[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102659129B1 - Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf) - Google Patents

Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf) Download PDF

Info

Publication number
KR102659129B1
KR102659129B1 KR1020200023929A KR20200023929A KR102659129B1 KR 102659129 B1 KR102659129 B1 KR 102659129B1 KR 1020200023929 A KR1020200023929 A KR 1020200023929A KR 20200023929 A KR20200023929 A KR 20200023929A KR 102659129 B1 KR102659129 B1 KR 102659129B1
Authority
KR
South Korea
Prior art keywords
pvdf
polyvinylidene fluoride
particles
solubility
dissolved
Prior art date
Application number
KR1020200023929A
Other languages
Korean (ko)
Other versions
KR20210108831A (en
Inventor
장성근
김우하
김인성
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020200023929A priority Critical patent/KR102659129B1/en
Publication of KR20210108831A publication Critical patent/KR20210108831A/en
Application granted granted Critical
Publication of KR102659129B1 publication Critical patent/KR102659129B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 1) 용매에 용해시킨 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF) 용액을 마련하는 단계; 2) 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 일정 속도로 흘려보내며 고속 촬영하여 얻은 이미지 파일로부터 폴리비닐리덴플루오라이드(PVDF) 입자 크기별 입자 개수를 측정하는 단계; 3) 특정 입자 크기 이하를 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하고, 특정 입자 크기 이상을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 미용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하여, 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 통해 폴리비닐리덴플루오라이드(PVDF) 용해성을 평가하는 단계;를 포함하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법에 관한 것이다.The present invention includes the steps of 1) preparing a solution of polyvinylidene fluoride (PVDF) dissolved in a solvent; 2) Flowing the polyvinylidene fluoride (PVDF) solution at a constant speed and measuring the number of particles for each polyvinylidene fluoride (PVDF) particle size from an image file obtained by high-speed photography; 3) Polyvinylidene fluoride (PVDF) particles having a specific particle size or less are classified as dissolved polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) particles having a specific particle size or more are classified as undissolved. Classifying polyvinylidene fluoride (PVDF) as dissolved polyvinylidene fluoride (PVDF) and evaluating the solubility of polyvinylidene fluoride (PVDF) through the number of dissolved and undissolved polyvinylidene fluoride (PVDF) particles; It relates to an analysis method for quantifying fluoride (PVDF) solubility.

Description

폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법{QUANTITATIVE ANALYTICAL METHOD FOR SOLUBILITY OF POLYVINYLIDENEFLUORIDE(PVDF)}Polyvinylidene fluoride (PVDF) solubility quantification analysis method {QUANTITATIVE ANALYTICAL METHOD FOR SOLUBILITY OF POLYVINYLIDENEFLUORIDE(PVDF)}

본 발명은 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법에 관한 것이다.The present invention relates to an analysis method for quantifying polyvinylidene fluoride (PVDF) solubility.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among such secondary batteries, lithium secondary batteries exhibit high energy density and operating potential, long cycle life, and low self-discharge rate. Batteries have been commercialized and are widely used.

리튬 이차전지는 일반적으로 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 세퍼레이터 및 전해질로 구성되며 리튬 이온의 삽입-탈리(intercalation-decalation)에 의해 충전 및 방전이 이루어지는 이차전지이다. 리튬 이차전지는 에너지 밀도(energy density)가 높고, 기전력이 크며 고용량을 발휘할 수 있는 장점을 가지므로 다양한 분야에 적용되고 있다.A lithium secondary battery generally consists of a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator, and an electrolyte, and is a secondary battery in which charging and discharging are performed by intercalation-decalation of lithium ions. Lithium secondary batteries have the advantages of high energy density, large electromotive force, and high capacity, so they are applied in various fields.

리튬 이차전지의 양극 및 음극의 바인더로 널리 사용되는 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF)는 용해 가능한 용매의 제한이 크고, 용해성이 크지 않다. 폴리비닐리덴플루오라이드(PVDF)가 잘 용해되지 않으면 폴리비닐리덴플루오라이드(PVDF)가 뭉쳐 전극에 골고루 분포되지 못하며, 이는 전극 내 저항 상승, 접착력 저하, 나아가 리튬 이차전지 셀의 수명 저항를 야기시킨다.Polyvinylidene fluoride (PVDF), which is widely used as a binder for the positive and negative electrodes of lithium secondary batteries, has large limitations in the solvents in which it can be dissolved and does not have high solubility. If polyvinylidene fluoride (PVDF) does not dissolve well, the polyvinylidene fluoride (PVDF) aggregates and is not evenly distributed on the electrode, which causes an increase in resistance within the electrode, a decrease in adhesion, and further life resistance of the lithium secondary battery cell.

이에, 폴리비닐리덴플루오라이드(PVDF)의 용해성 향상을 위해 폴리비닐리덴플루오라이드(PVDF)의 입자 크기, 용해 온도 등을 조절하는 방법을 사용하고 있으며, 그 용해성을 평가하는 방법으로는 육안으로 관찰하는 방법이 널리 사용되고 있다. 그러나, 종래의 육안으로 폴리비닐리덴플루오라이드(PVDF)의 용해성을 평가하는 방법으로는 정밀하고 신뢰성 있는 폴리비닐리덴플루오라이드(PVDF)의 용해성 평가에 한계가 있었는바, 보다 정량적으로 폴리비닐리덴플루오라이드(PVDF)의 용해성을 평가할 수 있는 방법에 대한 요구가 있어왔다.Accordingly, to improve the solubility of polyvinylidene fluoride (PVDF), a method of controlling the particle size and dissolution temperature of polyvinylidene fluoride (PVDF) is used, and the method of evaluating the solubility is visual observation. This method is widely used. However, the conventional method of evaluating the solubility of polyvinylidene fluoride (PVDF) with the naked eye had limitations in accurately and reliably evaluating the solubility of polyvinylidene fluoride (PVDF). There has been a need for a method to evaluate the solubility of PVDF.

일본공개특허 제2013-217818호Japanese Patent Publication No. 2013-217818

본 발명은 리튬 이차전지의 전극용 바인더로 사용되는 폴리비닐리덴플루오라이드(PVDF)의 용해성을 정량적으로 평가할 수 있는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법을 제공하고자 하는 것이다.The present invention seeks to provide a method for quantifying the solubility of polyvinylidene fluoride (PVDF), which can quantitatively evaluate the solubility of polyvinylidene fluoride (PVDF), which is used as an electrode binder for lithium secondary batteries.

본 발명은 1) 용매에 용해시킨 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF) 용액을 마련하는 단계; 2) 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 일정 속도로 흘려보내며 고속 촬영하여 얻은 이미지 파일로부터 폴리비닐리덴플루오라이드(PVDF) 입자 크기별 입자 개수를 측정하는 단계; 3) 특정 입자 크기 이하를 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하고, 특정 입자 크기 이상을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 미용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하여, 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 통해 폴리비닐리덴플루오라이드(PVDF) 용해성을 평가하는 단계;를 포함하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법을 제공한다.The present invention includes the steps of 1) preparing a solution of polyvinylidene fluoride (PVDF) dissolved in a solvent; 2) Flowing the polyvinylidene fluoride (PVDF) solution at a constant speed and measuring the number of particles for each polyvinylidene fluoride (PVDF) particle size from an image file obtained by high-speed photography; 3) Polyvinylidene fluoride (PVDF) particles having a specific particle size or less are classified as dissolved polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) particles having a specific particle size or more are classified as undissolved. Classifying polyvinylidene fluoride (PVDF) as dissolved polyvinylidene fluoride (PVDF) and evaluating the solubility of polyvinylidene fluoride (PVDF) through the number of dissolved and undissolved polyvinylidene fluoride (PVDF) particles; An analysis method for quantifying fluoride (PVDF) solubility is provided.

본 발명에 따르면, 리튬 이차전지의 전극용 바인더로 사용되는 폴리비닐리덴플루오라이드(PVDF)의 용해성을 정량적으로 평가할 수 있다. 본 발명의 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법을 사용하면, 종래에 육안으로 용해성을 평가하던 것에 비하여 정밀하고 신뢰성 있게 폴리비닐리덴플루오라이드(PVDF)의 용해성을 평가할 수 있으며, 이에 따라, 전극 내 폴리비닐리덴플루오라이드(PVDF) 바인더의 뭉침으로 인한 저항 상승, 접착력 저하, 나아가 리튬 이차전지 셀의 수명 저하를 방지할 수 있다.According to the present invention, the solubility of polyvinylidene fluoride (PVDF), which is used as a binder for electrodes of lithium secondary batteries, can be quantitatively evaluated. By using the polyvinylidene fluoride (PVDF) solubility quantification analysis method of the present invention, the solubility of polyvinylidene fluoride (PVDF) can be evaluated more precisely and reliably compared to the conventional method of evaluating solubility with the naked eye. , it can prevent an increase in resistance, a decrease in adhesion, and further a decrease in the lifespan of a lithium secondary battery cell due to agglomeration of the polyvinylidene fluoride (PVDF) binder in the electrode.

이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail to facilitate understanding of the present invention. At this time, the terms or words used in this specification and claims should not be construed as limited to their usual or dictionary meanings, and the inventor should appropriately define the concept of the term in order to explain his or her invention in the best way. It must be interpreted with meaning and concept consistent with the technical idea of the present invention based on the principle that it can be done.

본 발명은 1) 용매에 용해시킨 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF) 용액을 마련하는 단계; 2) 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 일정 속도로 흘려보내며 고속 촬영하여 얻은 이미지 파일로부터 폴리비닐리덴플루오라이드(PVDF) 입자 크기별 입자 개수를 측정하는 단계; 3) 특정 입자 크기 이하를 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하고, 특정 입자 크기 이상을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 미용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하여, 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 통해 폴리비닐리덴플루오라이드(PVDF) 용해성을 평가하는 단계;를 포함하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법을 제공한다.The present invention includes the steps of 1) preparing a solution of polyvinylidene fluoride (PVDF) dissolved in a solvent; 2) Flowing the polyvinylidene fluoride (PVDF) solution at a constant speed and measuring the number of particles for each polyvinylidene fluoride (PVDF) particle size from an image file obtained by high-speed photography; 3) Polyvinylidene fluoride (PVDF) particles having a specific particle size or less are classified as dissolved polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) particles having a specific particle size or more are classified as undissolved. Classifying polyvinylidene fluoride (PVDF) as dissolved polyvinylidene fluoride (PVDF) and evaluating the solubility of polyvinylidene fluoride (PVDF) through the number of dissolved and undissolved polyvinylidene fluoride (PVDF) particles; An analysis method for quantifying fluoride (PVDF) solubility is provided.

본 발명의 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법을 단계 별로 구체적으로 설명한다.The polyvinylidene fluoride (PVDF) solubility quantification analysis method of the present invention will be described in detail step by step.

먼저, 1) 단계는 용매에 용해시킨 폴리비닐리덴플루오라이드(PVDF) 용액을 마련한다. First, in step 1), a polyvinylidene fluoride (PVDF) solution dissolved in a solvent is prepared.

상기 폴리비닐리덴플루오라이드(PVDF)는 리튬 이차전지의 전극용 바인더로 사용되는 것일 수 있으며, 상기 바인더는 전극 활물질 입자들 간의 부착 및 전극 활물질과 전극 집전체와의 접착력을 향상시키는 역할을 한다.The polyvinylidene fluoride (PVDF) may be used as a binder for electrodes of lithium secondary batteries, and the binder serves to improve adhesion between electrode active material particles and adhesion between the electrode active material and the electrode current collector.

상기 용매는 특별히 제한되는 것은 아니나, 리튬 이차전지의 전극 슬러리 제조시 일반적으로 사용되는 용매들을 사용할 수 있고, 예를 들어, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The solvent is not particularly limited, but solvents commonly used in preparing electrode slurries for lithium secondary batteries can be used, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol, N -Methylpyrrolidone (NMP), acetone, or water may be used, and one of these may be used alone or a mixture of two or more may be used.

상기 폴리비닐리덴플루오라이드(PVDF)는 고분자로서 구형 형태로 말려 존재하다가 용매에 용해되면 선형으로 풀려 용액 내에 분포하게 된다. 리튬 이차전지의 전극용 바인더로 사용하는 폴리비닐리덴플루오라이드(PVDF)는 예를 들어 평균 입경(D50)이 1 내지 500㎛인 구형의 입자일 수 있으며, 보다 바람직하게는 10 내지 200㎛인 구형의 입자일 수 있으나, 이에 제한되는 것은 아니다.The polyvinylidene fluoride (PVDF) is a polymer that exists rolled up in a spherical shape, but when dissolved in a solvent, it unfolds linearly and is distributed in the solution. Polyvinylidene fluoride (PVDF) used as a binder for electrodes of lithium secondary batteries may be, for example, spherical particles with an average particle diameter (D 50 ) of 1 to 500 ㎛, more preferably 10 to 200 ㎛. It may be a spherical particle, but is not limited thereto.

본 발명에 있어서, 평균 입경(D50)은 입경 분포 곡선에서 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 40W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.In the present invention, the average particle size (D 50 ) can be defined as the particle size corresponding to 50% of the cumulative volume in the particle size distribution curve. The average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method. For example, the method for measuring the average particle diameter (D 50 ) of the positive electrode active material is to disperse the particles of the positive electrode active material in a dispersion medium and then introduce them into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000) to measure approximately After irradiating 28 kHz ultrasonic waves with an output of 40 W, the average particle diameter (D 50 ) corresponding to 50% of the volume accumulation in the measuring device can be calculated.

상기 폴리비닐리덴플루오라이드(PVDF)를 용매에 용해시키는 시간 및 용해 온도를 조절하여 용해성을 조절할 수 있고, 이를 본 발명의 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법을 통해 용해성을 정량적으로 평가할 수 있다.Solubility can be adjusted by adjusting the time and dissolution temperature for dissolving the polyvinylidene fluoride (PVDF) in the solvent, and the solubility can be quantitatively evaluated through the polyvinylidene fluoride (PVDF) solubility quantification analysis method of the present invention. You can.

다음으로, 2)단계는 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 일정 속도로 흘려보내며 고속 촬영하여 얻은 이미지 파일로부터 폴리비닐리덴플루오라이드(PVDF) 입자 크기별 입자 개수를 측정한다.Next, in step 2), the polyvinylidene fluoride (PVDF) solution is flowed at a constant speed and the number of particles for each polyvinylidene fluoride (PVDF) particle size is measured from the image file obtained by high-speed photography.

상기 폴리비닐리덴플루오라이드(PVDF) 용액의 고속 촬영은 고속영상 분석장치를 통해 수행할 수 있으며, 예를 들면 Sympatec사의 QICPIC 장비를 사용할 수 있다. 또한, 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 1 내지 1,000ml/min 속도로 흘려보내며 고속 촬영할 수 있고, 보다 바람직하게는 10 내지 500ml/min 속도, 더욱 바람직하게는 50 내지 300ml/min 속도로 흘려보내며 고속 촬영할 수 있다. 상기 속도 범위로 흘려보내며 고속 촬영함으로써 프레임에 따른 중복 없이 용액 내 입자의 크기별 분포 분석 효과가 뛰어날 수 있다.High-speed imaging of the polyvinylidene fluoride (PVDF) solution can be performed using a high-speed image analysis device, for example, Sympatec's QICPIC equipment. In addition, high-speed imaging can be performed while flowing the polyvinylidene fluoride (PVDF) solution at a rate of 1 to 1,000 ml/min, more preferably at a rate of 10 to 500 ml/min, and even more preferably at a rate of 50 to 300 ml/min. You can shoot at high speed while streaming. By flowing in the above speed range and shooting at high speed, the effect of analyzing the distribution of particles in the solution by size can be excellent without duplication of frames.

상기 고속 촬영으로 얻은 이미지 파일로부터 1 내지 5000㎛ 범위에서 입경 별로 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 측정할 수 있으나, 이에 제한되는 것은 아니고 상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경, 용매에 따른 용해성 정도 등을 고려하여 적절히 측정할 입경 범위를 조절할 수 있다. 보다 구체적으로, 상기 고속 촬영으로 얻은 이미지 파일로부터 1 내지 5000㎛ 범위에서 5㎛ 내지 1000㎛ 입경 간격 별 구간의 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 측정할 수 있으나, 이에 제한되는 것은 아니고, 상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경, 용매에 따른 용해성 정도 등을 고려하여 적절히 측정할 입경 간격 범위를 조절할 수 있다. 예를 들어, 5㎛ 간격 별로 각 구간의 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 측정한다면, 0㎛ 초과 내지 5㎛ 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자의 개수, 5㎛ 초과 내지 10㎛ 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자의 개수, 10㎛ 초과 내지 15㎛ 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자의 개수와 같은 방식으로 각 입경 구간 별 입자 개수를 측정할 수 있으며, 100㎛ 간격 별로 각 구간의 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 측정한다면, 0㎛ 초과 내지 100㎛ 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자의 개수, 100㎛ 초과 내지 200㎛ 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자의 개수, 200㎛ 초과 내지 300㎛ 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자의 개수와 같은 방식으로 각 입경 구간 별 입자 개수를 측정할 수 있다. 한편, 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경, 용매에 따른 용해성 정도 등을 고려하여 입자 크기에 따라 입경 간격 정도를 서로 다르게 조절하여 입경 구간을 설정할 수도 있다. 예를 들어, 100㎛ 입경까지는 5㎛ 간격으로 입경 구간을 설정하고, 1000㎛ 입경까지는 20㎛ 간격으로 입경 구간을 설정하고, 5000㎛까지는 1000㎛ 간격으로 입경 구간을 설정할 수도 있다.The number of polyvinylidene fluoride (PVDF) particles can be measured by particle size in the range of 1 to 5000㎛ from the image file obtained by the high-speed shooting, but is not limited to this, and the polyvinylidene fluoride (PVDF) dissolved in step 1) above ( PVDF) The particle size range to be measured can be adjusted appropriately by considering the average particle size of the particles and the degree of solubility according to the solvent. More specifically, the number of polyvinylidene fluoride (PVDF) particles in each particle size interval of 5㎛ to 1000㎛ in the range of 1 to 5000㎛ can be measured from the image file obtained by the high-speed shooting, but is not limited thereto. The range of particle diameter intervals to be measured can be adjusted appropriately by considering the average particle diameter of the polyvinylidene fluoride (PVDF) particles dissolved in step 1) and the degree of solubility according to the solvent. For example, if the number of polyvinylidene fluoride (PVDF) particles in each section is measured at 5㎛ intervals, the number of polyvinylidene fluoride (PVDF) particles having a particle diameter of greater than 0㎛ to 5㎛, greater than 5㎛ to The number of particles in each particle size section can be measured in the same way as the number of polyvinylidene fluoride (PVDF) particles with a particle diameter of 10㎛, and the number of polyvinylidene fluoride (PVDF) particles with a particle diameter of more than 10㎛ to 15㎛. If the number of polyvinylidene fluoride (PVDF) particles in each section is measured at 100㎛ intervals, the number of polyvinylidene fluoride (PVDF) particles having a particle diameter of more than 0㎛ to 100㎛, more than 100㎛ to 200 The number of particles in each particle size section can be measured in the same way as the number of polyvinylidene fluoride (PVDF) particles with a particle size of ㎛, and the number of polyvinylidene fluoride (PVDF) particles with a particle size of more than 200㎛ to 300㎛. there is. Meanwhile, considering the average particle diameter of the polyvinylidene fluoride (PVDF) particles dissolved in step 1) and the degree of solubility according to the solvent, the particle size interval can be set by adjusting the particle size interval differently depending on the particle size. For example, the particle size section may be set at 5㎛ intervals up to 100㎛, the particle size section may be set at 20㎛ intervals up to 1000㎛, and the particle size section may be set at 1000㎛ intervals up to 5000㎛.

다음으로, 3) 특정 입자 크기 이하를 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하고, 특정 입자 크기 이상을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 미용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하여, 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 통해 폴리비닐리덴플루오라이드(PVDF) 용해성을 평가한다.Next, 3) polyvinylidene fluoride (PVDF) particles having a certain particle size or less are classified as dissolved polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) particles having a certain particle size or more are classified as dissolved polyvinylidene fluoride (PVDF). is classified as undissolved polyvinylidene fluoride (PVDF), and the solubility of polyvinylidene fluoride (PVDF) is evaluated through the number of dissolved and undissolved polyvinylidene fluoride (PVDF) particles.

상기 용해 및 미용해 폴리비닐리덴플루오라이드(PVDF)의 분류 기준이 되는 특정 입자 크기는, 상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경을 기준으로 할 수 있다. 예를 들어, 상기 1) 단계에서 평균 입경(D50)이 150㎛인 폴리비닐리덴플루오라이드(PVDF)를 용해시켰다면, 150㎛ 이하의 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 용해된 것으로 분류하고, 150㎛를 초과하는 입경을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 미용해된 것으로 분류할 수 있다. 이후 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF) 입자의 개수 비율을 통해 용해성을 정량적으로 계산할 수 있다.The specific particle size that serves as the basis for classification of the dissolved and undissolved polyvinylidene fluoride (PVDF) may be based on the average particle size of the polyvinylidene fluoride (PVDF) particles dissolved in step 1). For example, if polyvinylidene fluoride (PVDF) with an average particle diameter (D 50 ) of 150㎛ was dissolved in step 1), polyvinylidene fluoride (PVDF) particles with a particle diameter of 150㎛ or less were dissolved. Polyvinylidene fluoride (PVDF) particles with a particle diameter exceeding 150㎛ can be classified as undissolved. Afterwards, solubility can be quantitatively calculated through the number ratio of dissolved and undissolved polyvinylidene fluoride (PVDF) particles.

한편, 본 단계의 용해성 평가시, 상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경을 기준으로 상기 평균 입경의 2배 이상인 입자 크기에 대해서는 측정된 입자 개수에 가중치를 부여하여 용해성을 계산할 수 있다. 예를 들어, 상기 1) 단계에서 평균 입경(D50)이 150㎛인 폴리비닐리덴플루오라이드(PVDF)를 용해시킨 경우에. 300㎛ 이상의 입경의 폴리비닐리덴플루오라이드(PVDF) 입자가 관측되는 것은 2개 이상의 폴리비닐리덴플루오라이드(PVDF) 입자가 뭉쳐져 형성된 것으로 볼 수 있으며, 이를 용해성 정량적 계산에 반영하기 위해 가중치를 부여하는 것이다. 상기 가중치는 상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경, 용매에 따른 용해성 정도 등을 고려하여 정할 수 있다. 예를 들어, 상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경(D50)이 150㎛일 때, 본 단계의 용해성 측정시 입자 크기가 300㎛ 초과 내지 360㎛인 경우에는 측정된 입자 개수에 가중치 2배를 부여하여 계산하고, 입자 크기가 360㎛ 초과 내지 400㎛인 경우에는 측정된 입자 개수에 가중치 3배를 부여하여 계산하며, 입자 크기가 400㎛ 초과 내지 5000㎛인 경우에는 측정된 입자 개수에 가중치 5배를 부여하여 계산할 수 있다.Meanwhile, when evaluating solubility in this step, based on the average particle diameter of the polyvinylidene fluoride (PVDF) particles dissolved in step 1), a weight is given to the number of measured particles for particle sizes that are more than twice the average particle diameter. So you can calculate solubility. For example, when polyvinylidene fluoride (PVDF) with an average particle diameter (D 50 ) of 150㎛ is dissolved in step 1) above. Observation of polyvinylidene fluoride (PVDF) particles with a particle size of 300㎛ or more can be viewed as being formed by two or more polyvinylidene fluoride (PVDF) particles agglomerating, and this is weighted to reflect this in the quantitative calculation of solubility. will be. The weight can be determined by considering the average particle diameter of the polyvinylidene fluoride (PVDF) particles dissolved in step 1) and the degree of solubility according to the solvent. For example, when the average particle diameter (D 50 ) of the polyvinylidene fluoride (PVDF) particles dissolved in step 1) above is 150㎛, the particle size when measuring solubility in this step is greater than 300㎛ to 360㎛. is calculated by giving 2 times the weight to the measured number of particles, and if the particle size is over 360㎛ to 400㎛, it is calculated by giving 3 times the weight to the measured number of particles, and if the particle size is over 400㎛ to 5000㎛. In this case, it can be calculated by giving 5 times the weight to the measured number of particles.

이와 같이 본 발명의 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법에 따르면, 리튬 이차전지의 전극용 바인더로 사용되는 폴리비닐리덴플루오라이드(PVDF)의 용해성을 정량적으로 평가할 수 있다. 종래에 육안으로 용해성을 평가하던 것에 비하여 정밀하고 신뢰성 있게 폴리비닐리덴플루오라이드(PVDF)의 용해성을 평가할 수 있으며, 이에 따라, 전극 내 폴리비닐리덴플루오라이드(PVDF) 바인더의 뭉침으로 인한 저항 상승, 접착력 저하, 나아가 리튬 이차전지 셀의 수명 저하를 방지할 수 있다.According to the polyvinylidene fluoride (PVDF) solubility quantification analysis method of the present invention, the solubility of polyvinylidene fluoride (PVDF), which is used as a binder for electrodes of lithium secondary batteries, can be quantitatively evaluated. Compared to conventional evaluations of solubility with the naked eye, the solubility of polyvinylidene fluoride (PVDF) can be evaluated more precisely and reliably. As a result, resistance increases due to agglomeration of the polyvinylidene fluoride (PVDF) binder in the electrode, It is possible to prevent a decrease in adhesion and further reduce the lifespan of a lithium secondary battery cell.

실시예Example

용매 N-메틸-2-피롤리돈(NMP) 100중량부에 대하여 평균 입경(D50) 150㎛의 폴리비닐리덴플루오라이드(PVDF) 6중량부를 25℃에서 용해 시간을 각각 1시간, 4시간, 12시간, 24시간로 하여 용해시켜 폴리비닐리덴플루오라이드(PVDF) 용액을 마련하였다. For 100 parts by weight of solvent N-methyl-2-pyrrolidone (NMP), 6 parts by weight of polyvinylidene fluoride (PVDF) with an average particle diameter (D 50 ) of 150㎛ was dissolved at 25°C for 1 hour and 4 hours, respectively. , 12 hours and 24 hours were dissolved to prepare a polyvinylidene fluoride (PVDF) solution.

상기 폴리비닐리덴플루오라이드(PVDF) 용액을 100ml/min 속도로 흘려보내며 Sympatec사의 QICPIC 장비를 이용하여 500fps로 고속 촬영하여 이미지 파일을 얻었고, 하기 표 1과 같이 입경 구간 별로 입자 개수를 측정하였다.The polyvinylidene fluoride (PVDF) solution was flowed at a rate of 100 ml/min and image files were obtained by high-speed shooting at 500 fps using Sympatec's QICPIC equipment, and the number of particles was measured for each particle size section as shown in Table 1 below.

또한, 300㎛ 이상의 입자 크기에 대해서는 하기 표 2와 같이 측정된 입경 개수에 가중치를 부여하여 계산하여 용해성을 평가하였다.In addition, for particle sizes larger than 300㎛, solubility was evaluated by calculating the weighted number of particle sizes measured as shown in Table 2 below.

입자크기(㎛)Particle size (㎛) 용해시간 (입자개수 비율(%))Dissolution time (particle number ratio (%)) 1h1h 4h4h 12h12h 24h24h 0초과~5Exceeds 0~5 0.000.00 0.000.00 0.000.00 0.000.00 5초과~10Exceeding 5~10 35.9935.99 37.9737.97 38.1238.12 41.2141.21 10초과~15Exceeding 10~15 25.7125.71 26.0126.01 28.4628.46 28.5828.58 15초과~20Exceeding 15~20 12.0412.04 11.4311.43 12.9912.99 12.3912.39 20초과~25Exceeding 20~25 8.708.70 7.207.20 7.717.71 7.737.73 25초과~30Exceeding 25~30 7.077.07 5.595.59 5.325.32 4.954.95 30초과~35Over 30~35 3.083.08 2.692.69 2.032.03 1.531.53 35초과~40Over 35~40 2.212.21 2.512.51 1.911.91 1.051.05 40초과~45Over 40~45 1.071.07 1.791.79 1.131.13 0.640.64 45초과~50Exceeding 45~50 0.830.83 1.371.37 0.700.70 0.430.43 50초과~55Over 50~55 0.720.72 0.790.79 0.560.56 0.210.21 55초과~60Over 55~60 0.520.52 0.570.57 0.310.31 0.150.15 60초과~65Over 60~65 0.350.35 0.430.43 0.160.16 0.150.15 65초과~70Over 65~70 0.280.28 0.290.29 0.160.16 0.120.12 70초과~75Exceeding 70~75 0.190.19 0.210.21 0.180.18 0.110.11 75초과~80Exceeding 75~80 0.130.13 0.190.19 0.140.14 0.110.11 80초과~85Exceeding 80~85 0.120.12 0.300.30 0.050.05 0.210.21 85초과~90Exceeding 85~90 0.090.09 0.140.14 0.020.02 0.070.07 90초과~95Exceeding 90~95 0.090.09 0.090.09 0.010.01 0.030.03 95초과~100Exceeding 95~100 0.090.09 0.060.06 0.000.00 0.030.03 100초과~110Exceeding 100~110 0.180.18 0.080.08 0.000.00 0.140.14 110초과~120Exceeding 110~120 0.120.12 0.050.05 0.000.00 0.110.11 120초과~130Exceeding 120~130 0.090.09 0.090.09 0.000.00 0.030.03 130초과~140Exceeding 130~140 0.040.04 0.090.09 0.000.00 0.010.01 140초과~150Exceeding 140~150 0.030.03 0.030.03 0.000.00 0.010.01 150초과~160Exceeding 150~160 0.040.04 0.020.02 0.000.00 0.000.00 160초과~170Exceeding 160~170 0.000.00 0.000.00 0.000.00 0.000.00 170초과~180Exceeding 170~180 0.000.00 0.000.00 0.000.00 0.000.00 180초과~190Exceeding 180~190 0.020.02 0.000.00 0.000.00 0.000.00 190초과~200Exceeding 190~200 0.040.04 0.010.01 0.000.00 0.000.00 200초과~220Exceeding 200~220 0.010.01 0.000.00 0.000.00 0.000.00 220초과~240Exceeding 220~240 0.030.03 0.000.00 0.000.00 0.000.00 240초과~260Exceeding 240~260 0.010.01 0.000.00 0.000.00 0.000.00 260초과~280Exceeding 260~280 0.010.01 0.000.00 0.000.00 0.000.00 280초과~300Exceeding 280~300 0.020.02 0.010.01 0.000.00 0.000.00 300초과~320Exceeding 300~320 0.020.02 0.000.00 0.000.00 0.000.00 320초과~340Exceeding 320~340 0.000.00 0.000.00 0.000.00 0.000.00 340초과~360Exceeding 340~360 0.000.00 0.000.00 0.000.00 0.000.00 360초과~380Exceeding 360~380 0.000.00 0.000.00 0.000.00 0.000.00 380초과~400Exceeding 380~400 0.010.01 0.000.00 0.000.00 0.000.00 400초과~1000Exceeding 400~1000 0.010.01 0.000.00 0.000.00 0.000.00 1000초과~2000Exceeding 1000~2000 0.000.00 0.000.00 0.000.00 0.000.00 2000초과~3000Exceeding 2000~3000 0.000.00 0.000.00 0.000.00 0.000.00 3000초과~4000Exceeding 3000~4000 0.000.00 0.000.00 0.000.00 0.000.00 4000초과~5000Exceeding 4000~5000 0.000.00 0.000.00 0.000.00 0.000.00

입자크기(㎛)Particle size (㎛) 가중치weight 용해시간 Dissolution time 1h1h 1h*가중치1h*weight 4h4h 4h*가중치4h*weight 12h12h 12h*가중치12h*weight 24h24h 24h*가중치24h*weight 150초과~160Exceeding 150~160 1One 0.040.04 0.040.04 0.020.02 0.020.02 0.000.00 0.000.00 0.000.00 0.000.00 160초과~170Exceeding 160~170 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 170초과~180Exceeding 170~180 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 180초과~190Exceeding 180~190 0.020.02 0.020.02 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 190초과~200Exceeding 190~200 0.040.04 0.040.04 0.010.01 0.010.01 0.000.00 0.000.00 0.000.00 0.000.00 200초과~220Exceeding 200~220 0.010.01 0.010.01 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 220초과~240Exceeding 220~240 0.030.03 0.030.03 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 240초과~260Exceeding 240~260 0.010.01 0.010.01 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 260초과~280Exceeding 260~280 0.010.01 0.010.01 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 280초과~300Exceeding 280~300 0.020.02 0.020.02 0.010.01 0.010.01 0.000.00 0.000.00 0.000.00 0.000.00 300초과~320Exceeding 300~320 22 0.020.02 0.050.05 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 320초과~340Exceeding 320~340 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 340초과~360Exceeding 340~360 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 360초과~380Exceeding 360~380 33 0.000.00 0.010.01 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 380초과~400Exceeding 380~400 0.010.01 0.020.02 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 400초과~1000Exceeding 400~1000 55 0.010.01 0.040.04 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 1000초과~2000Exceeding 1000~2000 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 2000초과~3000Exceeding 2000~3000 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 3000초과~4000Exceeding 3000~4000 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 4000초과~5000Exceeding 4000~5000 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 Sum*1000Sum*1000 -- 325.1325.1 -- 31.0531.05 -- 0.000.00 -- 0.000.00

* Sum*1000 : Sum 값이 작아 1000을 곱하여 표현함* Sum*1000: The Sum value is small, so it is expressed by multiplying by 1000.

상기 표 1 및 표 2를 참조하면, 용해 시간이 증가함에 따라 150㎛를 초과하는 입자 개수가 감소하는 것을 확인할 수 있어, 용해 시간에 따른 폴리비닐리덴플루오라이드(PVDF)의 용해성을 정량적으로 평가할 수 있었다.Referring to Tables 1 and 2 above, it can be seen that the number of particles exceeding 150㎛ decreases as the dissolution time increases, making it possible to quantitatively evaluate the solubility of polyvinylidene fluoride (PVDF) according to the dissolution time. there was.

특히, 표 2를 참조하면, 용해 시간이 1시간인 경우 150㎛를 초과하는 입자 개수에 대하여 가중치를 반영하여 계산한 값이 325.1, 용해 시간이 4시간인 경우 150㎛를 초과하는 입자 개수에 대하여 가중치를 반영하여 계산한 값이 31.05, 용해 시간이 12, 24시간인 경우 150㎛를 초과하는 입자 개수에 대하여 가중치를 반영하여 계산한 값이 각각 0.00으로, 용해 시간에 따른 폴리비닐리덴플루오라이드(PVDF)의 용해성을 더욱 정밀하게 정량적으로 평가할 수 있었다.In particular, referring to Table 2, when the dissolution time is 1 hour, the value calculated by reflecting the weight for the number of particles exceeding 150㎛ is 325.1, and when the dissolution time is 4 hours, the number of particles exceeding 150㎛ is 325.1. The value calculated by reflecting the weight is 31.05, and when the dissolution time is 12 and 24 hours, the value calculated by reflecting the weight for the number of particles exceeding 150㎛ is 0.00, respectively, and the polyvinylidene fluoride ( The solubility of PVDF) could be evaluated more precisely and quantitatively.

[[ 실험예Experiment example : 접착력 평가]: Adhesion evaluation]

상기 실시예에서와 같이 각각 1시간, 4시간, 12시간, 24시간로 하여 용해시켜 제조한 폴리비닐리덴플루오라이드(PVDF) 용액 100중량부에 대하여, 양극 활물질입자로서 리튬 코발트 복합 산화물 450중량부, 도전재로 카본 블랙(carbon black) 25중량부를 혼합하여 양극 활물질 슬러리를 준비하였다. 준비된 양극 활물질 슬러리를 양극 집전체에 도포하고 건조 후 롤 프레스를 실시하여, 90㎛의 평균 두께를 갖는 양극 복합체를 제조하였다. 양극 집전체로는 두께 20㎛의 알루미늄(Al) 박막을 사용하였다. 450 parts by weight of lithium cobalt composite oxide as positive electrode active material particles for 100 parts by weight of polyvinylidene fluoride (PVDF) solution prepared by dissolving for 1 hour, 4 hours, 12 hours, and 24 hours, respectively, as in the above example. , a positive electrode active material slurry was prepared by mixing 25 parts by weight of carbon black as a conductive material. The prepared positive electrode active material slurry was applied to the positive electrode current collector, dried, and then roll pressed to prepare a positive electrode composite with an average thickness of 90㎛. An aluminum (Al) thin film with a thickness of 20 μm was used as the positive electrode current collector.

전극 접착력 측정을 위해, 전극 시편을 가로 2cm, 세로 20cm 크기로 제작하였고, 기로 2.5cm, 세로 7.5cm 크기의 유리에 양면 테이프를 붙인 후, 그 양면 테이프 위에 준비된 시편을 붙여 평가 시편을 준비하였다. 준비된 시편은 300mm/min의 속도로 90° 각도로 잡아당기면서 측정되는 힘을 측정하였고, 이를 전극의 접착력으로 평가하였다. 그 결과를 표 3에 나타내었다.To measure electrode adhesion, an electrode specimen was manufactured to a size of 2 cm in width and 20 cm in height, and double-sided tape was attached to a glass measuring 2.5 cm in width and length 7.5 cm, and then the prepared specimen was attached to the double-sided tape to prepare an evaluation specimen. The prepared specimen was pulled at a 90° angle at a speed of 300 mm/min, and the force measured was measured, and this was evaluated as the adhesion of the electrode. The results are shown in Table 3.

용해시간(h)Dissolution time (h) 1One 44 1212 2424 접착력(N/m)Adhesion (N/m) 88.388.3 115.1115.1 122.7122.7 121.3121.3

상기 표 3을 참조하면, 용해 시간이 증가할수록 접착력이 증가하는 것을 확인할 수 있었고, 이는 본 발명에 따른 폴리비닐리덴플루오라이드(PVDF)의 용해성 평가의 결과를 통해 유추되는 결과와 일치하였다.Referring to Table 3, it was confirmed that the adhesion increased as the dissolution time increased, which was consistent with the results inferred from the results of the solubility evaluation of polyvinylidene fluoride (PVDF) according to the present invention.

Claims (8)

1) 용매에 용해시킨 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF) 용액을 마련하는 단계;
2) 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 일정 속도로 흘려보내며 고속 촬영하여 얻은 이미지 파일로부터 폴리비닐리덴플루오라이드(PVDF) 입자 크기별 입자 개수를 측정하는 단계;
3) 특정 입자 크기 이하를 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하고, 특정 입자 크기 이상을 갖는 폴리비닐리덴플루오라이드(PVDF) 입자는 미용해된 폴리비닐리덴플루오라이드(PVDF)로 분류하여, 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 통해 폴리비닐리덴플루오라이드(PVDF) 용해성을 평가하는 단계;
를 포함하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
1) Preparing a polyvinylidene fluoride (PVDF) solution dissolved in a solvent;
2) Flowing the polyvinylidene fluoride (PVDF) solution at a constant speed and measuring the number of particles for each polyvinylidene fluoride (PVDF) particle size from an image file obtained by high-speed photography;
3) Polyvinylidene fluoride (PVDF) particles having a specific particle size or less are classified as dissolved polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) particles having a specific particle size or more are classified as undissolved. Classifying polyvinylidene fluoride (PVDF) as dissolved polyvinylidene fluoride (PVDF) and evaluating the solubility of polyvinylidene fluoride (PVDF) through the number of dissolved and undissolved polyvinylidene fluoride (PVDF) particles;
Polyvinylidene fluoride (PVDF) solubility quantification analysis method comprising.
제1항에 있어서,
상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경을 기준으로 3) 단계의 용해 및 미용해된 폴리비닐리덴플루오라이드(PVDF)를 분류하는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
Polyvinylidene fluoride, characterized in that the dissolved and undissolved polyvinylidene fluoride (PVDF) in step 3) is classified based on the average particle diameter of the polyvinylidene fluoride (PVDF) particles dissolved in step 1). PVDF solubility quantification analysis method.
제1항에 있어서,
상기 2) 단계는 이미지 파일로부터 1 내지 5000㎛ 범위에서 입경 별로 폴리비닐리덴플루오라이드(PVDF) 입자 개수를 측정하는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
Step 2) is a polyvinylidene fluoride (PVDF) solubility quantification analysis method characterized in that the number of polyvinylidene fluoride (PVDF) particles is measured by particle size in the range of 1 to 5000㎛ from an image file.
제1항에 있어서,
상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경을 기준으로, 3) 단계의 용해성 측정시 상기 평균 입경의 2배 이상인 입자 크기에 대해서는 측정된 입자 개수에 가중치를 부여하여 계산하는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
Based on the average particle diameter of the polyvinylidene fluoride (PVDF) particles dissolved in step 1), when measuring solubility in step 3), a weight is given to the number of measured particles for particle sizes that are more than twice the average particle diameter. Polyvinylidene fluoride (PVDF) solubility quantification analysis method characterized by calculating.
제1항에 있어서,
상기 1) 단계에서 용해시킨 폴리비닐리덴플루오라이드(PVDF) 입자의 평균 입경(D50)이 150㎛일 때, 상기 3) 단계의 용해성 측정시 입자 크기가 300㎛ 초과 내지 360㎛인 경우에는 측정된 입자 개수에 가중치 2배를 부여하여 계산하고, 입자 크기가 360㎛ 초과 내지 400㎛인 경우에는 측정된 입자 개수에 가중치 3배를 부여하여 계산하며, 입자 크기가 400㎛ 초과 내지 5000㎛인 경우에는 측정된 입자 개수에 가중치 5배를 부여하여 계산하는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
When the average particle diameter (D 50 ) of the polyvinylidene fluoride (PVDF) particles dissolved in step 1) is 150㎛, when measuring solubility in step 3), if the particle size is greater than 300㎛ to 360㎛, It is calculated by giving a weight of 2 times to the number of particles measured, and if the particle size is over 360㎛ to 400㎛, it is calculated by giving a weight of 3 to the measured number of particles, and if the particle size is over 400㎛ to 5000㎛. A polyvinylidene fluoride (PVDF) solubility quantification analysis method, characterized in that it is calculated by giving a weight of 5 times to the number of measured particles.
제1항에 있어서,
상기 2) 단계는 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 1 내지 1,000ml/min 속도로 흘려보내며 고속 촬영하는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
Step 2) is a method for quantifying the solubility of polyvinylidene fluoride (PVDF), characterized in that high-speed imaging is performed while flowing the polyvinylidene fluoride (PVDF) solution at a rate of 1 to 1,000 ml/min.
제1항에 있어서,
상기 2) 단계는 상기 폴리비닐리덴플루오라이드(PVDF) 용액을 고속영상 분석장치로 고속 촬영하여 이미지 파일을 얻는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
Step 2) is a polyvinylidene fluoride (PVDF) solubility quantification analysis method, characterized in that the polyvinylidene fluoride (PVDF) solubility is obtained by high-speed imaging of the polyvinylidene fluoride (PVDF) solution with a high-speed image analysis device.
제1항에 있어서,
상기 폴리비닐리덴플루오라이드(PVDF)는 리튬 이차전지의 전극용 바인더로 사용되는 것을 특징으로 하는 폴리비닐리덴플루오라이드(PVDF) 용해성 정량화 분석 방법.
According to paragraph 1,
A method for quantifying the solubility of polyvinylidene fluoride (PVDF), characterized in that the polyvinylidene fluoride (PVDF) is used as a binder for electrodes of lithium secondary batteries.
KR1020200023929A 2020-02-26 2020-02-26 Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf) KR102659129B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200023929A KR102659129B1 (en) 2020-02-26 2020-02-26 Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200023929A KR102659129B1 (en) 2020-02-26 2020-02-26 Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf)

Publications (2)

Publication Number Publication Date
KR20210108831A KR20210108831A (en) 2021-09-03
KR102659129B1 true KR102659129B1 (en) 2024-04-23

Family

ID=77785158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200023929A KR102659129B1 (en) 2020-02-26 2020-02-26 Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf)

Country Status (1)

Country Link
KR (1) KR102659129B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217818A (en) 2012-04-11 2013-10-24 Sumitomo Metal Mining Co Ltd Dissolution end point detection apparatus
JP2015015156A (en) 2013-07-05 2015-01-22 株式会社Gsユアサ Method for manufacturing battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232010A (en) * 1992-02-25 1993-09-07 Kao Corp Method and device for evaluating dispersion state of functional particulate in toner
KR102070555B1 (en) * 2015-12-03 2020-01-29 주식회사 엘지화학 Method for preparing a lithium secondary battery, method for measuring the dispersity of conductive material in pre-dispersion liquid, and method for measuring the dispersity of active material in slurry for forming electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217818A (en) 2012-04-11 2013-10-24 Sumitomo Metal Mining Co Ltd Dissolution end point detection apparatus
JP2015015156A (en) 2013-07-05 2015-01-22 株式会社Gsユアサ Method for manufacturing battery

Also Published As

Publication number Publication date
KR20210108831A (en) 2021-09-03

Similar Documents

Publication Publication Date Title
Li et al. Improvements of dispersion homogeneity and cell performance of aqueous-processed LiCoO2 cathodes by using dispersant of PAA–NH4
KR102626679B1 (en) Nonaqueous electrolyte secondary battery
US8728343B2 (en) Positive electrode active material for lithium-ion battery and lithium-ion battery
CN106328865B (en) Separator and lithium ion secondary battery
JP4025094B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode
US9590274B2 (en) Impact resistant electrolytes
US10985374B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
EP2597706A1 (en) Lithium ion secondary battery
Holtmann et al. Boehmite-based ceramic separator for lithium-ion batteries
Li et al. Effects of PAA-NH4 addition on the dispersion property of aqueous LiCoO2 slurries and the cell performance of as-prepared LiCoO2 cathodes
KR20110126418A (en) Surface-modified cathode active materials by chemically crosslinkable polymer electrolytes and lithium ion rechargeable batteries comprising the same
US11831038B2 (en) Composition for lithium ion secondary battery separator, two-part composition for lithium ion secondary battery separator, method of producing separator for lithium ion secondary battery, and method of producing lithium ion secondary battery
EP3544092B1 (en) Electrode mix, method for producing electrode mix, electrode structure, method for producing electrode structure, and secondary battery
JP3781955B2 (en) Non-aqueous electrolyte battery
KR20050023179A (en) Binder and electrode for lithium battery, and lithium battery using the same
KR102659129B1 (en) Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf)
Appetecchi et al. Electrochemical testing of industrially produced PEO-based polymer electrolytes
JP7116461B2 (en) Binder solution, coating solution, and method for producing storage element electrode
CN111834597B (en) Laminated separator for nonaqueous electrolyte secondary battery
EP3996162B1 (en) Method of producing negative electrode plate for non-aqueous electrolyte secondary battery
CN107851850B (en) Method of manufacturing lithium ion secondary battery and method of evaluating lithium ion secondary battery
WO2013052911A1 (en) Polyvinylidene difluoride, polyethyleneoxide, and derivati ve surface modified active material particles for styrene- butadiene rubber as binder for lithium-ion electrode applications
US20220376258A1 (en) Non-aqueous electrolyte secondary battery
DE102021003349A1 (en) composition
EP4411879A1 (en) Positive electrode plate and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant