KR102612330B1 - 파우치 형 전지 케이스 및 파우치 형 이차 전지 - Google Patents
파우치 형 전지 케이스 및 파우치 형 이차 전지 Download PDFInfo
- Publication number
- KR102612330B1 KR102612330B1 KR1020210074472A KR20210074472A KR102612330B1 KR 102612330 B1 KR102612330 B1 KR 102612330B1 KR 1020210074472 A KR1020210074472 A KR 1020210074472A KR 20210074472 A KR20210074472 A KR 20210074472A KR 102612330 B1 KR102612330 B1 KR 102612330B1
- Authority
- KR
- South Korea
- Prior art keywords
- edge
- pouch
- curvature
- radius
- cup portion
- Prior art date
Links
- 238000007872 degassing Methods 0.000 claims abstract description 73
- 206010071232 Protuberant ear Diseases 0.000 claims description 38
- 230000002093 peripheral effect Effects 0.000 claims description 26
- 210000005069 ears Anatomy 0.000 claims description 12
- 239000010408 film Substances 0.000 description 79
- 239000010410 layer Substances 0.000 description 64
- 238000007789 sealing Methods 0.000 description 48
- 238000010586 diagram Methods 0.000 description 43
- 238000000034 method Methods 0.000 description 37
- 238000000465 moulding Methods 0.000 description 34
- 238000004519 manufacturing process Methods 0.000 description 32
- 238000001816 cooling Methods 0.000 description 29
- 230000008569 process Effects 0.000 description 28
- 238000005192 partition Methods 0.000 description 26
- 238000007689 inspection Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- 230000004888 barrier function Effects 0.000 description 20
- -1 polyethylene Polymers 0.000 description 20
- 230000004438 eyesight Effects 0.000 description 17
- 239000000565 sealant Substances 0.000 description 16
- 230000007423 decrease Effects 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 15
- 239000004743 Polypropylene Substances 0.000 description 14
- 229920001155 polypropylene Polymers 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 238000005520 cutting process Methods 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 238000010191 image analysis Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 7
- 238000001994 activation Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000004519 grease Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920001230 polyarylate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000002087 whitening effect Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0436—Small-sized flat cells or batteries for portable equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/049—Processes for forming or storing electrodes in the battery container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 파우치 형 전지 케이스는 전극 및 분리막이 적층되어 형성되는 전극 조립체를 내부에 수용하는 컵부가 형성되되, 상기 컵부는, 주변을 포위하는 복수의 외벽과 사이드 또는 디가싱부를 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 다이 엣지를 포함하고, 상기 컵부의 깊이는, 6.5 mm 이하이다.
Description
본 발명은 파우치 형 전지 케이스 및 파우치 형 이차 전지에 관한 것으로서, 보다 상세하게는 부피 대비 에너지 밀도가 증가할 수 있고, 외관도 미려하고 상품성도 향상될 수 있는 파우치 형 전지 케이스 및 파우치 형 이차 전지에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
이러한 이차 전지를 제조하기 위해, 먼저 전극 활물질 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체(Electrode Assembly)를 형성한다. 그리고 전지 케이스에 전극 조립체를 수납하고 전해질 주입 후 실링한다.
이차 전지는 전극 조립체를 수용하는 케이스의 재질에 따라, 파우치 형(Pouch Type) 및 캔 형(Can Type) 등으로 분류된다. 파우치 형(Pouch Type)은 유연한 폴리머 재질로 제조된 파우치에 전극 조립체를 수용한다. 그리고, 캔 형(Can Type)은 금속 또는 플라스틱 등의 재질로 제조된 케이스에 전극 조립체를 수용한다.
파우치 형 이차 전지의 케이스인 파우치는, 유연성을 가지는 파우치 필름에 프레스 가공을 수행하여, 컵부를 형성함으로써 제조된다. 그리고, 컵부가 형성되면, 상기 컵부의 수용 공간에 전극 조립체를 수납하고 사이드를 실링하여 이차 전지를 제조한다.
이러한 프레스 가공 중에서 드로잉(Drawing) 성형은 프레스 장비와 같은 성형 장치에 파우치 필름을 삽입하고 펀치로 파우치 필름에 압력을 인가하여, 파우치 필름을 연신시킴으로써 수행된다. 그런데, 파우치 필름에 컵부를 성형할 때 컵부의 엣지의 곡률 반경 및 클리어런스를 개선하는데 한계가 있었다. 그리고, 컵부의 부피 대비 전극 조립체의 부피 비율도 작고, 배트 이어의 크기를 감소시키는 데에도 한계가 있어, 이차 전지의 부피 대비 에너지 밀도도 저하되었다. 나아가, 전체적으로 샤프한 형상으로 제조하는데 한계가 있었고, 이에 이차 전지의 외관도 미려하지 않아서 상품성도 저하되는 문제가 있었다.
본 발명이 해결하고자 하는 과제는, 부피 대비 에너지 밀도가 증가할 수 있고, 외관도 미려하고 상품성도 향상될 수 있는 파우치 형 전지 케이스 및 파우치 형 이차 전지를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 파우치 형 전지 케이스는 전극 및 분리막이 적층되어 형성되는 전극 조립체를 내부에 수용하는 컵부가 형성되되, 상기 컵부는, 주변을 포위하는 복수의 외벽과 사이드 또는 디가싱부를 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 다이 엣지를 포함하고, 상기 컵부의 깊이는, 6.5 mm 이하이다.
또한, 상기 다이 엣지는, 적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성될 수 있다.
또한, 상기 다이 엣지의 곡률 반경은, 상기 컵부의 깊이의 1/20 내지 1/6일 수 있다.
또한, 상기 컵부는, 상기 외벽과 바닥부를 각각 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 펀치 엣지; 및 인접한 두 개의 상기 외벽을 서로 연결하는 두께 엣지를 더 포함할 수 있다.
또한, 상기 다이 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 다이 엣지 수직선과, 상기 다이 엣지 측 펀치 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 엣지 수직선 사이의 수직 거리가 0.5 mm 이하일 수 있다.
또한, 상기 두께 엣지는, 서로 인접한 두 개의 상기 펀치 엣지와 연결되어 코너를 형성하며, 상기 코너는, 적어도 하나가 2 mm 내지 5 mm의 곡률 반경으로 라운딩되며 형성되고, 곡률 반경이 상기 두께 엣지의 곡률 반경보다 클 수 있다.
또한, 상기 코너는, 내부에서 상기 곡률 반경이 변화할 수 있다.
또한, 상기 코너는, 중심부의 곡률 반경이 주변부의 곡률 반경보다 클 수 있다.
또한, 상기 펀치 엣지는, 적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성될 수 있다.
또한, 상기 펀치 엣지의 곡률 반경은, 상기 컵부의 깊이의 1/20 내지 1/6일 수 있다.
또한, 상기 컵부가 각각 형성된 제1 케이스와 제2 케이스; 및 두 개의 상기 컵부 사이에 형성되는 브릿지를 포함하되, 상기 브릿지는, 두께가 2 mm 이하일 수 있다.
또한, 상기 브릿지는, 두께가 1.4 mm 이하일 수 있다.
또한, 상기 브릿지는, 두께가 상기 전극 조립체의 폭의 1/200 내지 1/30 일 수 있다.
또한, 상기 브릿지는, 1 mm 이하인 곡률 반경으로 라운딩되어 형성될 수 있다.
또한, 상기 브릿지는, 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성될 수 있다.
또한, 상기 브릿지의 두께는, 상기 브릿지와 상기 브릿지 측 외벽의 경계점을 각각 통과하고 바닥부와 수직인 두 개의 브릿지 수직선 사이의 거리일 수 있다.
또한, 상기 외벽은, 바닥부로부터, 경사각이 90° 내지 95° 사이인 경사를 가질 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 파우치 형 이차 전지는 전극 및 분리막이 적층되어 형성되는 전극 조립체; 및 상기 전극 조립체를 내부에 수용하는 컵부가 형성된 파우치 형 전지 케이스를 포함하되, 상기 전지 케이스는, 상기 컵부가 적어도 하나에 형성된 제1 케이스와 제2 케이스; 및 상기 제1 케이스와 상기 제2 케이스를 일체로 연결하는 폴딩부를 포함하고, 상기 폴딩부는, 폭이 1 mm 내지 3.2 mm이며, 상기 컵부의 깊이는, 6.5 mm 이하이다.
또한, 상기 전극 조립체의 면적은 15000mm2 내지 100000mm2 일 수 있다.
또한, 상기 폴딩부는, 폭이 1 mm 내지 1.6 mm일 수 있다.
또한, 상기 폴딩부는, 내측으로 함몰된 그루브를 포함하여 형성될 수 있다.
또한, 상기 전지 케이스는, 상기 그루브를 사이에 두고 외측으로 돌출된 한 쌍의 돌출부를 포함하고, 상기 그루브의 최내측부와 상기 돌출부의 최외측부 사이의 간격은 0.8 mm 이하일 수 있다.
또한, 상기 컵부의 폭과 상기 전극 조립체의 폭의 차이는, 2.5 mm 이하일 수 있다.
또한, 상기 컵부의 폭과 상기 전극 조립체의 폭의 차이는, 1.7 mm 이하일 수 있다.
또한, 상기 컵부의 폭은, 상기 컵부의 양 측 외벽의 상단 사이의 거리일 수 있다.
또한, 상기 컵부는, 주변을 포위하는 복수의 외벽과 바닥부를 각각 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 펀치 엣지; 상기 외벽과 사이드 또는 디가싱부를 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 다이 엣지; 및 인접한 두 개의 상기 외벽을 서로 연결하는 두께 엣지를 포함할 수 있다.
또한, 상기 다이 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 다이 엣지 수직선과, 상기 다이 엣지 측 펀치 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 엣지 수직선 사이의 수직 거리가 0.5 mm 이하일 수 있다.
또한, 상기 전극 조립체는, 상기 전극의 적어도 하나의 일단이, 상기 엣지 수직선으로부터, 수직 거리가 0.75 mm 이하에 위치할 수 있다.
또한, 상기 전극 조립체는, 상기 전극의 적어도 하나의 일단이, 상기 엣지 수직선으로부터, 수직 거리가 0.5 mm 이하에 위치할 수 있다.
또한, 상기 분리막은, 상기 전극보다 외측으로 돌출된 주변부가, 상기 전극의 일단을 기준으로, 상기 바닥부의 반대 방향을 향하여 폴딩될 수 있다.
또한, 상기 전극 조립체는, 상기 전극 및 상기 분리막이 각각 복수로 형성되고, 상기 제1 케이스의 상기 컵부에 수납된 상기 분리막은, 상기 주변부가, 상기 제2 케이스를 향하여 폴딩되고, 상기 제2 케이스의 상기 컵부에 수납된 상기 분리막은, 상기 주변부가, 상기 제1 케이스를 향하여 폴딩될 수 있다.
또한, 적어도 하나의 상기 분리막의 상기 주변부는, 인접한 상기 분리막의 상기 주변부와 정렬되며 폴딩될 수 있다.
또한, 상기 펀치 엣지는, 적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성될 수 있다.
또한, 상기 펀치 엣지의 곡률 반경은, 상기 컵부의 깊이의 1/20 내지 1/6일 수 있다.
또한, 상기 다이 엣지는, 적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성될 수 있다.
또한, 상기 다이 엣지의 곡률 반경은, 상기 컵부의 깊이의 1/20 내지 1/6일 수 있다.
또한, 상기 외벽은, 상기 바닥부로부터, 경사각이 90° 내지 95° 사이인 경사를 가질 수 있다.
또한, 상기 두께 엣지는, 서로 인접한 두 개의 상기 펀치 엣지와 연결되어 코너를 형성하며, 상기 코너는, 적어도 하나가 2 mm 내지 5 mm의 곡률 반경으로 라운딩되며 형성되고, 곡률 반경이 상기 두께 엣지의 곡률 반경보다 클 수 있다.
또한, 상기 코너는, 내부에서 상기 곡률 반경이 변화할 수 있다.
또한, 상기 코너는, 중심부의 곡률 반경이 주변부의 곡률 반경보다 클 수 있다.
또한, 상기 폴딩부의 양 단 일부에서, 외측으로 길이가 1.5 mm 이하 돌출 형성되는 배트 이어를 더 포함할 수 있다.
또한, 상기 폴딩부와 상기 배트 이어의 내측 모서리가 이루는 각도는 151도 보다 클 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
파우치 형 전지 케이스 및 파우치 형 이차 전지의 컵부의 엣지의 곡률 반경 및 클리어런스를 더욱 작게 형성할 수 있고, 브릿지의 두께를 더욱 얇게 형성할 수 있으므로 폴딩부의 폭도 감소시킬 수 있으며, 전극 조립체의 부피를 증가시킬 수 있고, 배트 이어의 크기를 감소시킬 수 있으며, 엣지 하이 현상이 발생하는 것을 방지할 수 있으므로, 부피 대비 에너지 밀도가 증가할 수 있다.
또한, 파우치 형 전지 케이스 및 파우치 형 이차 전지를 전체적으로 샤프한 형상으로 제조할 수 있으므로, 이차 전지의 외관도 미려하고 상품성도 향상될 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 이차 전지(1)의 조립도이다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름(135)의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 성형 장치(2)의 개략도이다.
도 4는 종래의 컵부(333)와 브릿지(336)를 확대한 개략도이다.
도 5는 본 발명의 일 실시예에 따른 컵부(133)와 브릿지(136)를 확대한 개략도이다.
도 6은 본 발명의 일 실시예에 따른 컵부(133)와 디가싱부(137)를 확대한 개략도이다.
도 7은 본 발명의 일 실시예에 따른 컵부(133)에 전극 조립체(10)가 수납된 모습을 나타낸 상면 개략도이다.
도 8은 종래의 코너(364)를 나타낸 개략도이다.
도 9는 본 발명의 일 실시예에 따른 코너(164)를 나타낸 개략도이다.
도 10은 본 발명의 일 실시예에 따른 전지 케이스(13)를 폴딩하는 모습을 나타낸 개략도이다.
도 11은 본 발명의 일 실시예에 따른 전지 케이스(13)가 폴딩된 모습을 나타낸 개략도이다.
도 12는 본 발명의 일 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391)의 확대도이다.
도 13은 본 발명의 다른 실시예에 따른 컵부(133)와 다이 엣지(1621)를 확대한 개략도이다.
도 14는 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩하는 모습을 나타낸 개략도이다.
도 15는 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩한 모습을 나타낸 개략도이다.
도 16은 본 발명의 다른 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391a)의 확대도이다.
도 17은 종래의 전지 케이스(33)의 디가싱부(337)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
도 18은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
도 19는 본 발명의 일 실시예에 따른 검사 장치(4)의 블록도이다.
도 20은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하여 이차 전지(1)의 제조를 완료한 모습을 나타낸 개략도이다.
도 21은 종래의 사이드(334)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
도 22는 종래의 사이드(334)를 폴딩한 모습을 상면에서 나타낸 개략도이다.
도 23은 본 발명의 일 실시예에 따른 사이드(134)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
도 24는 본 발명의 일 실시예에 따른 전지 모듈(5)의 개략도이다.
도 25는 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이다.
도 26은 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
도 27은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이다.
도 28은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름(135)의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 성형 장치(2)의 개략도이다.
도 4는 종래의 컵부(333)와 브릿지(336)를 확대한 개략도이다.
도 5는 본 발명의 일 실시예에 따른 컵부(133)와 브릿지(136)를 확대한 개략도이다.
도 6은 본 발명의 일 실시예에 따른 컵부(133)와 디가싱부(137)를 확대한 개략도이다.
도 7은 본 발명의 일 실시예에 따른 컵부(133)에 전극 조립체(10)가 수납된 모습을 나타낸 상면 개략도이다.
도 8은 종래의 코너(364)를 나타낸 개략도이다.
도 9는 본 발명의 일 실시예에 따른 코너(164)를 나타낸 개략도이다.
도 10은 본 발명의 일 실시예에 따른 전지 케이스(13)를 폴딩하는 모습을 나타낸 개략도이다.
도 11은 본 발명의 일 실시예에 따른 전지 케이스(13)가 폴딩된 모습을 나타낸 개략도이다.
도 12는 본 발명의 일 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391)의 확대도이다.
도 13은 본 발명의 다른 실시예에 따른 컵부(133)와 다이 엣지(1621)를 확대한 개략도이다.
도 14는 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩하는 모습을 나타낸 개략도이다.
도 15는 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩한 모습을 나타낸 개략도이다.
도 16은 본 발명의 다른 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391a)의 확대도이다.
도 17은 종래의 전지 케이스(33)의 디가싱부(337)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
도 18은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
도 19는 본 발명의 일 실시예에 따른 검사 장치(4)의 블록도이다.
도 20은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하여 이차 전지(1)의 제조를 완료한 모습을 나타낸 개략도이다.
도 21은 종래의 사이드(334)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
도 22는 종래의 사이드(334)를 폴딩한 모습을 상면에서 나타낸 개략도이다.
도 23은 본 발명의 일 실시예에 따른 사이드(134)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
도 24는 본 발명의 일 실시예에 따른 전지 모듈(5)의 개략도이다.
도 25는 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이다.
도 26은 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
도 27은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이다.
도 28은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 이차 전지(1)의 조립도이다.
본 발명의 일 실시예에 따르면, 파우치 형 전지 케이스 및 파우치 형 이차 전지의 컵부의 엣지의 곡률 반경 및 클리어런스를 더욱 작게 형성할 수 있고, 브릿지의 두께를 더욱 얇게 형성할 수 있으므로 폴딩부의 폭도 감소시킬 수 있으며, 전극 조립체의 부피를 증가시킬 수 있고, 배트 이어의 크기를 감소시킬 수 있으며, 엣지 하이 현상이 발생하는 것을 방지할 수 있으므로, 부피 대비 에너지 밀도가 증가할 수 있다. 또한, 파우치 형 전지 케이스 및 파우치 형 이차 전지를 전체적으로 샤프한 형상으로 제조할 수 있으므로, 이차 전지의 외관도 미려하고 상품성도 향상될 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스는 전극 및 분리막이 적층되어 형성되는 전극 조립체를 내부에 수용하는 컵부가 형성되되, 상기 컵부는, 주변을 포위하는 복수의 외벽과 바닥부를 각각 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 펀치 엣지; 상기 외벽과 사이드 또는 디가싱부를 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 다이 엣지; 및 인접한 두 개의 상기 외벽을 서로 연결하는 두께 엣지를 포함하고, 상기 다이 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 다이 엣지 수직선과, 상기 다이 엣지 측 펀치 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 엣지 수직선 사이의 수직 거리가 0.5 mm 이하이고, 상기 두께 엣지는, 서로 인접한 두 개의 상기 펀치 엣지와 연결되어 코너를 형성하며, 상기 코너는, 적어도 하나가 2 mm 내지 5 mm의 곡률 반경으로 라운딩되며 형성되고, 곡률 반경이 상기 두께 엣지의 곡률 반경보다 크며, 상기 컵부의 깊이는, 6.5 mm 이하이다.
그리고 본 발명의 일 실시예에 따른 파우치 형 이차 전지는 전극 및 분리막이 적층되어 형성되는 전극 조립체; 및 상기 전극 조립체를 내부에 수용하는 컵부가 형성된 파우치 형 전지 케이스를 포함하되, 상기 전지 케이스는, 상기 컵부가 적어도 하나에 형성된 제1 케이스와 제2 케이스; 상기 제1 케이스와 상기 제2 케이스를 일체로 연결하는 폴딩부; 및 상기 폴딩부의 양 단 일부에서, 외측으로 돌출 형성되는 배트 이어를 포함하고, 상기 컵부는, 주변을 포위하는 복수의 외벽과 바닥부를 각각 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 펀치 엣지; 상기 외벽과 사이드 또는 디가싱부를 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 다이 엣지; 및 인접한 두 개의 상기 외벽을 서로 연결하는 두께 엣지를 포함하며, 상기 다이 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 다이 엣지 수직선과, 상기 다이 엣지 측 펀치 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 엣지 수직선 사이의 수직 거리가 0.5 mm 이하이고, 상기 두께 엣지는, 서로 인접한 두 개의 상기 펀치 엣지와 연결되어 코너를 형성하며, 상기 코너는, 적어도 하나가 2 mm 내지 5 mm의 곡률 반경으로 라운딩되며 형성되고, 곡률 반경이 상기 두께 엣지의 곡률 반경보다 크며, 상기 폴딩부는, 폭이 1 mm 내지 3.2 mm이고, 상기 배트 이어는, 길이가 1 mm 이하이며, 상기 컵부의 폭과 상기 전극 조립체의 폭의 차이는, 2.5 mm 이하이고, 상기 컵부의 깊이는, 6.5 mm 이하이다.
전극 조립체(10)는 전극(101, 도 5에 도시됨) 및 분리막(102, 도 5에 도시됨)을 교대로 적층하여 형성한다. 먼저 전극 활물질과 바인더 및 가소제를 혼합한 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극 등의 전극(101)들을 제조한다. 그리고 분리막(Separator, 102)들을 전극(101)들 사이에 적층하여 전극 조립체(10)를 형성하고, 전극 조립체(10)를 전지 케이스(13)에 삽입하고 전해질 주입 후 실링한다.
전극 조립체(Electrode Assembly, 10)는 전장과 전폭을 곱한 면적이 15000mm2 내지 100000mm2 일 수 있다. 특히, 전극 조립체(10)의 전폭은 60mm 이상일 수 있다. 또한, 전극 조립체(10)는, 적층 방향에 대해 6mm 이상의 두께를 가질 수 있다. 따라서, 본 발명의 일 실시예에 따른 전극 조립체(10)는 일반적인 소형 전지와 비교하여 큰 전지 용량을 제공할 수 있다.
구체적으로, 전극 조립체(10)는 양극 및 음극 두 종류의 전극(101)과, 상기 전극(101)들을 상호 절연시키기 위해 전극(101)들 사이에 개재되는 분리막(102)을 포함한다. 이러한 전극 조립체(10)는 스택형, 젤리롤형, 스택 앤 폴딩형 등이 있다. 두 종류의 전극(101), 즉 양극과 음극은 각각 알루미늄과 구리를 포함하는 금속 포일 또는 금속 메쉬 형태의 전극 집전체에 활물질 슬러리가 도포된 구조이다. 활물질 슬러리는 통상적으로 입상의 활물질, 도전재 등을 용매가 첨가된 상태에서 교반되어 형성될 수 있다. 용매는 후속 공정에서 제거된다.
전극 조립체(10)는 도 1에 도시된 바와 같이, 전극 탭(Electrode Tab, 11)을 포함한다. 전극 탭(11)은 전극 조립체(10)의 양극 및 음극과 각각 연결되고, 전극 조립체(10)로부터 외부로 돌출되어, 전극 조립체(10)의 내부와 외부 사이에 전자가 이동할 수 있는 경로가 된다. 전극 조립체(10)의 전극 집전체는 전극 활물질이 도포된 부분과 전극 활물질이 도포되지 않은 말단 부분, 즉 무지부로 구성된다. 그리고 전극 탭(11)은 무지부를 재단하여 형성되거나 무지부에 별도의 도전부재를 초음파 용접 등으로 연결하여 형성될 수도 있다. 이러한 전극 탭(11)은 도 1에 도시된 바와 같이, 전극 조립체(10)의 각각 다른 방향으로 돌출될 수도 있으나, 이에 제한되지 않고 일측으로부터 동일한 방향으로 나란히 돌출되는 등 다양한 방향을 향해 돌출 형성될 수도 있다.
전극 조립체(10)의 전극 탭(11)에는 이차 전지(1)의 외부로 전기를 공급하는 전극 리드(Electrode Lead, 12)가 스팟(Spot) 용접 등으로 연결된다. 그리고, 전극 리드(12)의 일부는 절연부(14)로 주위가 포위된다. 절연부(14)는 전지 케이스(13)의 제1 케이스(131)와 제2 케이스(132)가 열 융착되는 사이드(134)에 한정되어 위치하여, 전극 리드(12)를 전지 케이스(13)에 접착시킨다. 그리고, 전극 조립체(10)로부터 생성되는 전기가 전극 리드(12)를 통해 전지 케이스(13)로 흐르는 것을 방지하며, 전지 케이스(13)의 실링을 유지한다. 따라서, 이러한 절연부(14)는 전기가 잘 통하지 않는 비전도성을 가진 부도체로 제조된다. 일반적으로 절연부(14)로는, 전극 리드(12)에 부착하기 용이하고, 두께가 비교적 얇은 절연테이프를 많이 사용하나, 이에 제한되지 않고 전극 리드(12)를 절연할 수 있다면 다양한 부재를 사용할 수 있다.
전극 리드(12)는 일단이 상기 전극 탭(11)과 연결되고 타단이 상기 전지 케이스(13)의 외부로 각각 돌출된다. 즉, 전극 리드(12)는 양극 탭(111)에 일단이 연결되고, 양극 탭(111)이 돌출된 방향으로 연장되는 양극 리드(121) 및 음극 탭(112)에 일단이 연결되고, 음극 탭(112)이 돌출된 방향으로 연장되는 음극 리드(122)를 포함한다. 한편, 양극 리드(121) 및 음극 리드(122)는 도 1에 도시된 바와 같이, 모두 타단이 전지 케이스(13)의 외부로 돌출된다. 그럼으로써, 전극 조립체(10)의 내부에서 생성된 전기를 외부로 공급할 수 있다. 또한, 양극 탭(111) 및 음극 탭(112)이 각각 다양한 방향을 향해 돌출 형성되므로, 양극 리드(121) 및 음극 리드(122)도 각각 다양한 방향을 향해 연장될 수 있다.
양극 리드(121) 및 음극 리드(122)는 서로 그 재질이 다를 수 있다. 즉, 양극 리드(121)는 양극 집전체와 동일한 알루미늄(Al) 재질이며, 음극 리드(122)는 음극 집전체와 동일한 구리(Cu) 재질 또는 니켈(Ni)이 코팅된 구리 재질일 수 있다. 그리고 전지 케이스(13)의 외부로 돌출된 전극 리드(12)의 일부분은 단자부가 되어, 외부 단자와 전기적으로 연결된다.
전지 케이스(13)는 전극 조립체(10)를 내부에 수납하는, 유연성의 재질을 갖는 파우치 필름(135)을 성형하여 제조된 파우치이다. 이하, 전지 케이스(13)는 파우치인 것으로 설명한다. 펀치(22, 도 6에 도시됨) 등을 이용하여 유연성을 가지는 파우치 필름(135)을 드로잉(Drawing) 성형하면, 일부가 연신되어 주머니 형태의 수용 공간(1331)을 포함하는 컵부(133)가 형성됨으로써, 전지 케이스(13)가 제조된다.
전지 케이스(13)는 전극 리드(12)의 일부가 노출되도록 전극 조립체(10)를 수용하고 실링된다. 이러한 전지 케이스(13)는 도 1에 도시된 바와 같이, 제1 케이스(131)와 제2 케이스(132)를 포함한다. 제1 케이스(131)에는 컵부(133)가 형성되어 전극 조립체(10)를 수용할 수 있는 수용 공간(1331)이 마련되고, 제2 케이스(132)는 상기 전극 조립체(10)가 전지 케이스(13)의 외부로 이탈되지 않도록 상기 수용 공간(1331)을 상방에서 커버한다. 제1 케이스(131)와 제2 케이스(132)는 도 1에 도시된 바와 같이 일측이 서로 연결되어 제조될 수 있으나, 이에 제한되지 않고 서로 분리되어 별도로 제조되는 등 다양하게 제조될 수 있다.
파우치 필름(135)에 컵부(133)를 성형할 때, 하나의 파우치 필름(135)에 하나의 컵부(133)만이 형성될 수도 있으나, 이에 제한되지 않고 하나의 파우치 필름(135)에 두 개의 컵부(133)를 서로 이웃하게 드로잉 성형할 수도 있다. 그러면 도 1에 도시된 바와 같이, 제1 케이스(131)와 제2 케이스(132)에는 각각 컵부(133)가 형성된다. 이 때, 제1 케이스(131)와 제2 케이스(132)에 형성된 각각의 컵부(133)는, 서로 깊이(D)가 동일할 수 있으나, 이에 제한되지 않고 서로 깊이(D)가 상이할 수도 있다.
본 발명의 일 실시예의 경우, 컵부(133)의 깊이(D)는 3mm 이상이고 6.5mm 이하일 수 있다. 따라서, 본 발명의 일 실시예에 따른 컵부(133)는 일반적인 소형 전지와 비교하여 큰 전극 용량을 갖는 전극 조립체(10)를 수납할 수 있다.
제1 케이스(131)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)를 수납한 후에, 두 개의 컵부(133)가 서로 마주보도록 전지 케이스(13)에서 두 컵부(133)의 사이에 형성된 브릿지(136)를 중심으로 전지 케이스(13)를 폴딩할 수 있다. 그러면 제2 케이스(132)의 컵부(133)가 전극 조립체(10)를 상방에서도 수용한다. 따라서, 두 개의 컵부(133)가 하나의 전극 조립체(10)를 수용하므로, 컵부(133)가 하나일 때보다 두께가 더 두꺼운 전극 조립체(10)도 수용할 수 있다. 또한, 전지 케이스(13)가 폴딩됨으로써 제1 케이스(131)와 제2 케이스(132)가 서로 일체로 연결되므로, 추후에 실링 공정을 수행할 때 실링할 사이드(134)의 개수가 감소할 수 있다. 따라서, 공정 속도를 향상시킬 수 있고, 실링 공정 수도 감소시킬 수도 있다.
한편 전지 케이스(13)는 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된 컵부(133), 컵부(133)의 측부에 형성되어 디가싱 홀(H)을 통해 상기 컵부(133)의 내부에 생성되는 가스를 배출하는 디가싱부(137)를 포함할 수 있다. 전지 케이스(13)의 컵부(133)에 전극 조립체(10)를 수납하고 전해액을 주입한 후, 활성화 공정을 수행하면, 전지 케이스(13)의 내부에서 가스가 발생하고 이러한 가스를 외부로 배출하기 위해 디가싱 공정을 수행한다. 디가싱부(137)에 대한 자세한 설명은 후술한다.
전극 조립체(10)의 전극 탭(11)에 전극 리드(12)가 연결되고, 전극 리드(12)의 일부분에 절연부(14)가 형성되면, 제1 케이스(131)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)가 수용되고, 제2 케이스(132)가 상기 공간을 상부에서 커버한다. 그리고, 내부에 전해질을 주입하고 제1 케이스(131)와 제2 케이스(132)의 컵부(133)의 외측으로 연장 형성된 사이드(134)를 실링한다. 전해질은 이차 전지(1)의 충, 방전 시 전극(101)의 전기 화학적 반응에 의해 생성되는 리튬 이온을 이동시키기 위한 것으로, 리튬염과 고순도 유기 용매류의 혼합물인 비수질계 유기 전해액 또는 고분자 전해질을 이용한 폴리머를 포함할 수 있다. 나아가, 전해질은 황화물계, 산화물계 또는 폴리머계의 고체 전해질을 포함할 수도 있고, 이러한 고체 전해질은 외력에 의해 쉽게 변형되는 유연성을 가질 수도 있다. 이와 같은 방법을 통해, 파우치 형 이차 전지(1)가 제조될 수 있다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름(135)의 단면도이다.
본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)의 전지 케이스(13)인 파우치는 파우치 필름(135)을 드로잉(Drawing) 성형하여 제조된다. 즉, 파우치 필름(135)을 펀치(22) 등으로 연신시켜 컵부(133)를 형성함으로써 제조된다. 본 발명의 일 실시예에 따르면, 이러한 파우치 필름(135)은 도 2에 도시된 바와 같이, 실란트층(Sealant Layer, 1351), 수분 배리어층(Moisture Barrier Layer, 1352), 표면 보호층(Surface Protection Layer, 1353)을 포함하며, 필요에 따라 연신 보조층(Drawing Assistance Layer, 1354)을 더 포함할 수 있다.
실란트층(1351)은 제1 폴리머로 제조되고, 최내층에 형성되어 전극 조립체(10)와 직접 접촉할 수 있다. 여기서 최내층이란, 상기 수분 배리어층(1352)을 기준으로 전극 조립체(10)가 위치하는 방향으로 향할 때 가장 마지막에 위치한 층을 말한다. 전지 케이스(13)는 상기와 같은 적층 구조의 파우치 필름(135)을, 펀치(22) 등을 이용하여 드로잉(Drawing) 성형하면, 일부가 연신되어 주머니 형태의 수용 공간(1331)을 포함하는 컵부(133)를 형성하면서 제조된다. 그리고, 이러한 수용 공간(1331)에 전극 조립체(10)가 내부에 수용되면 전해질을 주입한다. 그 후에 제1 케이스(131)와 제2 케이스(132)를 서로 마주보도록 접촉시키고, 사이드(134)에 열 압착을 하면 실란트층(1351)끼리 접착됨으로써 파우치가 실링된다. 이 때, 실란트층(1351)은 전극 조립체(10)와 직접적으로 접촉하므로 절연성을 가져야 하며, 전해질과도 접촉하므로 내식성을 가져야 한다. 또한, 내부를 완전히 밀폐하여 내부 및 외부간의 물질 이동을 차단해야 하므로, 높은 실링성을 가져야 한다. 즉, 실란트층(1351)끼리 접착된 사이드(134)는 우수한 열 접착 강도를 가져야 한다. 일반적으로 이러한 실란트층(1351)을 제조하는 제1 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론, 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. 특히, 주로 폴리프로필렌(PP) 또는 폴리에틸렌(PE) 등의 폴리올레핀계 수지가 사용된다. 폴리프로필렌(PP)은 인장강도, 강성, 표면경도, 내마모성, 내열성 등의 기계적 물성과 내식성 등의 화학적 물성이 뛰어나, 실란트층(1351)을 제조하는데 주로 사용된다. 나아가, 무연신 폴리프로필렌(Cated Polypropylene) 또는 산처리된 폴리프로필렌(Acid Modified Polypropylene) 또는 폴리프로필렌-부틸렌-에틸렌 삼원 공중합체로 구성될 수도 있다. 여기서 산처리된 폴리프로필렌은 MAH PP(말레익 안하이드라이드 폴리프로필렌)일 수 있다. 또한, 실란트층(1351)은, 어느 하나의 물질로 이루어진 단일막 구조를 갖거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수 있다.
수분 배리어층(1352)은 표면 보호층(1353) 및 실란트층(1351)의 사이에 적층되어 파우치의 기계적 강도를 확보하고, 이차 전지(1) 외부의 가스 또는 수분 등의 출입을 차단하며, 전해질의 누수를 방지한다. 수분 배리어층(1352)은 알루미늄 합금 박막으로 제조될 수 있다. 알루미늄 합금 박막은 소정 수준 이상의 기계적 강도를 확보할 수 있으면서도 무게가 가볍고 전극 조립체(10)와 전해질에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 확보할 수 있다.
보다 구체적으로는, 본 발명의 일 실시예에 따른 알루미늄 합금 박막은 결정립도가 10 ~ 13μm, 바람직하게는 10.5 ~ 12.5μm, 더 바람직하게는 11 ~ 12μm일 수 있다. 알루미늄 합금 박막의 결정립도가 상기 범위를 만족할 때, 컵 성형 시에 핀 홀(Pinhole)이나 균열 발생 없이 성형 깊이를 증가시킬 수 있다.
이러한 알루미늄 합금 박막에는 알루미늄 이외의 금속 원소, 예를 들어, 철(Fe), 구리(Cu), 크롬(Cr), 망간(Mn), 니켈(Ni), 마그네슘(Mg) 및 아연(Zn)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상이 포함될 수 있다.
표면 보호층(1353)은 제2 폴리머로 제조되고, 최외층에 형성되어 외부와의 마찰 및 충돌로부터 이차 전지(1)를 보호하면서, 전극 조립체(10)를 외부로부터 전기적으로 절연시킨다. 여기서 최외층이란, 상기 수분 배리어층(1352)을 기준으로 전극 조립체(10)가 위치하는 방향의 반대 방향으로 향할 때 가장 마지막에 위치한 층을 말한다. 이러한 표면 보호층(1353)을 제조하는 제2 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 주로 내마모성 및 내열성을 가지는 폴리에틸렌테레프탈레이트(PET) 등의 폴리머가 사용되는 것이 바람직하다. 그리고 표면 보호층(1353)은 어느 하나의 물질로 이루어진 단일막 구조를 가지거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수도 있다.
한편, PET는 저렴하고 내구성이 뛰어나며 전기 절연성이 우수하나, 상기 수분 배리어층(1352)으로 자주 사용되는 알루미늄과 접착성도 약하고, 응력을 인가하여 연신될 때의 거동도 서로 상이하다. 따라서, 표면 보호층(1353)과 수분 배리어층(1352)을 직접 접착하면, 드로잉 성형 도중에 표면 보호층(1353)과 수분 배리어층(1352)과 박리될 수도 있다. 그럼으로써, 수분 배리어층(1352)이 균일하게 연신되지 않아, 성형성이 저하되는 문제가 발생할 수 있다.
본 발명의 일 실시예에 따르면, 전지 케이스(13)는 제3 폴리머로 제조되고, 표면 보호층(1353) 및 수분 배리어층(1352) 사이에 적층되는 연신 보조층(1354)을 더 포함할 수 있다. 연신 보조층(1354)은 표면 보호층(1353) 및 수분 배리어층(1352) 사이에 적층되어, 표면 보호층(1353)과 수분 배리어층(1352)이 연신될 때 박리되는 것을 방지한다. 이러한 연신 보조층(1354)을 제조하는 제3 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 나일론(Nylon) 수지는 표면 보호층(1353)의 폴리에틸렌테레프탈레이트(PET)와는 접착이 용이하고, 수분 배리어층(1352)의 알루미늄 합금과는 연신될 때의 거동이 유사하므로, 제3 폴리머로는 주로 나일론(Nylon) 수지가 사용되는 것이 바람직하다. 그리고 연신 보조층(1354)은 어느 하나의 물질로 이루어진 단일막 구조를 가지거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수도 있다.
한편, 본 발명에 따른 파우치 필름(135)은 총 두께가 160μm 내지 200μm, 바람직하게는 180μm 내지 200μm일 수 있다. 파우치 필름(135)의 두께가 상기 범위를 만족할 때, 파우치 두께 증가로 인한 전지 수용 공간의 감소, 밀봉 내구성 저하 등을 최소화하면서 성형 깊이를 증가시킬 수 있다.
도 3은 본 발명의 일 실시예에 따른 성형 장치(2)의 개략도이다.
본 발명의 일 실시예에 따른 파우치 필름(135)을 성형하는 성형 장치(2)는, 상면에 파우치 필름(135)이 안착되는 다이(21)와, 다이(21)의 상방에 배치되고 하강하여 파우치 필름(135)을 성형하는 펀치(22)를 포함한다. 그리고 다이(21)는 상면으로부터 내측으로 함몰 형성된 성형부(211)를 포함하고, 펀치(22)는 파우치 필름(135)을 상기 성형부(211)에 삽입하면서 드로잉 성형함으로써 컵부(133)를 형성한다.
본 발명의 일 실시예에 따르면 이러한 성형 장치(2)를 이용하여 파우치 필름(135)을 성형할 때, 도 3에 도시된 바와 같이, 다이(21)에는 성형부(211)가 서로 이웃하도록 두 개가 형성되고, 두 성형부(211) 사이에는 격벽(212)이 형성될 수 있다. 펀치(22)가 두 성형부(211)에 모두 삽입하면서 파우치 필름(135)을 드로잉 성형하면, 두 성형부(211)에 대응하여 제1 케이스(131)와 제2 케이스(132)에는 각각 하나씩, 총 두 개의 컵부(133)가 형성되고, 이러한 두 개의 컵부(133) 사이에는 격벽(212)에 대응하여 브릿지(136)도 함께 형성될 수 있다.
브릿지(136)는 추후에 전지 케이스(13)를 폴딩할 때, 기준이 되는 부분일 수 있다. 이차 전지(1)의 제조가 완료되면, 브릿지(136)는 이차 전지(1)의 일측에서 폴딩부(139, 도 11에 도시됨)를 형성할 수 있다. 이러한 폴딩부(139)는 제1 케이스(131)와 제2 케이스(132)를 서로 일체로 연결하므로, 추후에 실링 공정을 수행할 때 실링할 사이드(134)의 개수가 감소할 수 있다. 따라서, 공정 속도를 향상시키고, 실링 공정 수도 감소시킬 수도 있다. 이 때, 폴딩부(139)의 폭이 작을수록 컵부(133)의 외벽(138, 도 5에 도시됨)과 전극 조립체(10) 사이의 공간(17, 도 5에 도시됨)도 감소하므로, 이차 전지(1)의 전체 부피가 감소하여 부피 대비 에너지 밀도가 증가할 수 있다.
이러한 폴딩부(139)의 폭은 브릿지(136)의 두께(t, 도 5에 도시됨)에 비례하고, 브릿지(136)는 격벽(212)에 대응하여 형성되므로, 브릿지(136)의 두께(t)는 격벽(212)의 두께에 비례한다. 따라서, 파우치 필름(135)을 성형할 때에는 브릿지(136)의 두께(t)를 최소화하는 것이 바람직하고, 이를 위해 격벽(212)의 두께도 최소화하는 것이 바람직하다. 그런데 격벽(212)이 두께가 얇은 상태에서 높이가 과도하게 높게 형성된다면, 드로잉 성형하는 과정에서 격벽(212)이 파손될 수 있다. 특히, 종래에는 다이에 바닥이 존재하였으나, 이러한 경우에 펀치(22)가 파우치 필름(135)을 성형할 때 파우치 필름(135)과 성형부(211) 사이의 공간에 존재하는 기체가 배출되지 못하는 문제가 있었다. 따라서, 최근에는 이러한 다이에 바닥을 제거함으로써 파우치 필름(135)과 성형부(211) 사이의 공간에 존재하는 기체가 용이하게 배출될 수는 있으나, 격벽(212)의 높이가 과도하게 높게 형성되는 문제가 있었다. 따라서, 본 발명의 일 실시예에 따르면 도 3에 도시된 바와 같이, 격벽(212)의 하부에 격벽(212)의 두께보다 더 두꺼운 보강부(2121)가 형성될 수 있다. 보강부(2121)는 전지 케이스(13)에 형성될 컵부(133)의 깊이(D)보다는 하방에 형성되면서, 격벽(212)이 파손되지 않을 정도의 위치에 형성될 수 있다. 보강부(2121)의 정확한 위치는 격벽(212)의 두께, 격벽(212)의 재료, 펀치(22)의 압력, 형성될 컵부(133)의 깊이(D) 등에 따라 실험적으로 결정될 수 있다.
도 4는 종래의 컵부(333)와 브릿지(336)를 확대한 개략도이다.
종래에는 전지 케이스 및 이차 전지를 제조하더라도 전체적으로 샤프한 형상으로 제조하는데 한계가 있었다.
구체적으로, 종래에는 컵부(333)의 엣지(36)의 곡률 반경을 감소하는 데에도 한계가 있었다.
컵부(333)의 엣지(36)는, 펀치(22)의 엣지(221, 도 3에 도시됨)에 대응되며 형성되는 펀치 엣지(361) 다이(21)의 엣지(213, 도 3에 도시됨)에 대응되며 형성되는 다이 엣지(362, 도 8에 도시됨)를 포함한다.
펀치 엣지(361)는 컵부(333)의 주변을 포위하는 복수의 외벽(338)과 바닥부(3332)를 각각 연결한다. 그런데, 펀치(22)의 엣지(221)에 라운딩 처리가 되지 않는다면 펀치(22)의 엣지(221)가 첨예하게 되므로, 파우치 필름(135)을 성형할 때 컵부(333)의 펀치 엣지(361)에 응력이 집중되어 쉽게 크랙이 발생하는 문제가 있었다. 또한, 다이 엣지(362)는 상기 복수의 외벽(338)과 사이드(134) 또는 디가싱부(137)를 각각 연결한다. 그런데 다이(21)의 엣지(213)에도 라운딩 처리가 되지 않는다면 다이(21)의 엣지가 첨예하게 되므로, 파우치 필름(135)을 성형할 때 컵부(333)의 다이 엣지(362)에도 응력이 집중되어 쉽게 크랙이 발생하는 문제가 있었다. 여기서 라운딩된다는 것은, 곡률을 가지도록 곡면을 형성하는 것을 의미하며, 이러한 곡면은 일정한 곡률만을 가질 수도 있으나, 이에 제한되지 않고 일정하지 않은 곡률을 가질 수도 있다. 본 명세서에서 펀치 엣지(161), 다이 엣지(162), 브릿지(136) 등이 특정 곡률을 가지고 라운딩되며 형성된다는 것은, 전체적으로 상기 특정 곡률만을 가지는 것뿐만 아니라, 적어도 일부에서만 상기 특정 곡률을 가지는 것도 포함한다는 것을 의미한다.
상기의 문제를 해결하기 위해, 도 4에 도시된 바와 같이, 펀치(22)의 엣지(221)와 다이(21)의 엣지(213)에 라운딩 처리를 하여 컵부(333)의 펀치 엣지(361)와 다이 엣지(362)가 라운딩되며 형성되었다. 그럼으로써 컵부(333)의 펀치 엣지(361) 및 다이 엣지(362)에 집중하는 응력을 어느 정도 분산시킬 수 있었다.
그러나, 컵부(333)의 펀치 엣지(361) 및 다이 엣지(362)가 라운딩되며 형성되더라도, 컵부(333)의 깊이(D')에 비해 펀치 엣지(361)의 곡률 반경(R2') 및 다이 엣지(362)의 곡률 반경을 작게 형성한다면, 컵부(333)의 펀치 엣지(361) 및 다이 엣지(362)에 크랙이 발생하였다. 예를 들어, 종래에는 컵부(333)를 한 개 성형하는 기준으로, 깊이(D')를 대략 7 mm 이상, 컵부(333)를 두 개 성형하는 경우를 기준으로, 깊이(D')를 대략 6.5 mm 이상으로 성형하면, 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2') 및 다이 엣지(362)의 곡률 반경을 2 mm 이하로 형성할 때 파우치 필름(135)에 크랙이 발생할 수 있었다.
또한, 두 개의 컵부(133)가 형성되는 경우에, 상기 브릿지(136)가 형성되기 위해서는 다이(21)에 격벽(212)이 존재해야 한다. 그런데, 종래에는 컵부(333)의 깊이(D')를 깊게(예를 들어, 6.5 mm 이상) 성형하면, 이러한 브릿지(336)의 두께를 얇게 형성하는 데에 한계가 있었다. 즉, 브릿지(336)를 일정 두께 이하로 형성하기 위해 상기 격벽(212)도 일정 두께 이하로 형성한다면, 격벽(212)이 첨예하게 형성되므로 브릿지(336)에 크랙이 발생하는 문제가 있었다.
이러한 문제를 해결하기 위해, 도 4에 도시된 바와 같이 격벽(212)에 라운딩 처리를 하여 브릿지(336)가 라운딩되며 형성되었다. 그럼으로써 브릿지(336)에 집중하는 응력을 어느 정도 분산시킬 수 있었다. 특히, 브릿지(336)의 곡률 반경(R1')이 일정한 경우, 상기 곡률 반경(R1')은 브릿지(336)의 두께(t')의 절반에 대응된다. 예를 들어, 브릿지(336)의 곡률 반경(R1')을 약 1 mm에 가깝도록 형성하는 경우, 브릿지(336)의 두께(t')는 약 2 mm에 가깝도록 형성되었다.
그러나, 브릿지(336)가 라운딩되며 형성되더라도, 컵부(333)의 깊이(D')가 깊게 형성되면 브릿지(336)의 두께(t')가 작으면 브릿지(336)에 크랙이 발생하였다. 예를 들어, 컵부(333)의 깊이(D')를 대략 6.5 mm 이상으로 성형하면, 브릿지(336)의 곡률 반경(R1')을 1 mm 이하, 즉 브릿지(336)의 두께(t')를 2 mm 이하로 형성할 때 브릿지(336)에 크랙이 발생하는 문제가 있었다.
나아가, 클리어런스(CL')의 크기도 상당히 커서, 컵부(333)의 외벽(338)을 수직에 가깝게 성형하는 데에도 한계가 있었다. 클리어런스(CL)란, 다이(21)의 성형부(211) 내벽과 펀치(22)의 외벽 사이의 수직 거리를 지칭한다. 실제로 다이(21)의 성형부(211)와 펀치(22)는 클리어런스(CL)만큼 미세한 크기의 차이가 있다. 만약 이러한 클리어런스(CL)가 과도하게 작다면, 성형부(211) 내벽과 펀치(22)의 외벽 사이의 거리가 과도하게 작게 된다. 그러면 파우치 필름(135)이 성형부(211)로 삽입될 수가 없거나, 마찰이 크게 발생하여 파우치 필름(135)이 손상될 수 있다. 반대로 클리어런스(CL)가 과도하게 크다면, 컵부(333)의 외벽(338)의 경사각이 커져, 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)이 증가하는 문제가 있다. 따라서, 파우치 필름(135)을 성형할 때에는 적당한 크기의 클리어런스(CL)를 설정하여야 한다.
브릿지(336)는 다이(21)의 격벽(212)에 대응되어 형성되고, 펀치 엣지(361)는 펀치(22)의 엣지(221)에 대응되어 형성된다. 따라서, 다이(21)의 성형부(211) 내벽과 펀치(22)의 외벽 사이의 수직 거리인 클리어런스(CL')는 전지 케이스(33)에서, 브릿지(336)와 펀치 엣지(361) 사이의 수직 거리로 나타날 수 있다.
구체적으로 도 4에 도시된 바와 같이, 브릿지 수직선(V1')과 엣지 수직선(V2')을 가상으로 도시한다. 브릿지 수직선(V1')은 브릿지(336)와 브릿지(336) 측 외벽(338)의 경계점(P1')을 통과하고 바닥부(3332)와 수직인 가상의 수직선이다. 그리고, 엣지 수직선(V2')은 브릿지(336) 측 펀치 엣지(361)와 브릿지(336) 측 외벽(338)의 경계점(P2')을 통과하고 바닥부(3332)와 수직인 가상의 수직선이다. 이러한 브릿지 수직선(V1')은 다이(21)의 성형부(211)의 내벽, 특히 격벽(212)의 내벽에 대응되고, 엣지 수직선(V2')은 펀치(22)의 외벽에 대응된다. 따라서, 브릿지 수직선(V1')과 엣지 수직선(V2')의 수직 거리가, 전지 케이스(33)에서 나타나는 클리어런스(CL')이다.
그런데 종래에는 컵부(333)의 깊이(D')를 깊게(예를 들어, 6.5 mm 이상) 성형하면, 이러한 클리어런스(CL)를 0.5 mm 이하로 감소시킬 때 파우치 필름(135)에 크랙이 쉽게 발생하는 문제가 발생할 수 있었다.상기 기술한 바와 같이, 종래에는 컵부(333)의 깊이(D')를 깊게(예를 들어, 6.5 mm 이상) 성형하면, 클리어런스(CL')를 더욱 작게 성형하는 데에 한계가 있으므로, 컵부(333)의 외벽(338)은 바닥부(3332)로부터 경사각이 95°보다 크게 형성되었다. 즉, 컵부(333)의 외벽(338)을 경사각 95°이하로, 수직에 가깝게 성형하는 데에도 한계가 있었다.
한편, 컵부(333)의 엣지의 곡률 반경(R2')을 개선하는데 한계가 있으므로, 컵부(333)에 수납되는 전극 조립체(10)의 부피가 작아지는 문제도 있었다. 구체적으로, 도 4에 도시된 바와 같이, 종래에는 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2')이 크므로, 전극 조립체(10)가 컵부(333)의 외벽(338)에 과도하게 가까이 위치하면, 전극 조립체(10)의 전극(101)이 컵부(333)의 펀치 엣지(361)에 의해 파손되는 문제가 있었다. 즉, 금속을 포함하는 전극(101)의 일단이 컵부(333)의 펀치 엣지(361) 상에 위치하게 되어, 전극(101)의 일단이 컵부(333)의 펀치 엣지(361)와 대응되어 변형되면서 파손되는 문제가 있었다.
이러한 문제를 해결하기 위해, 종래에는 전극 조립체(10)를 컵부(333)에 수납할 때, 전극 조립체(10)를 컵부(333)의 외벽(338)으로부터 어느 정도 이격시켜 수납하였다. 먼저, 상기 엣지 수직선(V2')으로부터 수직 거리(g')가 0.75 mm, 특히 0.5 mm 이고 바닥부(3332)와 수직인 기준 수직선(V3')을 가상으로 도시한 후, 도 4에 도시된 바와 같이 전극(101)의 일단이 상기 기준 수직선(V3')의 외측에 위치하도록 전극 조립체(10)를 수납하였다. 그럼으로써, 전극(101)이 컵부(333)의 외벽(338)으로부터 어느 정도 이격되므로, 전극(101)이 파손되는 것을 방지할 수 있었다. 그러나, 이러한 경우에는 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)이 증가하여 컵부(333)의 부피 대비 전극 조립체(10)의 부피 비율이 작아지므로, 이차 전지(3)의 부피 대비 에너지 밀도가 저하되는 문제가 있었다. 또한, 컵부(333)의 내부에 불필요한 공간의 부피가 커져, 사이드를 실링하기 전에 전극 조립체(10)가 컵부(333)의 내부에서 움직이는 문제도 있었다.
그리고, 전극 조립체(10)에서 전극(101)은 외력에 의해 쉽게 변형되지 않는 강성이 큰 반면에, 분리막(102)은 외력에 의해 쉽게 변형되는 유연성이 크다. 그런데, 이웃하는 전극(101)이 직접 접촉하면 단락(short, 쇼트)이 발생하므로, 이를 방지하기 위해 분리막(102)이 전극(101)보다 크게 형성된다. 따라서, 전극 조립체(10)가 형성되면, 분리막(102)이 전극(101)보다 외측으로 돌출된 주변부(1021)가 함께 형성된다. 그런데, 종래에는 전극 조립체(10)를 컵부(333)의 외벽(338)으로부터 어느 정도 이격시켜 수납하였으므로, 이러한 분리막(102)의 주변부(1021)들이 모두 무질서하게 구겨지거나 폴딩되어 전극(101)이 외부로 노출됨으로써 단락이 발생할 가능성도 높았다.
이와 같이, 종래에는 컵부(333)의 깊이(D')를 깊게(예를 들어, 6.5 mm 이상) 성형하면, 브릿지(336)의 두께(t'), 컵부(333)의 엣지(361)의 곡률 반경(R2') 및 클리어런스(CL')를 개선하는데 한계가 있었다. 그리고 컵부(333)의 부피 대비 전극 조립체(10)의 부피 비율도 작아, 이차 전지(3)에서 불필요한 부피도 크므로, 부피 대비 에너지 밀도도 저하되었다. 나아가, 컵부(333)의 외벽(338)이 수직에 가깝게 성형되지 않고 컵부(133)의 엣지(361)의 곡률 반경(R2)도 크므로, 전체적으로 샤프한 형상으로 제조하는데 한계가 있었고, 이에 이차 전지(3)의 외관도 미려하지 않아서 상품성도 저하되는 문제가 있었다.
도 5는 본 발명의 일 실시예에 따른 컵부(133)와 브릿지(136)를 확대한 개략도이고, 도 6은 본 발명의 일 실시예에 따른 컵부(133)와 디가싱부(137)를 확대한 개략도이다.
본 발명의 일 실시예에 따르면, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하고, 이와 동시에 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 엣지(16)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성함으로써, 전극 조립체(10)의 부피를 증가시킬 수 있다. 따라서, 이차 전지(1)에서 불필요한 부피도 감소시키므로, 부피 대비 에너지 밀도가 증가할 수 있다. 또한, 파우치 형 전지 케이스(13) 및 파우치 형 이차 전지(1)를 전체적으로 샤프한 형상으로 제조할 수 있으므로, 이차 전지(1)의 외관도 우수하고 상품성도 향상될 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스(13)는, 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성되되, 상기 컵부(133)는, 주변을 포위하는 복수의 외벽(138)과 바닥부(1332)를 각각 연결하는 복수의 펀치 엣지(161); 상기 외벽(138)과 사이드(134) 또는 디가싱부(137)를 연결하는 복수의 다이 엣지(162); 및 인접한 두 개의 상기 외벽(138)을 서로 연결하는 두께 엣지(163)를 포함할 수 있다.
펀치 엣지(161)의 적어도 하나와, 다이 엣지(162)의 적어도 하나는, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 각 엣지(161)(162)의 곡률 반경(R2)이 컵부(133)의 깊이(D)의 1/20보다 작으면, 각 엣지(161)(162)에 응력이 지나치게 집중되어 크랙이 발생할 수 있고, 각 엣지(161)(162)의 곡률 반경(R2)이 컵부(133)의 깊이(D)의 1/6보다 크면, 컵부(133)가 샤프하게 형성되지 않으므로 에너지 밀도가 떨어질 수 있다.
구체적으로, 상기 펀치 엣지(161)는, 적어도 하나가 1 mm 이하인 곡률 반경(R2)으로 라운딩되어 형성될 수 있고, 상기 다이 엣지(162)는, 적어도 하나가 1 mm 이하인 곡률 반경(R2)으로 라운딩되어 형성될 수 있다.
상기 다이 엣지(162)와 상기 다이 엣지(162) 측 외벽(138)의 경계점(P1, P3)을 통과하고 상기 바닥부(1332)와 수직인 다이 엣지 수직선(V4)과, 상기 다이 엣지(162) 측 펀치 엣지(161)와 상기 다이 엣지(162) 측 외벽(138)의 경계점(P2, P4)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리(CL)가 0.5 mm 이하이고, 상기 두께 엣지(163)는, 서로 인접한 두 개의 상기 펀치 엣지(161)와 연결되어 코너(164)를 형성하며, 상기 코너(164)는, 적어도 하나가 2 mm 내지 5 mm의 곡률 반경(R3)으로 라운딩되며 형성되고, 곡률 반경(R3)이 상기 두께 엣지의 곡률 반경보다 클 수 있다. 또한, 상기 컵부(133)의 깊이(D)는, 6.5 mm 이하일 수 있다.
컵부(133)는 펀치(22) 등을 이용하여 유연성을 가지는 파우치 필름(135)을 성형함으로써 형성된다. 이러한 컵부(133)는 복수의 외벽(138)과 바닥부(1332)로 주변이 포위되고, 이러한 외벽(138)과 바닥부(1332)로 형성되는 공간이 수용 공간(1331)으로 전극 조립체(10)를 수용한다.
컵부(133)의 외벽(138)은, 컵부(133)의 주변을 포위하여 컵부(133)의 형상을 구체화한다. 외벽(138)은 컵부(133)의 주변에 복수로 형성되며, 브릿지(136) 측에도 형성되고, 하기 기술할 바 디가싱부(137) 측에도 형성되며, 전극 리드(12) 측에도 형성된다. 이러한 외벽(138)은 상단이 컵부(133)의 개방부를 향하고, 하단이 바닥부(1332)를 향한다.
한편 상기 기술한 바와 같이, 컵부(133)의 엣지(16)는, 펀치(22)의 엣지(221)에 대응되며 형성되는 펀치 엣지(161) 및 다이(21)의 엣지(213, 도 3에 도시됨)에 대응되며 형성되는 다이 엣지(162)를 포함한다. 상기 외벽(138)의 상단으로부터 외측으로 사이드(134) 및 디가싱부(137)가 형성되며, 다이 엣지(162)는 외벽(138)의 상단과 사이드(134) 또는 디가싱부(137)를 각각 연결한다. 그리고 펀치 엣지(161)는 외벽(138)의 하단과 바닥부(1332)를 각각 연결한다.
컵부(133)의 외벽(138)이 복수로 형성되므로, 컵부(133)의 엣지(16)들도 외벽(138)의 개수만큼 복수로 형성된다. 즉, 컵부(133)가 사각형으로 형성된다면, 컵부(133)의 외벽(138)도 4개가 형성되므로, 펀치 엣지(161)도 4개, 다이 엣지(162)도 4개가 형성된다. 그리고 본 발명의 일 실시예에 따르면, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하고, 상기 컵부(133)의 펀치 엣지(161)는 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
특히 본 발명의 일 실시예에 따르면, 하나의 파우치 필름(135)에 두 개의 컵부(133)를 형성하고, 두 개의 컵부(133) 사이에 브릿지(136)도 함께 형성된다. 그러면 도 5에 도시된 바와 같이, 복수의 상기 펀치 엣지(161) 중에서, 상기 브릿지(136) 측을 향하는 브릿지(136) 측 외벽(1381)과 상기 바닥부(1332)를 서로 연결하는 브릿지(136) 측 펀치 엣지(1611)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 브릿지(136) 측 펀치 엣지(1611)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다. 또한, 도 6에 도시된 바와 같이, 복수의 상기 펀치 엣지(161) 중에서, 상기 디가싱부(137) 또는 전극 리드(12)에 형성된 다이 엣지(162) 측을 향하는 다이 엣지(162) 측 외벽(1382)과 상기 바닥부(1332)를 서로 연결하는 다이 엣지(162) 측 펀치 엣지(1612)도, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 다이 엣지(162) 측 펀치 엣지(1612)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수도 있다. 이 때, 펀치 엣지(161)와 외벽(138)의 경계점(P2, P4)에서, 기울기가 연속적인 것이 바람직하다.
이를 위해, 펀치(22)의 엣지(221)에도 소정의 곡률 반경으로 라운딩 처리가 될 수 있다. 여기서, 펀치(22)의 엣지(221)의 곡률 반경은, 펀치 엣지(161)의 곡률 반경(R2)에서 파우치 필름(135) 자체의 두께를 뺀 수치일 수 있다. 예를 들어, 파우치 필름(135)의 두께가 0.2mm이면, 펀치(22)의 엣지(221)의 곡률 반경이 0.5 mm 이하일 때, 펀치 엣지(161)의 곡률 반경(R2)은 0.7 mm 이하이다.
본 발명의 일 실시예에 따르면, 이러한 펀치(22)가, 컵부(133)의 깊이(D)가 6.5 mm 이하로 되도록 파우치 필름(135)을 드로잉 성형하면, 컵부(133)의 펀치 엣지(161)에 크랙이 발생하는 것을 방지할 수 있다.
한편, 외벽(138)은 상단이 컵부(133)의 개방부를 향하며, 컵부(133)의 외측으로 사이드(134) 및 디가싱부(137)가 연장된다. 이 때 도 6에 도시된 바와 같이, 컵부(133)는 외벽(138)의 상단과 사이드(134) 또는 디가싱부(137)를 각각 연결하는 복수의 다이 엣지(162)를 더 포함할 수 있다. 그리고 적어도 하나의 다이 엣지(162)도 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 적어도 하나의 다이 엣지(162)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
이를 위해, 다이(21)의 엣지(213)도 소정의 곡률 반경으로 라운딩 처리가 될 수 있다. 여기서, 다이(21)의 엣지(213)의 곡률 반경은, 펀치 엣지(161)의 곡률 반경(R2)에서 파우치 필름(135) 자체의 두께를 뺀 수치일 수 있다. 예를 들어, 파우치 필름(135)의 두께가 0.2mm이면, 다이(21)의 엣지(213)의 곡률 반경이 0.5 mm 이하일 때, 다이 엣지(162)의 곡률 반경은 0.7 mm 이하이다.
특히 상기 기술한 바와 같이, 하나의 파우치 필름(135)에 두 개의 컵부(133)를 형성할 수도 있고, 두 개의 컵부(133) 사이에 브릿지(136)도 함께 형성된다. 즉, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스(13)는 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10)를 내부에 수용하는 컵부(133)가 각각 형성된 제1 케이스(131)와 제2 케이스(132); 및 두 개의 상기 컵부(133) 사이에 형성되는 브릿지(136)를 포함한다.
브릿지(136)도 다이(21)의 격벽(212)에 대응되어 형성되므로, 브릿지(136)는 복수의 다이 엣지(162) 중 하나의 종류가 될 수 있다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 상기 브릿지(136)는, 전극 조립체(10)의 폭의 1/200 내지 1/30 인 두께를 가질 수 있다. 브릿지(136)의 두께(t)가 전극 조립체(10)의 폭의 1/200 보다 작으면, 브릿지(136)에 응력이 지나치게 집중되어 크랙이 발생할 수 있고, 브릿지(136)의 두께(t)가 전극 조립체(10)의 폭의 1/30 보다 크면, 브릿지(136)가 샤프하게 형성되지 않으므로 에너지 밀도가 떨어질 수 있다.
구체적으로, 브릿지(136)의 두께(t)를 2 mm 이하, 특히 1.4 mm 이하로 형성할 수 있다.
여기서 브릿지(136)의 두께(t)는 도 5에 도시된 바와 같이, 브릿지(136)와 브릿지(136) 측 외벽(1381)의 두 경계점(P1) 사이의 거리인 것이 바람직하다. 구체적으로, 브릿지(136)와 브릿지(136) 측 외벽(1381)의 경계점(P1)을 각각 통과하고 바닥부(1332)와 수직인 두 개의 브릿지 수직선(V1) 사이의 거리인 것이 바람직하다. 따라서, 브릿지(136)가 일정한 곡률 반경을 갖는 경우, 브릿지(136)의 곡률 반경은 두께(t)의 절반에 대응될 수 있다. 즉, 브릿지(136)의 곡률 반경은 1mm 이하, 특히 0.7mm 이하일 수 있다.
이를 위해, 성형부(211)의 격벽(212)의 소정의 곡률 반경으로 라운딩 처리가 될 수 있다. 이 때, 브릿지(136)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P1)에서, 기울기가 연속적인 것이 바람직하다. 여기서, 성형부(211)의 격벽(212)의 상면의 곡률 반경은, 브릿지(136)의 곡률 반경에서 파우치 필름(135) 자체의 두께를 뺀 수치일 수 있다. 예를 들어, 파우치 필름(135)의 두께가 0.2mm 이면, 격벽(212)의 상면의 곡률 반경이 0.5 mm 이하일 때, 브릿지(136)의 곡률 반경은 0.7 mm 이하이다.
본 발명의 일 실시예에 따르면, 이러한 다이(21)의 엣지(213)의 곡률 반경이 감소하고 격벽(212)의 두께가 얇게 형성되더라도, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하며, 다이 엣지(162) 및 브릿지(136)에 크랙이 쉽게 발생하는 것을 방지할 수 있다. 이러한 브릿지(136)는 단면이 부채꼴 형상을 가질 수 있으며, 컵부(133)의 외벽(138)이 수직에 가깝게 형성될수록, 단면이 반원에 가까운 형상을 가질 수 있다.
나아가, 파우치 필름(135)의 성형성이 개선됨에 따라, 클리어런스(CL)를 0.5 mm 이하로 감소시켜, 복수의 외벽(138)이 모두 수직에 가깝게 형성될 수 있다. 예를 들어 도 5에 도시된 바와 같이, 복수의 외벽(138) 중에서 브릿지(136) 측 외벽(1381)이 수직에 가깝게 형성될 수 있다. 즉, 상기 브릿지(136)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P1)을 통과하고 상기 바닥부(1332)와 수직인 브릿지 수직선(V1)과, 상기 브릿지(136) 측 펀치 엣지(1611)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리인 클리어런스(CL)가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
또한 도 6에 도시된 바와 같이, 복수의 외벽(138) 중에서 다이 엣지(162) 측 외벽(1382)도 수직에 가깝게 형성될 수 있다. 즉, 다이 엣지(162)와 다이 엣지(162) 측 외벽(1382)의 경계점(P3)을 통과하고 상기 바닥부(1332)와 수직인 다이 엣지 수직선(V4)과, 상기 다이 엣지(162) 측 펀치 엣지(1612)와 상기 다이 엣지(162) 측 외벽(1382)의 경계점(P4)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리인 클리어런스(CL)가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
그럼으로써, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하고, 컵부(133)의 외벽(138)이 바닥부(1332)로부터 경사각이 90° 내지 95° 사이인 경사를 가질 수 있으며, 나아가 90°내지 93° 사이인 경사를 가지도록 수직에 가깝게 형성하더라도, 전지 케이스(13)에 크랙이 발생하는 것을 방지할 수 있다. 또한, 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)도 감소하므로, 이차 전지(1)의 부피 대비 에너지 밀도도 증가할 수 있다.
한편, 컵부(133)의 펀치 엣지(161)의 곡률 반경(R2)을 더욱 감소시킬 수 있으므로, 전극 조립체(10)가 컵부(133)의 외벽(138)에 매우 가까이 위치하더라도, 전극 조립체(10)의 전극(101)이 파손되는 것을 방지할 수 있다.
이를 위해 본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)의 제조 방법은, 전극(101) 및 분리막(102)을 적층하여 전극 조립체(10)를 형성하는 단계; 파우치 필름(135)을 성형하여 컵부(133)를 형성함으로써 파우치 형 전지 케이스(13)를 제조하는 단계; 상기 컵부(133)의 수용 공간(1331)에 상기 전극 조립체(10)를 수납하는 단계; 및 상기 컵부(133)의 외측으로 연장 형성된 사이드(134)를 실링하여 파우치 형 이차 전지(1)를 제조하는 단계를 포함할 수 있다.
특히, 상기 전극 조립체(10)를 수납하는 단계에 있어서, 상기 컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이는, 2.5 mm 이하, 특히 1.7 mm 이하일 수 있다. 여기서, 전극 조립체(10)의 폭(EW)은 전극(101)의 폭을 의미할 수 있다. 즉, 분리막(102)에서 전극(101)보다 돌출된 주변부(1021)는 상기 폭(EW)의 산출에서 제외될 수 있다.
또한, 상기 전극(101)의 적어도 하나의 일단이, 상기 펀치 엣지(161)와 상기 외벽(138)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2)으로부터, 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이하에 위치하도록 상기 전극 조립체(10)를 수납할 수 있다.
구체적으로 도 5 및 도 6에 도시된 바와 같이, 펀치 엣지(161)와 외벽(138)의 경계점(P2)을 통과하고 바닥부(1332)로부터 수직인 엣지 수직선(V2)을 가상으로 도시한다. 그리고 전극(101)의 적어도 하나의 일단이, 상기 엣지 수직선(V2)으로부터, 수직 거리(g)가 0.75 mm 이하, 특히 0.5 mm 이하에 위치하도록 전극 조립체(10)를 수납한다. 더욱 구체적으로, 엣지 수직선(V2)으로부터 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이고 바닥부(1332)와 수직인 기준 수직선(V3)을 가상으로 도시한다. 이 때, 펀치 엣지(161)의 곡률 반경(R2)이 특히 0.7 mm 이하일 수 있으므로, 기준 수직선(V3)은 펀치 엣지(161)의 곡률 중심(C)을 통과할 수도 있다. 그리고 전극(101)의 일단이 엣지 수직선(V2)과 기준 수직선(V3)의 사이에 위치하도록 전극 조립체(10)를 수납한다. 이는, 이차 전지(1) 자체를 분해하여 확인할 수도 있으나, 이에 제한되지 않고 CT(Computerized Tomography), MRI(Magnetic Resonance Imaging), X-Ray 등 이차 전지(1)를 분해하지 않고도 다양한 방법으로 확인할 수도 있다. 그럼으로써, 전극(101)이 파손되는 것을 방지하면서 컵부(133)의 부피 대비 전극 조립체(10)의 부피 비율이 더욱 증가할 수 있어, 부피 대비 에너지 효율도 증가할 수 있다. 또한, 컵부(133)의 내부에 불필요한 부피가 감소하므로, 전극 조립체(10)가 컵부(133)의 내부에서 움직이는 것을 방지할 수 있다.
나아가, 전극 조립체(10)를 컵부(133)의 외벽(138)에 매우 가까이 위치하도록 수납할 수 있으므로, 분리막(102)이 무질서하게 구겨지거나 폴딩되지 않을 수 있다. 도 5에 도시된 바와 같이, 분리막(102)이 전극(101)보다 외측으로 돌출된 주변부(1021)가, 전극(101)의 일단을 기준으로, 바닥부(1332)의 반대 방향을 향하여 폴딩될 수 있다. 전극 조립체(10)는 전극(101) 및 분리막(102)이 적층되어 형성되며, 이러한 전극(101) 및 분리막(102)이 각각 복수로 형성될 수 있다. 전지 케이스(13)가 제1 케이스(131) 및 제2 케이스(132)를 포함하고, 전지 케이스(13)의 브릿지(136)가 폴딩되어 전극 조립체(10)의 상부도 컵부(133)에 수납된다면, 상기 제1 케이스(131)의 상기 컵부(133)에 수납된 상기 분리막(102)은, 상기 주변부(1021)가, 상기 제2 케이스(132)를 향하여 폴딩되고, 상기 제2 케이스(132)의 상기 컵부(133)에 수납된 상기 분리막(102)은, 상기 주변부(1021)가, 상기 제1 케이스(131)를 향하여 폴딩될 수 있다. 그럼으로써, 분리막(102)의 주변부(1021)들이 정렬되어 폴딩됨으로써, 질서를 가질 수 있다. 그리고 전극(101)이 외부로 노출되지 않도록 분리막(102)이 커버하므로, 단락이 발생하는 것을 방지할 수도 있다.
좀 더 상세히, 전극 조립체(10)가 컵부(133)에 수납되기 이전 상태에서, 분리막(102)의 폭은 컵부(133)의 폭(CW)보다 넓을 수 있다. 따라서, 전극 조립체(10)가 컵부(133)에 수납되는 과정에서, 분리막(102)의 주변부(1021)는 컵부(133)의 내둘레에 접하여 일정 방향으로 폴딩될 수 있다.
컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이는, 2.5 mm 이하, 특히 1.7 mm 이하로 매우 작을 수 있다. 따라서, 전극 조립체(10)가 컵부(133)로 수납되는 과정에서 분리막(102)의 주변부(1021)가 용이하게 폴딩되기 위한 공정이 요구될 수 있다.
따라서, 상기 컵부(133)의 수용 공간(1331)에 상기 전극 조립체(10)를 수납하는 단계는, 전극 조립체(10)를 컵부(133)의 내부로 가압하는 과정을 포함할 수 있다. 이로써, 전극 조립체(10)를 컵부에 얹히는 종래의 방식과 비교하여, 컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이를 작게 유지하면서도, 분리막(102)을 일정 방향으로 폴딩시켜 전극 조립체(10)를 컵부(133)의 수용 공간(1331)으로 용이하고 신뢰성있게 수납시킬 수 있다.
또한, 상기 컵부(133)의 수용 공간(1331)에 상기 전극 조립체(10)를 수납하는 단계는, 전극 조립체(10)를 컵부(133)의 내부로 가압하기 이전에, 전극 조립체(10)에서 복수개 분리막(102)의 각 코너(꼭지점)를 열과 압력으로 폴딩시키는 과정을 더 포함할 수 있다. 상기 과정은, 별도의 실링툴을 사용하여 복수개 분리막(102)의 각 코너(꼭지점)가, 전극 조립체(10)의 적층 방향에 대한 중앙부로 모이도록 폴딩시킬 수 있다.
즉, 분리막(102)의 4개 코너가 기 정렬된 상태에서 전극 조립체(10)가 컵부(133)의 내부로 삽입될 수 있다. 이로써, 전극 조립체(10)를 컵부(133)의 수용 공간(1331)으로 원활하게 삽입될 수 있다.
이와 같이, 본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 엣지(16)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 전극 조립체(10)의 부피를 증가시킬 수 있다. 따라서, 이차 전지(1)에서 불필요한 부피도 감소시키므로, 부피 대비 에너지 밀도가 증가할 수 있다. 또한, 파우치 형 전지 케이스(13) 및 파우치 형 이차 전지(1)를 전체적으로 샤프한 형상으로 제조할 수 있으므로, 이차 전지(1)의 외관도 미려하고 상품성도 향상될 수 있다.
도 7은 본 발명의 일 실시예에 따른 컵부(133)에 전극 조립체(10)가 수납된 모습을 나타낸 상면 개략도이다.
본 발명의 일 실시예에 따르면 상기 기술한 바와 같이, 컵부(133)의 펀치 엣지(161)의 곡률 반경(R2)을 더욱 감소시킬 수 있으므로, 전극(101)의 일단이 엣지 수직선(V2)과 기준 수직선(V3)의 사이에 위치하도록 전극 조립체(10)를 수납한다. 그럼으로써, 전극 조립체(10)가 컵부(133)의 외벽(138)에 매우 가까이 위치하더라도, 전극 조립체(10)의 전극(101)이 파손되는 것을 방지할 수 있다.
엣지 수직선(V2)과 기준 수직선(V3)은 브릿지(136) 측 펀치 엣지(1611)에도 도시할 수 있고, 다이 엣지(162) 측 펀치 엣지(1612)에도 도시할 수 있다. 이러한 엣지 수직선(V2)과 기준 수직선(V3) 사이의 수직 거리(g)는 0.75 mm, 특히 0.5 mm 일 수 있다.
또한, 전지 케이스(13)에 컵부(133)가 두 개 형성된다면, 브릿지(136)가 존재하므로, 컵부(133)의 일측에는 브릿지 수직선(V1)을, 타측에는 다이 엣지 수직선(V4)을 도시할 수 있다. 이러한 브릿지 수직선(V1)과 엣지 수직선(V2) 사이의 수직 거리(CL)는 0.5 mm 이하, 특히 0.35 mm 이하일 수 있고, 다이 엣지 수직선(V4)과 엣지 수직선(V2) 사이의 수직 거리(CL)도 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
그런데 전지 케이스(13)에 컵부(133)가 하나만 형성된다면, 브릿지가 존재하지 않는다. 다만, 컵부(133)의 양 측에 모두 다이 엣지(162)가 형성되므로, 컵부(133)의 양 측에 각각 다이 엣지 수직선(V4)을 도시할 수 있다.
전지 케이스(13)에 컵부(133)가 두 개 형성된다면, 컵부(133)의 폭(CW)을 브릿지 수직선(V1)으로부터 다이 엣지 수직선(V4)까지의 수직 거리로 볼 수 있다. 그런데, 컵부(133)가 하나만 형성된다면, 컵부(133)의 폭(CW)을 두 개의 다이 엣지 수직선(V4) 사이의 수직 거리로 볼 수도 있다.
브릿지 수직선(V1) 및 다이 엣지 수직선(V4)은 모두 컵부(133)의 외벽(138)의 상단을 통과한다. 따라서 본 발명의 일 실시예에 따르면, 컵부(133)의 폭(CW)은, 컵부(133)의 양 측 외벽(138)의 상단 사이의 수직 거리일 수 있다. 컵부(133)의 폭(CW)과 전극 조립체(10)의 폭(EW)의 차이는 2.5 mm 이하, 특히 1.7 mm 이하일 수 있다. 그리고, 앞서 설명한 바와 같이 전극 조립체(10)의 폭(EW)은 60mm 이상일 수 있다.
컵부(133)의 폭(CW)은, 전지 케이스(13)에서는 상기 컵부(133)의 양 측 외벽(138)의 상단 사이의 수직 거리를 측정함으로써 도출할 수 있다. 그리고, 이차 전지(1)에서는 레이저 변위 센서 등을 이용하여, 컵부(133)의 외부에서 양 측 외벽(138)의 상단 사이의 위치를 파악하고, 두 위치 사이의 거리를 연산함으로써 도출할 수 있다. 이 때 컵부(133)의 외부에서, 레이저 변위 센서 등이 레이저를 조사하면서 사이드(134)로부터 다이 엣지(162) 및 상기 외벽(138)을 향해 이동하고, 급격하게 변위가 변화하는 지점을 감지하면 해당 지점을 외벽(138)의 상단으로 인식할 수 있다. 이상은 컵부의 폭(CW)을 측정하는 방법을 일 예로 기재한 것이며, 반드시 상기 측정 방법으로 한정되는 경우만이 본 발명의 범위에 속하게 되는 것은 아니다. 컵부의 폭(CW)은 청구항의 기재와 본 발명의 취지에 해당하는 것이라면 모두 본 발명에서 의미하는 컵부의 폭(CW)이 될 수 있다.
도 8은 종래의 코너(364)를 나타낸 개략도이고, 도 9는 본 발명의 일 실시예에 따른 코너(164)를 나타낸 개략도이다.
컵부(133)의 엣지(16)는 펀치 엣지(161) 및 다이 엣지(162) 뿐만 아니라, 도 9에 도시된 바와 같이 컵부(133)의 인접한 두 개의 외벽(138)을 서로 연결하는 두께 엣지(163)를 더 포함한다. 두께 엣지(163)는 컵부(133)의 두께 방향으로 형성되며, 파우치 필름(135)이 연신될 때 다이(21)의 성형부(211)의 코너와 펀치(22)의 코너 사이에서 연신되면서 형성된다. 그리고 두께 엣지(163)도 적어도 하나가 라운딩되며 형성될 수 있다.
이러한 두께 엣지(163)는 곡률 반경이, 서로 인접한 두 개의 펀치 엣지(161), 즉 제1 펀치 엣지(1613) 및 제2 펀치 엣지(1614)의 곡률 반경(R2)과 동일할 수도 있으나 상이하게 형성될 수도 있다. 예를 들어, 상기 기술한 바와 같이 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하면서, 펀치 엣지(161)는, 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있고, 두께 엣지(163)는, 적어도 하나가 0.5 mm 내지 5 mm, 특히 0.5 mm 내지 2 mm 의 곡률 반경으로 라운딩되며 형성될 수 있다. 종래에는 두께 엣지(363)가 5 mm 이하, 특히 2 mm 이하의 곡률 반경으로 라운딩되며 형성될 경우, 컵부(333)의 두께 엣지(363)에도 응력이 집중되어 쉽게 크랙이 발생하는 문제가 있었다. 그러나, 본 발명의 일 실시예에 따르면, 컵부(133)의 두께 엣지(163)에 크랙이 발생하는 것을 방지할 수 있다. 이 때, 상기 제1 펀치 엣지(1613) 및 제2 펀치 엣지(1614)는, 둘 중 하나가 브릿지(136) 측 펀치 엣지(1611)이고 나머지 하나는 전극 리드(12) 측 펀치 엣지(미도시)일 수 있다. 또는 둘 중 하나가 다이 엣지(162) 측 펀치 엣지(1612)이고 나머지 하나는 전극 리드(12) 측 펀치 엣지(미도시)일 수도 있다.
두께 엣지(163)는 도 9에 도시된 바와 같이 서로 인접한 두 개의 펀치 엣지(161) 즉, 제1 펀치 엣지(1613) 및 제2 펀치 엣지(1614)와 연결되어 코너(164)를 형성한다. 종래에는 도 8에 도시된 바와 같이, 펀치(22)의 복수의 엣지(221)들에 모두 동일한 곡률 반경으로 라운딩 처리를 하였고, 그에 따라 펀치(22)의 코너(미도시)에도 자연스럽게 동일한 곡률 반경으로 라운딩 처리가 되었다. 따라서, 이러한 펀치(22)로 파우치 필름(135)을 성형하여 파우치 필름(135)이 연신되면, 코너(364)도 자연스럽게 펀치 엣지(361)와 동일한 곡률 반경으로 라운딩되며 형성되었다.
그런데, 파우치 필름(135)이 연신될 때 코너(364)에 응력이 집중되는 문제가 있었다. 특히, 코너(364)는 세 개의 엣지(361)가 만나서 형성되므로, 펀치 엣지(361) 또는 두께 엣지(363)보다 연신이 더욱 많이 되어, 펀치 엣지(361) 또는 두께 엣지(363)보다 더욱 응력이 많이 집중되었다. 따라서 파우치 필름(135)의 연신이 과도하여, 크랙이 발생하기 직전에 특정 부분이 하얀색으로 변화하는 백화현상이 발생하였고, 결국 쉽게 크랙이 발생하는 문제가 있었다.
따라서 본 발명의 일 실시예에 따르면 도 12에 도시된 바와 같이, 상기 코너(164)도 적어도 하나가 라운딩되며 형성되고, 이러한 코너(164)는 곡률 반경이 상기 펀치 엣지(161) 및 상기 두께 엣지(163) 중 적어도 하나의 곡률 반경 이상일 수 있다.
구체적으로 본 발명의 일 실시예에 따르면, 코너(164)는 내부에서 곡률 반경이 변화할 수 있다. 즉, 코너(164)의 중심부(1641)의 곡률 반경과 코너(164)의 주변부(1642)의 곡률 반경이 서로 상이할 수 있다. 특히, 코너(164)의 중심부(1641)의 곡률 반경이, 코너(164)의 주변부(1642)의 곡률 반경보다 더 클 수 있다. 예를 들면, 코너(164)의 주변부(1642)의 곡률 반경은, 제1 펀치 엣지(1613), 제2 펀치 엣지(1614) 및 두께 엣지(163)에 상대적으로 인접하므로, 펀치 엣지(161) 및 두께 엣지(163) 중 적어도 하나의 곡률 반경과 동일할 수 있다. 반면에 코너(164)의 중심부(1641)의 곡률 반경은, 제1 펀치 엣지(1613), 제2 펀치 엣지(1614) 및 두께 엣지(163)에 상대적으로 이격되므로, 펀치 엣지(161) 및 두께 엣지(163) 중 적어도 하나의 곡률 반경보다 클 수 있다. 즉, 코너(164)는 곡률 반경이 상기 펀치 엣지(161) 및 상기 두께 엣지(163) 중 적어도 하나의 곡률 반경 이상일 수 있다.
따라서, 코너(164)의 곡률 반경은, 코너(164)의 주변부(1642)로부터 코너(164)의 중심부(1641)로 갈수록 점점 커질 수 있다. 그리고 상기 기술한 바와 같이 코너(164)는 내부에서 곡률 반경이 일정하지 않고 변화하므로, 코너(164)의 중심부(1641)는 정확한 구면이 아닌, 비구면 형상을 가질 수 있다.
코너(164)는 펀치 엣지(161)와 달리, 곡률 반경뿐만 아니라 컵부(133)에서 형성되는 범위도 명확히 설정되어야 한다. 만약 코너(164)가 컵부(133)에서 형성되는 범위가 과도하게 좁다면, 여전히 파우치 필름(135)의 연신이 과도하여, 백화현상 또는 크랙이 발생하는 문제가 있다. 반면에 코너(164)가 컵부(133)에서 형성되는 범위가 과도하게 넓다면, 오히려 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)이 감소하므로 이차 전지(1)의 부피 대비 에너지 밀도가 증가할 수 있다. 따라서, 본 발명의 일 실시예에 따르면 도 12에 도시된 바와 같이, 코너(164)는 두께 엣지(163)로부터 컵부(133)의 길이 방향(lc)으로 2 mm 내지 3.5 mm, 두께 엣지(163)로부터 컵부(133)의 폭 방향(wc)으로 2 mm 내지 3.5 mm, 펀치 엣지(161)로부터 컵부(133)의 두께 방향(dc)으로 2 mm 내지 3.5 mm 내에 형성될 수 있다. 그리고 이러한 코너(164)가 형성되는 범위는, 컵부(133)의 깊이(D)가 깊을수록 점점 넓어질 수 있다.
컵부(133)의 코너(164)가 상기와 같이 형성됨으로써, 코너(164)에 더욱 집중되는 응력이 분산될 수 있어 백화현상 및 크랙이 발생하는 문제를 방지할 수 있다.
도 10은 본 발명의 일 실시예에 따른 전지 케이스(13)를 폴딩하는 모습을 나타낸 개략도이고, 도 11은 본 발명의 일 실시예에 따른 전지 케이스(13)가 폴딩된 모습을 나타낸 개략도이다.
파우치 필름(135)에 두 개의 컵부(133)를 형성하면, 전지 케이스(13)의 제1 케이스(131) 및 제2 케이스(132)에는 각각 컵부(133)가 형성된다. 그 후에 제1 케이스(131)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)를 수납한 후에, 도 10에 도시된 바와 같이 두 개의 컵부(133)가 서로 마주보도록 전지 케이스(13)에서 두 컵부(133)의 사이에 형성된 브릿지(136)를 폴딩한다. 이러한 브릿지(136)가 폴딩되면서 이차 전지(1)의 일측에서 폴딩부(139)가 형성된다. 그리고, 내부에 전해질을 주입하고 제1 케이스(131)와 제2 케이스(132)의 컵부(133)의 외측으로 연장 형성된 사이드(134)를 실링함으로써 도 11에 도시된 바와 같이, 파우치 형 이차 전지(1)가 제조될 수 있다.
이와 같이 제조된 본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)는, 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10); 및 상기 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성된 파우치 형 전지 케이스(13)를 포함하되, 상기 컵부(133)는, 주변을 포위하는 복수의 외벽(138)과 바닥부(1332)를 각각 연결하는 복수의 펀치 엣지(161)를 포함할 수 있다. 상기 펀치 엣지(161)는, 적어도 하나가 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 펀치 엣지(161)는 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다. 상기 컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이는, 2.5 mm 이하, 특히 1.7 mm 이하일 수 있다. 그리고, 상기 전극 조립체(10)는, 상기 전극(101)의 적어도 하나의 일단이, 상기 펀치 엣지(161)와 상기 외벽(138)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 으로부터 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이하에 위치할 수 있다. 그리고 상기 전지 케이스(13)는, 컵부(133)가 적어도 하나에 형성된 제1 케이스(131)와 제2 케이스(132); 및 상기 제1 케이스(131)와 상기 제2 케이스(132)를 일체로 연결하는 폴딩부(139)를 포함할 수 있다.
전지 케이스(13)를 폴딩하여 이차 전지(1)를 제조하면, 브릿지(136)가 폴딩부(139)로 되므로, 이차 전지(1)에서는 폴딩부(139)가 제1 케이스(131)와 제2 케이스(132)를 일체로 연결한다. 그리고 브릿지(136) 측 펀치 엣지(1611)는 폴딩부(139) 측 펀치 엣지(1611), 브릿지(136) 측 외벽(1381)은 폴딩부(139) 측 외벽(1381)이 된다.
그러면, 복수의 펀치 엣지(161) 중에서, 상기 폴딩부(139) 측을 향하는 폴딩부(139) 측 외벽(1381)과 상기 바닥부(1332)를 서로 연결하는 폴딩부(139) 측 펀치 엣지(1611)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 폴딩부(139) 측 펀치 엣지(1611)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다. 그리고, 상기 전극 조립체(10)는, 상기 전극(101)의 적어도 하나의 일단이, 펀치 엣지(161)와 외벽(138)의 경계점(P2)을 통과하고, 상기 바닥부(1332)와 수직인 엣지 수직선(V2)과, 상기 엣지 수직선(V2)으로부터 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이고 상기 바닥부(1332)와 수직인 기준 수직선(V3)의 사이에 위치할 수 있다. 상기 기술한 바와 같이, 이러한 기준 수직선(V3)은 펀치 엣지(161)의 곡률 중심(C)을 통과할 수 있다.
도 12는 본 발명의 일 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391)의 확대도이다.
본 발명의 일 실시예에 따르면, 상기 기술한 바와 같이 이차 전지(1)를 제조하기 위해 전지 케이스(13)를 폴딩하면, 브릿지(136)는 폴딩부(139) 형태가 될 수 있다. 구체적으로, 전지 케이스(13)를 폴딩하면 브릿지(136)의 라운딩된 형상도 어느 정도 펴지게 되나, 브릿지(136)의 흔적이 이차 전지(1)에 남게 되며, 이러한 흔적이 폴딩부(139)가 될 수 있다. 따라서, 전지 케이스(13)의 브릿지(136)와 폴딩부(139)는 서로 대응될 수 있다.
예를 들어, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 폴딩부(139)는 도 12에 도시된 바와 같이 이차 전지(1)의 내측으로 함몰된 그루브(1391)를 포함하여 형성된다. 이러한 경우, 폴딩부(139)는 브릿지(136)보다 곡률이 더 작으므로, 더 큰 곡률 반경을 가질 수 있다.
브릿지(136)는 곡면, 브릿지(136) 측 외벽(1381)은 평면 형상을 가지므로, 서로 변형량이 상이하다. 따라서 전지 케이스(13)를 폴딩하면 브릿지(136) 측 외벽(1381)은 상대적으로 많이 변형되나, 브릿지(136)는 라운딩된 형상이 어느 정도 펴지는 정도로만, 상대적으로 적게 변형된다. 그러면 전지 케이스(13)를 폴딩하였을 때 도 12에 도시된 바와 같이, 상기 경계점(P1)을 중심으로 기울기의 변화량의 증감이 전환된다. 즉, 상기 경계점(P1)이 각각 변곡점이 된다. 따라서 폴딩부(139)는 상기 두 개의 경계점(P1) 즉, 두 개의 변곡점 사이의 곡면으로 형성될 수 있다.
또한, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 상기 두 경계점(P1), 즉 두 변곡점에 대응되는 부분은 외측으로 돌출되어 돌출부를 형성할 수 있다. 즉, 상기 돌출부는 폴딩부(139), 좀 더 상세히는 그루브(1391)를 사이에 두고 외측으로 돌출된 한 쌍이 형성될 수 있다.
또는, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지더라도, 브릿지(136)와 브릿지(136) 측 외벽(1381)의 경계점(P1)이 각각 이차 전지(1)에 두 개의 라인(미도시)을 형성하며, 폴딩부(139)는 이러한 두 개의 라인 사이의 평면으로 형성된다.
폴딩부(139)는 이차 전지(1)의 외관에서 육안으로 확인할 수도 있다. 그리고 상기 기술한 바와 같이, 브릿지(136)의 두께(t)는 브릿지(136)와 브릿지(136) 측 외벽(1381)의 두 경계점(P1) 사이의 거리인 것이 바람직하므로, 폴딩부(139)의 폭(FW)은, 상기 두 개의 경계점(P1) 사이의 거리이다. 즉, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 폴딩부(139)의 폭(FW)은 두 개의 경계점(P1) 즉, 상기 두 개의 변곡점 사이의 거리이다. 또는, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지게 되면, 폴딩부(139)는 두 개의 경계점(P1) 즉, 상기 두 개의 라인 사이의 거리이다.
폴딩부(139)의 폭(FW)은, 브릿지(136)의 길이를 초과하지 않으며, 1 mm 내지 3.2 mm, 특히 1 mm 내지 1.6 mm 일 수 있다. 상기 기술한 바와 같이, 이러한 폴딩부(139)의 폭(FW)은 직접 자를 이용하여 측정할 수도 있으나, 루페(Lupe)를 이용하여 측정할 수도 있고, 3D 카메라 또는 레이저 2D 라인 센서를 이용하여 측정할 수도 있는 등 제한되지 않고 다양한 방법으로 측정할 수 있다.
종래에는 브릿지(336)의 두께(t')가 두껍게 형성되어 폴딩부(339)의 폭도 크게 형성되었고, 그에 따라 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)도 크게 형성되었다. 그러나 본 발명의 일 실시예에 따르면, 폴딩부(139)의 폭(FW)이 감소할 수 있으므로, 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)도 감소할 수 있다. 그럼으로써, 이차 전지(1)의 부피 대비 에너지 밀도가 증가할 수 있다.
또한, 종래에는 파우치 필름의 성형성이 낮으므로 상기 돌출부가 외측으로 크게 돌출되었다. 그러나, 본 발명의 일 실시예에 따르면, 상기 돌출부가 상대적으로 작게 돌출될 수 있고, 폴딩부(139) 또는 폴딩부(139) 측 외벽(1381)의 평탄도가 향상될 수 있다.
구체적으로, 그루브(1391)의 최내측부와 상기 돌출부의 최외측부 간 간격(p)은 평탄도로 정의될 수 있다. 종래의 전지 케이스의 경우, 상기 평탄도는 1mm 이상이고 1.5mm까지도 형성되었다. 반면, 본 발명의 실시예에 따르면, 상기 평탄도(p)는 0.8 mm 이하, 바람직하게는 0.3mm 이하로 형성될 수 있다. 이로써, 이차 전지(1)의 부피 대비 에너지 밀도가 더욱 증가할 수 있다.
도 13은 본 발명의 다른 실시예에 따른 컵부(133)와 다이 엣지(1621)를 확대한 개략도이다.
본 발명의 일 실시예에 따르면, 다이(21)에 성형부(211)가 서로 이웃하도록 두 개가 형성되고, 두 성형부(211) 사이에는 격벽(212)이 형성될 수 있다. 따라서, 파우치 필름(135)을 성형하면 하나의 파우치 필름(135)에 두 개의 컵부(133)가 형성되고, 두 개의 컵부(133) 사이에 브릿지(136)도 함께 형성된다. 즉, 제1 케이스(131) 및 제2 케이스(132)에는 각각 컵부(133)가 하나씩 형성된다.
그런데, 본 발명의 다른 실시예에 따르면, 다이(21)에 성형부(211)가 하나만 형성되고, 격벽이 존재하지 않는다. 따라서, 파우치 필름(135)을 성형하면 하나의 파우치 필름(135)에 하나의 컵부(133)가 형성되며, 브릿지도 존재하지 않는다. 즉, 제1 케이스(131)에만 컵부(133)가 형성된다.
본 발명의 다른 실시예에 따르면, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하고, 상기 컵부(133)의 펀치 엣지(161a)는 적어도 하나가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 컵부(133)의 펀치 엣지(161a)는 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다. 그럼으로써, 컵부(133)의 펀치 엣지(161a)에 크랙이 쉽게 발생하는 것을 방지할 수 있다.
특히 본 발명의 다른 실시예에 따르면 도 13에 도시된 바와 같이, 복수의 상기 펀치 엣지(161a) 중에서, 제2 케이스(132a) 측을 향하는 제2 케이스(132a) 측 외벽(1381a)과 상기 바닥부(1332)를 서로 연결하는 제2 케이스(132a) 측 펀치 엣지(1611a)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 제2 케이스(132a) 측 펀치 엣지(1611a)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
또한, 다이 엣지(162) 측 펀치 엣지(1612)도, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 다이 엣지(162) 측 펀치 엣지(1612)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수도 있다. 이 때, 펀치 엣지(161a)와 외벽(138)의 경계점(P2)에서, 기울기가 연속적인 것이 바람직하다.
이하, 본 발명의 다른 실시예에 대하여, 본 발명의 일 실시예와 중복되는 내용은 설명을 생략한다. 다만, 이는 설명의 편의를 위한 것이며 권리범위를 제한하기 위함이 아니다.
도 14는 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩하는 모습을 나타낸 개략도이고, 도 15는 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩한 모습을 나타낸 개략도이다.
외벽(138)은 상단이 컵부(133)의 개방부를 향하며, 컵부(133)의 외측으로 제2 케이스(132a), 사이드(134) 및 디가싱부(137)가 연장된다. 이 때 외벽(138)의 상단과 제2 케이스(132a), 사이드(134) 또는 디가싱부(137)를 연결하는 다이 엣지(162)도 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 다이 엣지(162)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
즉, 본 발명의 다른 실시예에 따르면 도 14에 도시된 바와 같이, 전지 케이스(13a)에 브릿지가 존재하지 않고, 다이 엣지(1621)가 제1 케이스(131)의 컵부(133)와 제2 케이스(132a)를 서로 연결한다. 이를 위해, 다이(21)의 엣지(213)는 다이 엣지(162)에서 파우치 필름(135)의 두께를 뺀 곡률 반경으로 라운딩 처리가 될 수 있다. 예를 들어 파우치 필름(135)의 두께가 0.2mm이면, 다이(21)의 엣지(213)는 0.8mm 이하, 특히 0.5 mm 이하인 곡률 반경으로 라운딩 처리가 될 수 있다.
나아가, 클리어런스(CL)를 0.5 mm 이하로 감소시켜, 컵부(133)의 외벽(138)이 수직에 가깝게 형성될 수도 있다. 예를 들어 도 13에 도시된 바와 같이, 다이 엣지(1621)와 제2 케이스(132a) 측 외벽(1381a)의 경계점(P1)을 통과하고 상기 바닥부(1332)와 수직인 다이 엣지 수직선(V4)과, 상기 제2 케이스(132a) 측 펀치 엣지(1611a)와 상기 제2 케이스(132a) 측 외벽(1381a)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리인 클리어런스(CL)가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
또한, 전극(101)의 일단이 상기 엣지 수직선(V2)과 상기 엣지 수직선(V2)으로부터 수직 거리가 0.75 mm, 특히 0.5 mm 이고 상기 바닥부(1332)와 수직인 기준 수직선(V3)의 사이에 위치하도록 전극 조립체(10)를 수납할 수 있다.
그럼으로써 본 발명의 다른 실시예에 따르면, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하고 컵부(133)의 외벽(138)이 바닥부(1332)로부터 경사각이 90° 내지 95°, 특히 90°내지 93° 사이인 경사를 가지도록 수직에 가깝게 형성하며, 전극(101)이 파손되는 것을 방지하면서 컵부(133)의 부피 대비 전극 조립체(10)의 부피 비율이 더욱 증가할 수 있어, 부피 대비 에너지 효율도 증가할 수 있다.
도 16은 본 발명의 다른 실시예에 따른 전지 케이스(13a)에 형성된 그루브(1391a)의 확대도이다.
본 발명의 다른 실시예에 따르면, 이차 전지(1a)를 제조하기 위해 전지 케이스(13a)를 폴딩하면, 제2 케이스(132a) 측 다이 엣지(1621)는 폴딩부(139a)가 된다. 구체적으로, 전지 케이스(13)를 폴딩하면 다이 엣지(1621)의 라운딩된 형상도 펴지게 되나, 다이 엣지(1621)의 흔적이 이차 전지(1a)에 남게 되며, 이러한 흔적이 폴딩부(139a)가 된다. 따라서, 전지 케이스(13a)의 제2 케이스(132a) 측 다이 엣지(1621)와 폴딩부(139a)는 서로 대응된다.
예를 들어, 다이 엣지(1621)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 폴딩부(139a)는 도 19에 도시된 바와 같이 이차 전지(1a)의 내측으로 함몰된 그루브(1391a)를 포함하여 형성된다. 이러한 경우, 폴딩부(139a)는 다이 엣지(1621)보다 곡률이 더 작으므로, 더 큰 곡률 반경을 가질 수 있다.
다이 엣지(1621)는 곡면, 다이 엣지(1621) 측 외벽(1381a)은 평면 형상을 가지므로, 서로 변형량이 상이하다. 따라서 전지 케이스(13)를 폴딩하면 다이 엣지(1621) 측 외벽(1381a)은 상대적으로 많이 변형되나, 다이 엣지(1621)는 라운딩된 형상이 어느 정도 펴지는 정도로만, 상대적으로 적게 변형된다. 그러면 전지 케이스(13)를 폴딩하였을 때 도 19에 도시된 바와 같이, 상기 경계점(P1)을 중심으로 기울기의 변화량의 증감이 전환된다. 즉, 상기 경계점(P1)이 각각 변곡점이 된다. 따라서 폴딩부(139a)는 상기 두 개의 경계점(P1) 즉, 두 개의 변곡점 사이의 곡면으로 형성된다.
또는, 다이 엣지(1621)의 라운딩된 형상이 평면으로 완전하게 펴지더라도, 다이 엣지(1621)와 제2 케이스(132a) 측 외벽(1381)의 경계점(P1)과, 다이 엣지(1621)와 제2 케이스(132a)의 경계점이 이차 전지(1a)에 각각 두 개의 라인(미도시)을 형성하며, 폴딩부(139a)는 이러한 두 개의 라인 사이의 평면으로 형성된다.
이러한 폴딩부(139)의 폭(FW)은, 다이 엣지(1621)의 길이를 초과하지 않으며, 1 mm 내지 3.2 mm, 특히 1 mm 내지 1.6 mm 일 수 있다.
도 17은 종래의 전지 케이스(33)의 디가싱부(337)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
전지 케이스(13)의 브릿지(136)가 폴딩되면서 이차 전지(1)의 일측에서 폴딩부(139)를 형성하며, 이러한 폴딩부(139)는 제1 케이스(131)와 제2 케이스(132)를 일체로 연결한다. 그런데, 전지 케이스(13)는 파우치 필름(135)을 드로잉 성형하여 형성되며, 이 때 컵부(133)만이 한정되어 연신되는 것이 아니라 컵부(133)의 주변 사이드(134)들도 전체적으로 미세하게 연신된다. 따라서, 브릿지(136)를 폴딩하면, 사이드(134)들의 미세하게 연신된 부분들이 누적되어, 폴딩부(139)의 양 단 일부에서 외측으로 돌출되면서 가시적으로 나타난다. 이를 배트 이어(Bat ear, 35 또는 15)라 한다.
배트 이어(35)의 크기는 브릿지(336)의 두께(t'), 클리어런스(CL'), 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2'), 컵부(333)의 깊이(D')에 따라 상이하다. 즉, 브릿지(336)의 두께(t')가 두꺼울수록, 클리어런스(CL')가 클수록, 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2')이 클수록, 배트 이어(35)의 크기도 증가한다. 그런데 종래에는 브릿지(336)의 두께(t'), 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2') 및 클리어런스(CL')를 개선하는데 한계가 있었다. 따라서, 도 17에 도시된 바와 같이 배트 이어(35)의 크기가 상당히 크게 형성되었고, 이를 감소시키는 데에도 한계가 있었다.
이러한 배트 이어(35)의 크기가 크게 형성되면, 이차 전지(3)의 불필요한 부피가 더 증가하므로, 이차 전지(3)의 형상 및 크기의 설계 값과 실제 값에서 오차가 발생하였다. 따라서, 이차 전지(3)들을 전지 모듈(5, 도 24에 도시됨)에 조립할 때 조립이 용이하지 않고, 이러한 배트 이어(35)를 고려하여 처음부터 이차 전지(3)의 크기를 작게 설계해야 하는 문제가 있었다. 또한, 이차 전지(3)의 부피를 증가시키므로, 부피 대비 에너지 밀도가 감소하는 문제도 있었다.
한편 상기 기술한 바와 같이, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스(13)는 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된 컵부(133)와, 컵부(133)의 일측에 형성되어 디가싱 홀(H)을 통해 상기 컵부(133)의 내부에 생성되는 가스를 배출하는 디가싱부(137)를 포함한다.
그리고 사이드(134)를 실링하는 과정에서, 활성화(Formation) 공정 및 디가싱(Degassing) 공정을 수행할 수 있다. 구체적으로, 전극 조립체(10)를 컵부(133)에 수납한 후에, 전지 케이스(13)에서, 상기 디가싱부(137)에 포함되는 모서리(1371)를 개방하고, 나머지 사이드(134)를 실링할 수 있다. 전지 케이스(13)의 모서리(1371)가 개방됨으로써 개구부가 형성되면, 개구부를 통해 전지 케이스(13)의 내부에 전해액을 주입한다.
전지 케이스(13)의 내부에 전해액을 주입한 후, 디가싱부(137)를 1차 실링하여 임시 실링부(1340)를 형성한다. 추후에 디가싱부(137)를 2차 실링하여 실링부(1341)를 형성하므로, 임시 실링부(1340)는 디가싱부(137)에서 모서리(1371)에 근접한 위치에 형성되는 것이 바람직하다.
그 후, 활성화(Formation) 공정을 수행할 수 있다. 활성화 공정(화성 공정)이란, 이차 전지(1)가 전력을 공급할 수 있도록 최종적으로 충전을 완료하는 공정이다. 활성화 공정은 임시 실링부(1340)를 형성하여, 전지 케이스(13)를 완전히 밀폐한 후에 수행하므로, 충전률이 높고 빠르게 가스를 배출하여 정해진 공정 시간 내에 이차 전지(1)의 제조를 완료할 수 있다.
활성화 공정을 완료하면 전지 케이스(13)의 내부에서 가스가 발생한다. 따라서, 전지 케이스(13)의 디가싱부(137)에 디가싱 홀(H)을 타공한다. 이러한 디가싱 홀(H)을 통해, 가스가 전지 케이스(13)의 내부로부터 외부로 배출된다. 이 때, 가스가 용이하게 배출되면서 디가싱 홀(H)을 통해 상기 주입된 전해액이 누출될 수도 있다. 이를 방지하기 위해, 디가싱 홀(H)은 임시 실링부(1340)에 근접한 위치에 타공되는 것이 바람직하다. 디가싱 홀(H)이 타공되면 상기 가스를 전지 케이스(13)의 외부로 배출하는 디가싱(Degassing) 공정을 수행한다.
디가싱 홀(H)이 타공되면 전지 케이스(13)의 내부는 다시 개방되어 내부의 전해액이 외부로 누출될 수 있다. 따라서, 컵부(133)와 디가싱부(137) 사이의 경계를 2차 실링하여 실링부(1341)를 형성한다. 이 때, 실링부(1341)는 컵부(133)와 디가싱 홀(H)의 사이에 형성되며, 특히 컵부(133)에 근접한 위치에 형성되는 것이 바람직하다.
이와 같이 활성화 공정과 디가싱 공정을 수행하면서, 디가싱 홀(H)을 타공하고, 1차 실링 및 2차 실링을 수행해야 한다. 나아가 이차 전지(1)들을 대량 생산할 때, 이차 전지(1)들의 규격 및 품질을 일괄적으로 관리할 필요가 있다. 이를 위해, 비전 센서(41)가 포함된 검사 장치(4, 도 19에 도시됨)를 이용하여 전지 케이스(13) 또는 이차 전지(1)를 검사할 수 있다.
종래에는 전지 케이스(33) 및 이차 전지(3)를 전체적으로 샤프한 형상으로 제조하는데 한계가 있었다. 따라서, 비전 센서로 전지 케이스(33)를 촬영하면, 각각의 구성들의 크기 및 위치의 오차가 크게 발생하였다.
구체적으로, 추후에 이차 전지(1)의 제조가 완료되면, 복수의 이차 전지(1)들의 전극 리드(12)들을 서로 연결하여 전지 모듈(5, 도 24에 도시됨)을 제조할 수 있다. 이를 위해 복수의 이차 전지(1)들에 형성된 전극 리드(12)의 위치가 모두 일정하여야 한다. 그런데 종래에는 전극(101)이 컵부(333)의 외벽(338)으로부터 어느 정도 이격되어 배치되므로, 사이드(134)를 실링하기 전에 전극 조립체(10)가 컵부(333)의 내부에서 움직일 수 있었다. 따라서, 이차 전지(3)들을 대량 생산하면, 컵부(333)의 부피 및 전극 조립체(10)의 부피가 모두 일정하더라도, 전극 조립체(10)의 위치가 조금씩 상이하여, 전극 리드(12)의 위치도 조금씩 상이하였다. 따라서, 상기 검사 장치(4)를 이용하여 이러한 전극 리드(12)의 위치를 정확하게 측정하여야 한다.
뿐만 아니라, 디가싱 홀(H)을 정확한 위치 및 크기로 타공하고, 1차 실링 및 2차 실링을 정확한 위치 및 크기로 수행하기 위해서는, 디가싱부(137)의 위치를 정확하게 측정해야 한다. 그 외에도, 복수의 이차 전지(1)들의 전체적인 품질을 효율적으로 관리하기 위해, 사이드(134), 폴딩부(139), 전지 케이스(13)로부터 돌출된 절연부(14) 등 전지 케이스(13) 또는 이차 전지(1)의 다양한 구성들의 위치, 나아가 컵부(133) 사이의 폭까지도 정확하게 측정하여야 한다.
상기 구성들의 위치를 측정하기 위해서는, 특정 기준 라인을 설정하고, 상기 기준 라인으로부터 측정 대상이 되는 구성까지의 수직 거리를 측정해야 한다. 예를 들어, 전극 조립체(10)가 컵부(333)의 내부에서 움직일 때에는 일반적으로, 도 17에 도시된 바를 기준으로 좌우측 방향, 즉 폴딩부(339) 및 디가싱부(337)를 향하는 방향으로 움직이는 경우가 많다. 따라서 전극 리드(12)의 위치를 측정하기 위해서는, 전극 리드(12)의 좌측 또는 우측 모서리의 위치를 측정해야 하고, 상기 좌측 또는 우측 모서리까지의 수직 거리를 측정하기 위해, 상기 좌측 또는 우측 모서리와 평행한 기준을 설정해야 한다.
그러나, 종래에는 컵부(333)의 외벽(338)이 수직에 가깝게 성형되지 않고 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2')도 크므로, 비전 센서(41)로 전지 케이스(33)를 촬영하면 영상에서는, 도 20에 도시된 바와 같이 컵부(333)의 펀치 엣지(361)가 선명하게 나타나지 않았다. 따라서, 컵부(333)의 펀치 엣지(361)를 기준으로는 상기 구성들의 위치를 측정할 수 없었고, 펀치 엣지(361)에 가까운 배트 이어(35)를 기준으로 설정하거나, 사용자가 직접 수동으로 컵부(333)의 펀치 엣지(361)를 기준으로 설정하였다.
그런데, 배트 이어(35)는 컵부(133)의 주변 사이드(134)들도 전체적으로 미세하게 연신된 상태에서 브릿지(136)를 폴딩하여 형성되므로, 복수의 이차 전지(1)들 마다 배트 이어(35)의 크기가 조금씩 상이하였다. 그러면 비전 센서로 상기 구성들의 위치를 측정하더라도, 기준이 되는 배트 이어(35)의 크기가 상이하므로, 이차 전지(3)들 사이에 구성들의 위치의 편차가 커져 품질 관리가 어려운 문제도 있었다.
특히, 비전 센서로 전지 케이스(33)를 촬영하여 전극 리드(12)의 위치를 측정하더라도 전극 리드(12)의 위치가 조금씩 상이하여, 전지 모듈(5)을 제조하기 위해 전극 리드(12)들을 연결할 때 연결이 용이하지 않은 문제가 있었다. 또한 전지 모듈(5)을 제조하기 위해, 복수의 이차 전지(1)들을 순차적으로 적층하거나 일렬로 정렬시킬 때, 컵부(333)의 위치가 정확하지 않아서, 복수의 이차 전지(1)들의 정렬도가 저하되는 문제도 있었다.
그리고 이차 전지(3)들을 별도의 하우징(51, 도 24에 도시됨)에 수납하여 전지 모듈(5)을 제조하는 경우에, 측정 값들의 편차가 크므로 하우징(51)을 설계할 때 설계 공차를 불필요하게 크게 설정하여, 전지 모듈(5)의 부피 대비 에너지 밀도도 저하되는 문제도 있었다.
도 18은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하기 전의 모습을 상방에서 나타낸 개략도이고, 도 19는 본 발명의 일 실시예에 따른 검사 장치(4)의 블록도이다.
본 발명의 일 실시예에 따르면 도 18에 도시된 바와 같이, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 펀치 엣지(1611)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 그에 따라 배트 이어(15)의 크기도 더욱 감소할 수 있다. 따라서, 이차 전지(1)들을 전지 모듈(5)에 용이하게 조립할 수 있고, 이차 전지(1)의 불필요한 부피를 감소시키므로 부피 대비 에너지 밀도를 증가시킬 수도 있다.
또한, 본 발명의 일 실시예에 따르면 도 18에 도시된 바와 같이, 전지 케이스(13)를 촬영한 영상에서 컵부(133)의 펀치 엣지(1611)가 선명하게 나타나므로, 검사 장치(4)가 컵부(133)의 펀치 엣지(161)를 자동으로 기준 라인(ST)으로 설정할 수 있고, 컵부(133)의 펀치 엣지(161)를 기준으로 전지 케이스(13) 또는 이차 전지(1)의 다양한 구성들까지의 거리를 정확하게 측정할 수 있으며, 나아가 컵부(133) 사이의 폭(CW)까지도 정확하게 측정할 수 있다. 그에 따라 전지 케이스(13) 또는 이차 전지(1)의 구성들의 위치를 정확히 측정하여, 측정값의 오차가 감소하고 이차 전지(1)들 사이의 편차도 감소할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 전지 케이스(13) 또는 이차 전지(1)의 검사 장치(4)는 전지 케이스(13)를 촬영하여 상기 전지 케이스(13) 또는 이차 전지(1)의 영상을 획득하는 비전 센서(41); 상기 영상으로부터 상기 전지 케이스(13) 또는 이차 전지(1)의 구성들의 아웃라인을 추출하는 아웃라인 추출부(421); 상기 영상을 분석하여, 상기 전지 케이스(13)에서 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된, 컵부(133)의 펀치 엣지(161)에 해당하는 상기 아웃라인을 검출하는 영상 분석부(422); 상기 펀치 엣지(161)에 해당하는 상기 아웃라인을 기준 라인(ST)으로 설정하는 기준 라인 설정부(423); 및 상기 기준 라인(ST)으로부터 상기 구성들까지의 거리를 연산하는 거리 연산부(424)를 포함한다.
그리고 이러한 검사 장치(4)를 이용한 본 발명의 일 실시예에 따른 전지 케이스(13) 또는 이차 전지(1)의 검사 방법은 비전 센서(41)가 전지 케이스(13)를 촬영하여 상기 전지 케이스(13) 또는 이차 전지(1)의 영상을 획득하는 단계; 아웃라인 추출부(421)가 상기 영상으로부터 상기 전지 케이스(13) 또는 상기 이차 전지(1)의 구성들의 아웃라인을 추출하는 단계; 영상 분석부(422)가 상기 영상을 분석하여, 상기 전지 케이스(13)에서 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된, 컵부(133)의 펀치 엣지(161)에 해당하는 상기 아웃라인을 검출하는 단계; 기준 라인 설정부(423)가 상기 펀치 엣지(161)에 해당하는 상기 아웃라인을 기준 라인(ST)으로 설정하는 단계; 및 거리 연산부(424)가 상기 기준 라인(ST)으로부터 상기 구성들까지의 거리를 연산하는 단계를 포함한다.
구체적으로 검사 장치(4)는 도 19에 도시된 바와 같이, 비전 센서(41)와 제어부(42)를 포함한다. 그리고, 이들 구성요소들은 버스(미도시)를 통해 상호간에 연결되어 통신할 수 있다. 제어부(42)에 포함된 모든 구성요소들은 적어도 하나의 인터페이스 또는 어댑터를 통해 버스에 접속되거나, 직접 버스에 연결될 수 있다. 또한, 버스는 상기 기술한 구성요소 외에 다른 서브 시스템들과 연결될 수도 있다. 이러한 버스는 메모리 버스, 메모리 컨트롤러, 주변 버스(Peripheral Bus), 로컬 버스를 포함한다.
비전 센서(41)는 특정 영역을 촬영하여 특정 영역에 대한 이미지 신호를 수신함으로써 영상을 획득한다. 이를 위해 일반적으로 비전 센서(41)에는, CCD(Charge Coupled Device)나 CMOS(Complementary Metal-Oxide Semiconductor) 이미지 센서 등의 촬상 소자가 포함된다. 특히, 본 발명의 일 실시예에 따른 비전 센서(41)는, 전지 케이스(13)의 브릿지(136)가 폴딩된 후, 전지 케이스(13)를 촬영하여 전지 케이스(13) 또는 이차 전지(1)의 각 구성들에 대한 영상을 획득할 수 있다. 여기서 구성들이란, 상기 기술한 컵부(133), 디가싱부(137), 전극 리드(12), 배트 이어(15), 사이드(134), 폴딩부(139) 및 절연부(14) 등을 포함한다. 그리고, 추후에 디가싱부(137)를 절단함으로써, 이차 전지(1)의 제조가 완료된다. 따라서, 비전 센서(41)가 디가싱부(137)를 절단하기 전에 전지 케이스(13)를 촬영하면, 전지 케이스(13) 및 전극 리드(12) 등의 영상을 획득할 수 있고, 디가싱부(137)를 절단한 후에 전지 케이스(13)를 촬영하면, 이차 전지(1)의 영상을 획득할 수 있다.
제어부(42)는 비전 센서(41)가 획득한 영상 신호를 수신하고, 상기 영상 신호로부터 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 위치를 파악한다. 이러한 제어부(42)는 아웃라인 추출부(421), 영상 분석부(422), 기준 라인 설정부(423) 및 거리 연산부(424)를 포함한다. 제어부(42)로는 CPU(Central Processing Unit), MCU(Micro Controller Unit) 또는 DSP(Digital Signal Processor) 등을 사용하는 것이 바람직하나, 이에 제한되지 않고 다양한 논리 연산 프로세서가 사용될 수 있다.
아웃라인 추출부(421)는 비전 센서(41)로부터 수신된 영상으로부터 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 아웃라인을 추출한다. 이 때, 아웃라인 추출부(421)는 상기 영상에 나타나는 모든 구성들의 아웃라인을 추출할 수도 있으나, 이에 제한되지 않고 영상에서 일부분에 ROI(Region Of Interest)가 설정되고, 상기 ROI 내에 나타나는 구성들의 아웃라인만을 추출할 수도 있다. 아웃라인을 추출하기 위해서는, 먼저 상기 이미지의 픽셀에 대한 정보를 추출하며, 이를 위해 일반적으로 사용되는 그라디언트 공식을 사용할 수 있다. 상기 추출한 픽셀 정보를 통해 전지 케이스(13) 및 전극 리드(12)의 아웃라인이 드러난다.
본 발명의 일 실시에에 따르면, 컵부(133)의 펀치 엣지(161)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 컵부(133)의 외벽(138)이 수직에 가깝게 형성될 수도 있으므로, 영상에서 컵부(133)의 펀치 엣지(161)에 대응하는 픽셀 정보의 그라디언트가 크다. 따라서, 아웃라인과 배경의 경계가 명확하므로, 컵부(133)의 펀치 엣지(161)에 해당하는 아웃라인을 명확하게 추출할 수 있다.
영상 분석부(422)는 상기 영상을 분석하여, 전지 케이스(13)에서 컵부(133)의 펀치 엣지(161)에 해당하는 아웃라인을 검출한다. 이를 위해 영상 분석부(422)는, 미리 저장된 컵부(133)의 펀치 엣지(161)의 기준 아웃라인 정보와, 상기 추출된 아웃라인의 정보를 매칭하여, 컵부(133)의 펀치 엣지(161)에 해당하는 아웃라인을 검출할 수 있다. 이 때, 영상 분석부(422)는 템플레이트 매칭(Template Matching) 기법을 사용하여, 상기 두 정보를 매칭할 수 있다.
기준 라인 설정부(423)는 상기 펀치 엣지(161)에 해당하는 상기 아웃라인을 기준 라인(ST)으로 설정할 수 있다. 컵부(133)는 복수의 펀치 엣지(161)를 포함하므로, 펀치 엣지(161)에 해당하는 아웃라인도 복수로 추출된다. 이 때, 기준 라인 설정부(423)는 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 위치를 정확히 측정하기 위해서, 복수의 펀치 엣지(161) 중에서, 측정 대상이 되는 구성과 가장 가까운 펀치 엣지(161)에 해당하는 아웃라인을, 기준 라인(ST)으로 설정하는 것이 바람직하다. 또한 상기 기술한 바와 같이, 구성들의 위치는 기준 라인(ST)으로부터의 수직 거리를 측정하여야 하므로, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 측정 대상이 되는 구성의 모서리와 평행한 펀치 엣지(161)에 해당하는 아웃라인을, 기준 라인(ST)으로 설정할 수 있다.
예를 들어, 디가싱 홀(H)을 타공하고 1차 실링 및 2차 실링을 수행하기 위해, 검사 장치(4)는 디가싱부(137)의 위치를 측정해야 할 수 있다. 이러한 경우에는, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 디가싱부(137)에 가까우면서, 디가싱부(137)에 포함된 모서리(1371)와 평행한, 다이 엣지(162) 측 펀치 엣지(1612)에 해당하는 아웃라인을 기준 라인(ST)으로 설정할 수 있다.
그리고 예를 들어, 전극 리드(12)의 위치가 모두 일정한지 여부를 검사하기 위해, 검사 장치(4)가 전극 리드(12)의 위치를 측정해야 할 수도 있다. 이러한 경우에는, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 전극 리드(12)에 가까우면서, 전극 리드(12)의 좌측 또는 우측 모서리와 평행한, 폴딩부(139) 측 펀치 엣지(1611)에 해당하는 전극 리드(12) 측 아웃라인을 기준 라인(ST)으로 설정할 수도 있다.
나아가 컵부(133) 사이의 폭을 측정하기 위해서는, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 컵부(133)의 폭의 경계에 해당하는 두 개의 펀치 엣지(161)의 아웃라인 중 어느 하나의 아웃라인을 기준 라인(ST)으로 설정할 수도 있다.
즉, 기준 라인 설정부(423)는 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 위치를 정확히 측정할 수 있다면, 제한되지 않고 다양한 아웃라인을 기준 라인(ST)으로 설정할 수 있다.
거리 연산부(424)는 상기 영상에서, 상기 기준 라인(ST)으로부터 상기 전지 케이스(13) 또는 이차 전지(1)의 각 구성들까지의 거리를 연산한다. 예를 들어, 다이 엣지(162) 측 펀치 엣지(1612)에 해당하는 아웃라인이 기준 라인(ST)으로 설정된다면, 거리 연산부(424)는 상기 기준 라인(ST)으로부터 디가싱부(137)에 포함된 모서리까지의 거리를 연산할 수 있다. 또는, 폴딩부(139) 측 펀치 엣지(1611)에 해당하는 아웃라인이 기준 라인(ST)으로 설정된다면, 거리 연산부(424)는 상기 기준 라인(ST)으로부터 전극 리드(12)의 일측 모서리까지의 거리를 연산할 수도 있고, 상기 다이 엣지(162) 측 펀치 엣지(1612)에 해당하는 아웃라인까지의 거리를 연산할 수도 있다.
거리 연산부(424)는 미리 저장된 영상의 픽셀 수와 실제 거리의 관계에 대한 정보를 이용할 수 있다. 즉, 거리 연산부(424)는 상기 영상에서, 상기 기준 라인(ST)으로부터 상기 각 구성들까지의 거리를 픽셀 수로 카운팅한 후, 미리 저장된 영상의 픽셀 수와 실제 거리의 관계에 대한 정보를 이용하여, 상기 카운팅한 픽셀 수에 대응되는 실제 거리를 연산할 수 있다.
검사 장치(4)는 저장부(44)를 더 포함할 수 있다. 저장부(44)는 검사 장치(4)의 동작들을 처리 및 제어하기 위한 프로그램과 각 프로그램 수행 중에 발생되는 각종 데이터 또는 수신된 신호 등을 저장한다. 특히, 영상 분석부(422)가 컵부(133)의 펀치 엣지(1611)에 해당하는 아웃라인을 검출할 수 있도록, 전지 케이스(13)에 대한 기준 정보를 저장할 수 있다. 여기서, 전지 케이스(13)에 대한 기준 정보는, 컵부(133)의 펀치 엣지(1611)에 대한 기준 아웃라인 정보와, 전지 케이스(13) 또는 이차 전지(1)의 구성들까지의 거리에 대한 기준 정보 등을 포함할 수 있다. 이는 사용자가 직접 저장부(44)에 저장할 수도 있으나, 검사 장치(4)가 반복적인 학습을 통해 상기 기준 정보들을 생성하여 저장할 수도 있다. 또한, 저장부(44)는 거리 연산부(424)가 기준 라인(ST)으로부터 각 구성들까지의 실제 거리를 연산할 수 있도록, 영상의 픽셀 수와 실제 거리의 관계에 대한 정보를 저장할 수도 있다. 나아가, 검사 대상이 되는 전지 케이스(13)의 검사 결과 정보를 저장할 수도 있다. 이러한 저장부(44)는 검사 장치(4)에 내장될 수도 있으나, 별도의 저장 서버로서 마련될 수도 있다. 저장부(44)는 비휘발성 메모리 장치 및 휘발성 메모리 장치를 포함한다. 비휘발성 메모리 장치는 부피가 작고 가벼우며 외부의 충격에 강한 NAND 플래시 메모리이고, 휘발성 메모리 장치는 DDR SDRAM일 수 있다.
제어부(42)는 검사 대상이 되는 전지 케이스(13)의 불량 여부를 판단하는 불량 판단부(425)를 더 포함할 수 있다. 이러한 불량 판단부(425)는 저장부(44)에 저장된, 전지 케이스(13)에 대한 기준 정보와, 검사 대상이 되는 전지 케이스(13)의 검사 결과 정보를 비교할 수 있다. 그리고, 검사 결과 정보가 상기 기준 정보의 오차 범위 내로 포함되면, 전지 케이스(13)를 정상으로 판단한다. 그런데 검사 결과 정보가 상기 기준 정보의 오차 범위를 벗어나면, 전지 케이스(13)를 불량으로 판단한다.
한편, 검사 장치(4)는 영상의 신호를 수신하여 디스플레이하는 디스플레이부(43)를 더 포함할 수 있다. 디스플레이부(43)는 상기 영상의 신호를 수신하여 사용자에게 디스플레이한다. 나아가, 상기 아웃라인 추출부(421)가 전지 케이스(13)의 아웃라인을 추출하면, 아웃라인이 영상 상에서 표시되어 사용자가 디스플레이부(43)를 통해 확인할 수도 있다. 디스플레이부(43)는 LCD(Liquid Crystal Display), OLED(Organic Liquid Crystal Display), CRT(Cathode Ray Tube), PDP(Plasma Display Panel) 등 다양한 방식이 사용될 수 있다. 그리고 디스플레이부(43)는 비디오 인터페이스를 통하여 버스에 연결되고, 디스플레이부(43)와 버스 간의 데이터 전송은 그래픽 컨트롤러에 의해 제어될 수 있다.
검사 장치(4)는 불량 판단부(425)가 전지 케이스(13)를 불량이라고 판단하면, 알람을 발생시키는 알람부(45)를 더 포함할 수도 있다. 알람을 발생시킬 때에는, 램프의 점등 또는 경고음 등 청각적 또는 시각적으로 알람이 발생하여 사용자가 직관적으로 알 수 있도록 하는 것이 바람직하다.
지금까지 기술한 비전 센서(41), 제어부(42), 저장부(44) 및 디스플레이부(43)의 각 구성요소들은 메모리 상의 소정 영역에서 수행되는 태스크, 클래스, 서브 루틴, 프로세스, 오브젝트, 실행 쓰레드, 프로그램과 같은 소프트웨어(software)나, FPGA(field-programmable gate array)나 ASIC(application-specific integrated circuit)과 같은 하드웨어(hardware)로 구현될 수 있으며, 또한 상기 소프트웨어 및 하드웨어의 조합으로 이루어질 수도 있다. 상기 구성요소들은 컴퓨터로 판독 가능한 저장 매체에 포함되어 있을 수도 있고, 복수의 컴퓨터에 그 일부가 분산되어 분포될 수도 있다.
또한, 각 블록은 특정된 논리적 기능들을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능하다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
본 발명의 일 실시예에 따른 검사 장치(4)를 이용하면, 컵부(133)의 펀치 엣지(1611)가 선명하게 나타나므로, 검사 장치(4)가 컵부(133)의 펀치 엣지(161)를 자동으로 기준 라인(ST)으로 설정할 수 있고, 컵부(133)의 펀치 엣지(1611)를 기준으로 전지 케이스(13)의 각 구성들까지의 거리를 정확하게 측정할 수 있다. 예를 들어, 디가싱부(137)의 크기 및 위치를 측정할 수 있고, 이차 전지(1)의 제조가 완료된 후에도 컵부(133), 전극 리드(12) 배트 이어(15), 사이드(134), 폴딩부(139) 및 절연부(14) 등의 크기 및 위치들을 정확히 파악할 수 있다. 그럼으로써, 이차 전지(1)의 불량 여부를 용이하게 판단할 수도 있고, 이차 전지(1)를 대량으로 생산하더라도 이들의 규격 및 품질을 효율적이고 일괄적으로 관리할 수도 있다.
특히, 전극 리드(12)의 위치를 정확하게 측정할 수 있어, 전지 모듈(5)을 제조하기 위해 전극 리드(12)들을 용이하게 연결할 때 연결할 수 있다. 또한 컵부(333)의 위치가 정확하게 측정할 수 있어, 전지 모듈(5)을 제조하기 위해 복수의 이차 전지(1)들을 순차적으로 적층하거나 일렬로 정렬시킬 때, 복수의 이차 전지(1)들의 정렬도를 개선할 수도 있다.
도 20은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하여 이차 전지(1)의 제조를 완료한 모습을 나타낸 개략도이다.
전지 케이스(13)를 2차 실링하여 실링부(1341)를 형성한 후, 상기 실링부(1341)의 외측에 커팅라인(CT)을 설정하여 디가싱부(137)를 절단한다. 그럼으로써, 도 20에 도시된 바와 같이, 디가싱부(137)의 길이가 짧아지고, 이차 전지(1)의 부피가 감소할 수 있다. 상기와 같은 과정을 통해, 파우치 형 이차 전지(1)의 제조가 완료된다.
한편, 디가싱부(137)를 절단하고 남은 사이드(134)는, 복수의 사이드(134) 중에서, 전극 리드(12)가 돌출 형성되지 않는다. 그런데 사이드(134)를 실링한 후에 그대로 방치하면, 이차 전지(1)의 전체 부피가 증가한다. 따라서, 부피 대비 에너지 밀도를 감소시키기 위해, 사이드(134)를 폴딩하는 것이 바람직하다.
한편, 사이드(134)는 도 20에 도시된 바와 같이, 실링부(1341) 및 미실링부(1342)를 포함할 수 있다. 실링부(1341)는 상대적으로 외측에 위치하여 실링된 영역이고, 미실링부(1342)는 상대적으로 내측에 위치하여 미실링된 영역이다.
구체적으로, 상기 전지 케이스(13)를 2차 실링하여 실링부(1341)를 형성할 때, 실링부(1341)가 컵부(133)로부터 바로 연결되지 않고, 어느 정도 이격되어 형성될 수 있다. 사이드(134)를 실링할 때에는 별도의 실링 툴(미도시)을 이용하여 사이드(134)에 열 및 압력을 인가하여야 한다. 그런데 만약, 이러한 실링 툴을 컵부(133)에 밀착한 상태로 사이드(134)를 실링한다면, 사이드(134)의 내측에 위치한 실란트층(1351)이 일부 용융되면서 전극 조립체(10)를 향해 누출되어, 전극 조립체(10)를 오염시킬 수 있다. 또한, 실링 툴의 열이 전극 조립체(10)까지 전달되어 전극 조립체(10)가 손상될 수도 있다, 따라서, 실링 툴을 컵부(133)로부터 어느 정도 이격한 상태로 사이드(134)를 실링하는 것이 바람직하다. 그러면, 실링 툴로 실링된 부분이 실링부(1341)가 되고, 실링 툴이 컵부(133)로부터 이격되어 실링되지 않는 부분이 미실링부(1342)가 된다.
도 21은 종래의 사이드(334)를 폴딩한 모습을 측면에서 나타낸 개략도이고, 도 22는 종래의 사이드(334)를 폴딩한 모습을 상면에서 나타낸 개략도이다.
종래에는 사이드(334)를 폴딩하면, 사이드(334)가 고정되지 않고 소정의 각도로 다시 언폴딩되는 문제가 있었다. 구체적으로 상기 기술한 바와 같이, 파우치 필름(135)은 실란트층(1351), 수분 배리어층(1352), 연신 보조층(1354) 및 표면 보호층(1353)이 적층되어 형성된다. 이 중에서, 실란트층(1351)은 제1 폴리머, 특히 폴리프로필렌(PP)을 포함하므로 유연성 및 탄성력이 크다. 따라서, 사이드(134)가 폴딩되면 원래의 상태로 되돌아가려는 복원력이 크다. 반면에, 수분 배리어층(1352)은 금속, 특히 알루미늄 합금으로 제조되므로, 사이드(334)가 폴딩되고 나면 탄성 변형의 한계를 초과하여, 폴딩된 상태를 유지하려는 보존력이 크다.
그런데, 종래의 파우치 필름은, 수분 배리어층이 대략 30 내지 50 μm의 두께를 가졌고, 실란트층이 대략 60 내지 100 μm의 두께를 가졌다. 즉, 수분 배리어층의 두께가 실란트층의 두께에 비해 상당히 얇게 형성되었다. 따라서, 보존력보다 복원력이 더 커서, 사이드(334)가 고정되지 않고 소정의 각도 다시 언폴딩되었다. 그러면, 사이드(334)에 의해 이차 전지(3)의 불필요한 부피가 증가하는 문제가 있었다.
이를 해결하기 위해 도 21 및 도 22에 도시된 바와 같이, 사이드(334)에 별도로 테이프(38)를 부착하였다. 특히, 테이프(38)는 컵부(333)의 바닥부(3332) 외측면과 사이드(334)에 함께 부착되었고, 그럼으로써 사이드(334)가 컵부(333)에 고정되어, 다시 언폴딩되는 것을 방지할 수 있었다. 그러나, 이러한 경우에는 도 21에 도시된 바와 같이, 테이프(38)의 자체 두께에 의해 이차 전지(3)의 전체 두께가 증가하는 문제가 있었다. 또한 사이드(334)를 폴딩하는 공정 이후에, 테이프(38)를 부착하는 추가적인 공정이 필요하며, 이러한 공정에 많은 시간이 소요되어, 공정 수를 증가시키고 이차 전지(3)의 제조 수율을 저하시키는 문제도 있었다.
한편, 디가싱 공정을 수행하면 가스가 전지 케이스(13)의 내부로부터 외부로 배출되면서 컵부(133)의 내부 압력이 감소한다. 종래에는 전극 조립체(10)가 컵부(333)의 외벽(338)으로부터 어느 정도 이격되며 배치되었다. 따라서, 컵부(333)의 내부 압력이 감소하면서 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)의 부피도 감소하기 위해, 컵부(333)의 외벽(338) 또는 바닥부(3332)가 변형될 수 있었다. 특히, 도 21에 도시된 바와 같이, 이차 전지(3)의 폴딩부 측 외벽(338)이 내측으로 함몰되면서, 컵부(333)의 폴딩부(339) 측 펀치 엣지(361)가 외부로 돌출되며 높이가 높아지는, 엣지 하이(Edge High) 현상이 발생할 수 있었다. 이러한 엣지 하이 현상에 의해 이차 전지(3)의 불필요한 두께가 증가하여, 부피 대비 에너지 밀도가 저하되는 문제가 있었다. 또한, 컵부(333)의 폴딩부(339) 측 외벽(338)이 변형되므로, 이차 전지(3)의 외관이 미려하지 않아서 상품성도 저하되는 문제도 있었다. 나아가, 엣지 하이 현상에 의해 배트 이어(15)가 더욱 크기가 증가하고 형상이 도드라지는 문제도 있었다.
도 23은 본 발명의 일 실시예에 따른 사이드(134)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)은 수분 배리어층(1352)이 50 내지 70 μm의 두께를 가지고, 상기 실란트층(1351)이 70 내지 100 μm의 두께를 가지므로, 종래보다 수분 배리어층(1352)의 두께가 더욱 두꺼워진다. 따라서, 사이드(134)를 폴딩하였을 때 보존력이 더욱 증가하므로, 별도의 테이프(38)가 부착될 필요가 없이 사이드(134)가 다시 언폴딩되는 것을 방지할 수 있다.
이를 위해 본 발명의 일 실시예에 따른 이차 전지(1)는, 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10); 상기 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성된 파우치 형 전지 케이스(13)를 포함하되, 상기 파우치 형 전지 케이스(13)는, 상기 컵부(133)의 외측으로 연장 형성된 사이드(134)를 포함하고, 상기 사이드(134)는, 상대적으로 외측에 위치하여 실링된 실링부(1344); 및 상대적으로 내측에 위치하여 미실링된 미실링부(1345)를 포함하고, 상기 컵부(133)에 미접착되면서, 상기 미실링부(1345)에서 폴딩된다.
즉 도 23에 도시된 바와 같이, 이차 전지(1)에서 사이드(134)가 컵부(133)를 향해 폴딩된 후, 사이드(134)가 컵부(133)에 미접착되면서도, 폴딩된 상태를 유지하며 언폴딩되지 않을 수 있다. 이 때, 사이드(134)는 85° 내지 95° 의 각도, 특히 88° 내지 92° 의 각도로 폴딩될 수 있다. 또한, 사이드(134)가 컵부(133)에 인접한 위치에서 폴딩되어, 사이드(134)가 컵부(133)의 외벽(138)에 접촉할 수 있다. 특히, 상기 기술한 바와 같이 사이드(134)는 상대적으로 외측에 배치되어 실링된 실링부(1341) 및 상대적으로 내측에 배치되어 미실링된 미실링부(1342)를 포함할 수 있다. 그리고 사이드(134)가 폴딩될 때에는, 컵부(133)에 상대적으로 더 가까운 미실링부(1342)가 폴딩되는 것이 바람직하다. 그럼으로써, 이차 전지(1)의 불필요한 부피를 더욱 감소시킬 수 있다. 그러나, 이러한 경우에도 사이드(134)와 컵부(133)는 서로 접착되는 것이 아니며, 사이드(134)의 보존력이 증가하여 폴딩 상태를 유지하는 것이다.
파우치 필름(135)에 두 개의 컵부(133)를 형성하면, 한 개의 컵부(133)를 형성할 때보다 컵부(133)의 깊이(D)가 얕아질 수 있다. 상기 기술한 바와 같이, 컵부(133)만이 집중적으로 연신되는 것이 아니라 컵부(133)의 주변 사이드(134)들도 전체적으로 미세하게 연신되기 때문이다. 그런데, 사이드(134)의 폭이 이러한 컵부(133)의 깊이(D)보다 길다면, 사이드(134)를 한 번만 폴딩하였을 때 사이드(134)의 외측 단부(1343)가 컵부(133)의 바닥부(1332)보다 더 외측으로 돌출될 수도 있다.
따라서, 파우치 필름(135)에 두 개의 컵부(133)가 형성된다면, 도 23에 도시된 바와 같이 사이드(134)를 두 번 폴딩하는 더블 사이드 폴딩(Double Side Folding, DSF) 방법을 사용할 수 있다. 구체적으로, 사이드(134)는 제1 폴딩부(1344)와 제2 폴딩부(1345)를 포함할 수 있다. 제1 폴딩부(1344)는 상대적으로 외측 단부(1343)에 더 가까운 위치에서 폴딩된 부분이고, 제2 폴딩부(1345)는 상대적으로 컵부(133)에 더 가까운 위치에서 폴딩된 부분이다. 따라서, 제1 폴딩부(1344)를 기준으로 사이드(134)를 1차 폴딩을 한 후에, 제2 폴딩부(1345)를 기준으로 사이드(134)를 2차 폴딩할 수 있다. 이 때, 제1 폴딩부(1344)는 사이드(134)에서 실링부(1341)에 위치할 수 있고, 제2 폴딩부(1345)는 사이드(134)에서 미실링부(1342)에 위치할 수 있다. 그리고 사이드(134)는 제1 폴딩부(1344)에서 170° 내지 180° 의 각도, 특히 180°의 각도로 폴딩될 수 있다. 그리고 제2 폴딩부(1345)에서 85° 내지 95°, 특히 88° 내지 92° 의 각도로 폴딩될 수 있다. 그럼으로써, 사이드(134)의 외측 단부(1343)가 컵부(133)의 바닥부(1332)보다 더 외측으로 돌출되는 것을 방지할 수 있다.
한편, 본 발명의 일 실시예에 따르면 전극 조립체(10)가 컵부(133)의 외벽(138)에 매우 가까이 위치할 수 있으므로, 컵부(133)의 불필요한 부피가 감소한다. 따라서, 디가싱 공정을 수행하여 컵부(133)의 내부 압력이 감소하더라도, 컵부(133)의 외벽(138) 또는 바닥부(1332)가 변형되는 것을 방지할 수 있다. 즉 도 23에 도시된 바와 같이, 엣지 하이 현상이 발생하는 것을 방지할 수 있으므로, 부피 대비 에너지 밀도가 저하되지 않을 수 있다.
도 24는 본 발명의 일 실시예에 따른 전지 모듈(5)의 개략도이다.
자동차 등과 같은 중대형 전자 기기는 출력이 커야 하므로, 많은 이차 전지(1)들이 필요하다. 이러한 이차 전지(1)들을 용이하게 이동하고 설치하기 위해, 전지 모듈(5)을 제조할 수 있다. 이러한 전지 모듈(5)에 복수의 이차 전지(1)들을 설치하면, 외부로 전기를 안정적으로 공급할 수 있다.
한편, 이차 전지(1)의 전극 조립체(10)에서 전기가 생산되기 위해, 전극(101)과 전해액 간의 화학 반응이 발생하며, 이러한 과정에서 열이 발생한다. 그런데 열에 의해 주변 온도가 과도하게 상승하면, 이차 전지(1)가 설치된 전기 기기의 회로에 오작동이 발생하거나 전기 기기의 수명이 단축되는 문제가 있다. 따라서, 전지 모듈(5)에는 이차 전지(1)를 냉각하기 위한 냉각 시스템이 포함된다. 냉각 시스템에는 크게 냉각수로 냉각하는 수냉식 및 공기로 냉각하는 공랭식 등의 방식이 있다. 이 중에서 수냉식 냉각 시스템이 공랭식 냉각 시스템보다 냉각 효율이 더 높아, 더욱 많이 활용된다.
냉각 시스템은 이차 전지(1)를 직접 냉각시키는 냉각 플레이트를 포함하며, 이러한 냉각 플레이트의 내부에는 별도의 유로가 형성되어 냉각수가 유동할 수 있다. 그리고, 유로는 굵기가 가늘고 길이가 길수록, 표면적이 넓어져 냉각 효율이 증가할 수 있다.
전지 모듈(5)을 제조하기 위해서는, 먼저 이차 전지(1)를 복수로 제조한 후, 이러한 이차 전지(1)들을 서로 연결하며 하우징(51)에 수납한다. 이 때, 이차 전지(1)들을 일렬로 정렬시켜 적층할 수 있다. 도 24에 도시된 바와 같이, 이차 전지(1)가 하우징(51)에 수납될 때, 이차 전지(1)의 길이가 긴 측면이 하방을 향하고, 하우징(51)의 하면에는 냉각 플레이트(미도시)가 형성될 수 있다. 따라서, 냉각 플레이트가 이차 전지(1)의 길이가 긴 측면부터 냉각시킴으로써, 냉각 효율을 증대시킬 수 있다.
한편, 이차 전지(1)의 일측에는 브릿지(136)가 폴딩되어 형성된 폴딩부(139)가 형성되고, 타측에는 디가싱부(137)가 절단되고 남은 영역인 사이드(134)가 형성된다. 그런데 냉각 플레이트가 이차 전지(1)의 복수의 면들 중에서, 사이드(134)가 형성된 측면부터 냉각시킨다면, 사이드(134)에 의해 냉각 플레이트와 전극 조립체(10) 사이의 거리가 멀어지므로, 냉각 효율이 저하될 수 있다. 따라서, 냉각 플레이트는 이차 전지(1)의 길이가 긴 측면들 중에서, 폴딩부(139)가 형성된 측면부터 냉각시키는 것이 바람직하다. 이를 위해, 이차 전지(1)를 하우징(51)에 수납할 때에는, 폴딩부(139)가 냉각 플레이트를 향하는 방향, 즉 하방을 향하도록 수납될 수 있다.
도 25는 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이고, 도 26은 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
상기 기술한 바와 같이, 종래에는 배트 이어(35)의 크기를 감소시키는 데에 한계가 있었다.
또한, 종래에는 폴딩부(339)와 배트 이어(35)의 내측 모서리(35a)가 이루는 각도(θ')가 151도 이하로 형성되었다.
여기서, 상기 각도(θ')는 폴딩부(339)에 대응되는 가상의 제1라인(L1)과, 배트 이어(35)의 내측 모서리(35a)에 대응되는 가상의 제2라인(L2)이 이루는 각도를 의미할 수 있다. 특히, 상기 제1라인(L1) 및 제2라인(L2)은 영상 분석을 통해 결정될 수 있다. 일례로, 상기 제1라인(L1) 및 제2라인(L2)은 비전 장치에서 ROI(Region of interest) 내에서 확인되는 다수의 엣지 포인트를 연결함으로써 추출될 수 있다. 따라서, 폴딩부(339)나 배트이어(35)의 내측 모서리(35a)가 일부 휘어지거나 구부러지게 형성된 경우에도 제1라인(L1) 및 제2라인(L2)이 명확하게 정의될 수 있다. 이러한 영상 분석은 주지의 기술이므로 자세한 설명은 생략한다.
따라서 도 25에 도시된 바와 같이, 이차 전지(3)를 하우징(51)에 수납하면, 배트 이어(35)가 하우징(51)과 폴딩부(339) 사이를 큰 간격(d')(예를 들어, 1.5mm 초과)으로 이격시켰다. 따라서, 이러한 간격(d')이 냉각 플레이트의 냉각을 방해하여, 냉각 효율이 저하될 수 있었다. 이를 해결하기 위해, 상기 냉각 플레이트와 이차 전지(1)의 폴딩부(339) 사이의 공간에 열전달 물질(52)를 주입하여, 냉각 플레이트가 열전달 물질(52)를 통해 폴딩부(139)를 냉각시키도록 하였다.
그런데, 배트 이어(15)의 크기가 크면, 이러한 열전달 물질(52)를 많이 주입하여야 하므로 비용이 증가하고, 냉각 플레이트와 폴딩부(139) 사이의 간격(d')이 크므로, 여전히 냉각 효율이 낮다는 문제가 있었다.
또한 디가싱 홀(H)을 통해 디가싱 공정을 수행하면, 전지 케이스(33) 내부 압력이 감소하면서 도 26에 도시된 바와 같이, 전지 케이스(33)의 폴딩부(339)가 전극 조립체(10)에 밀착하였다. 그런데 종래에는 클리어런스(CL')를 감소시키는데 한계가 있었고, 폴딩부(339)의 폭도 크게 형성되었다. 따라서, 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)이 크게 형성되어, 이차 전지(3)의 부피 대비 에너지 밀도가 감소하는 문제가 있었다. 나아가, 전극 조립체(10)가 서멀 그리스(52)로부터 이격된 거리도 증가하므로, 냉각 효율이 더욱 낮아지는 문제도 있었다.
도 27은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이고, 도 28은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)는 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10); 및 상기 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성된 파우치 형 전지 케이스(13)를 포함하되, 상기 전지 케이스(13)는, 상기 컵부(133)가 적어도 하나에 형성된 제1 케이스(131)와 제2 케이스(132); 상기 제1 케이스(131)와 상기 제2 케이스(132)를 일체로 연결하는 폴딩부(139); 및 상기 폴딩부(139)의 양 단 일부에서, 외측을 향해 돌출 형성되는 배트 이어(15)를 포함하고, 상기 배트 이어(15)는, 길이(d)가 1.5 mm 이하이다.
또한, 폴딩부(139)와 배트 이어(15)의 내측 모서리(15a)가 이루는 각도(θ)는 151도보다 크게 형성될 수 있다. 또한, 상기 각도(θ)는 180도 이하일 수 있다. 그리고, 상기 각도(θ)가 180도 이면 배트 이어(15)가 존재하지 않는 상태를 의미할 수 있다.
여기서, 상기 각도(θ)는 폴딩부(139)에 대응되는 가상의 제1라인(L1)과, 배트 이어(15)의 내측 모서리(15a)에 대응되는 가상의 제2라인(L2)이 이루는 각도를 의미할 수 있다. 제1라인(L1) 및 제2라인(L2)에 대해서는 앞서 설명한 내용을 원용한다.
그리고 본 발명의 일 실시예에 따른 전지 모듈(5)은 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10)가, 파우치 형 전지 케이스(13)에 형성된 컵부(133)의 내부에 수납된 파우치 형 이차 전지(1); 및 상기 이차 전지(1)가 내부에 수납된 하우징(51)을 포함하되, 상기 전지 케이스(13)는, 상기 컵부(133)가 각각 형성된 제1 케이스(131)와 제2 케이스(132); 상기 제1 케이스(131)와 상기 제2 케이스(132)를 일체로 연결하는 폴딩부(139); 및 상기 폴딩부(139)의 양 단 일부에서, 외측을 향해 돌출 형성되는 배트 이어(15)를 포함하고, 상기 배트 이어(15)는, 길이(d)가 1.5 mm 이하이다.
상기 기술한 바와 같이 배트 이어(15)는 브릿지(136)를 폴딩하여 폴딩부(139)의 양 단 일부에서, 외측으로 돌출 형성된다. 본 발명의 일 실시예에 따르면, 이러한 배트 이어(15)의 길이는 1.5 mm 이하, 특히 1 mm 이하일 수 있다. 이러한 배트 이어(15)의 길이는, 상기 폴딩부(139) 측 외벽(1381)으로부터 상기 배트 이어(15)의 최외측 단부까지 측정한 길이일 수 있다. 이 때, 상기 기술한 바와 같이 폴딩부(139) 측 외벽(1381)은 클리어런스(CL)에 의해 바닥부(1332)로부터 경사각이 90° 내지 95° 사이인 경사를 가질 수 있다. 이를 고려할 때 배트 이어 측정의 일 예로, 배트 이어(15)의 길이는 폴딩부(139) 측 외벽(1381) 중에서 가장 외측으로 돌출된 부분부터, 상기 배트 이어(15)의 최외측 단부까지 측정한 길이일 수 있다.
배트 이어(15)의 길이는 자 또는 버니어 캘리퍼스 등을 이용하여 이차 전지(1)에 직접 접촉하여 측정할 수도 있고, 레이저 변위 센서 또는 비전 센서 등을 이용하여 비접촉 방식으로 측정할 수도 있다.
이상은, 이는 배트 이어 길이를 측정하는 방법을 일 예로 기재한 것이며, 반드시 상기 측정 방법으로 한정되는 경우만이 본 발명의 범위에 속하게 되는 것은 아니다. 배트 이어의 길이는 청구항의 기재와 본 발명의 취지에 해당하는 것이라면 모두 본 발명에서 의미하는 배트 이어의 길이가 될 수 있다.
본 발명의 일 실시예에 따르면, 컵부(133)의 깊이(D)를 6.5 mm 이하로 성형하고, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 펀치 엣지(1611)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있다.
그에 따라 배트 이어(15)의 길이(d)도 1.5 mm 이하, 특히 1 mm 이하로 더욱 감소할 수 있다. 따라서 도 27에 도시된 바와 같이, 하우징(51)과 폴딩부(139) 사이의 간격(d)이 1.5 mm 이하로 좁아질 수 있다. 그럼으로써, 하우징(51)의 내부에서 서멀 그리스(52)의 두께가 1.5 mm 이하가 될 수 있어, 열전달 물질(52)의 주입량을 더욱 감소시킬 수 있으므로 비용을 절감할 수 있고, 냉각 효율도 증가할 수 있다.
또한 도 28에 도시된 바와 같이, 클리어런스(CL)를 더욱 작게 형성할 수 있고, 폴딩부(139)의 폭(FW)도 작게 형성할 수 있다. 따라서, 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)이 감소하게 되어, 이차 전지(1)의 부피 대비 에너지 밀도가 증가할 수 있다. 그리고 전극 조립체(10)가 서멀 그리스(52)로부터 이격된 거리도 감소하므로, 냉각 효율도 더욱 증가할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
1: 이차 전지 2: 성형 장치
3: 종래의 이차 전지 4: 검사 장치
5: 전지 모듈 10: 전극 조립체
11: 전극 탭 12: 전극 리드
13: 전지 케이스 14: 절연부
15: 배트 이어 16: 엣지
17: 공간 21: 다이
22: 펀치 33: 종래의 전지 케이스
35: 종래의 배트 이어 36: 종래의 엣지
37: 종래의 공간 38: 종래의 테이프
41: 비전 센서 42: 제어부
43: 디스플레이부 44: 저장부
45: 알람부 51: 하우징
52: 서멀 그리스 101: 전극
102: 분리막 111: 양극 탭
112: 음극 탭 121: 양극 리드
122: 음극 리드 131: 제1 케이스
132: 제2 케이스 133: 컵부
134: 사이드 135: 파우치 필름
136: 브릿지 137: 디가싱부
138: 외벽 139: 폴딩부
161: 펀치 엣지 162: 다이 엣지
163: 두께 엣지 164: 코너
211: 성형부 212: 격벽
213: 다이의 엣지 221: 펀치의 엣지
333: 종래의 컵부 334: 종래의 사이드
336: 종래의 브릿지 337: 종래의 디가싱부
338: 종래의 외벽 339: 종래의 폴딩부
361: 종래의 펀치 엣지 362: 종래의 다이 엣지
421: 아웃라인 추출부 422: 영상 분석부
423: 기준 라인 설정부 424: 거리 연산부
425: 불량 판단부 1021: 주변부
1331: 수용 공간 1332: 바닥부
1333: 외벽 1340: 임시 실링부
1341: 실링부 1342: 미실링부
1343: 외측 단부 1344: 제1 폴딩부
1345: 제2 폴딩부 1351: 실란트층
1352: 수분 배리어층 1353: 표면 보호층
1354: 연신 보조층 1371: 모서리
1381: 브릿지 측 외벽 1382: 디가싱부 측 외벽
1391: 그루브 1611: 브릿지 측 펀치 엣지
1612: 디가싱부 측 펀치 엣지 1613: 제1 펀치 엣지
1614: 제2 펀치 엣지
3: 종래의 이차 전지 4: 검사 장치
5: 전지 모듈 10: 전극 조립체
11: 전극 탭 12: 전극 리드
13: 전지 케이스 14: 절연부
15: 배트 이어 16: 엣지
17: 공간 21: 다이
22: 펀치 33: 종래의 전지 케이스
35: 종래의 배트 이어 36: 종래의 엣지
37: 종래의 공간 38: 종래의 테이프
41: 비전 센서 42: 제어부
43: 디스플레이부 44: 저장부
45: 알람부 51: 하우징
52: 서멀 그리스 101: 전극
102: 분리막 111: 양극 탭
112: 음극 탭 121: 양극 리드
122: 음극 리드 131: 제1 케이스
132: 제2 케이스 133: 컵부
134: 사이드 135: 파우치 필름
136: 브릿지 137: 디가싱부
138: 외벽 139: 폴딩부
161: 펀치 엣지 162: 다이 엣지
163: 두께 엣지 164: 코너
211: 성형부 212: 격벽
213: 다이의 엣지 221: 펀치의 엣지
333: 종래의 컵부 334: 종래의 사이드
336: 종래의 브릿지 337: 종래의 디가싱부
338: 종래의 외벽 339: 종래의 폴딩부
361: 종래의 펀치 엣지 362: 종래의 다이 엣지
421: 아웃라인 추출부 422: 영상 분석부
423: 기준 라인 설정부 424: 거리 연산부
425: 불량 판단부 1021: 주변부
1331: 수용 공간 1332: 바닥부
1333: 외벽 1340: 임시 실링부
1341: 실링부 1342: 미실링부
1343: 외측 단부 1344: 제1 폴딩부
1345: 제2 폴딩부 1351: 실란트층
1352: 수분 배리어층 1353: 표면 보호층
1354: 연신 보조층 1371: 모서리
1381: 브릿지 측 외벽 1382: 디가싱부 측 외벽
1391: 그루브 1611: 브릿지 측 펀치 엣지
1612: 디가싱부 측 펀치 엣지 1613: 제1 펀치 엣지
1614: 제2 펀치 엣지
Claims (42)
- 전극 및 분리막이 적층되어 형성되는 전극 조립체를 내부에 수용하는 컵부가 형성되되,
상기 컵부는,
주변을 포위하는 복수의 외벽과 사이드 또는 디가싱부를 연결하는 복수의 다이 엣지를 포함하고,
상기 다이 엣지는,
적어도 하나가 상기 컵부의 깊이의 1/20 내지 1/6인 곡률 반경으로 라운딩되어 형성되는 파우치 형 전지 케이스. - 제1항에 있어서,
상기 다이 엣지는,
적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 파우치 형 전지 케이스. - 삭제
- 제1항에 있어서,
상기 컵부는,
상기 외벽과 바닥부를 각각 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 펀치 엣지; 및
인접한 두 개의 상기 외벽을 서로 연결하는 두께 엣지를 더 포함하는 파우치 형 전지 케이스. - 제4항에 있어서,
상기 다이 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 다이 엣지 수직선과, 상기 다이 엣지 측 펀치 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 엣지 수직선 사이의 수직 거리가 0.5 mm 이하인 파우치 형 전지 케이스. - 제4항에 있어서,
상기 두께 엣지는,
서로 인접한 두 개의 상기 펀치 엣지와 연결되어 코너를 형성하며,
상기 코너는,
적어도 하나가 2 mm 내지 5 mm의 곡률 반경으로 라운딩되며 형성되고, 곡률 반경이 상기 두께 엣지의 곡률 반경보다 큰 파우치 형 전지 케이스. - 제6항에 있어서,
상기 코너는,
내부에서 상기 곡률 반경이 변화하는 파우치 형 전지 케이스. - 제7항에 있어서,
상기 코너는,
중심부의 곡률 반경이 주변부의 곡률 반경보다 큰 파우치 형 전지 케이스. - 제4항에 있어서,
상기 펀치 엣지는,
적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성되는 파우치 형 전지 케이스. - 제4항에 있어서,
상기 펀치 엣지의 곡률 반경은, 상기 컵부의 깊이의 1/20 내지 1/6인 파우치 형 전지 케이스. - 제1항에 있어서,
상기 컵부가 각각 형성된 제1 케이스와 제2 케이스; 및
두 개의 상기 컵부 사이에 형성되는 브릿지를 포함하되,
상기 브릿지는,
두께가 2 mm 이하인 파우치 형 전지 케이스. - 제11항에 있어서,
상기 브릿지는,
두께가 1.4 mm 이하인 파우치 형 전지 케이스. - 제11항에 있어서,
상기 브릿지는,
두께가 상기 전극 조립체의 폭의 1/200 내지 1/30 인 파우치 형 전지 케이스. - 제11항에 있어서,
상기 브릿지는,
1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 파우치 형 전지 케이스. - 제14항에 있어서,
상기 브릿지는,
0.7 mm 이하인 곡률 반경으로 라운딩되어 형성되는 파우치 형 전지 케이스. - 제11항에 있어서,
상기 브릿지의 두께는,
상기 브릿지와 상기 브릿지 측 외벽의 경계점을 각각 통과하고 바닥부와 수직인 두 개의 브릿지 수직선 사이의 거리인 파우치 형 전지 케이스. - 제1항에 있어서,
상기 외벽은,
바닥부로부터, 경사각이 90° 내지 95° 사이인 경사를 가지는 파우치 형 전지 케이스. - 전극 및 분리막이 적층되어 형성되는 전극 조립체; 및
상기 전극 조립체를 내부에 수용하는 컵부가 형성된 파우치 형 전지 케이스를 포함하되,
상기 전지 케이스는,
상기 컵부가 적어도 하나에 형성된 제1 케이스와 제2 케이스; 및
상기 제1 케이스와 상기 제2 케이스를 일체로 연결하는 폴딩부를 포함하고,
상기 컵부는,
주변을 포위하는 복수의 외벽과 사이드 또는 디가싱부를 연결하는 복수의 다이 엣지를 포함하고,
상기 다이 엣지는,
적어도 하나가 상기 컵부의 깊이의 1/20 내지 1/6인 곡률 반경으로 라운딩되어 형성되는 파우치 형 이차 전지. - 제18항에 있어서,
상기 전극 조립체의 면적은 15000mm2 내지 100000mm2 인 파우치 형 이차 전지. - 제18항에 있어서,
상기 폴딩부는,
폭이 1 mm 내지 3.2 mm인 파우치 형 이차 전지. - 제18항에 있어서,
상기 폴딩부는,
내측으로 함몰된 그루브를 포함하여 형성되는 파우치 형 이차 전지. - 제21항에 있어서,
상기 전지 케이스는,
상기 그루브를 사이에 두고 외측으로 돌출된 한 쌍의 돌출부를 포함하고,
상기 그루브의 최내측부와 상기 돌출부의 최외측부 사이의 간격은 0.8 mm 이하인 파우치 형 이차 전지. - 제18항에 있어서,
상기 컵부의 폭과 상기 전극 조립체의 폭의 차이는,
2.5 mm 이하인 파우치 형 이차 전지. - 제23항에 있어서,
상기 컵부의 폭과 상기 전극 조립체의 폭의 차이는,
1.7 mm 이하인 파우치 형 이차 전지. - 제23항에 있어서,
상기 컵부의 폭은,
상기 컵부의 양 측 외벽의 상단 사이의 거리인 파우치 형 이차 전지. - 제18항에 있어서,
상기 컵부는,
주변을 포위하는 복수의 외벽과 바닥부를 각각 연결하고, 적어도 하나가 1 mm 이하인 곡률 반경으로 라운딩되어 형성되는 복수의 펀치 엣지; 및
인접한 두 개의 상기 외벽을 서로 연결하는 두께 엣지를 더 포함하는 파우치 형 이차 전지. - 제26항에 있어서,
상기 다이 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 다이 엣지 수직선과, 상기 다이 엣지 측 펀치 엣지와 상기 다이 엣지 측 외벽의 경계점을 통과하고 상기 바닥부와 수직인 엣지 수직선 사이의 수직 거리가 0.5 mm 이하인 파우치 형 이차 전지. - 제27항에 있어서,
상기 전극 조립체는,
상기 전극의 적어도 하나의 일단이, 상기 엣지 수직선으로부터, 수직 거리가 0.75 mm 이하에 위치하는 파우치 형 이차 전지. - 제28항에 있어서,
상기 전극 조립체는,
상기 전극의 적어도 하나의 일단이, 상기 엣지 수직선으로부터, 수직 거리가 0.5 mm 이하에 위치하는 파우치 형 이차 전지. - 제26항에 있어서,
상기 분리막은,
상기 전극보다 외측으로 돌출된 주변부가, 상기 전극의 일단을 기준으로, 상기 바닥부의 반대 방향을 향하여 폴딩되는 파우치 형 이차 전지. - 제30항에 있어서,
상기 전극 조립체는,
상기 전극 및 상기 분리막이 각각 복수로 형성되고,
상기 제1 케이스의 상기 컵부에 수납된 상기 분리막은,
상기 주변부가, 상기 제2 케이스를 향하여 폴딩되고,
상기 제2 케이스의 상기 컵부에 수납된 상기 분리막은,
상기 주변부가, 상기 제1 케이스를 향하여 폴딩되는 파우치 형 이차 전지. - 제31항에 있어서,
적어도 하나의 상기 분리막의 상기 주변부는,
인접한 상기 분리막의 상기 주변부와 정렬되며 폴딩되는 파우치 형 이차 전지. - 제26항에 있어서,
상기 펀치 엣지는,
적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성되는 파우치 형 이차 전지. - 제26항에 있어서,
상기 펀치 엣지의 곡률 반경은, 상기 컵부의 깊이의 1/20 내지 1/6인 파우치 형 이차 전지. - 제26항에 있어서,
상기 다이 엣지는,
적어도 하나가 0.7 mm 이하인 곡률 반경으로 라운딩되어 형성되는 파우치 형 이차 전지. - 삭제
- 제26항에 있어서,
상기 외벽은,
상기 바닥부로부터, 경사각이 90° 내지 95° 사이인 경사를 가지는 파우치 형 이차 전지. - 제26항에 있어서,
상기 두께 엣지는,
서로 인접한 두 개의 상기 펀치 엣지와 연결되어 코너를 형성하며,
상기 코너는,
적어도 하나가 2 mm 내지 5 mm의 곡률 반경으로 라운딩되며 형성되고, 곡률 반경이 상기 두께 엣지의 곡률 반경보다 큰 파우치 형 이차 전지. - 제38항에 있어서,
상기 코너는,
내부에서 상기 곡률 반경이 변화하는 파우치 형 이차 전지. - 제39항에 있어서,
상기 코너는,
중심부의 곡률 반경이 주변부의 곡률 반경보다 큰 파우치 형 이차 전지. - 제18항에 있어서,
상기 폴딩부의 양 단 일부에서, 외측으로 길이가 1.5 mm 이하 돌출 형성되는 배트 이어를 더 포함하는 파우치 형 이차 전지. - 제41항에 있어서,
상기 폴딩부와 상기 배트 이어의 내측 모서리가 이루는 각도는 151도 보다 큰 파우치 형 이차 전지.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2021/011062 WO2022039536A1 (ko) | 2020-08-19 | 2021-08-19 | 파우치 형 전지 케이스 및 파우치 형 이차 전지 |
JP2023509583A JP2023538295A (ja) | 2020-08-19 | 2021-08-19 | パウチ型電池ケースおよびパウチ型二次電池 |
US18/021,490 US20240021925A1 (en) | 2020-08-19 | 2021-08-19 | Pouch-Type Battery Case and Pouch Type Secondary Battery |
CN202180056085.3A CN116097503A (zh) | 2020-08-19 | 2021-08-19 | 软包型电池壳体和软包型二次电池 |
EP21858623.8A EP4195375A1 (en) | 2020-08-19 | 2021-08-19 | Pouch type battery case and pouch type secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200104228 | 2020-08-19 | ||
KR1020200104228 | 2020-08-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220022848A KR20220022848A (ko) | 2022-02-28 |
KR102612330B1 true KR102612330B1 (ko) | 2023-12-12 |
Family
ID=80497614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210074472A KR102612330B1 (ko) | 2020-08-19 | 2021-06-08 | 파우치 형 전지 케이스 및 파우치 형 이차 전지 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102612330B1 (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050326A (ja) * | 2000-05-25 | 2002-02-15 | Sumitomo Electric Ind Ltd | 電池パッケージ用フィルムの絞り加工方法、ラミネートフィルムおよび電池の形成方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100853619B1 (ko) * | 2006-01-04 | 2008-08-25 | 주식회사 엘지화학 | 분리막 상단이 밀봉되어 있는 전극조립체 및 이를 포함하는이차전지 |
CN203267345U (zh) | 2012-01-26 | 2013-11-06 | 昭和电工包装株式会社 | 成形用包装材料和锂二次电池 |
KR102284607B1 (ko) * | 2016-12-06 | 2021-08-02 | 에스케이이노베이션 주식회사 | 이차 전지 모듈 |
KR102419678B1 (ko) * | 2018-03-09 | 2022-07-12 | 주식회사 엘지에너지솔루션 | 이차전지 제조 방법 및 이차전지용 파우치 |
KR102576860B1 (ko) * | 2018-03-30 | 2023-09-11 | 에스케이온 주식회사 | 파우치 외장재, 및 이를 이용한 이차 전지와 이차 전지팩 |
-
2021
- 2021-06-08 KR KR1020210074472A patent/KR102612330B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050326A (ja) * | 2000-05-25 | 2002-02-15 | Sumitomo Electric Ind Ltd | 電池パッケージ用フィルムの絞り加工方法、ラミネートフィルムおよび電池の形成方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20220022848A (ko) | 2022-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102684759B1 (ko) | 파우치 형 전지 케이스 및 파우치 형 이차 전지 | |
US20230318093A1 (en) | Pouch-Type Secondary Battery and Method for Manufacturing the Same | |
KR102634446B1 (ko) | 파우치 형 전지 케이스 및 파우치 형 이차 전지 | |
KR102569012B1 (ko) | 파우치 형 이차 전지 | |
KR101688569B1 (ko) | 단차 구조를 포함하는 전지셀 및 절연저항 불량 확인 방법 | |
KR102564839B1 (ko) | 파우치 형 이차 전지 및 전지 모듈 | |
KR102569014B1 (ko) | 파우치 형 이차 전지 및 그의 제조 방법 | |
KR102564846B1 (ko) | 파우치 형 전지 케이스 및 파우치 형 이차 전지 | |
JP7537004B2 (ja) | パウチ型二次電池および電池モジュール | |
EP4195375A1 (en) | Pouch type battery case and pouch type secondary battery | |
KR102612330B1 (ko) | 파우치 형 전지 케이스 및 파우치 형 이차 전지 | |
KR20220022849A (ko) | 전지 케이스 또는 이차 전지의 검사 방법 및 검사 장치 | |
KR20230108775A (ko) | 스테레오 카메라를 사용하여 이차전지의 초음파 용접상태를 효율적으로 검사할 수 있는 비전 검사 시스템 | |
KR102644980B1 (ko) | 전극 조립체 정렬 불량 판단 장치 및 방법 | |
JP7547620B2 (ja) | パウチ型二次電池 | |
US20240014472A1 (en) | Pouch Type Battery Case and Pouch Type Secondary Battery | |
US10840568B2 (en) | Apparatus and method for detecting water | |
KR20220170263A (ko) | 파우치형 전지 케이스 검사 시스템 및 검사 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |