, TM4SF5를 발현하는 세포에서 ECAR의 정도가 훨씬 높아 해당작용이 활성화되었음을 확인하였다 (도6f 참조).After injecting and expressing control vector or TM4SF5-HA into AML12 cells, which are normal liver epithelial cells of mice, a glycolytic stress test was performed. As a result, the degree of ECAR was much higher in cells expressing TM4SF5, confirming that glycolysis was activated. (See Figure 6f).

AML12세포에 대조군벡터 또는 TM4SF5-HA를 주입하여 발현시킨 후, 대조군벡터(EV) 혹은 TM4SF5-HA를 주입하여 발현시킨 후, glucose sensitivity를 확인한 결과, TM4SF5를 발현하는 세포에서 낮은 glucose의 처리에서도 ECAR의 정도가 훨씬 높아 해당작용이 혈당에 좀 더 예민하게 활성화될 수 있음을 확인하였다 (도6g 참조).After expressing by injecting control vector or TM4SF5-HA into AML12 cells, and then expressing by injecting control vector (EV) or TM4SF5-HA, glucose sensitivity was confirmed. As a result, ECAR was observed even when treated with low glucose in cells expressing TM4SF5. The degree of was much higher, confirming that glycolysis can be activated more sensitively to blood sugar (see Figure 6g).

AML12세포에 대조군벡터, 대조군 siRNA, Glut1, Glut2, 또는 Glut4 siRNA를 주입한 후 엑소좀을 분리하고, 7일동안 분화시킨 정상 마우스의 갈색지방조직(BAT)세포와 반응시킨 후, glucose, oligomycin, 및 2-DG를 차례대로 첨가하면서 ECAR를 측정한 결과, 간상피세포의 TM4SF5와 Glut1/Glut4의 발현이 되는 경우에 분비되는 엑소좀은 표적세포 (갈색지방조직세포)에게 해당작용의 활성화가 초래될 수 있음이 확인되었다. (도6h 참조).After injecting control vector, control siRNA, Glut1, Glut2, or Glut4 siRNA into AML12 cells, exosomes were isolated and reacted with normal mouse brown adipose tissue (BAT) cells differentiated for 7 days, followed by glucose, oligomycin, As a result of measuring ECAR while sequentially adding and 2-DG, exosomes secreted when TM4SF5 and Glut1/Glut4 are expressed in liver epithelial cells cause activation of glycolysis in target cells (brown adipose tissue cells). It has been confirmed that this can be done. (See Figure 6h).

AML12세포에 대조군벡터, 대조군 siRNA, Glut1, Glut2, 또는 Glut4 siRNA를 주입한 후 엑소좀을 분리하고, 7일동안 분화시킨 정상 마우스의 갈색지방조직(BAT)세포와 반응시킨 후, oligomycin 1.0 μM과 함께 glucose 0.5 mM을 처리하다가 약 30분마다 glucose의 농도를 1.0, 2.0, 및 5.0으로 높여 첨가하면서 ECAR를 측정하여 glucose sensitivity를 확인한 결과, TM4SF5이 발현하는 간상피세포 유래 엑소좀의 표적세포 해당작용 활성화의 기능에 간상피세포의 Glut4는 필요치 않음을 확인하였다 (도6i 참조).After injecting control vector, control siRNA, Glut1, Glut2, or Glut4 siRNA into AML12 cells, exosomes were isolated, reacted with normal mouse brown adipose tissue (BAT) cells differentiated for 7 days, and incubated with 1.0 μM of oligomycin. While treating with 0.5mM of glucose, the concentration of glucose was increased to 1.0, 2.0, and 5.0 every 30 minutes, and glucose sensitivity was confirmed by measuring ECAR. As a result, the target cell glycolysis of exosomes derived from liver epithelial cells expressing TM4SF5 was confirmed. It was confirmed that Glut4 in liver epithelial cells is not required for the activation function (see Figure 6i).

대조군벡터(EV) 또는 Tm4sf5-Strep을 발현하는 AML12세포에서 분리한 엑소좀을 갈색지방조직(BTA)세포에 처리한 후, Strep 및 Glut4의 결합 정도를 확인한 결과, 간상피세포-유래 Tm4sf5 탑재 엑소좀은 BAT 표적세포에 부착하여 Tm4sf5-Strep과 Glut4가 결합 가능함을 확인할 수 있었다 (도6j 참조).After processing exosomes isolated from AML12 cells expressing control vector (EV) or Tm4sf5-Strep into brown adipose tissue (BTA) cells, the degree of binding of Strep and Glut4 was confirmed. As a result, hepatic epithelial cell-derived Tm4sf5-loaded exosomes It was confirmed that the microbes attached to BAT target cells allowed Tm4sf5-Strep and Glut4 to bind (see Figure 6j).

대조군벡터(EV) 또는 Tm4sf5-Strep을 발현하는 AML12세포에서 분리한 엑소좀을 갈색지방조직(BAT)세포에 처리한 후, glucose 흡수를 측정한 결과, Tm4sf5가 발현하는 간상피세포-유래 엑소좀을 처리한 경우, 특히 농도에 의존적으로, glucose 흡수가 증가함을 확인하였다 (도6k 참조).Exosomes isolated from AML12 cells expressing control vector (EV) or Tm4sf5-Strep were treated with brown adipose tissue (BAT) cells, and glucose uptake was measured. As a result, hepatic epithelial cell-derived exosomes expressing Tm4sf5 When treated, it was confirmed that glucose absorption increased, especially depending on concentration (see Figure 6k).

또한, 8주령 간상피세포 특이적 Tm4sf5 과발현 마우스 및 Tm4sf5-/- 마우스에 매주 glucose를 2.0, 4.0, 1.0, 및 0.5 g/kg의 농도로 한 번씩 주사한 후, 혈중 포도당 수준을 조사한 결과, WT 및 alb-TG 마우스는 Tm4sf5-/- KO 마우스보다 혈액 내 glucose 수준이 낮음을 확인을 하였다 (점선 왼쪽). 한편, AAV8-Tbg-EV 및 AAV8-Tbg-Tmsf5-HA를 IV주사한 후, 5주 후에 혈중 포도당 수준을 확인한 결과, WT 마우스는 Tm4sf5-/- KO 마우스에 배비하여 혈액 내 glucose 수준이 차이가 나지 않음을 확인하였다 (점선 오른쪽) (도 7a 참조). In addition, 8-week-old liver epithelial cell-specific Tm4sf5-overexpressing mice and Tm4sf5 -/- mice were injected with glucose once a week at concentrations of 2.0, 4.0, 1.0, and 0.5 g/kg, and the blood glucose levels were examined. As a result, WT and alb-TG mice were confirmed to have lower blood glucose levels than Tm4sf5-/- KO mice (left of the dotted line). Meanwhile, as a result of checking the blood glucose level 5 weeks after IV injection of AAV8-Tbg-EV and AAV8-Tbg-Tmsf5-HA, there was a difference in the blood glucose level between WT mice and Tm4sf5-/- KO mice. It was confirmed that it did not appear (right side of the dotted line) (see Figure 7a).

또한, TM4SF5가 탑재된 간 유래 엑소좀이 다양한 세포 또는 조직의 포도당 흡수 및 혈당량 조절에 미치는 영향을 확인하기 위해, Tm4sf5 유전자를 알부민 프로모터(Albumin promoter)를 이용하여 간에서 과발현 시킨 마우스(Alb-Tm4sf5)에서 간혈관폐쇄회로 시스템을 통해 얻은 엑소좀을 크기 배제 크로마토그래피(size exclusion chromatography)를 통해 분리해서 TM4SF5가 탑재된 간 유래 엑소좀을 정상 마우스(WT) 또는 Tm4sf5 KO 마우스(Tm4sf5-/-)에 투여한 후 그 결과를 확인하였다. 일반적으로 Tm4sf5-/- 마우스는 포도당 주사 후 일정 시간동안 혈중 포도당 처리 능력이 정상 마우스에 비해 떨어지는 표현형을 나타내는 반면(도 7b 참조), Alb-Tm4sf5 마우스의 간에서 유래된 엑소좀을 정상마우스에 주사하였을 경우에 대비하여 Tm4sf5-/- 마우스에 주사했을 경우 혈액 속의 포도당 수준이 낮아짐으로써, 대조군 대비 포도당 처리 능력이 유의하게 좋아진 것을 확인하였다(도 7c 참조).In addition, to confirm the effect of liver-derived exosomes loaded with TM4SF5 on glucose uptake and blood sugar level control in various cells or tissues, the Tm4sf5 gene was overexpressed in the liver using the albumin promoter (Alb-Tm4sf5). ), exosomes obtained through the hepatic vascular occlusion circuit system were separated through size exclusion chromatography, and liver-derived exosomes loaded with TM4SF5 were obtained from normal mice (WT) or Tm4sf5 KO mice (Tm4sf5 -/- ). After administration, the results were confirmed. In general, Tm4sf5 -/- mice exhibit a phenotype in which their blood glucose processing ability is lower than that of normal mice for a certain period of time after glucose injection (see Figure 7b), whereas exosomes derived from the liver of Alb-Tm4sf5 mice are injected into normal mice. When injected into Tm4sf5 -/- mice, the level of glucose in the blood was lowered, confirming that the glucose processing ability was significantly improved compared to the control group (see Figure 7c).

간혈관폐쇄회로 시스템으로 얻은 간 유래 엑소좀이 조직 및 장기에 이동하는 정도를 확인하기 위해, 정상 마우스에 간 유래 엑소좀을 주사한 후 in vivo 동물이미징 장비를 이용하여 관찰한 결과, Alb-Tm4sf5 TG 마우스의 간 유래 엑소좀이나 Tm4sf5-/- KO 마우스의 간 유래 엑소좀이 큰 차이를 보이지 않았으나, Tm4sf5-/- KO 마우스의 간 유래 엑소좀이 24시간 처리동안 폐 및 다리뼈로 좀 더 도달하였고, TM4SF5가 탑재된 Alb-Tm4sf5 TG 마우스의 간 유래 엑소좀은 Tm4sf5-/- 등쪽의 갈색지방조직(brown adipose tissue, BAT) 조직으로 좀 더 도달하고 흡수되는 것으로 확인되었다(도 8 참조).To confirm the extent to which liver-derived exosomes obtained by the hepatic vascular occlusion circuit system migrate to tissues and organs, liver-derived exosomes were injected into normal mice and observed using in vivo animal imaging equipment. As a result, Alb-Tm4sf5 There was no significant difference between exosomes derived from the liver of TG mice or exosomes derived from the liver of Tm4sf5 -/- KO mice, but exosomes derived from the liver of Tm4sf5 -/- KO mice reached the lungs and leg bones more during 24-hour treatment. It was confirmed that exosomes derived from the liver of Alb-Tm4sf5 TG mice loaded with TM4SF5 reached and were absorbed further into the brown adipose tissue (BAT) tissue on the back of Tm4sf5 -/- (see Figure 8).

또한, Tm4sf5-HA를 발현하는 설치류 간상피세포 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, 마우스의 BAT로부터 분리하여 분화시킨 지방세포에 처리하고 Seahorse 장비를 이용하여 다양한 약물을 첨가한 상태에서 BAT 지방세포의 세포외부 용액의 산성화를 측정함으로써, 엑소좀 처리에 의한 지방세포의 해당작용(glycolysis) stress test를 수행한 결과, Tm4sf5를 탑재한 엑소좀을 처리한 경우 Tm4sf5가 존재하지 않는 엑소좀을 처리한 대조군에 대비하여 지방세포의 glycolysis capacity가 휠씬 증가하는 것을 확인하였다(도 9a 참조). Tm4sf5를 탑재한 엑소좀과 Glut1/4의 억제제(fasentin)를 함께 처리한 경우, 세포 외 산성화 속도(ECAR)이 낮게 나타나는 것을 확인함으로써, Tm4sf5가 탑재된 엑소좀의 처리 효과가 지방세포에 존재하는 Glut4의 존재 (따라서 TM4SF5와의 결합) 및 활성화에 의존한다는 것을 확인하였다.In addition, exosomes isolated from the rodent hepatic epithelial AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector were treated with adipocytes isolated from mouse BAT and differentiated, and various drugs were administered using Seahorse equipment. By measuring the acidification of the extracellular solution of BAT adipocytes in the added state and performing a glycolysis stress test on adipocytes by exosome treatment, Tm4sf5 was present when treated with exosomes loaded with Tm4sf5. It was confirmed that the glycolysis capacity of adipocytes increased significantly compared to the control group treated with exosomes (see Figure 9a). When exosomes loaded with Tm4sf5 were treated together with an inhibitor of Glut1/4 (fasentin), the extracellular acidification rate (ECAR) was confirmed to be low, confirming that the treatment effect of exosomes loaded with Tm4sf5 exists in adipocytes. It was confirmed that it depends on the presence (and therefore binding to TM4SF5) and activation of Glut4.

또한, Tm4sf5-HA를 발현하는 설치류 간상피세포 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, 마우스의 BAT로부터 분리하여 분화시킨 지방세포에 처리하고 Seahorse 장비를 이용하여 다양한 농도의 glucose를 추가적으로 첨가하면서 해당작용(glycolysis)에 의한 세포외부 용액의 산성화를 측정하여, 해당작용 기능의 활성화 정도를 측정한 결과, TM4SF5를 발현하는 AML12 세포에서 분리한 엑소좀이 BAT 지방세포에 처리될 경우, TM4SF5를 발현하지 않는 세포에서 분리한 엑소좀에 대비하여, 다양한 포도당 첨가 조건에서 지방세포 해당작용의 기능을 향상시키는 것을 확인하였다(도 9b 참조). In addition, exosomes isolated from the rodent hepatic epithelial AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector were treated with adipocytes isolated from mouse BAT and differentiated, and then mixed at various concentrations using Seahorse equipment. As a result of measuring the degree of activation of the glycolysis function by measuring the acidification of the extracellular solution by glycolysis while additionally adding glucose, it was found that exosomes isolated from AML12 cells expressing TM4SF5 could be processed into BAT adipocytes. In this case, compared to exosomes isolated from cells that do not express TM4SF5, it was confirmed that the function of adipocyte glycolysis was improved under various glucose addition conditions (see Figure 9b).

HA-Tm4sf5을 발현하는 AML12세포에서 분리한 엑소좀(AML12-sEVHA-Tm4sf5)을 4 x 108 particle/condition의 농도로 정상마우스에서 분리하여, 분화된 갈색지방조직세포에 24시간 동안 처리하고 Glut1(왼쪽) 또는 Glut4(오른쪽)를 빨간색, HA-Tm4sf5는 녹색으로 염색한 후, 공촛점형광현미경으로 관찰한 결과, AML12-sEVHA-Tm4sf5가 BAT세포의 핵주변이나 세포표면 부위에서 Glut1 혹은 Glut4와 함께 공존하면서 염색되어 노란색을 띄는 것을 확인하였다 (도9c 참조).Exosomes (AML12-sEV HA -Tm4sf5) isolated from AML12 cells expressing HA-Tm4sf5 were isolated from normal mice at a concentration of 4 x 10 8 particles/condition and treated with differentiated brown adipose tissue cells for 24 hours. After staining Glut1 (left) or Glut4 (right) in red and HA-Tm4sf5 in green, the results were observed under a confocal fluorescence microscope. As a result, AML12-sEV HA -Tm4sf5 was found to be stained around Glut1 or cell surface areas in BAT cells. It was confirmed that it coexisted with Glut4 and was stained yellow (see Figure 9c).

대조군 바이러스 AAV8-EV 혹은 Tm4sf5-HA 유전자를 발현하는 AAV8-Tbg-Tm4sf5-HA를 주사하고 3주 후 정상 WT 마우스 혹은 KO 마우스로부터 분리한 갈색지방조직세포를 이용하여 HA-Tm4sf5 염색정도를 관찰한 결과, Tm4sf5-HA 발현 AAV8 바이러스를 주사한 동물들의 BAT은 fat droplets(지방방울들)이 AAV8-EV를 주사한 동물의 BAT보다 작게 그리고 적게 생기는 것을 확인하였다 (도9d 참조).Three weeks after injection of the control virus AAV8-EV or AAV8-Tbg-Tm4sf5-HA expressing the Tm4sf5-HA gene, the degree of HA-Tm4sf5 staining was observed using brown adipose tissue cells isolated from normal WT mice or KO mice. As a result, it was confirmed that the BAT of animals injected with the Tm4sf5-HA expressing AAV8 virus had smaller and less fat droplets than the BAT of animals injected with AAV8-EV (see Figure 9d).

갈색지방조직세포에서 개선된 열발생과 관련된 신호전달 인자를 확인한 결과, UCP1 단백질의 발현량이 각 동물의 갈색지방조직세포에서 서로 다른 thermogenesis와 무관하도록 변하지 않았으나, KO 마우스에 AAV8-EV 바이러스 주입에 대비하여 Tm4sf5-HA 발현 AAV8 바이러스를 주사한 동물들에게서 mTOR의 인산화가 증가함을 확인하였다 (도9e 참조).As a result of identifying signaling factors related to improved thermogenesis in brown adipose tissue cells, the expression level of UCP1 protein did not change in brown adipose tissue cells of each animal to be unrelated to different thermogenesis, but compared to injection of AAV8-EV virus into KO mice. It was confirmed that mTOR phosphorylation increased in animals injected with the AAV8 virus expressing Tm4sf5-HA (see Figure 9e).

또한, 간 유래 엑소좀이 근육 세포의 당 대사에 미치는 영향을 확인하기 위해, Tm4sf5-HA를 발현하는 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, C2C12 근육세포에 처리하고 근육세포 내로의 포도당 흡수 정도를 분석한 결과, AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀을 처리한 경우, 엑소좀을 처리하지 않은 경우에 대비하여 포도당 흡수량이 증가하는 것을 확인하였고, 특히 Tm4sf5가 탑재된 엑소좀을 처리하였을 경우, Tm4sf5가 탑재되지 않은 엑소좀을 처리하였을 경우에 대비하여, 포도당 흡수 정도가 높은 것을 확인하였다(도 10a 참조). In addition, to confirm the effect of liver-derived exosomes on glucose metabolism in muscle cells, exosomes isolated from the AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector were treated with C2C12 muscle cells and incubated with the muscles. As a result of analyzing the degree of glucose uptake into cells, it was confirmed that when exosomes isolated from the AML12 cell line or AML12 cell line expressing only the control vector were treated, the amount of glucose uptake increased compared to the case where exosomes were not treated. In particular, it was confirmed that when exosomes loaded with Tm4sf5 were treated, the degree of glucose absorption was higher compared to when exosomes not loaded with Tm4sf5 were treated (see Figure 10a).

또한, TM4SF5를 원래 발현하는 인간 간상피세포 Huh7를 정상적인 RPMI-1640 배양액에서 배양한 상태에서 분리확보한 TM4SF5-엑소좀(Huh7-Exo-from cells in RPMI), Glucose가 배제된 배양액에서 배양된 후 분리한 TM4SF5-엑소좀(Huh7-Exo-from cells in glu- media), Glucose 25 mM가 포함된 배양액에서 배양된 후 분리한 TM4SF5-엑소좀(Huh7-Exo-from cells in glu+ media)를 각각 A204 근육세포에 45분간 처리한 후, 다양한 포도당 농도에 대한 해당작용(glycolysis)의 sensitivity를 확인한 결과, 포도당을 조절하지 않은 RPMI media에서 배양하거나 포도당이 제거된 배양액에서 배양한 Huh7세포에게서 분리한 TM4SF5-엑소좀보다, 포도당 25 mM를 포함하는 배양액에서 분리한 TM4SF5-엑소좀을 A204 근육세포에 처리하였을 경우에 해당과정의 포도당에 대한 민감도가 높음을 확인하였다(도 10b 참조).In addition, TM4SF5-exosomes (Huh7-Exo-from cells in RPMI) were isolated and obtained from human liver epithelial cells Huh7, which originally express TM4SF5, while cultured in normal RPMI-1640 culture medium, and then cultured in glucose-excluded culture medium. The isolated TM4SF5-exosomes (Huh7-Exo-from cells in glu-media) and the isolated TM4SF5-exosomes (Huh7-Exo-from cells in glu+ media) were cultured in a culture medium containing 25 mM glucose, respectively, at A204. After treating muscle cells for 45 minutes, the sensitivity of glycolysis to various glucose concentrations was confirmed. TM4SF5- isolated from Huh7 cells cultured in RPMI media without glucose control or cultured in culture medium from which glucose was removed. It was confirmed that the sensitivity of glycolysis to glucose was higher when A204 muscle cells were treated with TM4SF5-exosomes isolated from a culture medium containing 25 mM glucose than exosomes (see FIG. 10b).

이하, 본 발명을 다음 실시예 및 실험예에 의해 상세히 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명이 이들에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail through the following examples and experimental examples. However, the following examples and experimental examples only illustrate the present invention, and the present invention is not limited thereto.

<실시예 1> 간혈관폐쇄회로 시스템(Liver-vein closed circulation system) 제작<Example 1> Production of liver-vein closed circulation system

동물의 간조직에서 특이적으로 유래하는 엑소좀을 얻기 위해, 간혈관폐쇄회로 시스템(Liver-vein closed circulation system)을 제작하였다(도 1).In order to obtain exosomes specifically derived from animal liver tissue, a liver-vein closed circulation system was created (Figure 1).

구체적으로, 연동 펌프의 투입구 부분을 스위치가 있는 3-way 커넥터에 튜빙 1(Customized 1x1, ID - 1 mm, OD 2 mm - EMS Tech)로 연결하였고, 커넥터의 나머지 두 연결부위에 산소 탱크에 연결된 플러싱 버퍼(Flushing buffer)와 엑소좀 순환 미디어(Exosome circulation media)에 튜빙 2(Masterflex Platinum L/S 96410-13)를 이용하여 연결하였으며, 상기 플러싱 버퍼는 42℃항온수조(Benchmark(B2000-4-E))에 담군 채 유지하였다. 튜빙 3(Masterflex Platinum L/S 96410-14)를 튜빙 1의 연동 펌프 투출구 방향에 연결하였고, 튜빙 3의 튜빙 1 연결부위 반대편에는 루어락(Luer lock) 커넥터(성호씨그마, C20-140-660(PVLM20))를 연결하였고, 튜빙 4(Silicon tubing ID-3 mm, OD 6 mm - Daihan)는 한쪽에 루어락 커넥터를 연결하고 다른 한쪽에는 엑소좀 순환 미디어에 연결하였다. 이때, 모든 튜빙이 같은 평면에 위치하도록 하였다.Specifically, the inlet part of the peristaltic pump was connected to a 3-way connector with a switch with tubing 1 (Customized 1x1, ID - 1 mm, OD 2 mm - EMS Tech), and the remaining two connections of the connector were connected to the oxygen tank. It was connected to the flushing buffer and the exosome circulation media using tubing 2 (Masterflex Platinum L/S 96410-13), and the flushing buffer was stored in a 42°C constant temperature water bath (Benchmark (B2000-4- E) It was kept immersed in water. Tubing 3 (Masterflex Platinum L/S 96410-14) was connected to the peristaltic pump outlet of tubing 1, and a Luer lock connector (Sungho Sigma, C20-140- 660 (PVLM20)) was connected, and tubing 4 (Silicon tubing ID-3 mm, OD 6 mm - Daihan) was connected to a luer lock connector on one side and to exosome circulation media on the other side. At this time, all tubing was positioned on the same plane.

<실시예 2> 간혈관폐쇄회로 시스템을 이용한 엑소좀(exosome) 분리<Example 2> Isolation of exosomes using a hepatic vascular occlusion system

실험용 마우스를 2 ml 30% 이소플루란(Isoflurane)이 적셔진 솜뭉치가 들어 있는 유리 밀폐 용기(~200 ml 크기)에 넣어 마취시킨 후, 10 ml 주사기에 플런저(plunger)를 제거하고, 2 ml 30% 이소플루란이 적셔진 솜뭉치를 넣고 입구에 상기 마우스의 입과 코를 넣었다. 이때, 마우스의 입과 코가 닿는 부분에는 마취액이 묻지 않도록 하였다. 마취된 마우스를 42℃설정된 히팅 패드(정도비앤피-JD-OT-03/06) 위에 올린 후, 앞, 뒷다리 각각을 테이프로 고정하고 에탄올로 배 부위를 소독하였다. 그 후, 수술용 가위로 생식기 1 cm 위부터 3~4 cm 개복하였고, 장기들을 오른쪽으로 밀어 꺼내어 놓고 straight forcep의 옆 부분을 이용해 간을 횡경막에 붙도록 해서 간문맥을 보이게 하였다. 간에서 1~1.5 cm 떨어진 지점에 microdissecting forcep(3 3/4"Octagoanl grip, (BRI surgical-10-2105))을 이용해 간문맥과 주위의 지방을 분리하고 분리된 부위로 수술용 봉합사(아이리, Black Silk 3호)를 통과시켰다. 통과된 봉합사는 느슨한 매듭을 만들었다. 그 후, 카데터(24G, Becton Dickinson, Insyte Autoguard 381812)를 간을 향하여 간문맥으로 삽입하였고, 카데터의 retract 버튼을 눌러 바늘을 제거하면 피가 역류하는 것을 확인하였다. 카데터의 위치를 고정하고 매듭을 조였고, 이때 카데터의 끝은 간으로 들어가는 입구에서 1~2 mm 떨어지게 하였다. 그 다음, 펌프(EMS Tech, EMP 600/MC4 pump head)를 작동시켜 유속이 약 1 ml/min 정도 되게 조절하였다. 카데터의 역류한 피와 펌프에 연결된 루어락 커넥터에 맺힌 플러싱 버퍼가 만나게 함과 동시에 공기 방울이 들어가지 않도록 연결을 체결하였다. 간을 다시 원래 자리로 위치시키고, 흉부를 절개하여 심장과 하대 정맥을 노출시켰다. 하대 정맥 주위의 지방을 조심스럽게 제거하여 카데터가 삽입될 정맥이 잘 보이게 하였고, 심장에서 하대 정맥에 연결되는 넓은 입구를 이용하여 하대 정맥에 카데터를 삽입하고 봉합사로 고정하였다. 이때 간을 통과해서 나오는 피와 플러싱 버퍼[1x HBSS - 10x HBSS(Sigma Aldrich, H4641)를 1:10 희석, 4.2 mM NaHCO3(Sigma Aldrich-S5761), 0.5 mM EGTA(Sigma Aldrich-E4378), pH 7.2, 0.2 μm 멸균 필터 후 사용]가 잘 나오는지 확인하고 튜브를 받쳐서 30분 유지시켰다. 간에 혈액을 제거하는 동안 적외선 조사기(성림전자의료기, HH-2500)를 이용하여 체온을 유지시키고 식염수(중외제약, 크린클)에 적신 멸균 거즈를 이용하여 개방된 흉부와 복부를 덮어주었다. 30분 후, 하대정맥에 연결된 카데터에 튜빙 4를 연결하고 다른 끝을 엑소좀 순환 미디어가 들어있는 튜브에 연결하였다. 잠시 펌프를 중단하고, 스위치를 돌려 엑소좀 순환 미디어[RPMI 1640 (Hyclone, SH30027.01), 10% 100 kDa Ultrafiltered FBS (Gendepot, F0600-050), FBS를 100 kDa membrane 원심분리 농축기(Sartorius, VS2041)를 이용하여 여과, 1 Х Penicillin/Streptomycin(Gendepot, CA002-010)]가 펌프에 공급되게 한 후 펌프를 다시 작동시켰다. 하대정맥에서 나온 엑소좀 순환 미디어가 원래 튜브로 잘 들어 가는지 확인한 후 1시간 동안 순환시켰다. 1시간 후 순환된 미디어를 2000 x g 10분, 10,000 x g 45분 원심 분리한 후 엑소좀을 상층액에서 분리하였다. 분리한 상층액을 50 kDa membrane 원심분리 농축기(Sartorius, VS2032)를 이용하여 500 μl까지 농축하였다. 농축된 엑소좀을 크기 배제 크로마토그래피(size exclusion chromatography, SEC)인 qEV original(Izon, qEVoriginal)에 로딩하였다. 추가로 2.5 ml PBS를 넣어 통과시킨 후 이를 버리고, 다시 1.5 ml PBS를 넣어 통과된 엑소좀 샘플을 획득하였다.Anesthetize the experimental mouse by placing it in an airtight glass container (~200 ml size) containing a cotton ball soaked with 2 ml 30% isoflurane, then remove the plunger from the 10 ml syringe and inject 2 ml A cotton ball soaked in 30% isoflurane was placed and the mouth and nose of the mouse were inserted into the entrance. At this time, the area where the mouse's mouth and nose come in contact with the anesthetic solution was prevented. The anesthetized mouse was placed on a heating pad (JD-OT-03/06) set at 42°C, the front and hind legs were fixed with tape, and the abdomen was disinfected with ethanol. Afterwards, an incision was made 3 to 4 cm from 1 cm above the genitals with surgical scissors, the organs were pushed to the right and taken out, and the liver was attached to the diaphragm using the side part of a straight forcep to reveal the portal vein. Separate the portal vein and the surrounding fat using a microdissecting forcep (3 3/4" Octagoanl grip, (BRI surgical-10-2105)) at a point 1 to 1.5 cm away from the liver, and place a surgical suture (Iri, Black) into the separated area. Silk No. 3) was passed, and a loose knot was made. Then, a catheter (24G, Becton Dickinson, Insyte Autoguard 381812) was inserted into the portal vein, and the needle was released by pressing the retract button on the catheter. Upon removal, it was confirmed that the blood was flowing back. The position of the catheter was fixed and the knot was tightened, and the tip of the catheter was placed 1 to 2 mm away from the entrance into the liver. /MC4 pump head) was operated to adjust the flow rate to about 1 ml/min so that the blood flowing back from the catheter and the flushing buffer formed on the luer lock connector connected to the pump met and the connection was tightened to prevent air bubbles from entering. The liver was placed back in its original position, and the chest was incised to expose the heart and inferior vena cava. The vein where the catheter would be inserted was clearly visible and connected to the inferior vena cava. A catheter was inserted into the inferior vena cava using a wide opening and fixed with a suture. At this time, the blood coming out of the liver was mixed with flushing buffer [1x HBSS - 10x HBSS (Sigma Aldrich, H4641) diluted 1:10, 4.2 mM NaHCO. 3 (Sigma Aldrich-S5761), 0.5 mM EGTA (Sigma Aldrich-E4378), pH 7.2, 0.2 μm sterilized filter] was checked and the tube was supported and maintained for 30 minutes while the blood was removed from the liver. Body temperature was maintained using Seonglim Electronic Medical Device (HH-2500), and the open chest and abdomen were covered with sterile gauze soaked in saline (Jungwae Pharmaceutical, Crinkle) for 30 minutes, and then placed on the catheter connected to the inferior vena cava. Tubing 4 was connected and the other end was connected to the tube containing exosome circulation media. Stop the pump for a moment, turn the switch, and transfer the exosome circulating media [RPMI 1640 (Hyclone, SH30027.01), 10% 100 kDa Ultrafiltered FBS (Gendepot, F0600-050), FBS to a 100 kDa membrane centrifugal concentrator (Sartorius, VS2041). ) was used to filter, 1 Х Penicillin/Streptomycin (Gendepot, CA002-010)] was supplied to the pump, and then the pump was operated again. After confirming that the exosome circulation media from the inferior vena cava entered the original tube well, it was circulated for 1 hour. After 1 hour, the circulated media was centrifuged at 2000 xg for 10 minutes and 10,000 xg for 45 minutes, and exosomes were separated from the supernatant. The separated supernatant was concentrated to 500 μl using a 50 kDa membrane centrifugal concentrator (Sartorius, VS2032). Concentrated exosomes were loaded onto qEV original (Izon, qEVoriginal), a size exclusion chromatography (SEC). Additionally, 2.5 ml of PBS was added and passed, then discarded, and 1.5 ml of PBS was added again to obtain the passed exosome sample.

<실시예 3> 간세포 (Hepatocyte) 분리<Example 3> Hepatocyte separation

마우스를 간혈관폐쇄회로 시스템에 연결한 후, 1시간 동안 순환 후 Hepatocyte 분리 buffer[Flushing Buffer (40ml), type I collagenase (7.5mg, Sigma Aldrich -C7661) - (Sigma Aldrich, C5138)]를 펌프에 연결시켜 간에 들어 가도록 하였다. 유속을 4 ml/min 로 올리고 신장 밑에 하대 정맥을 잘라 buffer가 나오도록 하였다. 콜라게나제 (Collagenase)가 간 곳곳에 잘 들어 갈 수 있게 절제한 하대 정맥 위쪽을 포셉으로 잡아서 역압을 생성하고 다시 풀어주었다. 10분 후 펌프를 멈추고 간을 petri dish에 옮겨 주고, 여기에 간세포 생장 미디어를 5 ml 넣어주고 포셉으로 간에 막을 열어 세포들을 흔들어 분리하였다.After connecting the mouse to the hepatic vascular occlusion system, After circulation for 1 hour, hepatocyte isolation buffer [Flushing Buffer (40ml), type I collagenase (7.5mg, Sigma Aldrich -C7661) - (Sigma Aldrich, C5138)] was connected to the pump and allowed to enter the liver. The flow rate was increased to 4 ml/min and the inferior vena cava was cut below the kidney to allow the buffer to come out. To allow collagenase to enter various parts of the liver, the upper part of the resected inferior vena cava was held with forceps to create counter pressure and released again. After 10 minutes, the pump was stopped, the liver was transferred to a petri dish, 5 ml of hepatocyte growth media was added, the liver membrane was opened with forceps, and the cells were separated by shaking.

분리된 세포들은 100μm 메쉬 (SPL-93100))에 통과시켜 50ml 튜브(SPL-50050)에 담았다. 이 과정을 남은 간 조직에 반복하여 더 이상 세포가 떨어져 나오지 않을 때까지 반복하였다. 떨어져 나온 세포가 담긴 튜브를 50 x g에서 5분간 윈심 분리하고 상층액을 버렸다. 다시 간세포 생장 미디어 [Medium 199 - (Hyclone- SH30253.01), 10% FBS (Gendepot- F0600-050), 23 mM HEPES (Gibco-15630080), 10 nM Dexamethasone (Calbiochem-265005), 1x penicillin/streptomycin (Gendepot- CA002-010)]를 20 ml을 넣고 잘 섞은 후 50 x g에서 5분간 원심 분리하고 상층액을 버렸다.The separated cells were passed through a 100μm mesh (SPL-93100) and placed in a 50ml tube (SPL-50050). This process was repeated with the remaining liver tissue until no more cells fell off. The tube containing the detached cells was centrifuged at 50 x g for 5 minutes, and the supernatant was discarded. Hepatocyte growth media again [Medium 199 - (Hyclone- SH30253.01), 10% FBS (Gendepot- F0600-050), 23 mM HEPES (Gibco-15630080), 10 nM Dexamethasone (Calbiochem-265005), 1x penicillin/streptomycin ( Add 20 ml of Gendepot-CA002-010), mix well, centrifuge at 50 x g for 5 minutes, and discard the supernatant.

세포를 다시 10 ml 간세포 생장 미디어에 넣었다. 새 50 ml 튜브에 42% percoll [6.3 ml Percoll - GE Healthcare, 17-0891-02, 700 μl 10x PBS, 8 ml Medium 199 - (Hyclone- SH30253.01)]을 7 ml을 넣고 그 위에 조심스럽게 세포 10ml을 올렸다. Percoll/세포를 300 x g에서 5분간 원심분리하여 상층액은 버렸다. 세포를 다시 2 ml hepatocyte 생장 미디어에 넣고 세포수를 세어서 콜라겐이 코팅된 dish(SPL-20100)나 flask에 넣고 배양하였다.Cells were placed back into 10 ml hepatocyte growth media. Add 7 ml of 42% percoll [6.3 ml Percoll - GE Healthcare, 17-0891-02, 700 μl 10x PBS, 8 ml Medium 199 - (Hyclone- SH30253.01)] to a new 50 ml tube and carefully incubate the cells. Raised 10ml. Percoll/cells were centrifuged at 300 x g for 5 minutes and the supernatant was discarded. The cells were put back into 2 ml hepatocyte growth media, the number of cells was counted, and the cells were placed in a collagen-coated dish (SPL-20100) or flask and cultured.

<실시예 4> 간상피세포주에서 엑소좀 분리<Example 4> Isolation of exosomes from hepatic epithelial cell lines

세포주 혹은 동물의 간에서 얻은 간상피세포를 150 mm 세포배양 디쉬 (SPL- 20150)에 70~80% 정도 차게 배양미디어에 37

Figure 112022006230841-pat00001
인큐베이터 (Sanyo- MCO18AC)에 16시간 배양하였다. PBS로 2번 씻은 후, 엑소좀 순환 미디어 20 ml을 넣고 48시간 37℃인큐베이터에 48시간 배양하였다. 배양액을 2000 x g에서 10분간 원심 분리하고, 상층액을 0.2 μm syringe filter로 여과하였다. 여과한 배양액을 10,000 x g에서 45분간 원심 분리하고, 상층액을 새로운 튜브에 옮겼다. 옮긴 상층액을 50 kDa membrane 원심분리 농축기(Sartorius-VS2032)를 이용하여 500 μl까지 농축하였다. 농축된 엑소좀을 qEV original (Izon - qEVoriginal)에 로딩하였다. 추가로 2.5 ml PBS를 넣어 통과시켜 버리고 다시 1.5 ml PBS를 넣어 통과된 엑소좀 샘플을 획득하였다.Liver epithelial cells obtained from cell lines or animal livers were placed in a 150 mm cell culture dish (SPL-20150) filled with 70 to 80% culture media.
Figure 112022006230841-pat00001
Cultured in an incubator (Sanyo-MCO18AC) for 16 hours. After washing twice with PBS, 20 ml of exosome circulation media was added and cultured in an incubator at 37°C for 48 hours. The culture was centrifuged at 2000 xg for 10 minutes, and the supernatant was filtered through a 0.2 μm syringe filter. The filtered culture was centrifuged at 10,000 xg for 45 minutes, and the supernatant was transferred to a new tube. The transferred supernatant was concentrated to 500 μl using a 50 kDa membrane centrifugal concentrator (Sartorius-VS2032). Concentrated exosomes were loaded into qEV original (Izon - qEVoriginal). Additionally, 2.5 ml of PBS was added and passed through, and 1.5 ml of PBS was added again to obtain the passed exosome sample.

<실험예 1> 인간 간상피세포 유래 엑소좀 내 TM4SF5 단백질 탑재 여부 확인 <Experimental Example 1> Confirmation of whether TM4SF5 protein is loaded in exosomes derived from human liver epithelial cells

인간의 간상피세포에 존재하는 엑소좀 내에 TM4SF5 단백질이 탑재되어 있는지 여부를 확인하기 위해, 간상피세포 SNU449(한국세포주 은행, 서울, 대한민국)에 TM4SF5-APEX2 플라스미드를 형질주입(transfection)한 후, 48시간 후 DAB 염색을 하고 투과전자현미경(Transmission electron microscope, Talos L120C, FEI, NICEM, 서울대학교)으로 APEX2(ascorbate peroxidase 2)로 표지된 TM4SF5 단백질(TM4SF5-APEX2 단백질)의 발현 및 위치를 확인하였다.To confirm whether TM4SF5 protein is loaded in exosomes present in human liver epithelial cells, TM4SF5-APEX2 plasmid was transfected into liver epithelial cells SNU449 (Korea Cell Line Bank, Seoul, Korea). After 48 hours, DAB staining was performed, and the expression and location of TM4SF5 protein (TM4SF5-APEX2 protein) labeled with APEX2 (ascorbate peroxidase 2) was confirmed using a transmission electron microscope (Talos L120C, FEI, NICEM, Seoul National University). .

그 결과, 상기 간상피세포의 다소포체(multivesicular body, MVB) 내에서 검은 색으로 염색된 TM4SF5-APEX2 단백질이 막에 의해 둘러싸여 있는 것을 확인하였다(도 2a).As a result, it was confirmed that TM4SF5-APEX2 protein, stained black, was surrounded by a membrane within the multivesicular body (MVB) of the liver epithelial cells (Figure 2a).

또한, 상기 간상피세포로부터 엑소좀을 분리하여 초저온전자현미경(cryo-electron microscopy, cryo-EM)을 통해 TM4SF5 단백질 존재 여부를 확인한 결과, 상기 엑소좀 내에서 검은 색으로 염색된 TM4SF5-APEX2 단백질이 확인되었다(도 2b). 이는 간상피세포 유래의 엑소좀이 TM4SF5를 탑재하고 있음을 시사한다.In addition, as a result of separating exosomes from the liver epithelial cells and confirming the presence of TM4SF5 protein through cryo-electron microscopy (cryo-EM), the TM4SF5-APEX2 protein stained black in the exosomes was found. confirmed (Figure 2b). This suggests that exosomes derived from liver epithelial cells are loaded with TM4SF5.

<실험예 2> 간 유래 엑소좀과 혈장 유래 엑소좀 사이의 크기 비교<Experimental Example 2> Size comparison between liver-derived exosomes and plasma-derived exosomes

<2-1> 간혈관폐쇄회로 시스템을 이용하여 얻은 샘플에서의 엑소좀 존재 확인<2-1> Confirmation of the presence of exosomes in samples obtained using the hepatic vascular occlusion circuit system

간혈관폐쇄회로 시스템을 통해 얻은 샘플에서 엑소좀이 존재하는지 여부를 확인하기 위해, 정상 마우스(C57BL/6, 중앙실험동물, 성남시)의 간을 이용하여 상기 실시예 1의 간혈관폐쇄회로 시스템을 통해 상기 실시예 2의 방법으로 간혈관폐쇄회로를 1시간동안 순환시켜 샘플을 얻었다. 얻은 샘플에서 엑소좀의 존재를 투과전자현미경(Transmission electron microscope, Talos L120C, FEI, NICEM, 서울대학교)을 통해 확인하였다. In order to confirm whether exosomes are present in the sample obtained through the hepatic vascular occlusion circuit system, the liver vascular occlusion circuit system of Example 1 was performed using the liver of a normal mouse (C57BL/6, Central Laboratory Animal, Seongnam-si). A sample was obtained by circulating the hepatic vascular occlusion circuit for 1 hour using the method of Example 2. The presence of exosomes in the obtained samples was confirmed through a transmission electron microscope (Talos L120C, FEI, NICEM, Seoul National University).

그 결과, 상기 샘플 내에서 엑소좀이 존재하는 것을 확인하였고, 엑소좀들은 일반적으로 200nm 이하의 지름을 가지는 것으로 확인되었다(도 3).As a result, it was confirmed that exosomes existed in the sample, and exosomes were generally confirmed to have a diameter of 200 nm or less (Figure 3).

<2-2> 간 유래 엑소좀과 혈장 유래 엑소좀 사이의 크기 비교<2-2> Size comparison between liver-derived exosomes and plasma-derived exosomes

혈장(serum)으로부터 얻어지는 일반적인 엑소좀과 간혈관폐쇄회로를 1시간동안 순환시켜 얻은 간 유래 엑소좀 사이의 물리적인 특성 차이를 확인하기 위해, 간 유래 엑소좀과 혈장 유래 엑소좀의 크기를 측정 비교하였다. In order to confirm the difference in physical properties between typical exosomes obtained from plasma (serum) and liver-derived exosomes obtained by circulating in the liver vascular occlusion circuit for 1 hour, the sizes of liver-derived exosomes and plasma-derived exosomes were measured and compared. did.

구체적으로, 정상 마우스 3마리 및 Tm4sf5 KO 마우스(Tm4sf5-/-) 5마리의 간을 이용하여 상기 실시예 2의 방법으로 간혈관폐쇄회로를 1시간동안 순환시켜 얻은 샘플로부터 간 유래 엑소좀을 확보하였고, 정상 마우스 10마리의 혈장으로부터 엑소좀을 확보하였다. 상기 확보한 엑소좀을 나노입자 추적 분석(Nanoparticle tracking analysis)을 통해 상기 확보한 엑소좀의 크기를 측정하였다.Specifically, liver-derived exosomes were obtained from samples obtained by circulating the liver vascular occlusive circuit for 1 hour using the livers of three normal mice and five Tm4sf5 KO mice (Tm4sf5 -/- ). And exosomes were obtained from the plasma of 10 normal mice. The size of the obtained exosomes was measured through nanoparticle tracking analysis.

그 결과, 정상마우스(WT)의 간유래 엑소좀의 평균 크기는 190.01 ± 28.64 nm (평균값 ± 표준편차)이었고, KO 마우스의 간유래엑소좀 평균크기는 210.23 ± 13.18 nm였으며, Alb-TG 마우스의 간유래 엑소좀 평균크기는 162.02 ± 18.70 nm였다, 즉, 간상피세포에서의 Tm4sf5의 발현이 높을수록 간상피세포유래 엑소좀의 크기가 작아짐이 확인되었다 (도 4a 및 b). As a result, the average size of liver-derived exosomes in normal mice (WT) was 190.01 ± 28.64 nm (mean value ± standard deviation), the average size of liver-derived exosomes in KO mice was 210.23 ± 13.18 nm, and that of Alb-TG mice was 210.23 ± 13.18 nm. The average size of liver-derived exosomes was 162.02 ± 18.70 nm, that is, it was confirmed that the higher the expression of Tm4sf5 in liver epithelial cells, the smaller the size of liver epithelial cell-derived exosomes (Figures 4a and b).

반면, 정상 마우스 10마리의 혈장으로부터 얻은 엑소좀의 평균 크기는 131.59nm로 상대적으로 상기 간 유래 엑소좀과 비교하여 더 작은 것으로 확인되었다(도 4c).On the other hand, the average size of exosomes obtained from the plasma of 10 normal mice was 131.59 nm, which was found to be relatively smaller than the liver-derived exosomes (Figure 4c).

<실험예 3> 동물의 간상피세포, 간세포 및 간 유래 엑소좀에서의 TM4SF5 발현 확인<Experimental Example 3> Confirmation of TM4SF5 expression in animal liver epithelial cells, hepatocytes, and liver-derived exosomes

<3-1> 간상피세포 및 마우스 간 유래 엑소좀에서의 TM4SF5 발현 확인<3-1> Confirmation of TM4SF5 expression in hepatic epithelial cells and mouse liver-derived exosomes

동물의 간상피세포, 간세포 및 간 유래 엑소좀에서 엑소좀에 존재하는 단백질의 종류 및 발현량을 확인하기 위해, 단백질 전기영동 및 웨스턴블랏을 수행하였다. To confirm the type and expression level of proteins present in exosomes in animal liver epithelial cells, hepatocytes, and liver-derived exosomes, protein electrophoresis and Western blot were performed.

구체적으로, TM4SF5 유전자에 pcDNA3 APEX2(Addgene)를 연결한 TM4SF5-APEX2 플라스미드를 SNU449 간상피세포(Korean Cell Bank, 서울, 대한민국)에 회사가 준 프로토콜에 따라 lipofectamine 3000(Thermo Fisher Scientific)을 이용하여 48시간동안 형질주입(transfection)하였다. 형질주입된 간상피세포로부터 얻거나 동물의 간혈관폐쇄회로 시스템으로부터 분리한 엑소좀을 PBS로 2번 세척한 후, lysis buffer[50 mM Tris-HCl, pH 7.4, 1% NP40, 0.25% sodium deoxycholate, 150 mM NaCl, 1mM EDTA(500 ml기준)]에 SDS, Na3O4V, protease inhibitor cocktails(GenDepot)를 넣고 4℃에서 10분간 처리하였다. BCA reagent(Thermo Scientifics)를 이용하여 단백질을 정량한 후, 4x sample buffer[100% glycerol 4 ml, Tris-HCl, pH 6.8, 2.4 ml, SDS 0.8 g, Bromophenol blue 4 mg, beta-mercaptoethaol 0.4 ml, H2O 3.1 ml(10 ml기준)]를 넣어준 후, 5분 동안 100℃에서 끓였다. 위의 시료로 SDS-PAGE 전기영동을 수행한 뒤, Nitrocellulose Membranes Protran?? 니트로셀룰로오스 membrane(Whatman)에 이동시킨 후, 5% 탈지유(skim milk)로 1시간 동안 전처리하였고, 전처리 후, Anti-TSG101 항체(Santa Cruz Biotechnology Inc., sc-7964), anti-Alix 항체(Cell Signaling Technology, Inc., Cat # 2171), anti-CD63 항체, anti-CD81 항체, anti-CD9 항체 및 TM4SF5의 1차 항체를 사용하여 4℃에서 15시간 동안 반응시켰다. 다음날 2차 항체를 반응시키고, ECL(Pierce, 미국)을 이용하여 엑스레이 필름에 현상하였다. Anti-mouse TM4SF5 (Accession number: NP_083636, epitope region of 117clidnkwdyhfqetegaylrnd138)는 전문항체제작회사(Pro-Sci, Poway, CA, USA)에서 주문 제작하였다. Specifically, the TM4SF5-APEX2 plasmid, in which pcDNA3 APEX2 (Addgene) was linked to the TM4SF5 gene, was inoculated into SNU449 liver epithelial cells (Korean Cell Bank, Seoul, Korea) using lipofectamine 3000 (Thermo Fisher Scientific) according to the protocol provided by the company. Transfection was performed for a period of time. Exosomes obtained from transfected hepatic epithelial cells or isolated from the hepatic vascular occlusive circuit system of animals were washed twice with PBS and then incubated with lysis buffer [50 mM Tris-HCl, pH 7.4, 1% NP40, 0.25% sodium deoxycholate. , 150 mM NaCl, 1mM EDTA (based on 500 ml)], SDS, Na 3 O 4 V, and protease inhibitor cocktails (GenDepot) were added and treated at 4°C for 10 minutes. After quantifying the protein using BCA reagent (Thermo Scientifics), 4x sample buffer [100% glycerol 4 ml, Tris-HCl, pH 6.8, 2.4 ml, SDS 0.8 g, Bromophenol blue 4 mg, beta-mercaptoethaol 0.4 ml, H 2 O 3.1 ml (based on 10 ml)] was added and boiled at 100°C for 5 minutes. After performing SDS-PAGE electrophoresis with the above sample, Nitrocellulose Membranes Protran ?? After being transferred to a nitrocellulose membrane (Whatman), it was pretreated with 5% skim milk for 1 hour. After pretreatment, anti-TSG101 antibody (Santa Cruz Biotechnology Inc., sc-7964), anti-Alix antibody (Cell Signaling Technology, Inc., Cat # 2171), anti-CD63 antibody, anti-CD81 antibody, anti-CD9 antibody, and TM4SF5 primary antibody were used to react at 4°C for 15 hours. The next day, secondary antibodies were reacted and developed on X-ray film using ECL (Pierce, USA). Anti-mouse TM4SF5 (Accession number: NP_083636, epitope region of 117 clidnkwdyhfqetegaylrnd 138 ) was custom-made by a professional antibody manufacturing company (Pro-Sci, Poway, CA, USA).

Tm4sf5 KO 마우스(Tm4sf5-/-) 및 Tm4sf5 유전자가 간상피세포에서 존재하는 Albumin 유전자의 프로모터에 연결되어 동물의 간상피세포에서만 Tm4sf5 유전자가 과발현되도록 만든 형질전환 마우스(Alb-Tm4sf5-FLAG)에서 분리한 일차 간상피세포(primary hepatocyte)를 이용하여 웨스턴블랏을 수행한 결과, 상기 일차 간상피세포에 TM4SF5 단백질이 발현되는 것을 확인하였다(도 5a).Isolated from Tm4sf5 KO mice (Tm4sf5 -/- ) and transgenic mice (Alb-Tm4sf5-FLAG) in which the Tm4sf5 gene is linked to the promoter of the albumin gene present in liver epithelial cells, causing the Tm4sf5 gene to be overexpressed only in the liver epithelial cells of the animal. As a result of Western blotting using a primary hepatocyte, it was confirmed that TM4SF5 protein was expressed in the primary hepatocyte (FIG. 5a).

또한, Alb-Tm4sf5 마우스를 실시예 2의 방법으로 간혈관폐쇄회로를 1시간동안 순환시키고 샘플을 분리한 후, 분리된 샘플에 포함된 엑소좀에서 발현되는 단백질을 확인하기 위해, 웨스턴블랏을 수행한 결과, 엑소좀의 마커로 잘 알려진 Alix, TSG101 및 Flottlin 단백질의 발현 또는 존재가 확인되었다(도 5b).In addition, Alb-Tm4sf5 mice were circulated through the hepatic vascular occlusion circuit for 1 hour using the method of Example 2, samples were separated, and Western blot was performed to confirm the proteins expressed in exosomes contained in the separated samples. As a result, the expression or presence of Alix, TSG101, and Flottlin proteins, which are well known as exosome markers, was confirmed (Figure 5b).

TM4SF5이 발현되지 않는 인간 간상피세포 SNU449 세포에 대조군벡터 (EV, empty vector), TM4SF5 발현 벡터 (WT, N-glycosylation이 불가능한 N138A/N155Q 돌연변이, 혹은 palmitoylation이 일어나지 않는 Cys2/6/9/74/75/79/80/84/189Ala 돌연변이)에 주입하여 발현을 유발한 경우들에서, 엑소좀을 분리하여 웨스턴블랏을 통하여 TM4SF5(-Strep)와 엑소좀마커 CD54 및 ALIX들이 존재하는 지 확인하였다. TM4SF5의 Glycosylation가 불가능 한 N138A/N155Q 돌연변이는 엑소좀에 존재하지 않았다. 반면, TM4SF5가 존재할 경우, ALIX의 존재가 현저히 줄어듦을 확인하였다 (도 5c).A control vector (EV, empty vector), a TM4SF5 expression vector (WT, N138A/N155Q mutation that does not allow N-glycosylation, or Cys2/6/9/74/74/74/6 that does not allow palmitoylation) were added to SNU449 human liver epithelial cells that do not express TM4SF5. In cases where expression was induced by injection into 75/79/80/84/189Ala mutant), exosomes were isolated and the presence of TM4SF5 (-Strep) and exosome markers CD54 and ALIX were confirmed through Western blot. The N138A/N155Q mutation, in which TM4SF5 glycosylation is impossible, was not present in exosomes. On the other hand, when TM4SF5 was present, it was confirmed that the presence of ALIX was significantly reduced (Figure 5c).

TM4SF5이 발현되지 않는 인간 간상피세포 SNU449 세포에 대조군벡터 (EV, empty vector), TM4SF5 발현 벡터(TM4SF5)를 주입시킬 경우, 대조군 siRNA (NS, non-specific) 혹은 siTM4SF5 (TM4SF5의 #4 서열을 타깃으로 하는 siRNA)을 동시에 주입시키면서 TM4SF5의 발현을 제어한 후, 엑소좀을 분리하여 웨스턴블랏을 통하여 TM4SF5와 더불어 GLUT1 및 ALIX의 존재를 확인하였다. When injecting a control vector (EV, empty vector) or a TM4SF5 expression vector (TM4SF5) into SNU449 human liver epithelial cells that do not express TM4SF5, control siRNA (NS, non-specific) or siTM4SF5 (#4 sequence of TM4SF5) After controlling the expression of TM4SF5 by simultaneously injecting targeting siRNA), exosomes were isolated and the presence of GLUT1 and ALIX along with TM4SF5 was confirmed through Western blot.

실험에 사용한 siRNA against TM4SF5 및 shRNA against TM4SF5, 프라이머 서열목록은 하기 표1 내지 3에 기재하였다.The siRNA against TM4SF5 and shRNA against TM4SF5 used in the experiment and the primer sequence list are listed in Tables 1 to 3 below.

Number of siRNA targeting sequence against TM4SF5Number of siRNA targeting sequence against TM4SF5 Sequence (5'→3')Sequence (5'→3') siTM4SF5 #2siTM4SF5 #2 ACC AUG UGU ACG GGA AAA UGU GCACC AUG UGU ACG GGA AAA UGU GC siTM4SF5 #4siTM4SF5 #4 CCA UCU CAG CUU GCA AGU CCCA UCU CAG CUU GCA AGU C siTM4SF5 #5siTM4SF5 #5 UGG ACC CAG AUG CUU AAU GUGG ACC CAG AUG CUU AAU G siTM4SF5 #7siTM4SF5 #7 CCU CCU GCU GGU ACC UAA UCCU CCU GCU GGU ACC UAA U siTM4SF5 #8siTM4SF5 #8 GCU UGC AAG UCU GGC UCA UGCU UGC AAG UCU GGC UCA U siTM4SF5 #12siTM4SF5 #12 TGG ACC CAG ATG CTT AAT GAATGG ACC CAG ATG CTT AAT GAA

Number of shRNA targeting sequence against TM4SF5Number of shRNA targeting sequence against TM4SF5 Sequence (5'→3')Sequence (5'→3') shTM4SF5 #2shTM4SF5 #2 CCGGACCATGTGTACGGGAAAATGTGCCTCGA GGCACATTTTCCCGTACACATGGTTTTTTGCCGGACCATGTGTACGGGAAAATGTGCCTCGA GGCACATTTTCCCGTACACATGGTTTTTTG shTM4SF5 #4shTM4SF5 #4 CCGGCCATCTCAGCTTGCAAGTCCTCGAGGACTTGCAAGCTGAGATGGTTTTTGCCGGCCATCTCAGCTTGCAAGTCCTCGAGGACTTGCAAGCTGAGATGGTTTTTG shTM4SF5 #5shTM4SF5 #5 CCGGTGGACCCAGATGCTTAATGCTCGAGCA TTAAGCATCTGGGTCCATTTTTGCCGGTGGACCCAGATGCTTAATGCTCGAGCA TTAAGCATCTGGGTCCATTTTTG shTM4SF5 #12shTM4SF5 #12 CCGGTGGACCCAGATGCTTAATGAACTCGAGT TCATTAAGCATCTGGGTCCATTTTTGCCGGTGGACCCAGATGCTTAATGAACTCGAGT TCATTAAGCATCTGGGTCCATTTTTG

Primer Primer SenseSense Anti-senseAnti-sense Mouse Glut1 #1Mouse Glut1 #1 GCCUCUGCUG CUCAGUGUCA UCUUCAUGCCUCUGCUG CUCAGUGUCA UCUUCAU AUGAAGAUGA CACUGAGCAG CAGAGGCAUGAAGAUGA CACUGAGCAG CAGAGGC Mouse Glut1 #2Mouse Glut1 #2 GAUGAAAGAA GAGGGUCGGC AGAUGAUGAUGAAAGAA GAGGGUCGGC AGAUGAU AUCAUCUGCC GACCCUCUUC UUUCAUCAUCAUCUGCC GACCCUCUUC UUUCAUC Mouse Glut2 #1Mouse Glut2 #1 GGACAAACGGAAGGACAAGGACAAACGGAAGGACAA UUGUCCUUCCGUUUGUCCUUGUCCUUCCGUUUGUCC Mouse Glut2 #2Mouse Glut2 #2 GACGAAGGACAGGACGGACGAAGGACAGGGACG CGUCCUGUCCUUCGUCCGUCCUGUCCUUCGUC Mouse Glut4 #1Mouse Glut4 #1 GACUGGAACA CUGGUCCUAG CUGUAUGACUGGAACA CUGGUCCUAG CUGUAU AUACAGCUAG GACCAGUGUU CCAGUCAUACAGCUAG GACCAGUGUU CCAGUC Mouse Glut4 #2Mouse Glut4 #2 GUUGCGGAUG CUAUGGGUCC UUACGUGUUGCGGAUG CUAUGGGUCC UUACGU ACGUAAGGAC CCAUAGCAUC CGCAACACGUAAGGAC CCAUAGCAUC CGCAAC

그 결과, 엑소좀에서의 TM4SF5의 존재가 늘어나는 경우, GLUT1 및 ALIX의 존재량이 줄어들었고, TM4SF5의 존재가 (siTM4SF5에 의해) 줄어든 경우에서는 GLUT1 및 ALIX이 존재량이 감소하지 않았다 (도5d).As a result, when the presence of TM4SF5 in exosomes increased, the abundance of GLUT1 and ALIX decreased, and when the presence of TM4SF5 decreased (by siTM4SF5), the abundance of GLUT1 and ALIX did not decrease (Figure 5d).

이로서, 간상피세포에서 분리되는 엑소좀에 TM4SF5가 존재할 경우 (탑재될 경우), ALIX등의 엑소좀에 다양한 단백질들의 탑재를 조절하는 기능을 대체할 수 있음을 시사한다. 뿐만 아니라, 엑소좀으로 분리될 경우, GLUT1의 존재가 간상피세포 표면에서의 양보다 줄어들 수 있음을 의미한다. This suggests that when TM4SF5 is present (loaded) in exosomes isolated from liver epithelial cells, it can replace the function of controlling the loading of various proteins into exosomes such as ALIX. In addition, when separated into exosomes, this means that the presence of GLUT1 may be reduced compared to the amount on the surface of hepatic epithelial cells.

또한, 웨스턴블랏을 이용하여 상기 일차 간상피세포 및 상기 간혈관폐쇄회로 시스템을 통해 분리한 엑소좀에서 발현되는 여러 단백질을 확인한 결과, 일차 간상피세포에는 Tm4sf5(-FLAG), TSG101 및 ALIX가 발현 또는 존재하는 것을 확인하였고, 간혈관폐쇄회로 시스템을 통해 분리한 엑소좀에서는 Tm4sf5, TSG101, ALIX, CD63 및 CD81이 발현 또는 존재하는 것을 확인하였다(도 5e). In addition, as a result of confirming several proteins expressed in the primary hepatic epithelial cells and exosomes isolated through the hepatic vascular occlusive circuit system using Western blot, Tm4sf5(-FLAG), TSG101, and ALIX were expressed in the primary hepatic epithelial cells. Alternatively, it was confirmed that Tm4sf5, TSG101, ALIX, CD63, and CD81 were expressed or present in exosomes isolated through the hepatic vascular occlusion system (Figure 5e).

상기와 같이, Tm4sf5가 간상피세포에서만 발현되도록 한 마우스를 이용한 간혈관페쇄회로시스템으로부터 얻은 엑소좀이 Tm4sf5를 탑재할 뿐만 아니라, 다른 여러 엑소좀 마커를 가지는 것을 직접 확인하였다. 그리고, CD63과 CD81의 경우, primary 세포에서는 적은 양으로 확인되지 않았으나, 엑소좀에서는 확연하게 탑재됨을 확인하였다.As described above, it was directly confirmed that exosomes obtained from the hepatic vascular occlusion circuit system using mice in which Tm4sf5 was expressed only in hepatic epithelial cells not only carried Tm4sf5 but also had several other exosomal markers. In addition, in the case of CD63 and CD81, it was confirmed that they were not found in small amounts in primary cells, but were clearly loaded in exosomes.

<3-2> 세포외부에 glucose 처리에 따른 TM4SF5 탑재 간상피세포 유래 엑소좀(hepatocyte exosome)의 TM4SF5 탑재 증가 확인 및 간상피세포의 고에너지상태 확인<3-2> Confirmation of increase in TM4SF5 loading of hepatocyte exosomes loaded with TM4SF5 due to glucose treatment outside the cells and confirmation of high energy state of hepatic epithelial cells

TM4SF5를 원천적으로 발현하는 간상피세포 Huh7 세포 외부에 Glucose가 없는 세포배양액에서 24시간동안 유지하다가 주어진 농도로 glucose 농도로 2시간동안 처리한 후, 세포추출액 (lysate) 및 엑소좀을 확보하여 웨스턴블랏을 수행하였다. 그 결과, TM4SF5 및 CD63은 glucose를 처리한 후 시간이 지남에 따라 엑소좀에 탑재한 양이 서서히 증가하는 추세였지만, ALIX는 약하게 증가하다가 감소하는 경향을 보였다 (도 5f). Huh7, a liver epithelial cell that naturally expresses TM4SF5, was maintained in a cell culture medium without glucose for 24 hours, then treated with glucose at a given concentration for 2 hours, and then cell extract (lysate) and exosomes were obtained and subjected to Western blotting. was carried out. As a result, the amount of TM4SF5 and CD63 loaded into exosomes gradually increased over time after glucose treatment, but ALIX showed a slight increase and then a tendency to decrease (Figure 5f).

Huh7 세포외부에 Glucose가 없는 세포배양액에서 24시간동안 유지하다가 25 mM 농도로 glucose를 주어진 시간동안 처리한 후, 세포추출액 (lysate) 및 엑소좀을 확보하여 웨스턴블랏을 수행하였다. 그 결과, TM4SF5 및 CD63은 glucose를 처리한 후 시간이 지남에 따라 엑소좀에 탑재한 양이 서서히 증가하는 추세이었지만, ALIX는 좀 더 미미하게 증가하는 경향을 보였다 (도 5g). Huh7 cells were maintained in a cell culture medium without glucose for 24 hours and then treated with glucose at a concentration of 25 mM for a given period of time. Cell extracts (lysates) and exosomes were obtained and Western blot was performed. As a result, the amount of TM4SF5 and CD63 loaded into exosomes gradually increased over time after glucose treatment, but ALIX showed a tendency to increase slightly (Figure 5g).

<3-3> 세포외부에 glucose 처리 유무에 따른 TM4SF5 탑재 간상피세포 유래 엑소좀(hepatocyte exosome)에서의 TM4SF5와 Glut1의 결합 확인<3-3> Confirmation of binding of TM4SF5 and Glut1 in TM4SF5-loaded hepatocyte exosomes depending on the presence or absence of glucose treatment outside the cell

TM4SF5를 원천적으로 발현하지 않는 간상피세포 SNU449 세포에 CD151-strep 혹은 TM4SF5-strep 발현 벡터를 HA-GLUT1을 transfection 시킨 후, Glucose를 세포배양액에서 배제하였다가 (-) 다시 25 mM로 24시간 처리한(+) 후, 세포추출액 (lysate) 확보하여 streptavidin bead로 CD151-Strep 혹은 TM4SF5-strep를 pull-down한 후, HA-GLUT1의 존재를 웨스턴블랏으로 확인하였다. 그 결과, 세포외부에 glucose를 배제할 경우 TM4SF5가 GLUT1와의 결합이 잘 이루어지는 것에 대비하여, glucose를 공급하였을 경우(즉, TM4SF5-탑재한 엑소좀이 분비되는 경우) 그 결합이 저하됨을 확인하였다. 그리고, CD151은 GLUT1과 정상배양액 조건에서 GLUT1과의 결합이 미미함을 확인하였다. 뿐만 아니라, serum (fetal bovine serum, FBS 10%)를 배제하였다가 공급하였을 경우는 glucose의 경우와 유사하게 TM4SF5와 GLUT1의 결합이 감소 혹은 억제되었다. 따라서, 간상피세포에서 엑소좀으로 분리되면서 TM4SF5는 GLUT1과의 결합이 약해지거나 중요해지지 않음을 시사하는 것으로 판단된다. 하지만, 아미노산 (amino acid, AA)를 혹은 아르지닌 아미노산 (Arg)을 배제하다가 처리하면 그 결합이 오히려 증가하거나 크게 줄어들지 않음을 확인하였다. 이로선 아미노산보다는 세포외부 글루코즈의 수준에 따라 엑소좀으로 TM4SF5는 탑재가 되지만 GLUT1는 적게 탑재되는 경우로 이루어지는 것으로 추정되었다 (도 5h).After transfecting HA-GLUT1 with CD151-strep or TM4SF5-strep expression vector into hepatic epithelial cells SNU449 cells, which do not naturally express TM4SF5, glucose was excluded from the cell culture medium and then treated with (-) 25 mM for 24 hours. After (+), cell extract (lysate) was obtained, CD151-Strep or TM4SF5-strep was pulled down with streptavidin beads, and the presence of HA-GLUT1 was confirmed by Western blot. As a result, it was confirmed that TM4SF5 binds well to GLUT1 when glucose is excluded from the outside of the cell, whereas when glucose is supplied (i.e., when TM4SF5-loaded exosomes are secreted), the binding decreases. In addition, it was confirmed that CD151 had minimal binding to GLUT1 under normal culture conditions. In addition, when serum (fetal bovine serum, FBS 10%) was excluded and then supplied, the binding between TM4SF5 and GLUT1 was reduced or inhibited, similar to the case of glucose. Therefore, it is judged that this suggests that the binding of TM4SF5 to GLUT1 becomes weaker or becomes less important as it is separated from liver epithelial cells into exosomes. However, it was confirmed that when treated without amino acid (AA) or arginine amino acid (Arg), the binding increased or did not decrease significantly. From this, it was assumed that TM4SF5 was loaded into exosomes, but less GLUT1 was loaded, depending on the level of extracellular glucose rather than amino acids (Figure 5h).

TM4SF5를 원천적으로 발현하지 않는 간상피세포 SNU449 세포에 TM4SF5-Strep WT, 혹은 여러 돌연변이를 발현시키고 세포배양액 내의 글루코즈를 배제한 후, 다시 25 mM glucose를 24시간 동안 처리하지 않거나(-) 처리(+)하고서 세포추출액을 얻어 Strepavidin bead로 pull-down한후 웨스턴블랏을 수행하였다. 그 결과, WT, 혹은 Pro153Ala, Val156Ala 돌연변이 TM4SF5는 GLUT1과 세포외부 glucose의 처리에 따라 결합력을 잃었으나, Thr157Ala 돌연변이 TM4SF5는 결합력이 유지됨을 확인함으로써, WT과 달리 Thr157 아미노산이 엑소좀으로의 탑재가 중요할 수 있음을 추정할 수 있었다 (도 5i).TM4SF5-Strep WT or several mutants were expressed in SNU449 cells, liver epithelial cells that do not natively express TM4SF5, and after excluding glucose from the cell culture medium, they were either left untreated (-) or treated (+) with 25 mM glucose for 24 hours. Then, the cell extract was obtained, pulled down with Strepavidin beads, and Western blot was performed. As a result, it was confirmed that WT, or Pro153Ala, and Val156Ala mutant TM4SF5 lost binding ability due to treatment of GLUT1 and extracellular glucose, but Thr157Ala mutant TM4SF5 maintained binding affinity, indicating that, unlike WT, loading of Thr157 amino acid into exosomes is important. It could be assumed that this could be done (Figure 5i).

<3-4> 세포외부에 glucose 처리 유무에 따른 간상피세포의 고에너지상태 확인<3-4> Confirmation of high energy status of liver epithelial cells depending on the presence or absence of glucose treatment outside the cells

TM4SF5를 원래 발현하는 Hep3B 간상피세포에 대조군 shRNA(non-specific, NS), 혹은 shTM4SF5 (TM4SF5의 서열 #4 혹은 #8을 타겟하는 shRNA)를 주입하여 TM4SF5의 발현을 조절한 후, 세포배양액 내의 glucose를 4시간동안 배제한 후, 다시 25 mM로 주어진 시간(min)동안 처리한 후, 세포추출액을 확보하여 웨스턴블랏을 수행하였다. 그 결과, TM4SF5가 발현하는 경우, 발현억제된 경우에 대비하여, S6K1(ribosomal protein S6 kinase beta-1)의 인산화가 증가하였고 AMPKα(catalytic subunit of AMP-activated protein kinase, AMPK)의 인산화가 감소하여 고에너지상태를 확보함을 확인하였다 (도 5j).After controlling the expression of TM4SF5 by injecting control shRNA (non-specific, NS) or shTM4SF5 (shRNA targeting sequence #4 or #8 of TM4SF5) into Hep3B liver epithelial cells that originally express TM4SF5, After excluding glucose for 4 hours, the cells were again treated with 25mM for a given time (min), then cell extracts were obtained and Western blot was performed. As a result, when TM4SF5 was expressed, compared to when its expression was suppressed, phosphorylation of S6K1 (ribosomal protein S6 kinase beta-1) increased and phosphorylation of AMPKα (catalytic subunit of AMP-activated protein kinase, AMPK) decreased. It was confirmed that a high energy state was secured (Figure 5j).

TM4SF5를 원래 발현하는 Huh7 간상피세포주에 배양액 내 glucose를 24시간동안 배제하지 않거나 (No starv.) 배제하였다가, glucose 25 mM로 주어진 시간동안 처리하였을 하고난 후, 세포추출액을 확보하여 웨스턴블랏을 수행하였다. 그 결과, glucose를 처리하고 점진적으로 시간이 지남에 따라, 처리하지 않았을 경우에 대비하여, AMPK 및 ACCα(acetyl CoA carboxylase α)의 인산화가 감소함으로써 고에너지상태임을 나타내었고, 또한 mTOR(mechanistic target of rapamycin) 및 S6K1의 인산화가 증가하여 단백질대사의 활성화가 증가하였다 (도 5k). Huh7 hepatic epithelial cell line, which originally expresses TM4SF5, was treated with 25 mM glucose for a given period of time without excluding glucose from the culture medium (No starv.) for 24 hours. Then, cell extracts were obtained and subjected to Western blotting. carried out. As a result, the phosphorylation of AMPK and ACCα (acetyl CoA carboxylase α) decreased compared to the case when glucose was not treated and gradually over time, indicating a high energy state, and mTOR (mechanistic target of phosphorylation of rapamycin) and S6K1 increased, resulting in increased activation of protein metabolism (Figure 5k).

<3-5> 세포외부에 glucose 처리에 따른 TM4SF5 탑재 간상피세포 유래 엑소좀(hepatocyte exosome)의 평균 입자 크기 변화 관찰 확인<3-5> Observation of changes in average particle size of TM4SF5-loaded hepatocyte exosomes according to extracellular glucose treatment

TM4SF5를 원래 발현하는 간상피세포 Huh7 간상피세포에 대조군 shRNA(non-specific, NS), 혹은 shTM4SF5 (TM4SF5의 서열 #4를 타겟하는 shRNA)를 주입하여 TM4SF5의 발현을 조절한 후, 세포를 RPMI 배양액에서 정상적으로 키우거나 (RPMI), 세포배양액 내의 glucose를 24시간동안 배제한 후, 다시 25 mM로 24 시간동안 처리하지 않거나(glu-) 처리한 후(Glu+), 엑소좀을 분리하였다. 분리한 엑소좀의 평균크기를 nanoparticle tracking analysis(NTA)로 분석하여 그래프로 나타내었다. TM4SF5가 발현하는 경우, glucose를 배제했을 경우에 비하여 다시 처리할 경우 엑소좀의 평균크기가 줄어들었으나, TM4SF5의 발현이 억제된 경우에는 그러한 현상이 보이지 않았다 (도5l). After regulating the expression of TM4SF5 by injecting control shRNA (non-specific, NS) or shTM4SF5 (shRNA targeting sequence #4 of TM4SF5) into Huh7 liver epithelial cells that originally express TM4SF5, the cells were incubated with RPMI. Exosomes were isolated after growing normally in culture medium (RPMI), excluding glucose in the cell culture medium for 24 hours, and then leaving the cells untreated (glu-) or treated (Glu+) with 25 mM for 24 hours. The average size of the isolated exosomes was analyzed using nanoparticle tracking analysis (NTA) and displayed in a graph. When TM4SF5 was expressed, the average size of exosomes decreased when treated again compared to when glucose was excluded, but such phenomenon was not observed when TM4SF5 expression was suppressed (Figure 5l).

상기 도5l의 경우에 확보한 엑소좀을 turnable resistive pulse sensing (TRPS)으로 분석하였을 경우에도 역시 glucose의 처리에 따라 엑소좀의 크기가 줄어듦을 확인하였다 (도5m).In the case of Figure 5l, when the exosomes obtained were analyzed using turnable resistive pulse sensing (TRPS), it was confirmed that the size of the exosomes decreased with glucose treatment (Figure 5m).

뿐만 아니라, size-exclusion chromatography를 거친 Huh7 엑소좀의 크기와 농도를 single angle dynamic light scattering (DLS) 방법을 통하여 확인하였다. 100 nm이하의 작은 particle까지 분석이 가능하였으며, 따라서, 간상피세포에서 분비되는 TM4SF5 탑재 엑소좀은 세포외부에 glucose를 배제하였다가 고농도롤 처리하였을 경우에 분비되는 데, 평균크기가 훨씬 작은 경우로 분비됨을 확인할 수 있었다 (도 5n).In addition, the size and concentration of Huh7 exosomes that had undergone size-exclusion chromatography were confirmed using single angle dynamic light scattering (DLS). It was possible to analyze small particles of less than 100 nm. Therefore, TM4SF5-loaded exosomes secreted from liver epithelial cells are secreted when glucose is excluded from the outside of the cell and treated with high concentration roll, and the average size is much smaller. Secretion was confirmed (Figure 5n).

<3-6> TM4SF5 탑재 간상피세포 유래 엑소좀(hepatocyte exosome)에 존재하는 단백질체 분석<3-6> Analysis of proteome present in hepatocyte exosomes loaded with TM4SF5

TM4SF5를 원래 발현하는 간상피세포 Huh7 간상피세포에 대조군 shRNA(non-specific, NS), 혹은 shTM4SF5 (TM4SF5의 서열 #4 혹은 #12를 타겟하는 shRNA)를 주입하여 TM4SF5의 발현을 조절한 후, 엑소좀을 분리하였다. 분리한 엑소좀에 존재하는 단백질들을 MALDI-TOF(matrix-assisted laser desorption/ionization time-of-flight) 기기를 이용하여 분석하였다. 이는 엑소좀을 장비의 주입구에 넣고 조각화 (fragmentation) 및 이온화 (ionization) 단계를 거치고 전기장을 걸면 관 내에서 이동하게 되고, 이동하고 있는 각 이온 조각들은 검출기에서 질량별로 분류되는 측면을 이용한 것이다. TM4SF5-발현 혹은 비발현 엑소좀들에 존재하는 단백질들을 동정하고, 생물학적 기능과 연계된 gene ontology를 포함하는 PANDER (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org) 분석 (PANDER-GO-slim)을 수행하였다. 그 결과, TM4SF5가 발현하는 세포에서 분리한 엑소좀에는 TM4SF5가 발현하지 않는 세포에서 얻은 엑소좀에 비하여, biological adhesion에 관련한 단백질들 [ITGB3(Integrin Subunit Beta 3), FAM49B(amily with sequence similarity 49 member B), ICAM2(Intercellular Adhesion Molecule 2), PKP1(Plakophilin 1), SIRPG(Signal Regulatory Protein Gamma), ITGBL1(Integrin Subunit Beta Like 1)]이 추가적으로 존재함을 확인하였다 (도5o). After controlling the expression of TM4SF5, control shRNA (non-specific, NS) or shTM4SF5 (shRNA targeting sequence #4 or #12 of TM4SF5) was injected into Huh7 liver epithelial cells that originally express TM4SF5, Exosomes were isolated. Proteins present in the isolated exosomes were analyzed using a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instrument. This takes advantage of the fact that exosomes are put into the inlet of the equipment, go through fragmentation and ionization steps, and then apply an electric field to move within the tube, and each moving ion fragment is classified by mass in a detector. PANDER (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org) analysis to identify proteins present in TM4SF5-expressing or non-expressing exosomes and including gene ontology linked to biological function (PANDER-GO-slim) ) was performed. As a result, exosomes isolated from cells expressing TM4SF5 contained proteins related to biological adhesion [ITGB3 (Integrin Subunit Beta 3), FAM49B (amily with sequence similarity 49 member) compared to exosomes obtained from cells not expressing TM4SF5. B), ICAM2 (Intercellular Adhesion Molecule 2), PKP1 (Plakophilin 1), SIRPG (Signal Regulatory Protein Gamma), ITGBL1 (Integrin Subunit Beta Like 1)] were confirmed to be additionally present (Figure 5o).

이러한 결과는 TM4SF5가 탑재되는 엑소좀은 표적세포(target 세포)에게 다가가서 좀 더 효율적으로 부착 및 융합(fusion)되어 엑소좀이 갖고 있는 내용물을 표적세포에게 전달할 수 있을 것으로 추정하게 한다. These results lead us to assume that exosomes loaded with TM4SF5 will be able to approach target cells, attach and fuse more efficiently, and deliver the contents of the exosomes to target cells.

혈액 속의 Glucose를 소진시킬 수 있는 장기 혹은 표적세포로는 지방조직 (adipose tissue), 근육조직 등이 있을 수 있다. 이때, 지방저장을 주요 기능으로 하는 백색지방(white adipose tissue: WAT)과 지방 연소를 통한 발열을 주요 기능으로 하는 갈색지방(brown adipose tissue)으로 나누어지며, 이들은 GLUT4(Glucose Transporter Type 4)를 발현함으로써, 혈액 내 glucose의 흡수를 통한 해당작용을 활성화함으로써, 혈액 내 glucose의 저하 내지는 지방/근육조직으로 확산을 촉진한다. 따라서, TM4SF5와 GLUT4의 결합성을 확인하고자 하였다. Organs or target cells that can consume glucose in the blood may include adipose tissue and muscle tissue. At this time, it is divided into white adipose tissue (WAT), whose main function is fat storage, and brown adipose tissue, whose main function is heat generation through fat burning, and these express GLUT4 (Glucose Transporter Type 4). By doing so, it activates glycolysis through absorption of glucose in the blood, thereby promoting lowering of glucose in the blood or diffusion into fat/muscle tissue. Therefore, we sought to confirm the binding between TM4SF5 and GLUT4.

이를 위해 HEK293FT 세포주에 대조군 Strep-벡터 (empty vector, EV) 혹은 Strep이 연결된 TM4SF1, TM4SF4, TM4SF5, TM4SF18, TM4SF20, CD9, CD151를 각각 HA-GLUT4와 함께 주입하여 발현되게 한 후, 세포추출액을 확보하였다. 세포추출액으로부터 각 Strep연결된 단백질들을 streptavidin-bead로 pull-down한 후, HA-GLUT4 및 Strep에 대하여 웨스턴블랏을 수행하였다. For this purpose, control Strep-vector (empty vector, EV) or Strep-linked TM4SF1, TM4SF4, TM4SF5, TM4SF18, TM4SF20, CD9, and CD151 were injected together with HA-GLUT4 to express each other in HEK293FT cell line, and then cell extract was obtained. did. Each Strep-linked protein from the cell extract was pulled down with streptavidin-beads, and then Western blot was performed on HA-GLUT4 and Strep.

그 결과, GLUT4에 TM4SF5는 TM4SF18과 CD151과 달리, TM4SF1, TM4SF4, TM4SF20와 CD9와 더불어 잘 결합함을 확인하였다 (도5p). 이는 간상피세포에서 유래한 TM4SF5-탑재된 엑소좀은 지방조직 혹은 근육조직의 표적세포로 근접을 해서 좀 더 효율적으로 부착하면서 그 표적세포에 존재하는 GLUT4와 결합할 수 있음을 시사한다.As a result, it was confirmed that TM4SF5 binds well to GLUT4, unlike TM4SF18 and CD151, with TM4SF1, TM4SF4, TM4SF20, and CD9 (Figure 5p). This suggests that TM4SF5-loaded exosomes derived from liver epithelial cells can approach target cells in adipose tissue or muscle tissue and attach more efficiently and bind to GLUT4 present in the target cells.

<실험예 4> 혈당 상태에 따른 간 유래 엑소좀의 물리적 변화 확인<Experimental Example 4> Confirmation of physical changes in liver-derived exosomes according to blood sugar status

<4-1> 포도당 혈중 농도에 따른 간 유래 엑소좀의 물리적 변화 측정<4-1> Measurement of physical changes in liver-derived exosomes according to glucose blood concentration

포도당의 혈중 농도에 따른 간 유래 엑소좀의 변화 여부를 확인한다면, 이는 환자의 몸 상태나 간의 혈중 포도당 제거 능력을 가늠할 수 있는 중요한 지표가 될 수 있으므로, 이를 확인하기 위해 상기 실시예 1의 간혈관폐쇄회로 시스템을 이용하여 포도당 혈중 농도에 따른 엑소좀의 물리적 변화를 측정하였다.If we check whether the liver-derived exosomes change depending on the blood concentration of glucose, this can be an important indicator of the patient's physical condition or the liver's ability to remove glucose from the blood. To confirm this, the liver blood vessels of Example 1 were tested. Physical changes in exosomes according to glucose blood concentration were measured using a closed-circuit system.

구체적으로, 정상식이 조건의 정상 마우스 3마리 및 24시간 사료를 제한하여 굶긴 정상 마우스 2마리로부터 실시예 2의 방법을 통해 간 유래 엑소좀을 분리하였고, 실험예 2에 개시한 방법과 동일한 방법으로 엑소좀의 크기를 확인하였다. Specifically, liver-derived exosomes were isolated from three normal mice under normal dietary conditions and two normal mice starved by restricting food for 24 hours through the method of Example 2, and using the same method as disclosed in Experimental Example 2. The size of exosomes was confirmed.

그 결과, 정상식이 조건의 정상 마우스 3마리로부터 분리한 간 유래 엑소좀의 평균 크기는 179.433±11.272nm인 반면, 사료를 제한한 조건의 정상마우스 2마리로부터 분리한 간 유래 엑소좀의 경우는 276.9±3.818nm의 평균 크기를 가져, 정상식이 조건 마우스의 엑소좀 대비하여, 엑소좀의 크기 분포가 매우 넓게 퍼져 있는 것을 확인하였다(도 6a). As a result, the average size of liver-derived exosomes isolated from three normal mice under normal diet conditions was 179.433 ± 11.272 nm, while the average size of liver-derived exosomes isolated from two normal mice under feed-restricted conditions was 276.9 nm. With an average size of ±3.818 nm, it was confirmed that the size distribution of exosomes was very wide compared to exosomes from mice under normal diet conditions (Figure 6a).

또한, 동일한 정상 마우스에서 엑소좀 순환 미디어를 관류(perfusion)할 때 포도당이 존재하는 미디어를 1 시간 흘러보내면서 얻은 엑소좀과, 그후 포도당이 포함되지 않은 미디어를 흘러보내면서 얻은 엑소좀 크기를 포도당의 존재 여부에 따라 확인한 결과, 포도당이 존재하는 상태에서 존재하지 않는 상태로 전환되었을 때 엑소좀의 크기 분포가 넓어지는 것을 확인하였다(도 6b). 따라서, 엑소좀의 크기 분포에 이상이 생기거나 TM4SF5의 발현이 저해되는 것은 포도당 조절 능력에 문제가 생겼음을 진단할 수 있는 중요한 지표가 될 수 있다.In addition, when perfusing exosome circulation media in the same normal mouse, the size of the exosomes obtained by flowing media containing glucose for 1 hour and the size of exosomes obtained by flowing media without glucose afterward were calculated using glucose. As a result of checking depending on the presence of , it was confirmed that the size distribution of exosomes widened when switching from the state in which glucose was present to the state in which it was not present (Figure 6b). Therefore, abnormalities in the size distribution of exosomes or inhibition of TM4SF5 expression can be important indicators for diagnosing problems with glucose control ability.

<4-2> 간상피세포에 발현하는 TM4SF5와 GLUT1과의 결합에 의한 Glucose의 흡수와 해당작용의 활성화 확인<4-2> Confirmation of glucose absorption and activation of glycolysis by binding between TM4SF5 and GLUT1 expressed in liver epithelial cells

HEK293FT 세포주에 대조군 Strep-벡터 (empty vector, EV) 혹은 Strep-TM4SF5를 HA-GLUT1, HA-GLUT2, HA-GLUT3, HA-GLUT4, HA-GLUT9과 함께 주입하여 발현되게 한 후, 세포배양액 내에 glucose를 배제하거나(-) 25 mM로 24시간 처리한 후(+), 세포추출액을 확보하였다. 세포추출액으로부터 각 Strep-TM4SF5을 streptavidin-bead로 pull-down한 후, HA 및 Strep에 대하여 웨스턴블랏을 수행하였다. 그 결과, TM4SF5는 GLUT1, GLUT4, GLUT9과 결합함을 확인하였다, 이때, GLUT1은 Glucose를 처리하지 않았을 경우에 결합을 잘하다가 glucose를 처리하였을 경우 그 결합이 감소하지만 GLUT9은 그 반대양상을 보여주었다, 한편 GLUT4는 Glucose 처리와 무관하게 결합을 잘하는 것으로 확인되었다 (도6c).After injecting control Strep-vector (empty vector, EV) or Strep-TM4SF5 together with HA-GLUT1, HA-GLUT2, HA-GLUT3, HA-GLUT4, and HA-GLUT9 into the HEK293FT cell line and expressing it, glucose in the cell culture medium was expressed. After exclusion (-) or treatment with 25 mM for 24 hours (+), cell extracts were obtained. After pulling down each Strep-TM4SF5 from the cell extract with streptavidin-beads, Western blotting was performed on HA and Strep. As a result, it was confirmed that TM4SF5 binds to GLUT1, GLUT4, and GLUT9. At this time, GLUT1 binds well when not treated with glucose, but when treated with glucose, the binding decreases, but GLUT9 showed the opposite pattern. , Meanwhile, GLUT4 was confirmed to bind well regardless of glucose treatment (Figure 6c).

SNU449 세포주에 TM4SF5-FLAG및 HA-GLUT1을 동시에 주입하여 발현시킨 후, 형광면역염색법을 통하여 TM4SF5-FLAG (빨간색) 및 HA-GLUT1(녹색)의 분포위치를 확인하였다, 그 결과, 빨간색과 녹색이 겹쳐서 노란색으로 보이는 부위가 확인됨으로써, TM4SF5와 GLUT1이 간상피세포 막에서 서로 결합할 수 있음을 확인하였다 (도6d).After TM4SF5-FLAG and HA-GLUT1 were simultaneously injected and expressed in the SNU449 cell line, the distribution locations of TM4SF5-FLAG (red) and HA-GLUT1 (green) were confirmed through fluorescence immunostaining. As a result, red and green were confirmed. By confirming the overlapped yellow appearance, it was confirmed that TM4SF5 and GLUT1 can bind to each other in the liver epithelial cell membrane (Figure 6d).

간상피세포 Huh7 간상피세포에 대조군 shRNA(non-specific, NS), 혹은 shTM4SF5 (TM4SF5의 서열 #4 혹은 #8를 타겟하는 shRNA)를 주입하여 TM4SF5의 발현을 조절하거나, 100 μM fasentin (GLUT1/4 inhibitor, SIGMA, Cas number 392721-37-8)를 처리한 후, 그 세포 내부로의 glucose 흡수를 측정하였다. 그 결과, TM4SF5가 발현 억제되었거나 GLUT1/4 억제제가 처리되었을 경우에 Glucose 흡수가 저하되었다 (도6e).Expression of TM4SF5 was controlled by injecting control shRNA (non-specific, NS) or shTM4SF5 (shRNA targeting sequence #4 or #8 of TM4SF5) into Huh7 liver epithelial cells, or injecting 100 μM fasentin (GLUT1/ After treatment with 4 inhibitor, SIGMA, Cas number 392721-37-8), glucose uptake into the cells was measured. As a result, glucose absorption was decreased when TM4SF5 expression was suppressed or when GLUT1/4 inhibitor was treated (Figure 6e).

마우스의 정상간상피세포인 AML12세포에 대조군벡터 (EV) 혹은 TM4SF5-HA를 주입하여 발현시킨 후, 24-well plate 포맷 상에서 live cell의 산소 소비율(OCR)과 세포외산성화 속도(ECAR)를 측정하는 Seahorse XFe24 분석기 (Agilent, USA)를 이용하여 glucose 10 mM, oligomycin 1 μM, 그리고 50 mM 2-deoxy-D-glucose (2-DG, 해당작용 억제제, Sigma, Cas number 154-17-6)를 차례로 처리하면서 ECAR를 측정하여 glycolytic stress test를 수행하였다. 그결과, TM4SF5를 발현하는 세포에서 ECAR의 정도가 훨씬 높음으로써, 해당과정이 훨씬 활성화될 수 있음을 확인하였다 (도6f). After injecting control vector (EV) or TM4SF5-HA into AML12 cells, which are normal mouse liver epithelial cells, and expressing them, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of live cells were measured in a 24-well plate format. Using a Seahorse A glycolytic stress test was performed by measuring ECAR while processing sequentially. As a result, it was confirmed that the level of ECAR was much higher in cells expressing TM4SF5, thereby enabling glycolysis to be significantly activated (Figure 6f).

마우스의 정상간상피세포인 AML12세포에 대조군벡터(EV) 혹은 TM4SF5-HA를 주입하여 발현시킨 후, oligomycin 1.0 μM과 더불어 glucose 0.5 mM을 처리한 후, 30여 분 후마다 glucose의 농도를 1.0, 5.0, 10.0으로 차례로 높이면서 ECAR를 측정함으로써 glucose sensitivity를 확인하였다. 그 결과, TM4SF5를 발현하는 세포에서 낮은 glucose의 처리에서도 ECAR의 정도가 훨씬 높아짐으로써, 해당과정이 훨씬 예민하게 활성화될 수 있음을 확인하였다 (도6g).AML12 cells, which are normal liver epithelial cells in mice, were injected and expressed with control vector (EV) or TM4SF5-HA, treated with 1.0 μM of oligomycin and 0.5 mM of glucose, and after about 30 minutes, the concentration of glucose was increased to 1.0, Glucose sensitivity was confirmed by measuring ECAR while sequentially increasing it to 5.0 and 10.0. As a result, it was confirmed that in cells expressing TM4SF5, the degree of ECAR was much higher even when treated with low glucose, indicating that the glycolysis process could be activated much more sensitively (Figure 6g).

상기와 같이, 간상피세포에서는 TM4SF5가 발현될 경우, 발현하지 않는 경우에 대비하여 GLUT1과 결합하여 간상피세포로 Glucose의 흡수를 촉진하여 해당작용을 활성화시킨다는 것을 확인하였다.As described above, it was confirmed that when TM4SF5 is expressed in liver epithelial cells, compared to when it is not expressed, it binds to GLUT1 and promotes the absorption of glucose into liver epithelial cells, thereby activating glycolysis.

<4-3> 간상피세포-유래 TM4SF5가 탑재된 엑소좀의 갈색지방조직(brown adipose tisse) 및 BAT 세포의 표적 및 GLUT4와의 결합에 의한 Glucose의 흡수와 해당작용의 활성화 확인<4-3> Confirmation of absorption of glucose and activation of glycolysis by targeting brown adipose tissue and BAT cells of exosomes loaded with liver epithelial cell-derived TM4SF5 and binding to GLUT4

대조군벡터(EV) 혹은 TM4SF5를 안정적으로 발현하는 AML12 세포에 대조군 siRNA(NS, non-speific) 혹은 Glut1, Glut2, 혹은 Glut4 마우스 유전자에 대한 siRNA를 주입하여 각 Glut의 발현을 조절한 후, 엑소좀을 분리하였다. 분리한 엑소좀(4 x 108 partcles)을 정상 마우스의 갈색지방조직세포를 분리하여 7일동안 분화시킨 후에 섞어줌으로써 반응시켰다. 그 후, glucose, oligomycin, 및 2-DG를 차례대로 첨가하면서 ECAR를 측정하였다. 그 결과, TM4SF5가 발현하면서 대조군 siRNA (NS) 혹은 siGlut2를 주입한 세포로부터 얻은 엑소좀(sEVTm4sf5)들은 TM4SF5가 발현하지 않는 세포 혹은 siGlut1 혹은 siGlut4가 억제된 AML12-TM4SF5세포로부터 얻은 엑소좀을 처리한 경우보다 ECAR의 정도가 높아서 해당작용이 활성화됨을 확인하였다. 즉, 간상피세포의 TM4SF5와 Glut1/Glut4의 발현이 되는 경우에 분비되는 엑소좀은 표적세포 (갈색지방조직세포)에게 해당작용의 활성화를 초래할 수 있음이 확인되었다 (도6h).After controlling the expression of each Glut by injecting control siRNA (NS, non-speific) or siRNA for Glut1, Glut2, or Glut4 mouse genes into AML12 cells stably expressing control vector (EV) or TM4SF5, exosomes was separated. The isolated exosomes (4 x 10 8 parts) were reacted with brown adipose tissue cells from normal mice, differentiated for 7 days, and then mixed. Afterwards, ECAR was measured while glucose, oligomycin, and 2-DG were sequentially added. As a result, exosomes (sEV Tm4sf5 ) obtained from cells expressing TM4SF5 and injected with control siRNA (NS) or siGlut2 were treated with exosomes obtained from cells not expressing TM4SF5 or AML12-TM4SF5 cells in which siGlut1 or siGlut4 was suppressed. The degree of ECAR was higher than in the other case, confirming that glycolysis was activated. In other words, it was confirmed that exosomes secreted when TM4SF5 and Glut1/Glut4 are expressed in liver epithelial cells can cause activation of glycolysis in target cells (brown adipose tissue cells) (Figure 6h).

상기 도6h와 같은 조건에서, 엑소좀을 분화된 갈색지방조직세포에 처리한 후, oligomycin 1.0 μM과 함께 glucose 0.5 mM을 처리하다가 약 30분마다 glucose의 농도를 1.0, 2.0, 및 5.0으로 높여가며 첨가하면서 ECAR를 측정하여 glucose sensitivity를 확인하였다. 그 결과, 갈색지방조직세포의 해당작용이 TM4SF5가 발현하는 간상피세포 유래 엑소좀에 의해 활성화되었지만, 그 간상피세포의 Glut1이 발현 억제되면 그 해당작용의 활성화가 상실되었고, Glut4의 발현억제와는 무관하였다. 즉, 간상피세포의 Glut4는 TM4SF5이 발현하는 간상피세포 유래 엑소좀의 표적세포 해당작용을 활성화시키는 기능에 필요치 않음을 확인하였다 (도6i).Under the same conditions as shown in Figure 6h, exosomes were treated with differentiated brown adipose tissue cells, and then treated with 0.5 mM glucose along with 1.0 μM oligomycin, increasing the concentration of glucose to 1.0, 2.0, and 5.0 about every 30 minutes. While adding, ECAR was measured to confirm glucose sensitivity. As a result, the glycolysis of brown adipose tissue cells was activated by exosomes derived from liver epithelial cells expressing TM4SF5, but when the expression of Glut1 in the liver epithelial cells was suppressed, the activation of glycolysis was lost, and the expression of Glut4 was suppressed and was irrelevant. In other words, it was confirmed that Glut4 in liver epithelial cells is not required for the function of activating target cell glycolysis of exosomes derived from liver epithelial cells expressing TM4SF5 (Figure 6i).

대조군벡터(EV) 혹은 Tm4sf5-Strep을 발현하는 AML12세포에게서 엑소좀을 분리하였다. 그리고, 그 엑소좀들을 4 x 108 partcle/condition의 농도로 정상마우스에서 분리하여 분화시킨 primary BAT (갈색지방조직세포)에 24시간 동안 처리하였다. TM4SF5 발현하는 세포에게서 얻은 엑소좀(sEVTm4sf5-Strep)을 처리할 경우에는 TM4SF5-특이적 억제제 TSAHC를 2 μM로 처리하지 않거나 24시간동안 처리하였다. 그 후, 세포추출액을 확보하여 streptavidin bead로 pull-dwon한 후, anti-Strep 항체 혹은 Glut4를 이용하여 웨스턴블랏을 수행하였다. Exosomes were isolated from AML12 cells expressing control vector (EV) or Tm4sf5-Strep. Then, the exosomes were treated with primary BAT (brown adipose tissue cells) differentiated from normal mice at a concentration of 4 x 10 8 partcle/condition for 24 hours. When treating exosomes (sEV Tm4sf5-Strep ) obtained from cells expressing TM4SF5, the TM4SF5-specific inhibitor TSAHC was left untreated at 2 μM or treated for 24 hours. Afterwards, the cell extract was obtained and pulled-done with streptavidin beads, and then Western blot was performed using anti-Strep antibody or Glut4.

그 결과, Tm4sf5를 발현하지 않는 AML12세포에게서 얻은 엑소좀 (sEVControl)을 처리하였을 경우에는 Glut4가 Tm4sf5-Strep과의 결합이 이루어질 수 없었고, sEVTm4sf5-Strep을 처리한 경우는 BAT의 Glut4가 엑소좀에 존재하였던 Tm4sf5-Strep과 결합하였고, 이는 TSAHC 처리에 의해 줄어듦을 확인할 수 있었다. 이로서 간상피세포-유래 Tm4sf5 탑재 엑소좀은 BAT 표적세포에 부착하여 Tm4sf5-Strep과 Glut4가 결합 가능함을 확인할 수 있었다. 뿐만 아니라, 이러한 효과는 Tm4sf5의 활성과 유관함이 확인되었다 (도6j).As a result, when exosomes (sEV Control ) obtained from AML12 cells that do not express Tm4sf5 were treated, Glut4 could not bind to Tm4sf5-Strep, and when sEV Tm4sf5-Strep was treated, Glut4 from BAT was unable to bind to exosomes. It bound to Tm4sf5-Strep that existed in the moth, and it was confirmed that this was reduced by TSAHC treatment. As a result, it was confirmed that liver epithelial cell-derived Tm4sf5-loaded exosomes attached to BAT target cells were capable of binding Tm4sf5-Strep and Glut4. In addition, it was confirmed that this effect was related to the activity of Tm4sf5 (Figure 6j).

상기 도6j의 조건과 동일하게 분리한 엑소좀들을, 분화된 primary BAT 세포에 처리하였다. 이때, 다양한 농도의 엑소좀을 처리하였다. 그후, BAT 세포 내부로의 glucose 흡수를 측정한 결과, Tm4sf5가 발현하는 간상피세포-유래 엑소좀을 처리한 경우, 특히 농도에 의존적으로, glucose 흡수가 증가함을 확인하였다 (도6k).Exosomes isolated under the same conditions as in Figure 6j were treated with differentiated primary BAT cells. At this time, exosomes of various concentrations were treated. Subsequently, as a result of measuring glucose uptake into BAT cells, it was confirmed that when treated with hepatic epithelial cell-derived exosomes expressing Tm4sf5, glucose uptake increased, especially in a concentration-dependent manner (Figure 6k).

<실험예 5> TM4SF5가 탑재된 간 유래 엑소좀의 당 대사 및 혈당량 개선 효과 확인<Experimental Example 5> Confirmation of the effect of liver-derived exosomes loaded with TM4SF5 on improving glucose metabolism and blood sugar level

<5-1> Tm4sf5의 간 발현에 따른 동물의 혈당 조절 효과 확인<5-1> Confirmation of blood sugar control effect in animals according to liver expression of Tm4sf5

정상마우스(WT), 간상피세포-특이적 Tm4sf5 과다발현 마우스(Alb-TGTm4sf5 혹은 alb-TG) 및 Tm4sf5-/- KO 마우스들을(n=10) 단일코호트로 이용하여 반복적으로 혈당량을 측정하였다. 8주령 나이부터 시작하여 11주령이 되기까지 1주일마다 각각 glucose를 2.0, 4.0, 1.0, 및 0.5 g/kg의 농도로 주사한 후, 45분 후, 매번 복강포도당부하검사(intraperitoneal glucose tolerant test, IPGTT)를 통해 혈당량을 측정하였다. 그 결과, WT 및 alb-TG 마우스는 Tm4sf5-/- KO 마우스보다 혈액 내 glucose 수준이 낮음을 확인을 하였다. Normal mice (WT), liver epithelial cell-specific Tm4sf5 overexpressing mice (Alb-TG Tm4sf5 or alb-TG), and Tm4sf5 -/- KO mice (n = 10) were used as a single cohort to repeatedly measure blood glucose levels. . Starting from 8 weeks of age, glucose was injected at concentrations of 2.0, 4.0, 1.0, and 0.5 g/kg every week until 11 weeks of age, and then 45 minutes later, an intraperitoneal glucose tolerance test was performed each time. Blood sugar level was measured through IPGTT). As a result, it was confirmed that WT and alb-TG mice had lower blood glucose levels than Tm4sf5 -/- KO mice.

11주령 마우스를 마지막으로 혈당량을 측정하고 24시간이 지난 후, 같은 WT 및 KO마우스에 AAV8-Tbg-Tm4sf5-HA (마우스 Tm4sf5-HA 유전자를 간(상피세포)-특이적 Tbg(Thyroxine binding globulin) promoter에 연결한 유전자 조각을 발현하는 adeno-associated virus subtype 8)를 2 × 1010 vg/mouse의 농도로 1회 정맥주사하였다. 5주가 지난 후, 다시 1주일마다 glucose를 2.0 혹은 4.0 g/kg로 IP 주사한 후, GTT를 수행하였다. 그 결과, 다시 Tm4sf5를 AAV8로 발현을 회복시킨 KO 마우스와 WT 마우스 사이에 혈당량의 차이가 유의미하지 않음을 확인하였다 (도7a).24 hours after the last blood glucose level was measured in 11-week-old mice, the same WT and KO mice were injected with AAV8-Tbg-Tm4sf5-HA (mouse Tm4sf5-HA gene into the liver (epithelial cell)-specific Tbg (Thyroxine binding globulin) Adeno-associated virus subtype 8), which expresses a gene fragment linked to a promoter, was injected intravenously once at a concentration of 2 × 10 10 vg/mouse. After 5 weeks, glucose was again injected IP at 2.0 or 4.0 g/kg every week, and then GTT was performed. As a result, it was confirmed that there was no significant difference in blood sugar levels between KO mice and WT mice in which Tm4sf5 expression was restored with AAV8 (FIG. 7a).

<5-2> TM4SF5가 탑재된 간 유래 엑소좀의 당 대사 및 혈당량 개선 효과 확인<5-2> Confirmation of the effect of liver-derived exosomes loaded with TM4SF5 on improving glucose metabolism and blood sugar level

TM4SF5가 탑재된 간 유래 엑소좀이 다양한 세포 또는 조직의 포도당 흡수 및 혈당량 조절에 미치는 영향을 확인하기 위해, Tm4sf5 유전자를 알부민 프로모터(Albumin promoter)를 이용하여 간에서 과발현 시킨 마우스(Alb-Tm4sf5)에서 간혈관폐쇄회로 시스템을 통해 얻은 엑소좀을 크기 배제 크로마토그래피(size exclusion chromatography)를 통해 분리해서 TM4SF5가 탑재된 간 유래 엑소좀을 정상 마우스(WT) 또는 Tm4sf5 KO 마우스(Tm4sf5-/-)에 투여한 후 그 결과를 확인하였다.To confirm the effect of liver-derived exosomes loaded with TM4SF5 on glucose uptake and blood sugar level control in various cells or tissues, the Tm4sf5 gene was overexpressed in the liver using the albumin promoter (Alb-Tm4sf5). Exosomes obtained through the liver vascular occlusion circuit system were separated through size exclusion chromatography, and liver-derived exosomes loaded with TM4SF5 were administered to normal mice (WT) or Tm4sf5 KO mice (Tm4sf5 -/- ). After doing so, the results were confirmed.

구체적으로, 간상피세포에서 특이적으로 발현하고 엑소좀 막에 존재할 Tm4sf5 유전자를 Albumin 프로모터를 이용하여 간에서 과발현시킨 마우스(Alb-Tm4sf5)에서 상기 실시예 1의 간혈관폐쇄회로 시스템을 통해 얻은 엑소좀 샘플을 크기 배제 크로마토그래피에 통과시켰고, 통과된 1.5ml의 엑소좀 샘플을 50kDa membrane 원심분리 농축기를 이용해 200 μl까지 농축시켰다. 그 후, 16시간동안 금식시킨 Tm4sf5 KO 마우스를 30% 이소플루란[Piramal -Terrell??, 용매는 polyethylene glycol-200 (Sigma Aldrich -8.07483)]을 이용하여 마취하고, 상기 농축한 엑소좀을 꼬리 혈관 주사를 통해 200 μl 주사하였다. 5분 뒤 상기 마우스가 마취에서 깨어나면 꼬리 채혈을 통해 첫번째 혈당을 측정하였다. 다음으로 20% 포도당(Sigma Aldrich - G8270)를 2g(포도당)/kg(마우스 몸무게)로 복강 주사하였고, 주사 후 30, 60 및 120분동안 혈당기(Johnson and johnson - One touch ultra)를 이용하여 혈당 변화를 측정하였다. 반면 대조군의 경우 정상 마우스에 PBS를 투여하였다.Specifically, exo obtained through the liver vascular occlusion circuit system of Example 1 in a mouse (Alb-Tm4sf5) in which the Tm4sf5 gene, which is specifically expressed in liver epithelial cells and is present in the exosome membrane, was overexpressed in the liver using an albumin promoter. The exosome sample was passed through size exclusion chromatography, and 1.5 ml of the passed exosome sample was concentrated to 200 μl using a 50 kDa membrane centrifugal concentrator. Afterwards, Tm4sf5 KO mice fasted for 16 hours were anesthetized using 30% isoflurane [Piramal - Terrell??, solvent is polyethylene glycol-200 (Sigma Aldrich -8.07483)], and the concentrated exosomes were injected into the tail. 200 μl was injected via intravascular injection. 5 minutes later, when the mouse woke up from anesthesia, the first blood sugar level was measured through tail blood sampling. Next, 20% glucose (Sigma Aldrich - G8270) was injected intraperitoneally at 2g (glucose)/kg (mouse body weight), and blood sugar was measured using a blood glucose meter (Johnson and johnson - One touch ultra) for 30, 60, and 120 minutes after injection. Changes were measured. On the other hand, in the control group, PBS was administered to normal mice.

일반적으로 Tm4sf5-/- 마우스는 포도당 주사 후 일정 시간동안 혈중 포도당 처리 능력이 정상 마우스에 비해 떨어지는 표현형을 나타내는 반면(도 7b), Alb-Tm4sf5 마우스의 간에서 유래된 엑소좀을 정상마우스에 주사하였을 경우에 대비하여 Tm4sf5-/- 마우스에 주사했을 경우 혈액 속의 포도당 수준이 낮아짐으로써, 대조군 대비 포도당 처리 능력이 유의하게 좋아진 것을 확인하였다(도 7c). 따라서, 간상피세포에서 분비된 TM4SF5 탑재 엑소좀은 체내 혈당량을 조절할 수 있고, 궁극적으로 근육조직 혹은 지방조직 또는 그러한 조직의 세포들에 의한 혈액 내 포도당 흡수를 촉진하여 항상성 조절(homeostatic regulation)에 긍정적인 역할을 할 수 있음을 확인할 수 있었다.In general, Tm4sf5 -/- mice exhibit a phenotype in which the ability to process glucose in the blood is lower than that of normal mice for a certain period of time after glucose injection (Figure 7b), whereas exosomes derived from the liver of Alb-Tm4sf5 mice were injected into normal mice. In contrast, when injected into Tm4sf5 -/- mice, the level of glucose in the blood was lowered, confirming that the glucose processing ability was significantly improved compared to the control group (Figure 7c). Therefore, TM4SF5-loaded exosomes secreted from liver epithelial cells can control blood sugar levels in the body, and ultimately promote glucose absorption into the blood by muscle tissue or fat tissue or cells of such tissues, which is positive for homeostatic regulation. It was confirmed that it can play a role.

<실험예 6> 간 유래 엑소좀의 조직 및 장기 흡수 및 분포 확인<Experimental Example 6> Confirmation of tissue and organ absorption and distribution of liver-derived exosomes

간혈관폐쇄회로 시스템으로 얻은 간 유래 엑소좀이 조직 및 장기에 이동하는 정도를 확인하기 위해, 정상 마우스에 간 유래 엑소좀을 주사한 후 in vivo 동물이미징 장비를 이용하여 관찰하였다.To confirm the extent to which liver-derived exosomes obtained through the hepatic vascular occlusion system migrate to tissues and organs, liver-derived exosomes were injected into normal mice and observed using in vivo animal imaging equipment.

구체적으로, 상기 실시예 1-1의 간혈관폐쇄회로 시스템을 이용하여 Alb-Tm4sf5 TG 마우스 및 Tm4sf5-/- KO 마우스로부터 얻은 엑소좀을 크기 배제 크로마토그래피(size exclusion chromatography)로 정제한 후 50 kDa membrane 원심분리 농축기를 이용하여 500 μl까지 농축하였다. 이때 엑소좀의 양은 ~2x109 particle/ml로 하였다. 농축한 엑소좀에 1 μl Near infrared labelling dye(System Biosciences, EXOGV900A-1)를 넣고 1시간동안 상온에서 반응시켰다. 반응 후, PBS 9 ml을 추가하였고, Ultracentrifuge 튜브(Beckman Coulter, 344059) 밑부분에 20% sucrose를 2 ml 넣고 희석된 엑소좀을 위에 넣었다. 샘플을 110,000 x g에서 70분간 4℃에서 원심분리하였다. 상층액을 모두 제거하고 바닥에 엑소좀을 200 μl Dulbecco's phosphate buffer saline(DPBS)(Sigma, MO, USA)에 넣고 4

Figure 112022006230841-pat00002
에서 보관하였다. 정상 마우스는 3일전 defined diet(AIN93G) 섭취하도록 먹이를 교체하였다. 상기 마우스를 이소플루란으로 마취한 뒤 200 μl의 엑소좀을 꼬리 정맥주사하였다. 24시간 후에 마우스를 해부하여 각 장기를 분리 후 IVIS[엑스선형광분석기(IVIS®SpectrumCT)]를 이용하여 Max excitation wavelength 784nm, Max emission wavelength 806nm로 촬영하였다.Specifically, exosomes obtained from Alb-Tm4sf5 TG mice and Tm4sf5 -/- KO mice were purified by size exclusion chromatography using the hepatic vascular occlusion circuit system of Example 1-1, and then purified by size exclusion chromatography. It was concentrated to 500 μl using a membrane centrifugal concentrator. At this time, the amount of exosomes was ~ 2x109 particles/ml. 1 μl Near infrared labeling dye (System Biosciences, EXOGV900A-1) was added to the concentrated exosomes and reacted at room temperature for 1 hour. After reaction, 9 ml of PBS was added, 2 ml of 20% sucrose was added to the bottom of an ultracentrifuge tube (Beckman Coulter, 344059), and the diluted exosomes were added to the top. Samples were centrifuged at 110,000 xg for 70 minutes at 4°C. Remove all supernatants and add exosomes to the bottom in 200 μl Dulbecco's phosphate buffer saline (DPBS) (Sigma, MO, USA).
Figure 112022006230841-pat00002
It was stored in . Normal mice were fed a defined diet (AIN93G) 3 days ago. The mouse was anesthetized with isoflurane and then 200 μl of exosomes were injected into the tail vein. After 24 hours, the mouse was dissected, each organ was separated, and images were taken using IVIS [X-ray fluorescence spectrometer (IVIS®SpectrumCT)] at a Max excitation wavelength of 784 nm and a Max emission wavelength of 806 nm.

그 결과, Alb-Tm4sf5 TG 마우스의 간 유래 엑소좀이나 Tm4sf5-/- KO 마우스의 간 유래 엑소좀이 큰 차이를 보이지 않았으나, Tm4sf5-/- KO 마우스의 간 유래 엑소좀이 24시간 처리동안 폐 및 다리뼈로 좀 더 도달하였고, TM4SF5가 탑재된 Alb-Tm4sf5 TG 마우스의 간 유래 엑소좀은 Tm4sf5-/- 등쪽의 갈색지방조직(brown adipose tissue, BAT) 조직으로 좀 더 도달하고 흡수되는 것으로 확인되었다(도 8). 이는, TM4SF5가 존재하는 마우스의 간으로부터 유래된 엑소좀은 갈색지방조직(BAT)으로 흡수될 수 있고, TM4SF5가 탑재되지 않은 엑소좀보다 더 잘 흡수될 수 있음을 의미하고, 갈색지방세포에 흡수될 경우 효율적인 에너지대사 및 혈당 이용에 긍정적인 영향을 나타낼 수 있음을 시사한다.As a result, there was no significant difference between exosomes derived from the liver of Alb-Tm4sf5 TG mice or exosomes derived from the liver of Tm4sf5 -/- KO mice, but exosomes derived from the liver of Tm4sf5 -/- KO mice were expressed in the lungs and liver during 24-hour treatment. It was confirmed that exosomes derived from the liver of Alb-Tm4sf5 TG mice loaded with TM4SF5 reached further into the leg bones and were absorbed into the brown adipose tissue (BAT) tissue on the back of Tm4sf5 -/-. (Figure 8). This means that exosomes derived from the liver of mice containing TM4SF5 can be absorbed into brown adipose tissue (BAT) and can be absorbed better than exosomes not loaded with TM4SF5, and are absorbed into brown adipocytes. This suggests that, if possible, it could have a positive effect on efficient energy metabolism and blood sugar utilization.

<실험예 7> 간 유래 엑소좀이 갈색지방조직 지방 세포의 당 대사에 미치는 영향 확인<Experimental Example 7> Confirmation of the effect of liver-derived exosomes on sugar metabolism of brown adipose tissue adipocytes

<7-1> 갈색지방조직 지방세포의 분리 및 분화<7-1> Separation and differentiation of brown adipose tissue adipocytes

8주령의 수컷 정상마우스를 안락사시킨 후, 등이 위쪽을 향하게 눕히고, 마우스의 목 뒷덜미를 절개하여 지방층을 확인한 후 중간에 밀집한 갈색지방조직(brwon adipose tissue, BAT)을 백색지방조직과 분리하였다. 분리한 갈색지방조직을 얼음 위에 놓인 페트리 디쉬에 PBS와 함께 놓았다. Biosafety 벤치로 이동하여 최대한 PBS를 제거 후 면도칼이나 수술용 칼을 이용하여 조직을 0.5 mm3~ 1 mm3이 되도록 잘게 부수었다. 조직을 15 ml conical 튜브에 옮기고 1 ml collagenase buffer(1 mg/ml collagenase type II(Sigma, C6885), 123.0 mM NaCl, 5.0 mM KCl, 1.3 mM CaCl2, 5.0 mM Glucose, 100.0 mM HEPES, 4% BSA 및 1x penicillin/streptomycin (P/S), pH 7.4)를 넣고 1 ml PBS를 넣었다. 10초간 vortex하고 37℃에서 30분간 흔들었다. 효소 반응 후 400 μl FBS를 넣고 잘 섞어 주었다. 샘플을 100 μm 나일론 망을 통과시킨 후, 600 x g에서 5분간 원심분리하였다. 상층액을 제거하고 1 ml 성장 미디어(DMEM/F12 (Hyclon, SH30023.01), 15% FBS, 1x penicillin-streptomycin, 10,000 unit/ml)에 resusend시킨 후 6 well plate에 배양하였다. 24시간 후 미디어와 혈액세포를 제거하고 새 미디어(2 ml)를 넣어주었다. 세포가 90% 성장할 때까지 매일 미디어를 교체하였다. 세포가 90% 성장하면 미디어를 제거하고 PBS로 1회 세척 후 accutase(Sigma, A6964)로 세포를 띄어 내고 실험 용도에 맞는 plate에 새로 배양하였다. 그후, 세포가 100% 성장할 때까지 미디어를 매일 갈아주었다. After euthanizing an 8-week-old male normal mouse, it was laid down with its back facing upward, an incision was made at the back of the neck of the mouse, the fat layer was confirmed, and the dense brown adipose tissue (BAT) in the middle was separated from the white adipose tissue. The isolated brown adipose tissue was placed in a Petri dish placed on ice along with PBS. After moving to the biosafety bench and removing as much PBS as possible, the tissue was chopped into pieces of 0.5 mm 3 to 1 mm 3 using a razor or surgical knife. Transfer the tissue to a 15 ml conical tube and add 1 ml collagenase buffer (1 mg/ml collagenase type II (Sigma, C6885), 123.0mM NaCl, 5.0mM KCl, 1.3mM CaCl 2 , 5.0mM Glucose, 100.0mM HEPES, 4% BSA and 1x penicillin/streptomycin (P/S), pH 7.4) were added, and 1 ml PBS was added. Vortex for 10 seconds and shake at 37°C for 30 minutes. After the enzyme reaction, 400 μl FBS was added and mixed well. The sample was passed through a 100 μm nylon mesh and centrifuged at 600 xg for 5 minutes. The supernatant was removed, resuspended in 1 ml growth media (DMEM/F12 (Hyclon, SH30023.01), 15% FBS, 1x penicillin-streptomycin, 10,000 unit/ml), and cultured in a 6 well plate. After 24 hours, the media and blood cells were removed and new media (2 ml) was added. Media was changed daily until cells grew 90%. When the cells grew to 90%, the media was removed, washed once with PBS, cells were picked out with accutase (Sigma, A6964), and the cells were newly cultured on a plate suitable for the purpose of the experiment. Thereafter, the media was changed daily until the cells grew 100%.

세포가 100% 성장한 다음 induction 미디어(0.5 mM 3-Isobutyl-l-methylxanthine (IBMX, Sigma, I5879), 1 μM Dexamethasone (Sigma, D4902), 1 μg/ml Insulin (Sigma, I0516), 1 μM Rosiglitazone (Sigma, R2408), 1 nM 3,3',5-Triiodo-L-thyronine (T3, Sigma, T0281), 15% FBS, DMEM/F12, 1x penicillin-streptomycin, 0.2 μm filtered)에서 2일간 배양하였다. 이틀 후, 유지 미디어(1 μg/ml Insulin, 1 nM T3, 15% FBS, DMEM/F12, 1x penicillin-streptomycin, 0.2 μm filtered) 로 교체하였다. 6~7일간 미디어는 2일에 한 번씩 교체하면서 분화시켰다. After cells were grown to 100%, induction media (0.5 mM 3-Isobutyl-l-methylxanthine (IBMX, Sigma, I5879), 1 μM Dexamethasone (Sigma, D4902), 1 μg/ml Insulin (Sigma, I0516), 1 μM Rosiglitazone ( Sigma, R2408), 1 nM 3,3',5-Triiodo-L-thyronine (T3, Sigma, T0281), 15% FBS, DMEM/F12, 1x penicillin-streptomycin, 0.2 μm filtered) for 2 days. Two days later, it was replaced with maintenance media (1 μg/ml Insulin, 1 nM T3, 15% FBS, DMEM/F12, 1x penicillin-streptomycin, 0.2 μm filtered). For 6 to 7 days, the media was changed every two days and differentiated.

<7-2> 엑소좀 처리에 의한 갈색지방조직(BAT) 지방세포의 glycolysis stress test<7-2> Glycolysis stress test of brown adipose tissue (BAT) adipocytes by exosome treatment

Tm4sf5-HA를 발현하는 설치류(murine) 정상 간상피세포 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, BAT로부터 분리하여 분화시킨 지방세포에 처리하고 Seahorse 장비를 이용하여 다양한 약물을 첨가한 상태에서 BAT 지방세포의 세포외부 용액의 산성화를 측정함으로써, 엑소좀 처리에 의한 지방세포의 해당작용(glycolysis) stress test를 수행하였다.Exosomes isolated from the murine normal liver epithelial cell AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector were treated with adipocytes isolated from BAT and differentiated, and various drugs were administered using Seahorse equipment. By measuring the acidification of the extracellular solution of BAT adipocytes in the added state, a glycolysis stress test of adipocytes by exosome treatment was performed.

구체적으로, 마우스 간상피세포 AML12세포를 150 mm dish에 각 군당 150 mm dish 3장씩 1.5 x 106으로 배양하였다. 16시간 뒤 15 μg empty vector(EV) 또는 TM4SF5-HA 유전자를 45 μl의 1 mg/ml polyethyleneimine (PEI, Santa Cruz Biothechnology, SC-507159) 로 감염시켰다. 48시간 뒤 배양액을 획득하여 엑소좀을 분리하였고, 분화된 갈색 지방 세포를 배양액을 37℃에서 pH 7.4로 맞춘 Seahorse media(Agilent, 103334-100)로 500 μl로 바꿔 주었다. 이때, AML12 세포에 EV 또는 Tm4sf5-HA를 전달 감염시킨 세포로부터 분리한 엑소좀을 4.0 x 108개 넣어주고, DMSO 또는 Glut1/4의 억제제인 100 μM fasentin(Glut1/4 특이적 inhibitor, Sigma, F5557)을 필요한 well에 함께 처리하였다. 그후, CO2가 없는 37℃배양기에서 45분간 배양하였다. 하루 전 hydration 시킨 seahorse sensor cartridge에 A 포트- Glucose(10 mM, Sigma, G7021), B-포트 Oligomycin A (1 uM, Sigma, 75351), C-포트 2-DG(100 mM, Alfa Aesar, L07338)을 넣고 calibration 시킨 후 Glycolysis stress assay를 실행시켰다.Specifically, mouse liver epithelial AML12 cells were cultured in 150 mm dishes at 1.5 x 10 6 , three 150 mm dishes for each group. 16 hours later, 15 μg empty vector (EV) or TM4SF5-HA gene was infected with 45 μl of 1 mg/ml polyethyleneimine (PEI, Santa Cruz Biothechnology, SC-507159). After 48 hours, the culture medium was obtained, exosomes were isolated, and 500 μl of differentiated brown adipocytes were replaced with Seahorse media (Agilent, 103334-100) adjusted to pH 7.4 at 37°C. At this time, 4.0 F5557) was treated together in the necessary wells. Afterwards, the cells were incubated for 45 minutes in a 37°C incubator without CO 2 . Into the seahorse sensor cartridge that had been hydrated a day before, A port-Glucose (10mM, Sigma, G7021), B-port Oligomycin A (1 uM, Sigma, 75351), C-port 2-DG (100mM, Alfa Aesar, L07338). was added and calibrated, and then Glycolysis stress assay was performed.

glycoslysis stress test 결과, Tm4sf5를 탑재한 엑소좀을 처리한 경우 Tm4sf5가 존재하지 않는 엑소좀을 처리한 대조군에 대비하여 지방세포의 glycolysis capacity가 휠씬 증가하는 것을 확인하였다(도 9a). Tm4sf5를 탑재한 엑소좀과 Glut1/4의 억제제(fasentin)를 함께 처리한 경우, 세포외산성화 속도(ECAR)이 낮게 나타나는 것을 확인함으로써, Tm4sf5가 탑재된 엑소좀의 처리에 의한 해당작용 활성화 효과가 지방세포에 존재하는 Glut4의 존재 및 활성화에 의존한다는 것을 확인하였다. 이를 통해, Tm4sf5가 탑재된 간상피세포 유래 엑소좀은 지방세포의 Glut4의 활성에 의존하여 타겟함으로써, 궁극적으로 지방세포가 포도당를 잘 활용하도록 해당과정의 활성화를 도운다고 추정할 수 있다. As a result of the glycoslysis stress test, it was confirmed that when treated with exosomes loaded with Tm4sf5, the glycolysis capacity of adipocytes was significantly increased compared to the control group treated with exosomes without Tm4sf5 (Figure 9a). When exosomes loaded with Tm4sf5 were treated together with an inhibitor of Glut1/4 (fasentin), the extracellular acidification rate (ECAR) was confirmed to be low, confirming the effect of activating glycolysis by treatment of exosomes loaded with Tm4sf5. It was confirmed that it depends on the presence and activation of Glut4 in adipocytes. Through this, it can be assumed that exosomes derived from liver epithelial cells loaded with Tm4sf5 target adipocytes depending on the activity of Glut4, ultimately helping to activate glycolysis so that adipocytes can utilize glucose well.

<7-3> 간상피세포 유래 엑소좀 처리에 의한 BAT 지방세포 해당과정(glycolysis)의 glucose sensitivity test<7-3> Glucose sensitivity test of BAT adipocyte glycolysis by treatment with exosomes derived from liver epithelial cells

Tm4sf5-HA를 발현하는 설치류(murine) 정상 간상피세포 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, BAT로부터 분리하여 분화시킨 지방세포에 처리하고 Seahorse 장비를 이용하여 다양한 농도의 glucose를 추가적으로 첨가하면서 해당작용(glycolysis)에 의한 세포외부 용액의 산성화를 측정하여, 해당작용 기능의 활성화 정도를 측정하였다. Exosomes isolated from the murine normal hepatic epithelial cell AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector were treated with adipocytes isolated from BAT and differentiated, and then mixed at various concentrations using Seahorse equipment. The degree of activation of the glycolysis function was measured by measuring the acidification of the extracellular solution due to glycolysis while additionally adding glucose.

구체적으로, 마우스 간상피세포 AML12 세포를 150 mm dish에 각 군당 150 mm dish 3장씩 1.5 x 106으로 배양하였다. 16시간 뒤 15 μg empty vector 또는 TM4SF5-HA 유전자를 45 μl의 1 mg/ml polyethyleneimine(PEI, Santa Cruz Biothechnology, SC-507159)로 감염시켰다. 48시간 뒤 배양액을 획득하여 위에 설명과 같이 엑소좀을 분리하였다. 정상 마우스에서 분리한 BAT로부터 분리하고 분화시킨 지방 세포를 24 well seahorse plate에 1.5x104 배양하였다. 16시간 뒤 배양액을 37℃에서 pH 7.4로 맞춘 Seahorse media(Agilent, 103334-100)로 500 μl로 바꿔 주었다. 이때, AML12 세포에서 얻은 엑소좀을 4.0 x 108 개 넣어주었다. 그후, CO2가 없는 37℃배양기에서 45분간 배양하였다. 하루 전 hydration 시킨 seahorse sensor cartridge에 A 포트- 0.1 mM Glucose, 1 μM Oligomycin A, B-포트 0.5 mM Glucose, C-포트 1 mM Glucose, D-포트 5mM Glucose를 넣고 calibration 시킨 후 Glucose sensitivity assay를 실행시켰다. Specifically, mouse liver epithelial AML12 cells were cultured in 150 mm dishes at 1.5 x 10 6 , three 150 mm dishes for each group. 16 hours later, 15 μg empty vector or TM4SF5-HA gene was infected with 45 μl of 1 mg/ml polyethyleneimine (PEI, Santa Cruz Biothechnology, SC-507159). After 48 hours, the culture medium was obtained and exosomes were isolated as described above. Adipocytes isolated and differentiated from BAT isolated from normal mice were distributed at 1.5x10 4 in a 24 well seahorse plate. Cultured. After 16 hours, the culture medium was changed to 500 μl with Seahorse media (Agilent, 103334-100) adjusted to pH 7.4 at 37°C. At this time, 4.0 x 10 8 exosomes obtained from AML12 cells were added. Afterwards, the cells were incubated for 45 minutes in a 37°C incubator without CO 2 . A seahorse sensor cartridge that had been hydrated a day before was calibrated by adding 0.1 mM Glucose, 1 μM Oligomycin A for A port, 0.5 mM Glucose for B port, 1 mM Glucose for C port, and 5mM Glucose for D-port, and then performing a glucose sensitivity assay. .

그 결과, TM4SF5를 발현하는 AML12 세포에서 분리한 엑소좀이 BAT 지방세포에 처리될 경우, TM4SF5를 발현하지 않는 세포에서 분리한 엑소좀 대비하여 다양한 포도당 첨가 조건에서 지방세포 해당작용(glycolysis)의 기능을 향상시키는 것을 확인하였다(도 9b). 이로써, TM4SF5가 탑재된 엑소좀은 타겟 지방 세포의 해당과정 활성화에 있어 포도당에 대한 민감도를 높여줄 수 있음을 확인하였다. 즉, Tm4sf5가 탑재된 간상피세포 유래 엑소좀은 궁극적으로 타겟하는 지방 세포가 포도당을 잘 활용하도록 도울 수 있다.As a result, when exosomes isolated from AML12 cells expressing TM4SF5 were processed into BAT adipocytes, the function of adipocyte glycolysis was improved under various glucose addition conditions compared to exosomes isolated from cells not expressing TM4SF5. was confirmed to improve (Figure 9b). As a result, it was confirmed that exosomes loaded with TM4SF5 can increase sensitivity to glucose in activating glycolysis in target fat cells. In other words, hepatic epithelial cell-derived exosomes loaded with Tm4sf5 can ultimately help targeted fat cells utilize glucose well.

<7-4> Tm4sf5 발현에 따른 동물의 혈당 조절 효과<7-4> Effect of blood sugar control in animals according to Tm4sf5 expression

HA-Tm4sf5을 발현하는 AML12세포에게서 엑소좀을 분리하였다. 그리고, 그 엑소좀(AML12-sEVHA-Tm4sf5)들을 4 x 108 particle/condition의 농도로, 정상마우스에서 분리하여 분화시킨 primary BAT (갈색지방조직세포)에 24시간 동안 처리하였다. 그런 후, BAT 세포를 DNA를 DAPI(파란색)로 염색하고, Glut1(왼쪽) 혹은 Glut4(오른쪽)은 빨간색, HA-Tm4sf5는 녹색을 나타내도록 염색하여 공촛점현미경 (confocal microscopy)으로 관찰하였다. 그 결과, AML12-sEVHA-Tm4sf5가 BAT세포의 핵주변이나 세포표면 부위에서 Glut1 혹은 Glut4와 함께 공존하면서 염색되어 노란색을 띄는 것을 확인하였다 (도9c). Exosomes were isolated from AML12 cells expressing HA-Tm4sf5. Then, the exosomes (AML12-sEV HA-Tm4sf5 ) were treated with primary BAT (brown adipose tissue cells) isolated and differentiated from normal mice at a concentration of 4 x 10 8 particles/condition for 24 hours. Then, the DNA of BAT cells was stained with DAPI (blue), Glut1 (left) or Glut4 (right) was stained red, and HA-Tm4sf5 was stained green, and observed using a confocal microscope. As a result, it was confirmed that AML12-sEV HA-Tm4sf5 coexisted with Glut1 or Glut4 around the nucleus or cell surface of BAT cells and was stained yellow (Figure 9c).

대조군 바이러스 AAV8-EV 혹은 Tm4sf5-HA 유전자를 발현하는 AAV8-Tbg-Tm4sf5-HA를 주사하고 3주 후 정상 WT 마우스 혹은 KO 마우스로부터 분리한 BAT를 이용하여 H&E 및 immunohistochemistry를 수행하여 HA-Tm4sf5 염색정도를 관찰하였다. 그 결과, Tm4sf5-HA 발현 AAV8 바이러스를 주사한 동물들의 BAT은 fat droplets (지방방울들)이 AAV8-EV를 주사한 동물의 BAT보다 작게 그리고 적게 생김으로써, 열발생 (thermogenesis)이 향상(개선)되었음을 확인하였다 (도9d). Three weeks after injection of the control virus AAV8-EV or AAV8-Tbg-Tm4sf5-HA expressing the Tm4sf5-HA gene, H&E and immunohistochemistry were performed using BAT isolated from normal WT mice or KO mice to determine the degree of HA-Tm4sf5 staining. was observed. As a result, the BAT of animals injected with the Tm4sf5-HA expressing AAV8 virus had smaller and fewer fat droplets than the BAT of animals injected with AAV8-EV, resulting in improved thermogenesis. It was confirmed that this was done (Figure 9d).

상기 도9d에서 개선된 열발생과 관련된 신호전달 인자를 확인하고자, 상기 도9d의 BAT 조직 일부로부터 조직추출액을 얻어 웨스턴블랏을 수행하였다. 그 결과, 미토콘드리아의 수소이온 농도구배 (proton gradient)과 ATP 합성과정을 연계성을 와해하는 단백질 uncoupling protein 1 (UCP1)의 발현량이 각 동물의 BAT 조직에서 서로 다른 thermogenesis와 무관하도록 변하지 않음을 확인하여, UCP1이 thermogenesis의 개선과는 무관하고, 한편 KO 마우스에 AAV8-EV 바이러스 주입에 대비하여 Tm4sf5-HA 발현 AAV8 바이러스를 주사한 동물들에게서 mTOR의 인산화가 증가하는 양상(p=0.1220)을 확인하였다 (도9e). In order to confirm the signaling factors related to the improved heat generation in FIG. 9D, a tissue extract was obtained from a portion of the BAT tissue in FIG. 9D and Western blot was performed. As a result, it was confirmed that the expression level of uncoupling protein 1 (UCP1), a protein that disrupts the connection between the mitochondrial proton gradient and the ATP synthesis process, does not change in the BAT tissue of each animal unrelated to different thermogenesis. It was confirmed that UCP1 was unrelated to the improvement of thermogenesis, and that mTOR phosphorylation increased (p=0.1220) in animals injected with Tm4sf5-HA-expressing AAV8 virus compared to AAV8-EV virus injection into KO mice (p=0.1220). Figure 9e).

이는, BAT의 glucose 흡수가 mTOR의 인산화에 의해 증가한다고 알려진 바(Molecular Metabolism. 2017. 6(6):611-619)가 있으므로, 상기 결과는 Tm4sf5의 간상피세포 발현은 BAT의 glucose 흡수에 긍정적 영향을 미쳐, 과다한 혈당량을 적절하게 낮춰주는 역할을 할 수 있는 것으로 추정할 수 있다.Since it is known that glucose uptake in BAT increases by phosphorylation of mTOR (Molecular Metabolism. 2017. 6(6):611-619), the above results indicate that the expression of Tm4sf5 in hepatic epithelial cells is positive for glucose uptake in BAT. It can be assumed that it can have an impact and play a role in appropriately lowering excessive blood sugar levels.

<실험예 8> 간 유래 엑소좀이 근육 세포의 당 대사에 미치는 영향 확인<Experimental Example 8> Confirmation of the effect of liver-derived exosomes on glucose metabolism in muscle cells

<8-1> C2C12 근육세포의 포도당 흡수(glucose uptake) 분석 <8-1> Analysis of glucose uptake in C2C12 muscle cells

간 유래 엑소좀이 근육 세포의 당 대사에 미치는 영향을 확인하기 위해, Tm4sf5-HA를 발현하는 설치류(murine) 정상 간상피세포 AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀들을, C2C12 근육세포에 처리하고 근육세포 내로의 포도당 흡수 정도를 분석하였다.To determine the effect of liver-derived exosomes on glucose metabolism in muscle cells, exosomes isolated from the murine normal hepatic epithelial AML12 cell line expressing Tm4sf5-HA or the AML12 cell line expressing only the control vector, C2C12 Muscle cells were treated and the degree of glucose absorption into muscle cells was analyzed.

구체적으로, AML12 세포를 150mm dish에 각 군당 3장씩 1.5 x 106으로 배양하였다. 16시간 후 15 μg empty vector(EV) 또는 TM4SF5-HA 유전자를 45 μl의 1 mg/ml polyethyleneimine(PEI, Santa Cruz Biothechnology, SC-507159)로 감염시켰다. 48시간 뒤 PBS로 2번 세척 후 배양액을 20 ml DMEM/F12, 10% Ultrafiltered FBS(exosome free-FBS)로 교체하였다. 48 시간 뒤 배양액을 획득하여 엑소좀을 분리하였다. 근육세포인 C2C12 세포를 96-well plate에 1.5 x 104 배양하였다. 16 시간 후 PBS로 2번 세척 후 50 μl Glucose free RPMI1640에 4.0 x 108 엑소좀과 함께 넣어 주고 30분간 37℃ O2에서 배양하였다. 1 mM 2-DG를 넣어주고 10분간 상온에 두었다. 그후, Glucose uptake-Glo assay kit(Promega, J1343)에 stop buffer를 25 μl 넣고 흔들어 준 다음, neutralize buffer를 25 μl 넣고 흔들어 주었고, 그후 luciferase buffer를 100 μl 넣고 흔들어 주었다. 상온에서 1시간 반응시킨 후 Luciferase 발광을 측정하였다.Specifically, AML12 cells were cultured at 1.5 x 10 6 in 150 mm dishes, 3 for each group. 16 hours later, 15 μg empty vector (EV) or TM4SF5-HA gene was infected with 45 μl of 1 mg/ml polyethyleneimine (PEI, Santa Cruz Biothechnology, SC-507159). 48 hours later, after washing twice with PBS, the culture medium was replaced with 20 ml DMEM/F12, 10% Ultrafiltered FBS (exosome free-FBS). After 48 hours, the culture medium was obtained and exosomes were isolated. C2C12 cells, which are muscle cells, were cultured at 1.5 x 10 4 in a 96-well plate. After 16 hours , the cells were washed twice with PBS, added to 50 μl glucose free RPMI1640 along with 4.0 1mM 2-DG was added and left at room temperature for 10 minutes. After that, 25 μl of stop buffer was added to the Glucose uptake-Glo assay kit (Promega, J1343) and shaken, then 25 μl of neutralize buffer was added and shaken, and then 100 μl of luciferase buffer was added and shaken. After reacting at room temperature for 1 hour, luciferase luminescence was measured.

그 결과, AML12 세포주 또는 control vector만을 발현하는 AML12 세포주에게서 분리한 엑소좀을 처리한 경우, 엑소좀을 처리하지 않은 경우에 대비하여 포도당 흡수량이 증가하는 것을 확인하였고, 특히, Tm4sf5가 탑재된 엑소좀을 처리하였을 경우, Tm4sf5가 탑재되지 않은 엑소좀을 처리하였을 경우에 대비하여, 포도당 흡수 정도가 높은 것을 확인하였다(도 10a). 이는 Tm4sf5 탑재된 엑소좀에 의해 혈액 속의 glucose를 많이 이용할 수 있도록 근육세포로의 포도당 흡수가 가능해질 수 있음을 시사한다. As a result, it was confirmed that when exosomes isolated from the AML12 cell line or the AML12 cell line expressing only the control vector were treated, the amount of glucose uptake increased compared to when the exosomes were not treated. In particular, the exosome loaded with Tm4sf5 When treated, it was confirmed that the degree of glucose absorption was higher compared to when treated with exosomes not loaded with Tm4sf5 (FIG. 10a). This suggests that glucose absorption into muscle cells can be enabled by Tm4sf5-loaded exosomes so that a large amount of glucose in the blood can be utilized.

<8-2> A204 근육세포의 해당과정(glycolysis)의 glucose sensitivity test<8-2> A204 Glucose sensitivity test of muscle cell glycolysis

또한, TM4SF5를 원래 발현하는 인간 간상피세포 Huh7를 정상적인 RPMI-1640 배양액에서 배양한 상태에서 분리확보한 TM4SF5-엑소좀(Huh7-Exo-from cells in RPMI), Glucose가 배제된 배양액에서 배양된 후 분리한 TM4SF5-엑소좀(Huh7-Exo-from cells in glu- media), Glucose 25 mM가 포함된 배양액에서 배양된 후 분리한 TM4SF5-엑소좀(Huh7-Exo-from cells in glu+ media)를 각각 A204 근육세포에 45분간 처리한 후, 다양한 포도당 농도에 대한 해당작용(glycolysis)의 sensitivity를 확인하였다.In addition, TM4SF5-exosomes (Huh7-Exo-from cells in RPMI) were isolated and obtained from human liver epithelial cells Huh7, which originally express TM4SF5, while cultured in normal RPMI-1640 culture medium, and then cultured in glucose-excluded culture medium. The isolated TM4SF5-exosomes (Huh7-Exo-from cells in glu-media) and the isolated TM4SF5-exosomes (Huh7-Exo-from cells in glu+ media) were cultured in a culture medium containing 25 mM glucose, respectively, at A204. After treating muscle cells for 45 minutes, the sensitivity of glycolysis to various glucose concentrations was confirmed.

구체적으로, 간상피세포 Huh7 세포를 150 mm dish에 각 군당 3장씩 1.5 x 106으로 배양하였다. 48시간 뒤 PBS로 2번 세척 후 배양액을 20 ml DMEM, 10% Ultrafiltered FBS (exosome free-FBS)로 교체하였다. 배양액은 정상적으로 10% FBS가 포함된 RPMI, FBS를 100 kDa membrane centirfugal concentrator(원심분리 농축기, Satorius -vs 2041)를 이용하여 glucose를 제거한 배양(glu-미디어), Glu- 미디어에 glucose를 25 mM로 첨가한 배양액(glu+ 미디어)를 이용하여 배양하였다. 48 시간 뒤 배양액들을 획득하여 위에 설명과 같이 엑소좀을 분리하였다. 근육상피세포인 A204 세포를 24 well seahorse plate에 1.5 x 104 세포/well로 배양하였다. 16 시간 뒤 배양액을 37도에서 pH 7.4로 맞춘 Seahorse media(Agilent, 103334-100)로 500 μl로 바꿔 주었다. 이때, Huh7 세포에서 얻은 엑소좀을 4.0 x 108 개씩 넣어주었다. 그후, CO2가 없는 37°C 배양기에서 45분간 배양하였다. 하루 전 hydration 시킨 seahorse sensor cartridge에 A 포트- 0.1 mM Glucose, 1 μM Oligomycin A B-포트 0.5 mM Glucose, C-포트 1 mM Glucose, D-포트 5mM Glucose를 넣고 calibration 시킨 후 Glucose sensitivity assay를 실행시켰다.Specifically, hepatic epithelial Huh7 cells were cultured at 1.5 x 10 6 in 150 mm dishes, 3 cells per group. 48 hours later, after washing twice with PBS, the culture medium was replaced with 20 ml DMEM, 10% Ultrafiltered FBS (exosome free-FBS). The culture medium was normally RPMI containing 10% FBS, FBS was cultured to remove glucose using a 100 kDa membrane centirfugal concentrator (Satorius -vs 2041) (glu-media), and glucose was added to the Glu - media at 25mM. Culture was performed using the added culture medium (glu + media). After 48 hours, the cultures were obtained and exosomes were isolated as described above. A204 cells, which are myoepithelial cells, were grown at 1.5 x 10 4 cells/well in a 24 well seahorse plate. Cultured. After 16 hours, the culture medium was changed to 500 μl with Seahorse media (Agilent, 103334-100) adjusted to pH 7.4 at 37 degrees. At this time, 4.0 x 10 8 exosomes obtained from Huh7 cells were added. Afterwards, the cells were incubated for 45 minutes in a 37°C incubator without CO 2 . A seahorse sensor cartridge that had been hydrated a day before was calibrated by adding 0.1mM Glucose for A port, 1 μM Oligomycin A, 0.5mM Glucose for B-port, 1mM Glucose for C-port, and 5mM Glucose for D-port, and then running a glucose sensitivity assay.

그 결과, 포도당을 조절하지 않은 RPMI media에서 배양하거나 포도당이 제거된 배양액에서 배양한 Huh7세포에게서 분리한 TM4SF5-엑소좀보다, 포도당 25 mM를 포함하는 배양액에서 분리한 TM4SF5-엑소좀을 A204 근육세포에 처리하였을 경우에 해당과정의 포도당에 대한 민감도가 높음을 확인하였다(도 10b). 이는 포도당 25 mM를 포함하는 배양액에서 분리한 TM4SF5-엑소좀이 근육세포에 처리되면, 근육세포의 포도당에 대한 민감도를 높여 효율적으로 해당과정을 더욱 더 활성화시킬 수 있음을 나타낸다.As a result, TM4SF5-exosomes isolated from culture medium containing 25 mM glucose were more effective in A204 muscle cells than TM4SF5-exosomes isolated from Huh7 cells cultured in RPMI media without glucose control or culture medium from which glucose was removed. When treated with , it was confirmed that the sensitivity of glycolysis to glucose was high (FIG. 10b). This indicates that when TM4SF5-exosomes isolated from a culture medium containing 25mM of glucose are treated with muscle cells, they can increase the sensitivity of muscle cells to glucose and further activate glycolysis efficiently.

Claims (22)

간 유래 엑소좀을 추출하기 위한 간혈관폐쇄회로 시스템에 있어서,
상기 간혈관폐쇄회로를 순환시키기 위한 연동펌프;
상기 연동펌프에 의해 상기 간혈관폐쇄회로를 따라 순환되는 엑소좀 순환 미디어 및 플러싱 버퍼;
상기 엑소좀 순환 미디어 및 플러싱 버퍼의 순환을 조절하는 스위치를 포함하는 3방향 커넥터;
상기 연동 펌프의 투입구를 상기 3방향 커넥터와 연결하고, 상기 연동 펌프의 투출구를 제3 튜빙과 연결하는 제1 튜빙;
상기 엑소좀 순환 미디어 및 상기 플러싱 버퍼를 상기 3방향 커넥터와 각각 연결하는 제2 튜빙;
개체의 간문맥에 삽입하는 제1 카테터;
상기 제1 카테터와 상기 제1 튜빙을 연결하는 제3 튜빙;
상기 제1 카테터와 상기 제3 튜빙을 연결하는 제1 커넥터;
개체의 하대 정맥에 삽입하는 제2 카테터;
상기 제2 카테터와 상기 엑소좀 순환 미디어를 연결하는 제4 튜빙;
상기 제2 카테터와 상기 제4 튜빙을 연결하는 제2 커넥터; 및
상기 엑소좀 순환 미디어 및 플러싱 버퍼를 산소통과 연결하는 제5 튜빙;
을 포함하는, 간혈관폐쇄회로 시스템.
In the liver vascular occlusion circuit system for extracting liver-derived exosomes,
A peristaltic pump for circulating the hepatic vascular occlusive circuit;
Exosome circulating media and flushing buffer circulated along the hepatic vascular occlusive circuit by the peristaltic pump;
A three-way connector including a switch to control circulation of the exosome circulation media and flushing buffer;
a first tubing connecting the inlet of the peristaltic pump with the three-way connector and connecting the outlet of the peristaltic pump with a third tubing;
A second tubing connecting the exosome circulation media and the flushing buffer with the three-way connector, respectively;
A first catheter inserted into the subject's portal vein;
a third tubing connecting the first catheter and the first tubing;
A first connector connecting the first catheter and the third tubing;
a second catheter inserted into the subject's inferior vena cava;
A fourth tubing connecting the second catheter and the exosome circulation media;
A second connector connecting the second catheter and the fourth tubing; and
A fifth tubing connecting the exosome circulation media and flushing buffer with an oxygen tank;
A hepatic vascular occlusive circuit system comprising a.
제1항에 있어서,
상기 플러싱 버퍼는 항온수조에 담겨 있는 것을 특징으로 하는, 간혈관폐쇄회로 시스템.
According to paragraph 1,
A hepatic vascular occlusion circuit system, characterized in that the flushing buffer is contained in a constant temperature water bath.
제1항에 있어서,
상기 엑소좀 순환 미디어 및 상기 플러싱 버퍼는 산소통과 연결되는 것을 특징으로 하는, 간혈관폐쇄회로 시스템.
According to paragraph 1,
The hepatic vascular occlusive circuit system, characterized in that the exosome circulating media and the flushing buffer are connected to an oxygen tank.
제2항에 있어서,
상기 항온수조는 40℃ 내지 45℃의 온도를 유지하는 것을 특징으로 하는, 간혈관폐쇄회로 시스템.
According to paragraph 2,
A hepatic vascular occlusion circuit system, characterized in that the constant temperature water tank maintains a temperature of 40°C to 45°C.
제1항 내지 제4항 중 어느 한 항의 간혈관폐쇄회로 시스템을 이용하여 간 유래 엑소좀을 추출하는 간 유래 엑소좀 추출 방법에 관한 것으로,
개체의 간문맥에 상기 제1 카테터를 삽입하는 단계;
상기 연동펌프를 작동시키는 단계;
상기 제1 카테터와 상기 펌프에 연결된 제1 커넥터를 체결하는 단계;
개체의 하대 정맥에 상기 제2 카테터를 삽입하는 단계;
상기 제2 카테터를 제4 튜빙에 연결하고, 상기 제4 튜빙의 다른 끝부분을 상기 엑소좀 순환 미디어 튜브에 연결하는 단계;
상기 연동펌프를 중단하고 상기 엑소좀 순환 미디어가 펌프에 공급되도록 상기 3방향 커넥터의 스위치를 돌리는 단계;
상기 엑소좀 순환 미디어 및 플러싱 버퍼를 산소통과 연결하는 단계;
상기 연동펌프를 다시 작동시켜 상기 엑소좀 순환 미디어를 순환시키는 단계;
상기 순환된 엑소좀 순환 미디어를 원심분리하여 상층액을 분리하는 단계;
상기 분리된 상층액을 농축하는 단계; 및
상기 농축된 상층액으로부터 엑소좀을 분리하는 단계;를 포함하는 간 유래 엑소좀 추출 방법.
It relates to a method of extracting liver-derived exosomes using the liver vascular occlusion circuit system of any one of claims 1 to 4,
inserting the first catheter into the subject's portal vein;
Operating the peristaltic pump;
Connecting the first catheter and a first connector connected to the pump;
inserting the second catheter into the inferior vena cava of the subject;
Connecting the second catheter to a fourth tubing and connecting the other end of the fourth tubing to the exosome circulating media tube;
stopping the peristaltic pump and turning the switch on the three-way connector to supply the exosome circulating media to the pump;
Connecting the exosome circulation media and flushing buffer with an oxygen tank;
Reactivating the peristaltic pump to circulate the exosome circulation media;
centrifuging the circulated exosome circulation media to separate the supernatant;
Concentrating the separated supernatant; and
A liver-derived exosome extraction method comprising: separating exosomes from the concentrated supernatant.
제5항에 있어서,
상기 엑소좀 순환 미디어를 순환시키는 단계는 30분 내지 90분동안 순환시키는 것을 특징으로 하는, 간 유래 엑소좀 추출 방법.
According to clause 5,
A method of extracting liver-derived exosomes, characterized in that the step of circulating the exosome circulation media is circulated for 30 to 90 minutes.
제5항에 있어서,
상기 순환된 엑소좀 순환 미디어를 원심분리하여 상층액을 분리하는 단계는 2,000 x g의 원심력으로 5분 내지 20분, 및 10,000 x g의 원심력으로 30분 내지 60분동안 원심분리기를 작동하는 것을 특징으로 하는, 간 유래 엑소좀 추출 방법.

According to clause 5,
The step of centrifuging the circulated exosome circulation media to separate the supernatant includes operating the centrifuge at a centrifugal force of 2,000 xg for 5 to 20 minutes and a centrifugal force of 10,000 xg for 30 to 60 minutes. , liver-derived exosome extraction method.

제5항에 있어서,
상기 분리된 상층액을 농축하는 단계는 100 내지 1,000 μl로 membrane 원심분리 농축기(centrifugal concentrator)를 이용하여 원심분리하여 5x109 particle/ml로 농축하는 것을 특징으로 하는, 간 유래 엑소좀 추출 방법.
According to clause 5,
The step of concentrating the separated supernatant is characterized in that it is concentrated to 5x10 9 particles/ml by centrifuging 100 to 1,000 μl using a membrane centrifugal concentrator.
제5항에 있어서,
상기 간 유래 엑소좀을 분리하는 단계는 크기 배제 크로마토그래피(size exclusion chromatography)를 이용하여 분리하는 것을 특징으로 하는, 간 유래 엑소좀 추출 방법.
According to clause 5,
A method of extracting liver-derived exosomes, wherein the step of separating the liver-derived exosomes is performed using size exclusion chromatography.
제5항에 있어서,
상기 간 유래 엑소좀은 평균 크기의 분포 영역이 200 nm 이하로 좁아지는 것 혹은 200 nm 이하의 크기를 포함하는 것을 특징으로 하는, 간 유래 엑소좀 추출 방법.
According to clause 5,
The liver-derived exosomes are characterized in that the distribution area of the average size is narrowed to 200 nm or less or includes a size of 200 nm or less.
TM4SF5(Transmembrane 4 L6 family member 5) 단백질을 포함하는 엑소좀(exosome)을 함유하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating diabetes-related diseases, containing exosomes containing TM4SF5 (Transmembrane 4 L6 family member 5) protein.
제11항에 있어서,
상기 엑소좀은 간조직, 간조직/세포외액 (liver/extracellular fluid) 간상피세포(hepatocyte) 및 간세포로 이루어진 군으로부터 선택되는 어느 하나 이상으로부터 유래된 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosome is used for preventing or treating diabetes-related diseases, characterized in that it is derived from one or more selected from the group consisting of liver tissue, liver tissue/extracellular fluid, liver epithelial cells (hepatocytes), and hepatocytes. Pharmaceutical composition.
제11항에 있어서,
상기 엑소좀은 평균 크기의 분포 영역이 200 nm 이하로 좁아지는 것 혹은 200 nm 이하의 크기를 포함하는 엑소좀인 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosome is a pharmaceutical composition for preventing or treating diabetes-related diseases, characterized in that the distribution area of the average size is narrowed to 200 nm or less or is an exosome containing a size of 200 nm or less.
제11항에 있어서,
상기 엑소좀은 간조직 혹은 간조직/세포외액의 글루코오스 (glucose), 아미노산 (amino acid), 또는 혈청 (serum)으로 이루어진 군으로부터 선택되는 어느 하나 이상의 수준 변화 또는 존재 유무에 따라 분비되는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosomes are characterized in that they are secreted according to the change in level or presence of one or more selected from the group consisting of glucose, amino acid, or serum in liver tissue or liver tissue/extracellular fluid. A pharmaceutical composition for preventing or treating diabetes-related diseases.
제11항에 있어서,
상기 엑소좀은 TM4SF5와 GLUT1, GLUT4, 혹은 GLUT9과 결합하는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosome is a pharmaceutical composition for preventing or treating diabetes-related diseases, characterized in that it binds to TM4SF5 and GLUT1, GLUT4, or GLUT9.
제11항에 있어서,
상기 엑소좀은 ITGB3(Integrin Subunit Beta 3), FAM49B(Family with sequence similarity 49 member B), ICAM2(Intercellular Adhesion Molecule 2), PKP1(Plakophilin 1), SIRPG(Signal Regulatory Protein Gamma), ITGBL1(Integrin Subunit Beta Like 1)으로 이루어진 군으로부터 선택되는 어느 하나 이상의 단백질을 포함하는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.

According to clause 11,
The exosomes include ITGB3 (Integrin Subunit Beta 3), FAM49B (Family with sequence similarity 49 member B), ICAM2 (Intercellular Adhesion Molecule 2), PKP1 (Plakophilin 1), SIRPG (Signal Regulatory Protein Gamma), and ITGBL1 (Integrin Subunit Beta). A pharmaceutical composition for preventing or treating diabetes-related diseases, comprising one or more proteins selected from the group consisting of Like 1).

제11항에 있어서,
상기 엑소좀은 AMPK 또는 ACC의 인산화가 감소하거나, 또는 mTOR, S6K1 또는 AKT의 인산화가 증가하는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.

According to clause 11,
The exosome is a pharmaceutical composition for preventing or treating diabetes-related diseases, characterized in that phosphorylation of AMPK or ACC is reduced or phosphorylation of mTOR, S6K1 or AKT is increased.

제11항에 있어서,
상기 엑소좀은 근육, 지방 조직 또는 세포의 GLUT4와 결합하거나, 해당작용을 활성화시키거나, 조직/세포외부의 글루코오스 수준에 예민성을 가지게 하거나, 또는 UCP1, mTOR의 인산화를 증가시키는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosome is characterized in that it binds to GLUT4 in muscle, adipose tissue or cells, activates glycolysis, increases sensitivity to glucose levels outside the tissue/cell, or increases phosphorylation of UCP1 and mTOR. , Pharmaceutical composition for preventing or treating diabetes-related diseases.
제11항에 있어서,
상기 당뇨 관련 질환은 지방간, 지방간염, 당뇨병, 고지혈증, 고혈압, 비만, 미세혈관 손상, 신경 손상, 케톤산혈증, 동맥경화, 심혈관질환 및 뇌혈관질환으로 이루어진 군으로부터 선택되는 어느 하나 이상의 질환인 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The diabetes-related disease is characterized by one or more diseases selected from the group consisting of fatty liver, steatohepatitis, diabetes, hyperlipidemia, hypertension, obesity, microvascular damage, nerve damage, ketoacidosis, arteriosclerosis, cardiovascular disease, and cerebrovascular disease. A pharmaceutical composition for preventing or treating diabetes-related diseases.
제11항에 있어서,
상기 엑소좀은 혈당량을 조절하는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosome is a pharmaceutical composition for preventing or treating diabetes-related diseases, characterized in that it regulates blood sugar levels.
제11항에 있어서,
상기 엑소좀은 근육 세포, 지방 세포, 근육 조직 또는 지방 조직의 혈액 내 포도당 흡수를 촉진하여 항상성(homeostasis)을 조절하는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosome is a pharmaceutical composition for preventing or treating diabetes-related diseases, characterized in that it regulates homeostasis by promoting glucose absorption into the blood of muscle cells, fat cells, muscle tissue, or fat tissue.
제11항에 있어서,
상기 엑소좀은 Glut4의 활성을 필요로 하거나, 혈액 내 포도당 수준을 낮추거나, 세포 내부로의 흡수를 촉진하거나, 열생성(thermogenesis)을 촉진하거나, 또는 혈액 내 포도당 항상성(homeostasis)을 조절하는 것을 특징으로 하는, 당뇨 관련 질환 예방 또는 치료용 약학적 조성물.
According to clause 11,
The exosomes require the activity of Glut4, lower blood glucose levels, promote absorption into cells, promote thermogenesis, or regulate blood glucose homeostasis. Characterized by a pharmaceutical composition for preventing or treating diabetes-related diseases.
KR1020220007048A 2021-01-19 2022-01-18 Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient KR102682305B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210007244 2021-01-19
KR1020210007244 2021-01-19

Publications (2)

Publication Number Publication Date
KR20220105602A KR20220105602A (en) 2022-07-27
KR102682305B1 true KR102682305B1 (en) 2024-07-09

Family

ID=82700993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220007048A KR102682305B1 (en) 2021-01-19 2022-01-18 Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient

Country Status (1)

Country Link
KR (1) KR102682305B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112760B1 (en) * 2017-10-26 2020-05-19 서울대학교산학협력단 Diagnosis method of liver diseases and screening method of treatment agent for liver diseases using tm4sf5 protein expression level change

Also Published As

Publication number Publication date
KR20220105602A (en) 2022-07-27

Similar Documents

Publication Publication Date Title
Miyake et al. Human breast milk exosomes attenuate intestinal damage
Wang et al. IGF‐1 alleviates NMDA‐induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K‐AKT‐mTOR pathway
Gu et al. Bone marrow mesenchymal stem cell-derived exosomes improves spinal cord function after injury in rats by activating autophagy
Hui et al. Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice
CN104080454B (en) Methods of inhibiting muscle atrophy
CN108103017B (en) The application of the isolation and purification method and people&#39;s umbilical cord mesenchymal stem cells excretion body of people&#39;s umbilical cord mesenchymal stem cells excretion body
Jiang et al. Hypoxic conditioned medium derived from bone marrow mesenchymal stromal cells protects against ischemic stroke in rats
Li et al. Bone marrow‐derived mesenchymal stem cells enhance autophagy via PI 3K/AKT signalling to reduce the severity of ischaemia/reperfusion‐induced lung injury
Ji et al. Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity
Safiedeen et al. Temporal cross talk between endoplasmic reticulum and mitochondria regulates oxidative stress and mediates microparticle-induced endothelial dysfunction
Xu et al. Inhibition of exosomal miR‐24‐3p in diabetes restores angiogenesis and facilitates wound repair via targeting PIK3R3
Ni et al. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats
Zhang et al. Hypoxia preconditioned renal tubular epithelial cell-derived extracellular vesicles alleviate renal ischaemia-reperfusion injury mediated by the HIF-1α/Rab22 pathway and potentially affected by microRNAs
Yan et al. Anti‐Inflammatory Effect of Curcumin on the Mouse Model of Myocardial Infarction through Regulating Macrophage Polarization
Jung et al. Liver‐originated small extracellular vesicles with TM4SF5 target brown adipose tissue for homeostatic glucose clearance
Zhuang et al. Extracellular vesicles from human urine‐derived stem cells merged in hyaluronic acid ameliorate erectile dysfunction in type 2 diabetic rats by glans administration
Wang et al. Fenofibrate increases heme oxygenase 1 expression and astrocyte proliferation while limits neuronal injury during intracerebral hemorrhage
KR102682305B1 (en) Method for isolating liver derived exosome using liver-vein closed circulation system and pharmaceutical composition for treating diabetes related disease comprising liver derived exosome as an active ingredient
US20220233604A1 (en) Methods and compositions for treating cardiomyocytes
Li et al. Deficiency of endothelial sirtuin1 in mice stimulates skeletal muscle insulin sensitivity by modifying the secretome
CN115177608B (en) Application of long-chain acyl carnitine compounds in preparation of medicines for preventing and/or treating liver cancer
CN117298121A (en) Application of dandelionsterol in helicobacter pylori induced gastritis or gastric cancer
KR20200016163A (en) Composition for preventing or treating cancer comprising exosome derived from macrophage treated with apoptotic cell
CN111481535B (en) Application of IDHP in preparation of anti-septicemia and myocardial damage drug induced by IDHP
Karimov et al. In vivo evaluation of the Cleveland Clinic continuous-flow total artificial heart in calves

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant