[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102608905B1 - Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same - Google Patents

Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same Download PDF

Info

Publication number
KR102608905B1
KR102608905B1 KR1020210016693A KR20210016693A KR102608905B1 KR 102608905 B1 KR102608905 B1 KR 102608905B1 KR 1020210016693 A KR1020210016693 A KR 1020210016693A KR 20210016693 A KR20210016693 A KR 20210016693A KR 102608905 B1 KR102608905 B1 KR 102608905B1
Authority
KR
South Korea
Prior art keywords
coli
seq
strain
acid
mrd
Prior art date
Application number
KR1020210016693A
Other languages
Korean (ko)
Other versions
KR20220113020A (en
Inventor
이성국
이용주
곽근화
정현욱
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020210016693A priority Critical patent/KR102608905B1/en
Publication of KR20220113020A publication Critical patent/KR20220113020A/en
Application granted granted Critical
Publication of KR102608905B1 publication Critical patent/KR102608905B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 노난디오산을 생산하는 형질전환 미생물 및 이를 이용한 노난디오산 생산방법에 관한 것이다. 또한, 본 발명은 대장균 균주의 유전자를 조작하여 노난산(nonanoic acid)으로부터 노난디오산(nonanedioic acid, NDA)을 생산하는 방법에 관한 것이다. 본 발명에 따른 방법은 대장균을 노난산에서 빠르게 성장할 수 있게 할 뿐만 아니라 대장균으로 하여금 노난산으로부터 고부가 가치 물질인 노난디오산을 과 생산할 수 있게 한다는 점에서 기존의 노난디오산 생산 방법에 비해 현저한 이점을 제공한다. 따라서, 본 발명의 대장균은 노난디오산을 생산하는데 유용하게 사용될 수 있다.The present invention relates to a transformed microorganism that produces nonanedioic acid and a method for producing nonanedioic acid using the same. Additionally, the present invention relates to a method of producing nonanedioic acid (NDA) from nonanoic acid by manipulating the genes of an E. coli strain. The method according to the present invention has a significant advantage over the existing nonanedioic acid production method in that it not only enables E. coli to grow rapidly in nonanoic acid, but also enables E. coli to overproduce nonanedioic acid, a high value-added substance, from nonanoic acid. provides. Therefore, the E. coli of the present invention can be usefully used to produce nonanedioic acid.

Description

노난디오산을 생산하는 형질전환 미생물 및 이를 이용한 노난디오산 생산방법{TRANSFORMED MICROORGANISM PRODUCING NONANEDIOIC ACID AND A METHOD FOR PRODUCING NONANEDIOIC ACID USING THE SAME}Transformed microorganism producing nonanedioic acid and method for producing nonanedioic acid using the same {TRANSFORMED MICROORGANISM PRODUCING NONANEDIOIC ACID AND A METHOD FOR PRODUCING NONANEDIOIC ACID USING THE SAME}

본 발명은 노난디오산을 생산하는 형질전환 미생물 및 이를 이용한 노난디오산 생산방법에 관한 것이다. 또한, 본 발명은 대장균 균주의 유전자를 조작하여 노난산(nonanoic acid)으로부터 노난디오산(nonanedioic acid, NDA)을 생산하는 방법에 관한 것이다.The present invention relates to a transformed microorganism that produces nonanedioic acid and a method for producing nonanedioic acid using the same. Additionally, the present invention relates to a method of producing nonanedioic acid (NDA) from nonanoic acid by manipulating the genes of an E. coli strain.

중쇄 α,ω-디카르복실산(MCDCA)은 2개의 말단 카르복실 작용기를 가진 유기 화합물(C8 내지 C14)이다. 이는 나일론 및 기타 폴리아미드, 폴리에스테르, 및 수지와 같은 다양한 제품의 생산을 위한 중합체 산업에서뿐만 아니라 화장품 성분에 광범위하게 적용되고 있다. 현재까지, MCDCA는 주로 화학적 합성 또는 불포화 지방산의 오존 첨가 분해에 의해 생산된다. 알킬 사슬의 ω-탄소의 직접 수산화에 의해 MCDCA를 화학적으로 합성하기 위해 고체 금속 촉매가 사용된다. 그러나, 이러한 고체 금속 촉매는 낮은 효율과 불량한 선택성으로 어려움을 겪는다. 불포화 지방산의 오존 첨가 분해는 높은 선택성과 효율로 인해 MCDCA 생산을 위한 대안적인 방법이다. 그러나, 이 방법은 고에너지 투입 공정, 가혹한 반응 조건, 및 부산물 형성을 비롯한 여러 가지 한계를 지닌다.Medium chain α,ω-dicarboxylic acids (MCDCA) are organic compounds with two terminal carboxyl functional groups (C8 to C14). It is widely applied in the polymer industry for the production of various products such as nylon and other polyamides, polyesters, and resins, as well as in cosmetic ingredients. To date, MCDCA is mainly produced by chemical synthesis or ozonolysis of unsaturated fatty acids. A solid metal catalyst is used to chemically synthesize MCDCA by direct hydroxylation of the ω-carbon of the alkyl chain. However, these solid metal catalysts suffer from low efficiency and poor selectivity. Ozonolysis of unsaturated fatty acids is an alternative method for MCDCA production due to its high selectivity and efficiency. However, this method has several limitations, including high energy input process, harsh reaction conditions, and by-product formation.

지방산의 MCDCA 및 그 유래의 화합물로의 생물전환은 기존의 MCDCA 생산 공정을 대체할 유망한 방법이다. 힘(heme)-함유 사이토크롬 P450 효소를 사용한 ω-산화가 디카르복실산의 생산에 사용되었는데, 이는 이것이 지방산의 말단 알칸 사슬을 직접 수산화시키기 때문이다.Bioconversion of fatty acids to MCDCA and its derived compounds is a promising alternative to the existing MCDCA production process. ω-oxidation using heme-containing cytochrome P450 enzymes has been used for the production of dicarboxylic acids because it directly hydroxylates the terminal alkane chains of fatty acids.

유사하게, 높은 효율 및 위치 선택성으로 중쇄 지방산(MCFA, C8 내지 C14)을 ω-산화시키기 위해 대장균으로의 Pseudomonas putida GPo1 ω-산화 경로 시스템의 도입이 연구되었다. P. putida GPo1의 ω-산화 경로 시스템은 알칸 분해 경로의 일부로 알칸 하이드록실라제(alkane hydroxylase)(AlkBGT) 시스템을 포함한다. 이 AlkBGT 시스템은 MCFA의 말단 위치의 산화에 대해 높은 특이성을 갖는다.Similarly, introduction of the Pseudomonas putida GPo1 ω-oxidation pathway system into Escherichia coli was studied to ω-oxidize medium chain fatty acids (MCFA, C 8 to C 14 ) with high efficiency and regioselectivity. P. The ω-oxidation pathway system of putida GPo1 includes an alkane hydroxylase (AlkBGT) system as part of the alkane degradation pathway. This AlkBGT system has high specificity for oxidation of the terminal position of MCFA.

한편, 노난디오산(NDA)은 플라스틱 및 여드름 약물 치료에 사용되는 9개의 탄소 사슬 길이의 디카르복실산이다. NDA는 작물과 동물 산물에서 발견되는 천연 생성물이다. 기미와 주근깨에 대한 미백 효과와 더불어 항균 및 항염증 효과로 인해 화장품에 사용하기 위한 원료로서의 NDA의 가치가 높아졌다. 따라서, 노난산의 ω-산화에 의한 NDA의 생물학적 생산은 실행 가능하고 매력적인 방법이 된다.Meanwhile, nonanedioic acid (NDA) is a nine-carbon chain long dicarboxylic acid used in plastic and acne medication. NDA is a natural product found in crop and animal products. The value of NDA as a raw material for use in cosmetics has increased due to its antibacterial and anti-inflammatory effects, along with its whitening effect on blemishes and freckles. Therefore, biological production of NDA by ω-oxidation of nonanoic acid becomes a feasible and attractive method.

대장균은 β-산화 경로를 통해 장쇄 지방산을 사용하여 성장할 수 있다. FadR은 지방산 분해(β-산화)의 억제 인자로서, 이의 결실은 β-산화를 향상시킨다. 그러나, 여러 연구에서 fadR-결실 대장균 균주는 MCFA를 유일 탄소원으로 사용할 때 잘 성장하지 않는다고 보고되었다. 이러한 낮은 성장은 대장균에 대한 MCFA의 독성과 MCFA에 대한 아실-CoA 합성 효소 FadD의 낮은 기질 특이성에 기인할 수 있다.E. coli can grow using long-chain fatty acids through the β-oxidation pathway. FadR is an inhibitor of fatty acid degradation (β-oxidation), and its deletion enhances β-oxidation. However, several studies have reported that fadR -deleted E. coli strains do not grow well when using MCFA as the sole carbon source. This low growth may be due to the toxicity of MCFA to E. coli and the low substrate specificity of the acyl-CoA synthetase FadD for MCFA.

MCDCA의 대량 생산의 경우, 전구체로서 지방산의 직접 공급이 효과적인 전략이 될 수 있지만, MCFA의 독성으로 인해, 기존 전략의 대안으로는 독성을 거의 나타내지 않는 메틸화 지방산 또는 장쇄 지방산의 전구체로서의 사용이 있다. 그러나, 이 방법은 일반적으로 지방산의 에스테르화와 모노에스테르화-카르복실산의 α,ω-DCA로의 전환을 모두 필요로 하며, 그에 따라 궁극적으로는 MCDCA의 생산에 적합하지 않다. For large-scale production of MCDCA, direct supply of fatty acids as precursors could be an effective strategy, but due to the toxicity of MCFAs, an alternative to existing strategies is the use of methylated fatty acids or long-chain fatty acids as precursors, which show little toxicity. However, this method generally requires both esterification of fatty acids and conversion of monoesterified-carboxylic acids to α,ω-DCA and is therefore ultimately unsuitable for the production of MCDCA.

US 2018-0112241 A1US 2018-0112241 A1 US 2020-0277634 A1US 2020-0277634 A1

이에 본 발명자들은 대장균 균주의 유전자를 조작하여 노난산으로부터 노난디오산을 생산하는 방법을 개발하기 위해, 특정 대장균 균주를 실험실 적응 진화시킨 후 야생형 균주와 비교하여 유일 탄소원인 노난산에서 가장 빠른 성장을 보인 대장균 돌연변이체를 얻고, 이 대장균 돌연변이체로부터 총 6개의 돌연변이를 확인함으로써, 본 발명을 완성하였다.Accordingly, in order to develop a method of producing nonanedioic acid from nonanoic acid by manipulating the genes of an E. coli strain, the present inventors evolved a specific E. coli strain to adapt to the laboratory and then compared it to the wild type strain, showing the fastest growth on nonanoic acid, the sole carbon source. The present invention was completed by obtaining the E. coli mutant shown and confirming a total of six mutations from this E. coli mutant.

상기 목적을 달성하게 위하여, 본 발명의 일 측면은, i) fadR 유전자가 결실되고, ii) AcrR, FadD, DppA, Crp, e14 프로파지 및 YeaR로 이루어진 군으로부터 선택된 하나 이상이 돌연변이된 형질전환 대장균을 제공한다.In order to achieve the above object, one aspect of the present invention is, i) the fadR gene is deleted, and ii) transformed E. coli in which at least one selected from the group consisting of AcrR, FadD, DppA, Crp, e14 prophage, and YeaR is mutated. provides.

본 발명의 다른 측면은, i) 상기 형질전환 대장균을 배양하는 단계; 및 ii) 상기 형질전환 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함하는 노난디오산을 생산하는 방법을 제공한다.Another aspect of the present invention includes i) culturing the transformed E. coli; and ii) obtaining nonanedioic acid produced from the transformed E. coli.

본 발명의 또 다른 측면은, i) 야생형 대장균의 fadR 유전자를 결실시키는 단계; ii) 상기 대장균을 노난산이 유일탄소원인 최소배지에서 10일 이상 배양시키는 단계; 및 iii) 90일 이상 반복적으로 계대배양시키는 단계를 포함하는, 노난산으로부터 노난디오산을 생산하는 대장균을 제조하는 방법을 제공한다.Another aspect of the present invention includes i) deleting the fadR gene of wild-type E. coli; ii) culturing the E. coli in a minimal medium in which nonanoic acid is the sole carbon source for more than 10 days; and iii) repeatedly subculturing for more than 90 days. It provides a method of producing E. coli that produces nonanedioic acid from nonanoic acid.

본 발명의 또 다른 측면은, 상기 방법으로 제조된 대장균을 제공한다.Another aspect of the present invention provides E. coli produced by the above method.

본 발명의 또 다른 측면은, i) 상기 대장균을 배양하는 단계; 및 ii) 상기 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함하는 노난디오산을 생산하는 방법을 제공한다.Another aspect of the present invention includes i) cultivating the E. coli; and ii) obtaining nonanedioic acid produced from E. coli.

본 발명에 따른 방법은 대장균을 노난산에서 빠르게 성장할 수 있게 할 뿐만 아니라 대장균으로 하여금 노난산으로부터 고부가 가치 물질인 노난디오산을 과 생산할 수 있게 한다는 점에서 기존의 노난디오산 생산 방법에 비해 현저한 이점을 제공한다. 따라서, 본 발명의 대장균은 노난디오산을 생산하는데 유용하게 사용될 수 있다.The method according to the present invention has a significant advantage over the existing nonanedioic acid production method in that it not only enables E. coli to grow rapidly in nonanoic acid, but also enables E. coli to overproduce nonanedioic acid, a high value-added substance, from nonanoic acid. provides. Therefore, the E. coli of the present invention can be usefully used to produce nonanedioic acid.

도 1은 M9 최소배지에서 성장시킨 대장균 야생형 MG1655(WT), fadR-결실 대장균(MRD), 및 MRD를 실험실 적응 진화에 적용한 후 분리된 10개의 돌연변이체(C1 내지 C10)의 성장 곡선를 나타낸 그래프이다.
도 2는 M9 최소배지에서 성장시킨 대장균 야생형 MG1655(WT), fadR-결실 대장균(MRD), 및 MRD를 실험실 적응 진화에 적용한 후 분리된 10개의 돌연변이체 중 가장 빠른 성장을 보인 C6(MRE)의 성장 곡선을 나타낸 그래프이다.
도 3a는 MRE, MRE-유래 단일 돌연변이 복원 균주, 및 MRD-Pf의 성장 곡선을 도시하고; 도 3b는 노난산에서 배양된 MRE, MRD, 및 MRD-유래 단일 돌연변이-도입 균주의 세포 생존 능력을 나타낸 그래프이다.
도 4a는 MRE-BGT, MRD-BGT, 및 MRD-EB의 NDA 농도를 나타내는 그래프를 도시하고; 도 4b는 생물변환 24시간째의 MRE-BGT, MRD-BGT 및 MRD-유래 단일 돌연변이-도입 fadE-결실 alkBGT 발현 균주의 NDA 농도를 나타낸 그래프이다.
Figure 1 is a graph showing the growth curves of E. coli wild type MG1655 (WT), fadR -deleted E. coli (MRD) grown in M9 minimal medium, and 10 mutants (C1 to C10) isolated after applying MRD to laboratory adaptive evolution. .
Figure 2 shows E. coli wild-type MG1655 (WT), fadR -deleted E. coli (MRD) grown in M9 minimal medium, and C6 (MRE), which showed the fastest growth among 10 mutants isolated after applying MRD to laboratory adaptive evolution. This is a graph showing the growth curve.
Figure 3A shows growth curves of MRE, MRE-derived single mutation restoration strain, and MRD-Pf; Figure 3b is a graph showing cell viability of MRE, MRD, and MRD-derived single mutation-introduced strains cultured in nonanoic acid.
Figure 4A shows a graph showing NDA concentrations in MRE-BGT, MRD-BGT, and MRD-EB; Figure 4b is a graph showing the NDA concentration of MRE-BGT, MRD-BGT and MRD-derived single mutation-introduced fadE -deletion alkBGT expression strain at 24 hours after biotransformation.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은, i) fadR 유전자가 결실되고, ii) AcrR, FadD, DppA, Crp, e14 프로파지 및 YeaR로 이루어진 군으로부터 선택된 하나 이상이 돌연변이된 형질전환 대장균을 제공한다.One aspect of the present invention provides transformed E. coli in which i) the fadR gene is deleted, and ii) one or more selected from the group consisting of AcrR, FadD, DppA, Crp, e14 prophage, and YeaR are mutated.

본 발명에서 사용하는 용어 "fadR "유전자는 지방산 분해(β-산화)의 억제 인자인 FadR를 암호화하는 유전자이다. 상기 FadR 및 이를 암호화하는 fadR 유전자는 Gene ID: 948652에 개시된 서열을 갖는 것일 수 있다.The term “ fadR ” gene used in the present invention is a gene encoding FadR, an inhibitor of fatty acid degradation (β-oxidation). The FadR and the fadR gene encoding it may have the sequence disclosed in Gene ID: 948652.

상기 효소 또는 폴리펩티드 등을 암호화하는 유전자의 일부 또는 전체를 결실하는 방법은 예를 들면, Cre/loxP 재조합 시스템을 사용하여 유전자 결손을 위한 카세트를 모균주에 형질전환함으로써 수행될 수 있고, 대장균 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 유전자를 일부 핵산 서열이 결실된 유전자 또는 마커 유전자로 교체함으로써 수행될 수 있다. 상기 발현조절 서열을 변형하는 방법은 상기 발현조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현조절 서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다. 아울러, 상기 효소 또는 폴리펩티드를 암호화하는, 염색체 상의 염기서열을 변형하는 방법은 상기 단백질의 활성을 더욱 약화하도록 염기서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 염기서열로 교체함으로써 수행할 수 있다.The method of deleting part or all of the gene encoding the enzyme or polypeptide, etc. can be performed, for example, by transforming a cassette for gene deletion into the parent strain using the Cre/loxP recombination system, and can be performed on the chromosome in E. coli. This can be done by replacing the gene encoding the target protein endogenous in the chromosome with a gene or marker gene with some nucleic acid sequences deleted through an insertion vector. The method of modifying the expression control sequence is carried out by inducing mutations in the expression control sequence by deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence, or a combination thereof to further weaken the activity of the expression control sequence, or to further weaken the activity of the expression control sequence. This can be accomplished by replacing the nucleic acid sequence with an active nucleic acid sequence. The expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that regulates the termination of transcription and translation. In addition, the method of modifying the base sequence on the chromosome encoding the enzyme or polypeptide induces a mutation in the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof to further weaken the activity of the protein. This can be done by doing so, or by replacing it with an improved base sequence to have weaker activity.

본 발명에서 사용하는 용어 "AcrR"란, acrAB 유전자의 잠재적 조절 단백질로, 상기 AcrR 및 이를 암호화하는 acrR 유전자는 Gene ID: 945516에 개시된 서열을 갖는 것일 수 있다. 상기 AcrR 돌연변이는 서열번호 42로 표시되는 염기서열 중 567번째 염기인 아데닌(A)이 결실된 것일 수 있다. The term "AcrR" used in the present invention refers to a potential regulatory protein of the acrAB gene, and the AcrR and the acrR gene encoding it may have the sequence disclosed in Gene ID: 945516. The AcrR mutation may be one in which adenine (A), the 567th base of the base sequence shown in SEQ ID NO: 42, is deleted.

본 발명에서 사용하는 용어 "FadD"란, 분해 또는 인지질로의 통합을 위해 외인성 장쇄 지방산의 CoA 티오에스테르로의 수송과 함께 에스테르 화를 촉매하는 단백질이다. 상기 FadD 및 이를 암호화하는 fadD 유전자는 Gene ID: 946327에 개시된 서열을 갖는 것일 수 있다. 상기 FadD 돌연변이는 서열번호 43으로 표시되는 fadDyeaY의 유전자간 영역(yeaY/fadD intergenic region)의 염기서열 중 90번째 염기인 구아닌(guanin) 및 94번째 염기인 사이토신(cytosine)이 아데닌(adenine)으로 치환된 것일 수 있다.The term “FadD” as used in the present invention is a protein that catalyzes the esterification as well as the transport of exogenous long-chain fatty acids to CoA thioester for degradation or incorporation into phospholipids. The FadD and the fadD gene encoding it may have the sequence disclosed in Gene ID: 946327. In the FadD mutation, guanine, the 90th base, and cytosine, the 94th base, in the nucleotide sequence of the fadD and yeaY intergenic region ( yeaY / fadD intergenic region) shown in SEQ ID NO: 43 are adenine. ) may have been replaced.

본 발명에서 사용하는 용어 "DppA"란, 디펩타이드 수송 단백질(plasmic dipeptide transport protein )로, 상기 DppA 및 이를 암호화하는 dppA 유전자는 Gene ID: 948062에 개시된 서열을 갖는 것일 수 있다. 상기 DppA 돌연변이는 서열번호 44로 표시되는 염기서열 중 1570번째 염기에 이동성 유전인자 (mobile genetic element) IS5가 삽입된 것일 수 있다. 상기 DppA 돌연변이는 서열번호 51로 표시되는 염기서열일 수 있다.The term "DppA" used in the present invention refers to a dipeptide transport protein (plasmic dipeptide transport protein), and the DppA and the dppA gene encoding it may have the sequence disclosed in Gene ID: 948062. The DppA mutation may be one in which the mobile genetic element IS5 is inserted at base 1570 of the base sequence shown in SEQ ID NO: 44. The DppA mutation may be the base sequence represented by SEQ ID NO: 51.

본 발명에서 사용하는 용어 "Crp"란, CRP-cAMP 활성화 전사 조절인자 CRP(cAMP-activated global transcriptional regulator CRP)로, 상기 Crp 및 이를 암호화하는 crp 유전자는 Gene ID: 947867에 개시된 서열을 갖는 것일 수 있다. The term "Crp" used in the present invention refers to CRP-cAMP activated transcriptional regulator CRP (cAMP-activated global transcriptional regulator CRP). The Crp and the crp gene encoding it may have the sequence disclosed in Gene ID: 947867. there is.

상기 Crp 돌연변이는 서열번호 45로 표시되는 crpyhfA의 유전자간 영역(yhfA/crp intergenic region)의 염기서열 중 125번째 염기에 이동성 유전인자 IS5(서열번호 52)가 삽입된 것일 수 있다. 상기 crpyhfA의 유전자간 영역은 서열번호 45으로 표시되는 염기서열 일 수 있다.The Crp mutation may be the insertion of the mobility gene IS5 (SEQ ID NO: 52) at the 125th base of the nucleotide sequence of the crp and yhfA intergenic region (yhfA/crp intergenic region) shown in SEQ ID NO: 45. The intergenic region of crp and yhfA may be the base sequence represented by SEQ ID NO: 45.

본 발명에서 사용하는 용어 "e14 프로파지"란, 여러 유전자들을 갖고 있는 것으로, 대장균(E. coli) 게놈(genome)의 1195432 bp 부터 1210646 bp까지 해당한다. 상기 e14 프로파지 돌연변이는 서열번호 46으로 표시되는 염기서열의 icd-icdC 유전자가 결실된 것일 수 있다. The term "e14 prophage" used in the present invention has several genes and corresponds to 1195432 bp to 1210646 bp of the E. coli genome. The e14 prophage mutation may be one in which the icd-icdC gene of the nucleotide sequence shown in SEQ ID NO: 46 is deleted.

본 발명에서 사용하는 용어 "YeaR"란, 질산염에 반응하여 유도되는 것으로 보고된 알려지지 않은 기능을 가진 단백질로, 상기 YeaR 및 이를 암호화하는 yeaR 유전자는 Gene ID: 946317에 개시된 서열을 갖는 것일 수 있다. 상기 YeaR 돌연변이는 서열번호 47으로 표시되는 염기서열 중 115번째 염기에 이동성 유전인자 IS186(서열번호 54)가 삽입된 것일 수 있다. 상기 YeaR 돌연변이는 서열번호 53으로 표시되는 염기서열일 수 있다.The term "YeaR" used in the present invention is a protein with an unknown function that has been reported to be induced in response to nitrate. YeaR and the yeaR gene encoding it may have the sequence disclosed in Gene ID: 946317. The YeaR mutation may be one in which the mobility gene IS186 (SEQ ID NO: 54) is inserted into the 115th base of the nucleotide sequence shown in SEQ ID NO: 47. The YeaR mutation may be the base sequence represented by SEQ ID NO: 53.

본 발명의 다른 측면은, i) 상기 형질전환 대장균을 배양하는 단계; 및 ii) 상기 형질전환 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함하는 노난디오산을 생산하는 방법을 제공한다. 구체적으로, 상기 방법은 대장균에 fadE 유전자를 결실시키는 단계; ii) 상기 대장균에 alkBGT 유전자 및 IPTG-유도성 프로모터를 포함하는 발현벡터를 삽입시키는 단계; iii) 상기 대장균을 배양하는 단계; iv) IPTG를 처리한 후, 상기 대장균을 배양하는 단계; 및 v) 상기 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함할 수 있다.Another aspect of the present invention includes i) culturing the transformed E. coli; and ii) obtaining nonanedioic acid produced from the transformed E. coli. Specifically, the method includes deleting the fadE gene in E. coli; ii) inserting an expression vector containing an alkBGT gene and an IPTG-inducible promoter into the E. coli; iii) cultivating the E. coli; iv) culturing the E. coli after treating with IPTG; and v) obtaining nonanedioic acid produced from the E. coli.

상기 노난디오산을 생산하는 방법에 있어서, 상기 형질전환 대장균에 대해서는 전술한 형질전환 대장균에 대한 설명을 참조한다.In the method for producing nonanedioic acid, refer to the description of the above-mentioned transformed E. coli for the transformed E. coli.

본 발명에서 사용하는 용어 "fadE"유전자는 아실-CoA 탈수소효소를 암호화하는 유전자이다. 상기 아실-CoA 탈수소효소 및 fadE 유전자는 Gene ID: 949007에 개시된 서열을 갖는 것일 수 있다.The term “ fadE ” gene used in the present invention is a gene encoding acyl-CoA dehydrogenase. The acyl-CoA dehydrogenase and fadE genes may have sequences disclosed in Gene ID: 949007.

본 발명에서 사용하는 용어 "alkBGT"유전자란, alkB(서열번호 48), alkG(서열번호 49) 및 alkT(서열번호 50) 3개 유전자로 이루어진 오페론으로, 알칸 모노옥시게나제를 암호화하는 유전자이다. 상기 알칸 모노옥시게나제는 중간탄소사슬길이의 탄소 말단 부분을 산화시켜 산소를 첨가하는 반응에 관여한다. 상기 alkBGT"유전자는 P. putida GPo1로부터 유래된 것일 수 있다. The term " alkBGT " gene used in the present invention is an operon consisting of three genes, alkB (SEQ ID NO: 48), alkG (SEQ ID NO: 49), and alkT (SEQ ID NO: 50), and is a gene encoding alkane monooxygenase. . The alkane monooxygenase is involved in the reaction of adding oxygen by oxidizing the carbon terminal portion of the intermediate carbon chain length. The alkBGT "gene may be derived from P. putida GPo1.

본 발명에서 사용하는 용어 "배양"이란, 상기 형질전환 대장균으로부터 노난디오산을 생산하기 위하여, 상기 형질전환 대장균을 적당히 인공적으로 조절한 환경조건에서 생육시키는 일련의 행위를 의미할 수 있다. 본 발명에서 상기 형질전환 대장균을 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 배양에 사용되는 배지는 노난디오산으로 대사될 수 있는 하나 이상의 기질을 포함하는 것일 수 있으며, 예를 들면, 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 상기 배양은 노난산 존재 하에 형질전환 대장균을 배양하는 것일 수 있다. The term “cultivation” used in the present invention may refer to a series of actions of growing the transformed E. coli under appropriately artificially controlled environmental conditions in order to produce nonanedioic acid from the transformed E. coli. In the present invention, the method of culturing the transformed E. coli can be performed using methods widely known in the art. The medium used for culture may contain one or more substrates that can be metabolized into nonanedioic acid, for example, under aerobic conditions in a typical medium containing an appropriate carbon source, nitrogen source, amino acid, vitamin, etc., temperature, The requirements of the specific strain must be met in an appropriate manner while adjusting pH, etc. The culture may be culturing transformed E. coli in the presence of nonanoic acid.

사용될 수 있는 탄소원으로는 글루코스를 주탄소원으로 사용하며, 이외에 자일로스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있다. Carbon sources that can be used include glucose as the main carbon source, and sugars and carbohydrates such as xylose, sucrose, lactose, fructose, maltose, starch, cellulose, soybean oil, sunflower oil, castor oil, coconut oil, etc. It may include oils and fats, fatty acids such as palmitic acid, stearic acid, and linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid.

상기 배양은 글루코스 존재 하에 효모를 배양하는 것을 특징으로 할 수 있다.The culture may be characterized as cultivating yeast in the presence of glucose.

이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.These substances can be used individually or in mixtures. Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, and glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used. You can. These nitrogen sources can be used alone or in combination. The medium may include, as ingredients, monopotassium phosphate, dipotassium phosphate and the corresponding sodium-containing salts. Agents that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. Additionally, inorganic compounds such as sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate can be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins may be used.

통상적으로, 대장균은 약 20℃ 내지 약 37℃ 범위의 온도에서 적절한 배지 내에 배양(성장)할 수 있다. 본 발명에서 배지는, 예를 들면, 암모늄 설페이트, 및 탄소/에너지 공급원으로서의 덱스트로스를 포함하는 브로스(broth) 또는 상업적으로 제조된 통상적인 배지일 수 있다. 그밖에 정의되거나 합성된 배지도 사용할 수 있으며, 특정 미생물의 성장에 적절한 배지는 미생물학 또는 발효과학 분야의 당업자에게 공지되어 있다.Typically, E. coli can be cultured (grown) in an appropriate medium at temperatures ranging from about 20°C to about 37°C. The medium in the present invention may be, for example, a broth containing ammonium sulfate and dextrose as a carbon/energy source or a conventional commercially prepared medium. Other defined or synthesized media can also be used, and media suitable for the growth of specific microorganisms are known to those skilled in the art of microbiology or fermentation science.

상기 형질전환 대장균을 통해 생산된 노난디오산은 당업계에 공지된 방법을 사용하여 배양 배지로부터 분리할 수 있다. 이러한 분리 방법은 원심분리, 여과, 이온교환크로마토그래피, 가스크로마토그래피 또는 결정화일 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 가스 크로마토그래피를 통하여 분리할 수 있다.Nonanedioic acid produced through the transformed E. coli can be isolated from the culture medium using methods known in the art. This separation method may be centrifugation, filtration, ion exchange chromatography, gas chromatography, or crystallization. For example, the culture can be centrifuged at low speed to remove biomass, and the resulting supernatant can be separated through gas chromatography.

본 발명의 또 다른 측면은, i) 야생형 대장균의 fadR 유전자를 결실시키는 단계; ii) 상기 대장균을 노난산이 유일탄소원인 최소배지에서 10일 이상 배양시키는 단계; 및 iii) 90일 이상 반복적으로 계대배양시키는 단계를 포함하는, 노난산으로부터 노난디오산을 생산하는 대장균을 제조하는 방법을 제공한다.Another aspect of the present invention includes i) deleting the fadR gene of wild-type E. coli; ii) culturing the E. coli in a minimal medium in which nonanoic acid is the sole carbon source for more than 10 days; and iii) repeatedly subculturing for more than 90 days. It provides a method of producing E. coli that produces nonanedioic acid from nonanoic acid.

상기 i) 단계에서 야생형 대장균의 fadE 유전자를 결실시키는 단계가 추가적으로 더 포함될 수 있다.In step i), a step of deleting the fadE gene of wild-type E. coli may be additionally included.

상기 ii) 단계에서 노난산은 적어도 3 g/L의 농도로 존재하는 것을 특징으로 할 수 있다. In step ii), nonanoic acid may be present at a concentration of at least 3 g/L.

상기 ii) 단계에서 최소배지가 NaH2PO4, KH2PO4, NaCl, NH4Cl, MgSO7H2O 및 CaCl2 가 첨가된 M9 최소배지일 수 있다. 본 발명의 일 실시예에서는 5 g/L, NaH2PO4 6.78 g/L, KH2PO4 3.0 g/L, NaCl 0.5 g/L, NH4Cl 1.0 g/L, MgSO7H2O 0.49 g/L, 및 CaCl2 0.011 g/L가 첨가된 M9 최소배지를 사용하였다.In step ii), the minimal medium may be M9 minimal medium to which NaH 2 PO 4 , KH 2 PO 4 , NaCl, NH 4 Cl, MgSO 7H 2 O and CaCl 2 are added. In one embodiment of the present invention, 5 g/L, NaH 2 PO 4 6.78 g/L, KH 2 PO 4 3.0 g/L, NaCl 0.5 g/L, NH 4 Cl 1.0 g/L, MgSO 7H 2 O M9 minimal medium supplemented with 0.49 g/L and 0.011 g/L CaCl 2 was used.

본 발명의 또 다른 측면은, 상기 방법으로 제조된 대장균을 제공한다. 상기 대장균은 fadR 유전자가 결실되고, AcrR, FadD, DppA, Crp, e14 프로파지 및 YeaR의 로 이루어진 군으로부터 선택된 하나 이상이 돌연변이된 것을 특징으로 하는 것일 수 있다. Another aspect of the present invention provides E. coli produced by the above method. The E. coli may be characterized in that the fadR gene is deleted and one or more selected from the group consisting of AcrR, FadD, DppA, Crp, e14 prophage, and YeaR are mutated.

상기 대장균은 fadE 유전자가 추가적으로 결실된 것일 수 있다. The E. coli may have an additional deletion of the fadE gene.

본 발명의 또 다른 측면은, i) 상기 대장균을 배양하는 단계; ii) 상기 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함하는 노난디오산을 생산하는 방법을 제공한다. 구체적으로, 상기 방법은 i) 상기 대장균에 alkBGT 유전자 및 IPTG-유도성 프로모터를 포함하는 발현벡터를 삽입시키는 단계; ii) 상기 대장균을 배양하는 단계; iii) IPTG를 처리한 후, 상기 대장균을 배양하는 단계; 및 iv) 상기 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함할 수 있다. Another aspect of the present invention includes i) cultivating the E. coli; ii) It provides a method for producing nonanedioic acid comprising the step of obtaining nonanedioic acid produced from E. coli. Specifically, the method includes the steps of i) inserting an expression vector containing an alkBGT gene and an IPTG-inducible promoter into the E. coli; ii) cultivating the E. coli; iii) culturing the E. coli after treating with IPTG; and iv) obtaining nonanedioic acid produced from E. coli.

상기 배양 방법 및 노난디오산 수득 방법은 형질전환 대장균을 이용한 노난디오산을 생산하는 방법에서 상술한 바와 동일하다.The culturing method and method for obtaining nonanedioic acid are the same as described above in the method for producing nonanedioic acid using transformed E. coli.

이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be explained in more detail by the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited to these only.

실험예 1. 미생물 균주 및 플라스미드Experimental Example 1. Microbial strains and plasmids

대장균 DH10B를 플라스미드 구축에 사용하고, 대장균 MG1655 K-12(Blattner et al., Science 277, 5331, 1453-1474(1997) 참고)를 실험실 적응 진화 및 생물변환을 위한 이종 유전자 발현을 비롯한 모든 유전자 변형을 위한 모균주로 사용하였다. 구축된 균주 및 플라스미드는 하기 표 1에 나타내었다. 염색체 유전자의 결실은 λ-재조합 시스템을 이용하여 수행하였으며, 사용된 프라이머는 하기 표 2에 나타내었다.E. coli DH10B was used for plasmid construction, and E. coli MG1655 K-12 (see Blattner et al., Science 277, 5331, 1453-1474 (1997)) was used for all genetic modifications, including heterologous gene expression for laboratory adaptive evolution and biotransformation. It was used as a parent strain for . The constructed strains and plasmids are shown in Table 1 below. Deletion of chromosomal genes was performed using the λ-recombinant system, and the primers used are shown in Table 2 below.

균주strain 유전자형 및 설명Genotype and description WT WT E. coli MG1655 K-12 F-λilvG-rfb-50rph -1 E. coli MG1655 K-12 F-λ ilvG - rfb -50 rph -1 MRD MRD △fadR::FRT를 지닌 WTWT with ΔfadR ::FRT MRE MREs 유일 탄소원으로 3 g/L의 노난산을 사용하는 배지에서 성장하도록 진화된 MRDMRD evolved to grow on media using 3 g/L nonanoic acid as the sole carbon source MRD-aMRD-a acrR*를 지닌 MRDMRD with acrR * MRD-PfMRD-Pf PfadD*를 지닌 MRDMRD with P fadD * MRD-eMRD-e e14 프로파지 결실을 지닌 MRDMRD with e14 prophage deletion MRD-yMRD-y yeaR*를 지닌 MRDMRD with yeaR * MRD-PcMRD-Pc Pcrp*를 지닌 MRDMRD with P crp * MRD-dMRD-d dppA*를 지닌 MRDMRD with dppA * MRE-a MRE-a acrR이 복원된 MREMRE with acrR restored MRE-Pf MRE-Pf PfadD가 복원된 MREMRE with P fadD restored MRE-y MRE-y yeaR이 복원된 MREMRE with yeaR restored MRE-Pc MRE-Pc Pcrp가 복원된 MREMRE with P crp restored MRE-d MRE-d dppA가 복원된 MREMRE with restored dppA MRD-BGTMRD-BGT △fadE::FRT 및 A6c-alkBGT를 지닌 MRDMRD with ΔfadE ::FRT and A6c- alkBGT MRE-BGTMRE-BGT △fadE::FRT 및 A6c-alkBGT를 지닌 MREMRE with ΔfadE ::FRT and A6c- alkBGT MRD-EBMRD-EB 6개의 MRE 돌연변이, △fadE::FRT 및 A6c-alkBGT를 지닌 MRDMRD with six MRE mutations, ΔfadE ::FRT and A6c- alkBGT MRD-aFBMRD-aFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRD-aMRD-a with ΔfadE ::FRT and A6c- alkBGT MRD-PfFBMRD-PfFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRD-PfMRD-Pf with ΔfadE ::FRT and A6c- alkBGT MRD-eFBMRD-eFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRD-eMRD-e with ΔfadE ::FRT and A6c- alkBGT MRD-yFBMRD-yFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRD-yMRD-y with ΔfadE ::FRT and A6c- alkBGT MRD-PcFBMRD-PcFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRD-PcMRD-Pc with ΔfadE ::FRT and A6c- alkBGT MRD-dFBMRD-dFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRD-dMRD-d with ΔfadE ::FRT and A6c- alkBGT MRE-aFBMRE-aFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRE-aMRE-a with ΔfadE ::FRT and A6c- alkBGT MRE-PfFBMRE-PfFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRE-PfMRE-Pf with ΔfadE ::FRT and A6c- alkBGT MRE-yFBMRE-yFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRE-yMRE-y with ΔfadE ::FRT and A6c- alkBGT MRE-PcFBMRE-PcFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRE-PcMRE-Pc with ΔfadE ::FRT and A6c- alkBGT MRE-dFBMRE-dFB △fadE::FRT 및 A6c-alkBGT를 지닌 MRE-dMRE-d with ΔfadE ::FRT and A6c- alkBGT 플라스미드plasmid pBbA6c-rfp pBbA6c- rfp p15A 레플리콘, PLlacO-1 프로모터 및 rfp, CmR을 지님p15A replicon, carrying the P LlacO-1 promoter and rfp , Cm R pBbA6c-alkBGT pBbA6c- alkBGT △rfp::alkBGT, CmR을 지닌 A6c-rfp △rfp :: A6c- rfp with alkBGT , Cm R

별표(*)는 진화된 균주인 MRE에서의 해당 돌연변이를 나타냄.The asterisk (*) indicates the corresponding mutation in the evolved strain, MRE.

프라이머primer 서열(5'-3')Sequence (5'-3') 목적purpose 서열번호sequence number fadR del H1 F fadR del H1 F TCTGGTATGATGAGTCCAACTTTGTTTTGCTGTGTTATGGAAATCTCACTGTGTAGGCTGGAGCTGCTTCTCTGGTATGATGAGTCCAACTTTGTTTTGCTGTGTTATGGAAATCTCACTGTGTAGGCTGGAGCTGCTTC fadR 녹아웃 fadR knockout 1One fadR del H2 R fadR del H2 R AACAACAAAAAACCCCTCGTTTGAGGGGTTTGCTCTTTAAACGGAAGGGAATTCCGGGGATCCGTCGACCAACAAACAAAAAACCCCTCGTTTGAGGGGTTTGCTCTTTAAACGGAAGGGAATTCCGGGGATCCGTCGACC fadR 녹아웃 fadR knockout 22 fadR seq F fadR seq F GGGCGAGTTTGTACCAGTCGGGGGCGAGTTTGTACCAGTCGG fadR 시퀀싱 fadR sequencing 33 fadR seq R fadR seq R GCGCGGCGACCGTTCGCTGGCGCGGCGACCGTTCGCTG fadR 시퀀싱 fadR sequencing 44 fadE del H1 F fadE del H1 F CCATATCATCACAAGTGGTCAGACCTCCTACAAGTAAGGGGCTTTTCGTTGTGTAGGCTGGAGCTGCTTCCCATATCATCACAAGTGGTCAGACCTCCTACAAGTAAGGGGCTTTTCGTTGTGTAGGCTGGAGGCTGCTTC fadE 녹아웃 fadE knockout 55 fadE del H2 R fadE del H2 R TTACGCGGCTTCAACTTTCCGCACTTTCTCCGGCAACTTTACCGGCTTCGATTCCGGGGATCCGTCGACCTTACCGGCTTCAACTTTCCGCACTTTCTCCGGCAACTTTACCGGCTTCGATTCCGGGGATCCGTCGACC fadE 녹아웃 fadE knockout 66 fadE seq FfadE seq F AAAAGTTAGCCAGCGTTTCCGCCGCAAAAGTTAGCCAGCGTTTTCCGCCGC fadE 시퀀싱 fadE sequencing 77 fadE seq R fadE seq R ACGTTGGGAGATGAGACGTATCAGGACGTTGGGAGATGAGACGTATCAGG fadE 시퀀싱 fadE sequencing 88 PfadD* MAGE OligoP fadD * MAGE Oligo ATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGTTTGTGAAGCGCGTCACTATTTATTTTTATCTTTACCGTAAGAATGCATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGTTTGTGAAGCGCGTCACTATTTATTTTTATCTTTACCGTAAGAATGC PfadD 돌연변이유발P fadD mutagenesis 99 PfadD backP fad D back ATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGGTTGCGAAGCGCGTCACTATTTATTTTTATCTTTACCGTAAGAATGCATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGGTTGCGAAGCGCGTCACTATTTATTTTTATCTTTACCGTAAGAATGC PfadD 야생형 돌연변이유발P fadD wild type mutagenesis 1010 PfadD* tetA H1P1 FP fadD * tetA H1P1 F CTGTTTCTGCATTCTTACGGTAAAGATAAAAATAAATAGTGACGCGCTTCGTGTAGGCTGGAGCTGCTTCGCTGTTTCTGCATTCTTACGGTAAAGATAAAAATAAATAGTGACGCGCTTCGTGTAGGCTGGAGCTGCTTCG PfadD 돌연변이유발P fadD mutagenesis 1111 PfadD* tetA H2P4 RP fadD * tetA H2P4 R TAACATAATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGATTCCGGGGATCCGTCGACCTAACATAATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGATTCCGGGGATCCGTCGACC PfadD 돌연변이유발P fadD mutagenesis 1212 acrR tetA H1P1 F acrR tetA H1P1 F CGGCCTGATGGAAAACTGGCTCTTTGCCCCGCAATCTTTTGATCTTAAAAGTGTAGGCTGGAGCTGCTTCGCGGCCTGATGGAAAACTGGCTCTTTGCCCCGCAATCTTTTGATCTTAAAAGTGTAGGCTGGAGCTGCTTCG acrR 돌연변이유발 acrR mutagenesis 1313 acrR tetA H2P4 R acrR tetA H2P4 R GGCACAGGAGATACATCTCCAGTAAGATGGCAACGTAATCGCGGGCTTCTATTCCGGGGATCCGTCGACCGGCACAGGAGATACATCTCCAGTAAGATGGCAACGTAATCGGCGGGCTTCTATTCCGGGGATCCGTCGACC acrR 돌연변이유발 acrR mutagenesis 1414 acrR* MAGE Oligo acrR *MAGE Oligo GAGATACATCTCCAGTAAGATGGCAACGTAATCGCGGGCTTCTTTTTAAGATCAAAAGATTGCGGGGCAAAGAGCCAGTTTTCCATCAGGGAGATACATCTCCAGTAAGATGGCAACGTAATCGCGGGCTTCTTTTTAAGATCAAAAGATTGCGGGGCAAAGAGCCAGTTTTCCATCAGG acrR 돌연변이유발 acrR mutagenesis 1515 acrR back acrR back ATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGGTTGCGAAGCGCGTCACTATTTATTTTTATCTTTACCGTAAGAATGCATATTAACTCATCATACCAGCTTGATAATTACCCAACGAAAAGGTTGCGAAGCGCGTCACTATTTATTTTTATCTTTACCGTAAGAATGC acrR 야생형 돌연변이유발 acrR wild type mutagenesis 1616 acrR seq F acrR seq F CCTGTTAGGGCTAAGCTGCCCCTGTTAGGGCTAAGCTGCC acrR 시퀀싱 acrR sequencing 1717 acrR seq R acrR seq R CGCCGTGTTCTGGCATAACACGCCGTTTCTGGCATAACA acrR 시퀀싱 acrR sequencing 1818 e14 H1-P4e14 H1-P4 AAAGTAAATCCTGGCTCTATTATTCTCTCCGCTGAGATGATGCTGCGCCAATTCCGGGGATCCGTCGACCAAAGTAAATCCTGGCTCTATTATTCTTCTCCGCTGAGATGATGCTGCGCCAATTCCGGGGATCCGTCGACC e14 프로파지 결실e14 prophage deletion 1919 e14 H2-P1e14 H2-P1 CGCCTTCCATACCTTTAACAATCAGGTCAGCCGCTTCAGTCCAACCCATAGTGTAGGCTGGAGCTGCTTCGCGCCTTCCATACCTTTAACAATCAGGTCAGCCGCTTCAGTCCAACCCATAGTGTAGGCTGGAGCTGCTTCG e14 프로파지 결실e14 prophage deletion 2020 e14 MAGE oligoe14 MAGE oligo TCCATACCTTTAACAATCAGGTCAGCCGCTTCAGTCCAACCCATATGGCGCAGCATCATCTCAGCGGAGAGAATAATAGAGCCAGGATTTTCCATACCTTTAACAATCAGGTCAGCCGCTTCAGTCCAACCCATATGGGCCAGCATCATCTCAGCGGAGAGAATAATAGAGCCAGGATTT e14 프로파지 결실e14 prophage deletion 2121 e14 seq Fe14 seq F GTAATTCCCCTGTCTTCAGGGTAATTCCCCTGTCTTCAGG e14 프로파지 시퀀싱e14 prophage sequencing 2222 e14 seq Re14 seq R AACAACGGGCGTGTTATACGAACAACGGGCGTGTTATACG e14 프로파지 시퀀싱e14 prophage sequencing 2323 yeaR H1-P4yeaR H1-P4 CACCTGCCGGAATATTCGAACGTCATCTTGATAAAGGAACGCGCCCGGGGATTCCGGGGATCCGTCGACCCACCTGCCGGAATATTCGAACGTCATCTTGATAAAGGAACGCGCCCGGGGATTCCGGGGATCCGTCGACC yeaR 돌연변이유발yeaR mutagenesis 2424 yeaR H2-P1yeaR H2-P1 TCAGCGTAGCCGAGATATTTGACCGCCCCATGCATAACGGAAAGGCGTGGGTGTAGGCTGGAGCTGCTTCGTCAGCGTAGCCGAGATATTTGACCGCCCCATGCATAACGGAAAGGCGTGGGTGTAGGCTGGAGCTGCTTCG yeaR 돌연변이유발yeaR mutagenesis 2525 yeaR IS186 FPyeaR IS186 FP CACCTGCCGGAATATTCGAACACCTGCCGGAATATTCGAA yeaR 돌연변이유발yeaR mutagenesis 2626 yeaR IS186 RPyeaR IS186 RP TCAGCGTAGCCGAGATATTTTCAGCGTAGCCGAGATATTT yeaR 돌연변이유발yeaR mutagenesis 2727 PyhfA/crp H1-P4PyhfA/crpH1-P4 CCTGGGTCATGCTGAAGCGAGACACCAGGAGACACAAAGCGAAAGCTATGATTCCGGGGATCCGTCGACCCCTGGGTCATGCTGAAGCGAGACACCAGGAGACACAAAGCGAAAGCTATGATTCCGGGGATCCGTCGACC PyhfA/crp 돌연변이유발PyhfA/crp mutagenesis 2828 PyhfA/crp H2-P1PyhfA/crpH2-P1 CTTTGCATACATGCAGTACATCAATGTATTACTGTAGCATCCTGACTGTTGTGTAGGCTGGAGCTGCTTCGCTTTGCATACATGCAGTACATCAATGTATTACTGTAGCATCCTGACTGTTGTGTAGGCTGGAGCTGCTTCG PyhfA/crp 돌연변이유발PyhfA/crp mutagenesis 2929 PyhfA/crp IS5 FPPyhfA/crp IS5 FP CCTGGGTCATGCTGAAGCGACCTGGGTCATGCTGAAGCGA PyhfA/crp 돌연변이유발PyhfA/crp mutagenesis 3030 PyhfA/crp IS5 RPPyhfA/crp IS5 RP CTTTGCATACATGCAGTACACTTTGCATACATGCAGTACA PyhfA/crp 돌연변이유발PyhfA/crp mutagenesis 3131 dppA H1-P4dppAH1-P4 CCGTGTTTGAACCGGTACGTAAAGAAGTTAAAGGCTATGTGGTTGATCCAATTCCGGGGATCCGTCGACCCCGTGTTTGAACCGGTACGTAAAGAAGTTAAAGGCTATGTGGTTGATCCAATTCCGGGGATCCGTCGACC dppA 돌연변이유발dppA mutagenesis 3232 dppA H2-P1dppAH2-P1 TTGTATGGCTTTTAATTATTCGATAGAGACGTTTTCGAAGTGATGTTTGCGTGTAGGCTGGAGCTGCTTCGTTGTATGGCTTTTAATTATTCGATAGAGACGTTTTCGAAGTGATGTTTGCGTGTAGGCTGGAGCTGCTTCG dppA 돌연변이유발dppA mutagenesis 3333 dppA IS5 FPdppAIS5FP CCGTGTTTGAACCGGTACGTCCGTGTTTGAACCGGTACGT dppA 돌연변이유발dppA mutagenesis 3434 dppA IS5 RPdppA IS5 RP TTGTATGGCTTTTAATTATTTTGTATGGCTTTTAATTATT dppA 돌연변이유발dppA mutagenesis 3535 dppA IS5 seq FPdppA IS5 seq FP GCCTCTGAACAAGGCTCCAAGCCTCTGAACAAGGCTCCAA dppA 시퀀싱dppA sequencing 3636 dppA IS5 seq RPdppA IS5 seq RP ACAGCGCCACCGGGTATACAACAGCGCCACCGGGTATACA dppA 시퀀싱dppA sequencing 3737 PyhfA/crp IS5 seq FPPyhfA/crp IS5 seq FP TTATCGCCTGAGTTGCCGTCTTATCGCCTGAGTTGCCGTC PyhfA/crp 시퀀싱PyhfA/crp sequencing 3838 PyhfA/crp IS5 seq RPPyhfA/crp IS5 seq RP AACCATTCGAGAGTCGGGTCAACCATTCGAGAGTCGGGTC PyhfA/crp 시퀀싱PyhfA/crp sequencing 3939 yeaR IS186 seq FPyeaR IS186 seq FP CTTCGCTGATATGGTGCTAACTTCGCTGATATGGTGCTAA yeaR 시퀀싱yeaR Sequencing 4040 yeaR IS186 seq RPyeaR IS186 seq RP CTTTCCGTTGTTGCGCACCTCTTTCCGTTGTTGCGCACCT yeaR 시퀀싱yeaR Sequencing 4141

모든 프라이머는 마크로젠(한국)으로부터 구입하였음.All primers were purchased from Macrogen (Korea).

실험예 2. 화학 물질, 효소 및 배양 조건Experimental Example 2. Chemicals, enzymes and culture conditions

달리 명시되지 않는 한, 본 발명에 사용된 시약은 Sigma-Aldrich(미국 미주리주 세인트루이스 소재)에서 구입하였다. 제한 효소 및 Phusion high-Fidelity DNA 중합 효소(Thermo Fischer Scientific) 및 DNA 리가아제(New England Biolabs)를 클로닝 및 유전자 변형에 사용하였다.Unless otherwise specified, reagents used in the present invention were purchased from Sigma-Aldrich (St. Louis, MO, USA). Restriction enzymes and Phusion high-fidelity DNA polymerase (Thermo Fischer Scientific) and DNA ligase (New England Biolabs) were used for cloning and genetic modification.

균주는 LB(Luria-Bertani) 배지(리터당 조성: 5 g의 효모 추출물, 10 g의 펩톤, 및 10 g의 NaCl)에서 배양하였다. 실험실 적응 진화의 경우, M9 최소배지(리터당 조성: 6.78 g의 NaH2PO4, 3 g의 KH2PO4, 0.5 g의 NaCl, 1 g의 NH4Cl, 0.49 g의 MgSO7H2O, 및 0.011 g의 CaCl2)를 사용하였다. 배지에 0.5% Tween-80 및 3 g/L의 노난산을 보충하였다. 균주를 호기성 조건하에 37℃, 200 rpm 조건의 진탕기에서 교반하면서 배양하였다. 항생제는 암피실린(100 mg/L), 카나마이신(50 mg/L), 및 클로람페니콜(30 mg/L)를 사용하였다.The strain was cultured in LB (Luria-Bertani) medium (composition per liter: 5 g of yeast extract, 10 g of peptone, and 10 g of NaCl). For laboratory adaptation evolution, M9 minimal medium (composition per liter: 6.78 g NaH 2 PO 4 , 3 g KH 2 PO 4 , 0.5 g NaCl, 1 g NH 4 Cl, 0.49 g MgSO 4 7H 2 O , and 0.011 g of CaCl 2 ) were used. The medium was supplemented with 0.5% Tween-80 and 3 g/L nonanoic acid. The strain was cultured under aerobic conditions at 37°C and with agitation on a shaker at 200 rpm. Ampicillin (100 mg/L), kanamycin (50 mg/L), and chloramphenicol (30 mg/L) were used as antibiotics.

실험예 3. 실험실 적응 진화Experimental Example 3. Laboratory adaptive evolution

LB 플레이트 상의 fadR 유전자를 결실시킨 MRD 균주의 단일 콜로니를 3 ㎖의 LB broth 배지에 접종하였다. 먼저, 유일 탄소원으로서 3 g/L의 노난산이 보충된 5 ㎖의 새로운 M9 최소배지에서 1:100으로 희석하였다. 하룻밤 동안 배양시킨 MRD 균주의 광학 밀도(OD600)가 2.5에 도달하였을 때, 5 ㎖의 동일한 M9 최소배지에서 1:100으로 희석하여 접종하여 배양하였다. 이 과정을 30회 반복하여 계대배양하였다.A single colony of the MRD strain with the fadR gene deleted on the LB plate was inoculated into 3 ml of LB broth. First, it was diluted 1:100 in 5 ml of fresh M9 minimal medium supplemented with 3 g/L nonanoic acid as the sole carbon source. When the optical density (OD 600 ) of the MRD strain cultured overnight reached 2.5, it was diluted 1:100 in 5 ml of the same M9 minimal medium, inoculated, and cultured. This process was repeated 30 times and subcultured.

상기 계대배양이 끝나고 LB 플레이트에서 배양된 균주의 단일 콜로니를 3 ㎖의 LB broth 배지에 접종하고 37℃ 온도에서 16시간 동안 배양하였다. 상기 균주를 4 g/L의 글루코스가 보충된 5 ㎖의 M9 최소배지에서 1:100으로 희석하여 접종하였다. 24시간 배양 후, 균주를 0.5% Tween-80 및 3 g/L의 노난산이 보충된 25 ㎖의 새로운 M9 최소배지에서 1:25로 희석하여 접종하였다. OD600을 측정하고, OD600이 가장 높은 균주를 "MRE" 균주로 명명하였으며, 이를 추가 연구를 위해 선별하였다.After the subculture, a single colony of the strain cultured on the LB plate was inoculated into 3 ml of LB broth and cultured at 37°C for 16 hours. The strain was diluted 1:100 and inoculated in 5 ml of M9 minimal medium supplemented with 4 g/L of glucose. After culturing for 24 hours, the strain was diluted 1:25 and inoculated in 25 ml of fresh M9 minimal medium supplemented with 0.5% Tween-80 and 3 g/L nonanoic acid. OD 600 was measured, and the strain with the highest OD 600 was named “MRE” strain and selected for further study.

실험예 4. 전체 게놈 시퀀싱Experimental Example 4. Whole genome sequencing

게놈 DNA를 GeneAll DNA 분리 키트(㈜진올바이오테크놀러지, Cat. No. 103-102)를 제조사의 매뉴얼에 따라 MRE 균주로부터 분리하고, Illumina HiSeq 2000 플랫폼에서 차세대 시퀀싱(NGS)(한국 마크로젠)을 사용하여 시퀀싱하였다. 이때, 야생형 대장균 MG1655 균주의 게놈(NCBI 번호 NC_000913.3)을 게놈 어셈블리를 위한 기준으로 사용하였다. 모든 돌연변이는 Sanger DNA 시퀀싱에 의해 확인하였다.Genomic DNA was isolated from MRE strains using the GeneAll DNA Isolation Kit (GeneAll Biotechnology Co., Ltd., Cat. No. 103-102) according to the manufacturer's manual, and next-generation sequencing (NGS) (Macrogen, Korea) was used on an Illumina HiSeq 2000 platform. Sequenced. At this time, the genome of wild-type E. coli strain MG1655 (NCBI number NC_000913.3) was used as a reference for genome assembly. All mutations were confirmed by Sanger DNA sequencing.

실험예 5. 세포 생존 능력 측정Experimental Example 5. Cell viability measurement

LB broth 배지에서 하룻밤 동안 배양시킨 균주를 새로운 M9 최소배지로 2회 세척하였다. 그 후, 8Х107개 세포수가 되도록 3 g/L의 노난산이 보충된 M9 최소배지를 사용하여 96-웰 플레이트에 재분주한 후, 37℃ 및 200 rpm 조건에서 30분 동안 배양하였다. 30분 후, 배양물을 연속적으로 희석하고, LB 한천 플레이트 상에 분주하였다. 37℃ 온도에서 하룻밤 동안 배양시킨 후 개별 콜로니를 계수하였다. 이어서, 콜로니 형성 단위(CFU)를 결정하였다. 모든 처리는 데이터 재현성을 보장하기 위해 3회 반복하여 수행하였다.Strains cultured overnight in LB broth medium were washed twice with new M9 minimal medium. Afterwards, the cells were re-distributed to a 96-well plate using M9 minimal medium supplemented with 3 g/L nonanoic acid to reach 8Х10 7 cells, and then cultured for 30 minutes at 37°C and 200 rpm. After 30 minutes, the culture was serially diluted and plated on LB agar plates. After incubation overnight at 37°C, individual colonies were counted. Colony forming units (CFU) were then determined. All treatments were performed in triplicate to ensure data reproducibility.

실험예 6. RNA 시퀀싱Experimental Example 6. RNA sequencing

4 g/L의 글루코스가 보충된 M9 최소배지에서 하룻밤 동안 배양시킨 균주를 1 g/L의 노난산이 보충된 새로운 M9 최소배지에서 1:25로 희석하여 접종하고, 37℃ 및 200 rpm 조건에서 배양하였다. RNA 샘플은 OD600이 0.5에 도달했을 때 배양물로부터 준비하였다. 균주로부터 RNA를 분리하기 위해, 먼저 RNAprotect® Bacteria Reagent(Qiagen #76506)로 처리하여 RNA를 안정화시켰다. 그 후, rRNA의 제거를 위해, riboPooL Probes(Pan-prokaryote)(siTOOLS BIOTECH)를 사용하였고, RNA Clean & Concentrator(Zymoresearch R1013)를 통해 순수한 RNA를 얻었다. KAPA Stranded RNA-seq Library Preparation Kit(Roche KK8400)를 사용하여 RNA 라이브러리를 구축하고, Nextseq를 시퀀싱에 사용하였다. 시퀀싱 결과 파일을 Bowtie, samtools, cufflinks로 분석하고, metascope로 시각화하였다. 유전자 발현을 log2 배수 변화로 계산하였으며, 여기서 4배 이상(log2 척도에서는 2배)의 유전자 발현 변화가 유의한 것으로 간주되었다. 이때, GO(Gene Ontology) term 분석을 위해, GO Consortium(http://geneontology.org/) 및 PANTHER를 사용하였다.Strains cultured overnight in M9 minimal medium supplemented with 4 g/L glucose were diluted 1:25 and inoculated in new M9 minimal medium supplemented with 1 g/L nonanoic acid, and incubated at 37°C and 200 rpm. Cultured. RNA samples were prepared from cultures when OD 600 reached 0.5. To isolate RNA from the strain, the RNA was first stabilized by treatment with RNAprotect® Bacteria Reagent (Qiagen #76506). Afterwards, to remove rRNA, riboPooL Probes (Pan-prokaryote) (siTOOLS BIOTECH) was used, and pure RNA was obtained through RNA Clean & Concentrator (Zymoresearch R1013). An RNA library was constructed using the KAPA Stranded RNA-seq Library Preparation Kit (Roche KK8400), and Nextseq was used for sequencing. Sequencing result files were analyzed with Bowtie, samtools, and cufflinks, and visualized with metascope. Gene expression was calculated as log2 fold change, where a change in gene expression greater than 4-fold (2-fold in log2 scale) was considered significant. At this time, for GO (Gene Ontology) term analysis, GO Consortium ( http://geneontology.org/ ) and PANTHER were used.

실험예 7. 생물변환(biotransformation)Experimental Example 7. Biotransformation

재조합 균주 또는 MRE 균주의 단일 콜로니를 5 ㎖의 LB broth 배지에 접종하고, 37℃ 및 200 rpm 조건에서 하룻밤 동안 배양하였다. 다음 날, 배양된 균주를 400 ㎖의 LB broth 배지에 접종(1:100)하고, 0.7 내지 0.8의 OD600에서 0.1 mM 농도의 IPTG(isopropyl-β-D-thiogalactopyranoside)를 처리하여 표적 유전자의 발현을 유도하였으며, 30℃ 및 200 rpm 조건에서 16시간 동안 배양하였다.A single colony of the recombinant strain or MRE strain was inoculated into 5 ml of LB broth medium and cultured overnight at 37°C and 200 rpm. The next day, the cultured strain was inoculated (1:100) into 400 ml of LB broth medium and treated with 0.1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) at an OD 600 of 0.7 to 0.8 to induce expression of the target gene. was induced and cultured for 16 hours at 30°C and 200 rpm.

그 후, 상기 균주를 4℃, 2,600Хg 조건에서 15분 동안 원심 분리하고, 0.1 M 인산칼륨 완충액(pH 7.4)에 재현탁시켰다. 상기 균주를 OD600이 35가 될 때까지 농축하여 사용하였다.Afterwards, the strain was centrifuged at 4°C and 2,600Хg for 15 minutes and resuspended in 0.1 M potassium phosphate buffer (pH 7.4). The strain was concentrated and used until OD 600 reached 35.

생물변환은 디메틸 설폭사이드(DMSO) 중에 96%의 노난산 스톡 용액을 1 g/L의 최종 농도가 되도록 10 ㎖의 0.1 M 인산칼륨 완충액(pH 7.4) 및 1 X 필터 살균된 미량 원소 용액(g/L: 2.4 g의 FeCl3·6H2O, 0.3 g의 CoCl2·H2O, 0.15 g의 CuCl2·2H2O, 0.3 g의 ZnCl2, 0.3 g의 Na2MO4·2H2O, 0.075 g의 H3BO3, 및 0.495 g의 MnCl2·4H2O)에 첨가하여 250 ㎖의 진탕 플라스크에서 수행하였다. 보조기질(co-substrate)인 0.4% 글리세롤을 보충하고, 30℃ 및 200 rpm 조건의 진탕기에서 수행하였다. 가스 크로마토그래피(gas chromatography, GC)를 이용한 산물 정량 및 확인을 위해 샘플을 서로 다른 시점에서 수집하였다.Biotransformation was performed by mixing a 96% stock solution of nonanoic acid in dimethyl sulfoxide (DMSO) with 10 mL of 0.1 M potassium phosphate buffer (pH 7.4) and 1 /L: 2.4 g FeCl 3 ·6H 2 O, 0.3 g CoCl 2 ·H 2 O, 0.15 g CuCl 2 ·2H 2 O, 0.3 g ZnCl 2 , 0.3 g Na 2 MO 4 ·2H 2 O , 0.075 g of H 3 BO 3 , and 0.495 g of MnCl 2 ·4H 2 O) in a 250 ml shake flask. 0.4% glycerol, a co-substrate, was supplemented, and the process was performed on a shaker at 30°C and 200 rpm. Samples were collected at different time points for product quantification and confirmation using gas chromatography (GC).

실험예 8. 산물 및 데이터 분석Experimental Example 8. Product and data analysis

노난디오산(nonanedioic acid, NDA)의 정량 및 확인을 위해, 500 ㎕의 상층액을 50 ㎕의 12 N 농도의 HCl과 50 ㎕의 1 g/L농도의 노나데카노에이트(Sigma-Aldrich)에 첨가하였다.For quantification and confirmation of nonanedioic acid (NDA), 500 ㎕ of the supernatant was dissolved in 50 ㎕ of HCl at a concentration of 12 N and 50 ㎕ of nonadecanoate (Sigma-Aldrich) at a concentration of 1 g/L. Added.

그 후, 500 ㎕의 에틸 아세테이트 및 격렬한 볼텍싱를 이용하여 노난디오산을 2회 추출하였다. 원심분리한 후, 500 ㎕의 유기층을 수집하고, 이를 100 ㎕의 MeOH와 50 ㎕의 트리메틸실릴-디아조메탄(Sigma-Aldrich)와 혼합하였다. 불꽃 이온화 검출기(FID)와 DB-5 컬럼(30 mХ0.25mm, Agilent Technologies)이 장착된 가스 크로마토그래피(Agilent 7890A)를 사용하여 노난디오산 메틸 에스테르(NDAME)를 분석하였다.Afterwards, nonanedioic acid was extracted twice using 500 μl of ethyl acetate and vigorous vortexing. After centrifugation, 500 μl of the organic layer was collected and mixed with 100 μl of MeOH and 50 μl of trimethylsilyl-diazomethane (Sigma-Aldrich). Nonanedioic acid methyl ester (NDAME) was analyzed using a gas chromatograph (Agilent 7890A) equipped with a flame ionization detector (FID) and a DB-5 column (30 mХ0.25 mm, Agilent Technologies).

가스 크로마토그래피 분석 시 다음과 같은 조건으로 수행하였다: Gas chromatography analysis was performed under the following conditions:

주입 부피, 2 ㎕; Injection volume, 2 μl;

분할 비가 1:10인 270℃의 주입구; Inlet at 270°C with a split ratio of 1:10;

검출기 온도, 300℃;detector temperature, 300°C;

운반 가스, N2; Carrier gas, N 2 ;

유속, 0.82 ㎖ min-1; Flow rate, 0.82 mL min -1 ;

오븐 온도, 60℃의 초기 온도에서 2분간 유지하고, 이어서 20℃ min-1로 180℃까지 승온하여 2분간 유지하고, 20℃ min-1로 300℃까지 승온하여 6분간 유지함.The oven temperature was maintained at an initial temperature of 60°C for 2 minutes, then raised to 180°C at 20°C min -1 and held for 2 minutes, then raised to 300°C at 20°C min -1 and held for 6 minutes.

표적 화합물의 농도는 검량선(R2 > 0.99)을 사용하여 결정하였다.The concentration of the target compound was determined using a calibration curve (R 2 > 0.99).

실시예 1. Example 1. fadRfadR 유전자가 결실된 대장균(MRD) 균주 제조 및 실험실 적응 진화 Preparation and laboratory adaptation evolution of genetically deleted Escherichia coli (MRD) strains

대장균의 fadR 유전자의 결실은 FadA, FadD, 및 FadE와 같은 관련 효소의 발현을 상향 조절하여 그의 β-산화 경로를 탈억제하는 바, 본 실시예에서는 fadR 유전자가 결실된 대장균인 MRD 균주를 실험실 적응 진화시켜 노난산을 유일 탄소원으로 사용하고 더 빠르게 성장하는 돌연변이체를 얻고자 하였다.Deletion of the fadR gene of E. coli upregulates the expression of related enzymes such as FadA, FadD, and FadE to derepress its β-oxidation pathway. In this example, the MRD strain, which is E. coli with the fadR gene deleted, was laboratory adapted. By evolving it, we wanted to obtain a mutant that uses nonanoic acid as the sole carbon source and grows faster.

구체적으로, MG1655 균주에서 fadR 유전자가 결실된 MRD 균주를 제조하기 위해, lambda-red recombination system와 및 FLP-매개 부위-특이 재조합 시스템(FLP-mediated site-specific recombination system)을 이용하였다. 구체적으로, fadR 유전자와 상동성 서열을 지니고 있는 프라이머(서열번호 1 및 2) 및 주형으로서 pKD13을 이용하여 kan 카세트를 PCR 증폭하였다. lambda Red 재조합 시스템을 이용하여 pSIM5로부터 발현시킨 후, 상동성 재조합을 통해 fadR 유전자를 kan 카세트로 치환하여 결실시켰다. 이후, pCP20를 이용하여 치환된 kan 카세트를 Flp-FRT 재조합으로 제거하였다. Specifically, to produce an MRD strain in which the fadR gene was deleted in the MG1655 strain, the lambda-red recombination system and the FLP-mediated site-specific recombination system were used. Specifically, the kan cassette was PCR amplified using primers (SEQ ID NOs: 1 and 2) having sequences homologous to the fadR gene and pKD13 as a template. After expression from pSIM5 using the lambda Red recombination system, the fadR gene was deleted by replacing it with the kan cassette through homologous recombination. Afterwards, the substituted kan cassette was removed by Flp-FRT recombination using pCP20.

상기 실험예 2 및 실험예 3에 기재된 바와 같이, 3 g/L의 노난산이 보충된 M9 최소배지에서 MRD 균주를 반복적으로 계대 배양함으로써 실험실 적응 진화시켰다. 구체적으로, 30회의 반복적인 계대배양(90일) 후, 10개의 단일 적응 균주(C1 내지 C10)를 무작위로 분리하였다. 상기 분리한 C1 내지 C10 균주를 실험예 5의 방법으로 3 g/L의 노난산에서의 성장 정도를 확인하였다. 이때, 대조군으로서 야생형 대장균(WT) 및 실험실 적응 진화에 적용되지 않은 MRD를 사용하였다.As described in Experimental Examples 2 and 3 above, the MRD strain was repeatedly subcultured in M9 minimal medium supplemented with 3 g/L nonanoic acid to evolve laboratory adaptation. Specifically, after 30 repeated subcultures (90 days), 10 single adapted strains (C1 to C10) were randomly isolated. The degree of growth of the isolated C1 to C10 strains in 3 g/L nonanoic acid was confirmed by the method of Experiment 5. At this time, wild-type E. coli (WT) and MRD that were not subjected to laboratory adaptive evolution were used as controls.

그 결과, 도 1에 나타난 바와 같이, C6(이하 MRE 균주) 균주가 10개의 균주 중에서 가장 빠른 성장을 보였다. MRE 균주는 야생형 대장균 및 MRD 균주에 비해 성장능이 크게 향상되었으며, 특히, 배양 120시간째에 OD600이 2.7에 도달하였다. 또한, 상기 야생형 대장균, MRD 균주 및 MRE 균주에 대해 3 g/L의 노난산에서의 성장 정도를 추가 확인하였다. 그 결과, 도 2에 나타난 바와 같이, 30회의 반복적인 계대배양 후, MRE 균주는 배양 72시간만에 OD600이 1.5에 도달하였다. 반면에, 야생형 대장균과 MRD 균주는 모두 배양 120시간째까지 전혀 성장하지 못하는 것을 확인하였다. 이는 대장균 균주의 성장이 노난산에 의해 저해되었음을 암시한다. As a result, as shown in Figure 1, strain C6 (hereinafter referred to as MRE strain) showed the fastest growth among the 10 strains. The growth performance of the MRE strain was greatly improved compared to the wild-type E. coli and MRD strains, and in particular, OD 600 reached 2.7 at 120 hours of incubation. In addition, the degree of growth in 3 g/L nonanoic acid was further confirmed for the wild-type E. coli, MRD strain, and MRE strain. As a result, as shown in Figure 2, after repeated subculture 30 times, the OD 600 of the MRE strain reached 1.5 in 72 hours of culture. On the other hand, it was confirmed that both wild-type E. coli and MRD strains did not grow at all until 120 hours of culture. This suggests that the growth of the E. coli strain was inhibited by nonanoic acid.

이를 통해, fadR 유전자가 결실된 MRD 균주를 실험실 적응 진화시켜 노난산 존재하에서도 빠르게 성장하는 MRE 균주를 수득하였다.Through this, an MRD strain with a deletion of the fadR gene was adapted and evolved in the laboratory to obtain an MRE strain that grows rapidly even in the presence of nonanoic acid.

실시예 2. MRE 균주의 돌연변이 확인Example 2. Confirmation of mutations in MRE strains

MRE 균주에서 발생한 임의의 돌연변이를 확인하기 위해 차세대 염기서열 분석(Next Generation Sequencing, NGS)를 수행하였다.Next Generation Sequencing (NGS) was performed to confirm any mutations that occurred in the MRE strain.

그 결과, MRE 균주는 MRD 균주와 비교하여 6개의 돌연변이가 발생한 것을 확인하였다. 각 돌연변이의 정보를 하기 표 3에 나타내었다. 모든 돌연변이는 Sanger DNA 시퀀싱을 이용하여 확인하였다.As a result, it was confirmed that six mutations occurred in the MRE strain compared to the MRD strain. Information on each mutation is shown in Table 3 below. All mutations were confirmed using Sanger DNA sequencing.

유전자gene 유전자 산물gene product 서열 변화sequence change aa 단백질 및 뉴클레오타이드 변화Protein and nucleotide changes bb acrRacrR HTH-타입 전사 조절 인자 AcrRHTH-type transcriptional regulator AcrR ΔAΔA 코딩(567/648 nt)Coding (567/648 nt) crp/yhfAcrp/yhfA cAMP-활성화 광역 전사 조절 인자
CRP/OsmC 패밀리 단백질 YhfA
cAMP-activated broad transcriptional regulator
CRP/OsmC family protein YhfA
IS5(-)IS5(-) 비-코딩(-177 nt)/(-126 nt)Non-coding(-177 nt)/(-126 nt)
dppAdppA 주변세포질 디펩타이드 수송 단백질Periplasmic dipeptide transport protein IS5(-)IS5(-) 코딩(1570-1573/1608 nt)Coding (1570-1573/1608 nt) fadDfadD 장쇄 지방산-CoA 리가제Long-chain fatty acid-CoA ligase C→A & G→AC→A & G→A 비-코딩(-111 nt) & (-115 nt)Non-coding (-111 nt) & (-115 nt) icd-icdCicd-icdC e14 프로파지e14 prophage 큰 DELBig DEL (1-15,204/15,204 nt)(1-15,204/15,204 nt) yeaRyeaR 기능이 알려지지 않은 단백질protein of unknown function IS186(-)IS186(-) 코딩(115-120/360 nt)Coding (115-120/360 nt)

DEL, 결실DEL, deletion

a (-), NCBI에서 이용 가능한 MG1655의 서열(NC_000913.3)에 대해 음성됨. a (-), negative for the sequence of MG1655 available at NCBI (NC_000913.3).

b 비-코딩 영역에서의 돌연변이는 인접 유전자들의 시작 코돈(들)의 업스트림에 있는 위치에 의해 주석이 추가됨 b Mutations in non-coding regions are annotated by location upstream of the start codon(s) of adjacent genes

상기 표 3에 나타난 바와 같이, acrR 유전자의 염기서열의 567번째 위치에서의 아데노신(A)이 결실된 것을 확인하였다. 상기 결실은 26개의 후속 아미노산을 53개의 상이한 아미노산으로 변경시켰다.As shown in Table 3, it was confirmed that adenosine (A) was deleted at position 567 of the base sequence of the acrR gene. The deletion changed the 26 subsequent amino acids into 53 different amino acids.

또한, MRE 균주의 CRP-cAMP 조절에서 다음과 같은 2개의 돌연변이가 발생하였다: (1) crpyhfA의 유전자간 영역으로의 IS5의 삽입(Pcrp*); (2) fadD 프로모터의 CRP-cAMP 결합 부위에서의 2개의 뉴클레오타이드 변화(P fadD* ). In addition, two mutations occurred in the CRP-cAMP regulation of the MRE strain: (1) insertion of IS5 into the intergenic region of crp and yhfA (P crp* ); (2) Two nucleotide changes in the CRP-cAMP binding site of the fadD promoter (P fadD* ).

나아가, MRE 균주에서 다음과 같은 2개의 추가의 이동성 요소 삽입 돌연변이가 있었다: (1) 주변세포질 결합 단백질 유전자인 dppA 유전자의 정지 코돈으로부터 위쪽 30번째 위치에서의 IS5 삽입; (2) 주석이 없는(unannotated) 유전자 yeaR의 115번째 뉴클레오타이드에서의 IS186 삽입. 상기 IS5 삽입은 dppABCDF 오페론의 중간에서 발생하여, dppA 프로모터로부터의 그의 전사 개시를 변경시켰다.Furthermore, there were two additional mobile element insertion mutations in the MRE strain: (1) IS5 insertion at position 30 upstream from the stop codon of the dppA gene, a periplasmic binding protein gene; (2) IS186 insertion at the 115th nucleotide of the unannotated gene yeaR . The IS5 insertion occurred in the middle of the dppABCDF operon, altering its transcription initiation from the dppA promoter.

마지막으로, 15.2 kbp의 은닉성 프로파지 요소(cryptic prophage element) e14 프로파지가 MRE 균주에서 결실된 것을 확인하였다.Finally, it was confirmed that the 15.2 kbp cryptic prophage element e14 prophage was deleted in the MRE strain.

실시예 3. 돌연변이에 따른 노난산에서의 성장능 및 노난디오산의 생산능 비교Example 3. Comparison of growth ability and nonanedioic acid production ability in nonanoic acid according to mutation.

실시예 2에서 확인된 돌연변이가 노난산에서의 MRE 균주의 성장에 기여하는지 분석하기 위해, 각각의 단일 돌연변이를 야생형 유전자로 복원시킨 MRE 균주 유래의 재조합 균주를 실험예 5의 방법으로 세포 성장을 분석하였다(도 3a).In order to analyze whether the mutations identified in Example 2 contribute to the growth of the MRE strain in nonanoic acid, the cell growth of the recombinant strain derived from the MRE strain in which each single mutation was restored to the wild-type gene was analyzed by the method of Experimental Example 5. (Figure 3a).

구체적으로, 각각의 단일 돌연변이를 야생형 유전자로 복원시킨 MRE 균주 유래의 재조합 균주를 제조하기 위해, lambda-red 재조합 시스템과 tetA 이중 선별 시스템(doi: 10.1371/journal.pone.0181501 참고)을 이용하였다. 구체적으로, acrR, fadD, dppA, crp, yeaR 유전자의 돌연변이 바깥으로 상동성 서열을 지니고 있는 프라이머 및 주형으로 P3-BCD2-tetA를 이용하여 tetA 카세트를 PCR 증폭하였다. 사용한 각 유전자의 프라이머는 acrR 프라이머(서열번호 13 및 14), fadD 프라이머(서열번호 11 및 12), dppA 프라이머(서열번호 32 및 33), crp 프라이머(서열번호 28 및 29), yeaR 프라이머(서열번호 24 및 25)와 같다. lambda Red 재조합 시스템을 이용하여 pSIM5로부터 발현시킨 후, 상동성 재조합을 통해 상기 돌연변이들을 tetA 카세트로 치환하였다. 이후, lambda Red 재조합 시스템을 이용하여 야생형 서열을 가진 oligo 또는 카세트로 치환하였다. 사용한 각 유전자의 oligo는 acrR oligo(서열번호 16), fadD oligo(서열번호 10)이고 카세트 증폭시키기 위한 프라이머는 dppA 프라이머(서열번호 34 및 35), crp 프라이머(서열번호 30 및 31), yeaR 프라이머(서열번호 26 및 27)와 같다. 야생형로 치환된 대장균은 니켈을 사용하여 선별하였다.Specifically, the lambda-red recombination system and the tetA double selection system (see doi: 10.1371/journal.pone.0181501) were used to prepare a recombinant strain derived from an MRE strain in which each single mutation was restored to the wild-type gene. Specifically, the tetA cassette was PCR amplified using P3-BCD2-tetA as a primer and template containing homologous sequences outside the mutation of the acrR, fadD, dppA, crp, and yeaR genes. The primers for each gene used were acrR primer (SEQ ID NO: 13 and 14) , fadD primer (SEQ ID NO: 11 and 12) , dppA primer (SEQ ID NO: 32 and 33) , crp primer (SEQ ID NO: 28 and 29) , and yeaR primer (SEQ ID NO: Same as numbers 24 and 25). After expression from pSIM5 using the lambda Red recombination system, the mutations were replaced with the tetA cassette through homologous recombination. Afterwards, it was replaced with an oligo or cassette containing the wild-type sequence using the lambda Red recombination system. The oligos for each gene used are acrR oligo (SEQ ID NO: 16) and fadD oligo (SEQ ID NO: 10), and the primers for cassette amplification are dppA primer (SEQ ID NO: 34 and 35) , crp primer (SEQ ID NO: 30 and 31) , and yeaR primer. (SEQ ID NO: 26 and 27). E. coli substituted with wild type was selected using nickel.

그 결과, P fadD* 돌연변이가 노난산에서의 MRE 성장에 중요한 것을 확인하였다. P fadD* 돌연변이가 MRE 균주에서 복원된 MRE-Pf 균주는 노난산에서 최종 OD600이 0.1을 초과하여 성장하지 못했다. 반대로, P fadD* 돌연변이를 MRD 균주에 도입시킨 MRD-Pf 균주는 최종 OD600이 1.0까지 도달하였다. As a result, it was confirmed that the P fadD* mutation is important for MRE growth on nonanoic acid. The MRE-Pf strain, in which the P fadD* mutation was restored from the MRE strain, failed to grow in nonanoic acid with a final OD 600 exceeding 0.1. On the contrary, the MRD-Pf strain in which the P fadD* mutation was introduced into the MRD strain reached a final OD 600 of 1.0.

또한, MRE-a 균주 및 MRE-d 균주의 성장 곡선에 기초하여, acrR 및 dppA 돌연변이도 노난산에서의 MRE 균주의 성장에 기여하는 것을 확인하였다. acrR* 돌연변이가 MRE 균주에서 복원된 MRE-a 균주 및 dppA* 돌연변이가 MRE 균주에서 복원된 MRE-d 균주는 노난산에서 120시간째에 MRE 균주의 성장을 각각 59% 및 82%로 감소시켰다. 독성 내성 및 유리한 막 수송과 같은 다른 요인이 노난산에서의 균주 성장에 유익하다는 것을 확인하였다.In addition, based on the growth curves of the MRE-a strain and the MRE-d strain, it was confirmed that acrR and dppA mutations also contribute to the growth of the MRE strain in nonanoic acid. The acrR* mutation was restored in the MRE strain. The MRE-a strain and the MRE-d strain in which the dppA* mutation was restored from the MRE strain reduced the growth of the MRE strain to 59% and 82%, respectively, at 120 hours in nonanoic acid. Other factors such as toxicity tolerance and favorable membrane transport were found to be beneficial for strain growth in nonanoic acid.

이를 통해, P fadD* 돌연변이가 노난산에서의 균쥬의 성장에 중요한 돌연변이인 한편, 다른 돌연변이들도 MRE 균주의 성장에 부분적으로 기여할 수 있음을 확인하였다.Through this, it was confirmed that the P fadD* mutation is an important mutation for the growth of the strain in nonanoic acid, while other mutations may also partially contribute to the growth of the MRE strain.

한편, MRE 균주의 노난산 독성 내성 관련 돌연변이를 확인하기 위해, MRD 균주에 각각의 단일 돌연변이를 도입시킨 균주를 제조하여 30분간 3 g/L의 노난산에서 배양시킨 후 콜로니 형성 단위(CFU)를 계수하여 세포 생존 능력을 평가하였다(도 3b).Meanwhile, in order to identify mutations related to nonanoic acid toxicity resistance in the MRE strain, strains into which each single mutation was introduced into the MRD strain were prepared, cultured in 3 g/L nonanoic acid for 30 minutes, and then colony forming units (CFU) were measured. Cell viability was assessed by counting (Figure 3b).

구체적으로, 각각의 단일 돌연변이를 도입한 MRD 균주 유래의 재조합 균주를 제조하기 위해, lambda-red 재조합 시스템와 tetA 이중 선별 시스템(doi: 10.1371/journal.pone.0181501 참고)을 이용하였다. 구체적으로, acrR, fadD, dppA, crp, yeaR, e-프로파지의 돌연변이가 일어났던 위치 바깥으로 상동성 서열을 지니고 있는 프라이머 및 주형으로 P3-BCD2-tetA를 이용하여 tetA 카세트를 PCR 증폭하였다. 사용한 각 유전자의 프라이머는 acrR 프라이머(서열번호 13 및 14), fadD 프라이머(서열번호 11 및 12), dppA 프라이머(서열번호 32 및 33), crp 프라이머(서열번호 28 및 29), yeaR 프라이머(서열번호 24 및 25), icd-icdC 프라이머(서열번호 19 및 20)와 같다. lambda Red 재조합 시스템을 이용하여 pSIM5로부터 발현시킨 후, 상동성 재조합을 통해 상기 돌연변이들을 tetA 카세트로 치환하였다. 이후, lambda Red 재조합 시스템을 이용하여 돌연변이 서열을 가진 oligo 또는 카세트로 치환하였다. 사용한 각 유전자의 oligo는 acrR oligo(서열번호 15), fadD oligo(서열번호 9)이고 카세트 증폭시키기 위한 프라이머는 dppA 프라이머(서열번호 34 및 35), crp 프라이머(서열번호 30 및 31), yeaR 프라이머(서열번호 26 및 27)와 같다. 돌연변이로 치환된 대장균은 nickel을 사용하여 선별하였다.Specifically, the lambda-red recombination system and the tetA double selection system (see doi: 10.1371/journal.pone.0181501) were used to prepare recombinant strains derived from MRD strains introducing each single mutation. Specifically, the tetA cassette was PCR amplified using P3-BCD2-tetA as a template and primers with homologous sequences outside the positions where mutations in acrR, fadD, dppA, crp, yeaR, and e-prophage occurred. The primers for each gene used were acrR primer (SEQ ID NO: 13 and 14) , fadD primer (SEQ ID NO: 11 and 12) , dppA primer (SEQ ID NO: 32 and 33) , crp primer (SEQ ID NO: 28 and 29) , and yeaR primer (SEQ ID NO: Nos. 24 and 25), icd-icdC primer (SEQ ID Nos: 19 and 20). After expression from pSIM5 using the lambda Red recombination system, the mutations were replaced with the tetA cassette through homologous recombination. Afterwards, it was replaced with an oligo or cassette containing the mutant sequence using the lambda Red recombination system. The oligos for each gene used are acrR oligo (SEQ ID NO: 15) and fadD oligo (SEQ ID NO: 9), and the primers for cassette amplification are dppA primer (SEQ ID NO: 34 and 35) , crp primer (SEQ ID NO: 30 and 31) , and yeaR primer. (SEQ ID NO: 26 and 27). E. coli substituted by mutations were selected using nickel.

그 결과, 도 3b에 나타난 바와 같이, MRD 균주에 acrR 돌연변이를 도입시킨 MRD-a 균주의 생존율은 MRD 균주에 비해 2.8배 증가하였다. 또한, MRD 균주에 P fadD* 돌연변이를 도입시킨 MRD-Pf 균주는 MRD 균주보다 3.3배 더 높은 생존율을 보였다.As a result, as shown in Figure 3b, the survival rate of the MRD-a strain, which introduced the acrR mutation into the MRD strain, increased 2.8 times compared to the MRD strain. In addition, the MRD-Pf strain, which introduced the P fadD* mutation into the MRD strain, showed a survival rate 3.3 times higher than that of the MRD strain.

또한, MRD 균주의 e14 프로파지를 코딩하는 유전자를 결실시킨 MRD-e 균주는 은닉성 프로파지와 산성 스트레스 또는 과산화수소 스트레스와 같은 스트레스에 대한 균주의 반응과 밀접한 관계로 인해, 약간 증가된 노난산 독성 내성을 나타내었다. Additionally, the MRD-e strain with a deletion of the gene encoding the e14 prophage of the MRD strain showed slightly increased nonanoic acid toxicity, due to the close relationship between secretive prophages and the strain's response to stresses such as acid stress or hydrogen peroxide stress. showed resistance.

이를 통해, 실험실 적응 진화가 지방산 대사를 향상 시킬 뿐만 아니라 노난산에 대한 독성 내성을 획득하도록 진행되었음을 확인하였다.Through this, it was confirmed that laboratory adaptation evolution not only improved fatty acid metabolism but also acquired toxic resistance to nonanoic acid.

실시예 4. MRE 균주를 이용한 노난디오산 생산Example 4. Nonanedioic acid production using MRE strains

MRE 균주를 이용하여 노난산으로부터 노난디오산을 생산하기 위해, β-산화 경로에 의한 노난산 분해를 방지하도록 MRE 균주에서 아실-CoA 탈수소효소 유전자(fadE)를 결실시킨 후에 생물변환하였다. 상기 fadE 유전자가 결실된 균주는 프라이머(서열번호 5 및 6)를 이용하여 실시예 1과 동일한 방법으로 제조하였다. To produce nonanedioic acid from nonanoic acid using the MRE strain, the acyl-CoA dehydrogenase gene ( fadE ) was deleted from the MRE strain to prevent nonanoic acid degradation by the β-oxidation pathway, and then biotransformed. The strain with the fadE gene deleted was prepared in the same manner as Example 1 using primers (SEQ ID NOs: 5 and 6).

또한, P. putida GPo1 유래의 AlkBGT 시스템을 이용하게 위해 alkBGT 유전자를 pBbA6c 플라스미드 상에서 P LlacO-1 프로모터의 제어하에 발현시키고, 이를 fade 유전자가 결실된 MRE 균주 및 MRD 균주에 도입하여 각각 MRE-BGT 균주 및 MRD-BGT 균주를 제조하였다. 노난디오산의 생물변환은 하기 균주들을 사용하여 수행하였다: MRE-BGT, MRD-BGT, 및 MRD-EB(모든 6개의 MRE 돌연변이가 도입된 MRD-BGT). 상기 MRD-EB 균주는 MRE 균주의 acrR*, PfadD*, dppA*, crp*, e-프로파지* 및 yeaR* 돌연변이 유전자를 모두 실시예 3과 동일한 방법으로 도입시켜 제조하였다.In addition, in order to use the AlkBGT system derived from P. putida GPo1, the alkBGT gene was expressed under the control of the P LlacO-1 promoter on the pBbA6c plasmid and introduced into the MRE strain and MRD strain with the fade gene deleted, respectively, producing the MRE-BGT strain. and MRD-BGT strains were prepared. Biotransformation of nonanedioic acid was performed using the following strains: MRE-BGT, MRD-BGT, and MRD-EB (MRD-BGT with all six MRE mutations introduced). The MRD-EB strain was prepared by introducing the acrR*, PfadD*, dppA*, crp*, e-prophage*, and yeaR* mutant genes of the MRE strain in the same manner as in Example 3.

그 결과, 도 4a에 나타난 바와 같이, MRE-BGT 균주는 24시간째에 221 mg/L의 노난디오산을 생산하였으며, 이는 MRD-BGT 균주의 생산량(17.3 mg/L)보다 12.8배 더 높은 것을 확인하였다. 또한, MRD-EB 균주의 노난디오산 생산량은 MRE-BGT 균주와 비슷하였으며, 이로부터 도입된 돌연변이(모든 6개의 MRE 돌연변이)가 균주로 하여금 노난디오산의 생산량을 증가시키는 것을 확인하였다.As a result, as shown in Figure 4a, the MRE-BGT strain produced 221 mg/L of nonanedioic acid at 24 hours, which was 12.8 times higher than the production of the MRD-BGT strain (17.3 mg/L). Confirmed. In addition, the nonanedioic acid production of the MRD-EB strain was similar to that of the MRE-BGT strain, and it was confirmed that the mutations introduced therefrom (all six MRE mutations) increased the production of nonanedioic acid by the strain.

또한, 노난디오산 생산과 관련된 돌연변이를 분석하기 위해, 실시예 3의 MRD 균주 유래 돌연변이 균주의 fade 유전자를 결실시킨 후, 플라스미드 pBbA6c-alkBGT로 형질전환시켰다. 생성된 균주들의 노난디오산 생산량을 비교 분석하였다(도 4b).Additionally, in order to analyze mutations related to nonanedioic acid production, the fade gene of the mutant strain derived from the MRD strain of Example 3 was deleted and then transformed with plasmid pBbA6c- alkBGT . Nonanedioic acid production of the resulting strains was compared and analyzed (Figure 4b).

그 결과, 각각의 단일 돌연변이를 도입시킨 균주(MRD-PcFB, MRD-eFB, MRD-dFB, MRD-PfFB, MRD-aFB 및 MRD-yFB)는 MRD-BGT 균주에 비해 노난디오산 생산량이 모두 유의미하게 증가하였다. 특히, 각각의 단일 돌연변이를 도입시킨 균주들 중에서, P crp* (crp 프로모터 돌연변이) 돌연변이가 도입된 MRD-PcFB 균주의 노난디오산 생산량이 MRE-BGT 균주의 노난디오산 생산량의 68.6% 정도로 크게 증가하였고, 이를 통해, P crp* 돌연변이가 노난디오산 생산에 중요한 것을 확인하였다.As a result, the strains (MRD-PcFB, MRD-eFB, MRD-dFB, MRD-PfFB, MRD-aFB, and MRD-yFB) into which each single mutation was introduced had significantly higher nonanedioic acid production compared to the MRD-BGT strain. increased significantly. In particular, among the strains into which each single mutation was introduced, the nonanedioic acid production of the MRD-PcFB strain into which the P crp* ( crp promoter mutation) mutation was introduced significantly increased to about 68.6% of the nonanedioic acid production of the MRE-BGT strain. Through this, it was confirmed that the P crp* mutation is important for nonanedioic acid production.

<110> UNIST(ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY) <120> TRANSFORMED MICROORGANISM PRODUCING NONANEDIOIC ACID AND A METHOD FOR PRODUCING NONANEDIOIC ACID USING THE SAME <130> FPD/202012-0001 <160> 54 <170> KoPatentIn 3.0 <210> 1 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR del H1 F <400> 1 tctggtatga tgagtccaac tttgttttgc tgtgttatgg aaatctcact gtgtaggctg 60 gagctgcttc 70 <210> 2 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR del H2 R <400> 2 aacaacaaaa aacccctcgt ttgaggggtt tgctctttaa acggaaggga attccgggga 60 tccgtcgacc 70 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR seq F <400> 3 gggcgagttt gtaccagtcg g 21 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR seq R <400> 4 gcgcggcgac cgttcgctg 19 <210> 5 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE del H1 F <400> 5 ccatatcatc acaagtggtc agacctccta caagtaaggg gcttttcgtt gtgtaggctg 60 gagctgcttc 70 <210> 6 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE del H2 R <400> 6 ttacgcggct tcaactttcc gcactttctc cggcaacttt accggcttcg attccgggga 60 tccgtcgacc 70 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE seq F <400> 7 aaaagttagc cagcgtttcc gccgc 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE seq R <400> 8 acgttgggag atgagacgta tcagg 25 <210> 9 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD* MAGE Oligo <400> 9 atattaactc atcataccag cttgataatt acccaacgaa aagtttgtga agcgcgtcac 60 tatttatttt tatctttacc gtaagaatgc 90 <210> 10 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD back <400> 10 atattaactc atcataccag cttgataatt acccaacgaa aaggttgcga agcgcgtcac 60 tatttatttt tatctttacc gtaagaatgc 90 <210> 11 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD* tetA H1P1 F <400> 11 ctgtttctgc attcttacgg taaagataaa aataaatagt gacgcgcttc gtgtaggctg 60 gagctgcttc g 71 <210> 12 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD* tetA H2P4 R <400> 12 taacataata ttaactcatc ataccagctt gataattacc caacgaaaag attccgggga 60 tccgtcgacc 70 <210> 13 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR tetA H1P1 F <400> 13 cggcctgatg gaaaactggc tctttgcccc gcaatctttt gatcttaaaa gtgtaggctg 60 gagctgcttc g 71 <210> 14 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR tetA H2P4 R <400> 14 ggcacaggag atacatctcc agtaagatgg caacgtaatc gcgggcttct attccgggga 60 tccgtcgacc 70 <210> 15 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR* MAGE Oligo <400> 15 gagatacatc tccagtaaga tggcaacgta atcgcgggct tctttttaag atcaaaagat 60 tgcggggcaa agagccagtt ttccatcagg 90 <210> 16 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR back <400> 16 atattaactc atcataccag cttgataatt acccaacgaa aaggttgcga agcgcgtcac 60 tatttatttt tatctttacc gtaagaatgc 90 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR seq F <400> 17 cctgttaggg ctaagctgcc 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR seq R <400> 18 cgccgtgttc tggcataaca 20 <210> 19 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 H1-P4 <400> 19 aaagtaaatc ctggctctat tattctctcc gctgagatga tgctgcgcca attccgggga 60 tccgtcgacc 70 <210> 20 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 H2-P1 <400> 20 cgccttccat acctttaaca atcaggtcag ccgcttcagt ccaacccata gtgtaggctg 60 gagctgcttc g 71 <210> 21 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 MAGE oligo <400> 21 tccatacctt taacaatcag gtcagccgct tcagtccaac ccatatggcg cagcatcatc 60 tcagcggaga gaataataga gccaggattt 90 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 seq F <400> 22 gtaattcccc tgtcttcagg 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 seq R <400> 23 aacaacgggc gtgttatacg 20 <210> 24 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR H1-P4 <400> 24 cacctgccgg aatattcgaa cgtcatcttg ataaaggaac gcgcccgggg attccgggga 60 tccgtcgacc 70 <210> 25 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR H2-P1 <400> 25 tcagcgtagc cgagatattt gaccgcccca tgcataacgg aaaggcgtgg gtgtaggctg 60 gagctgcttc g 71 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR IS186 FP <400> 26 cacctgccgg aatattcgaa 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR IS186 RP <400> 27 tcagcgtagc cgagatattt 20 <210> 28 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp H1-P4 <400> 28 cctgggtcat gctgaagcga gacaccagga gacacaaagc gaaagctatg attccgggga 60 tccgtcgacc 70 <210> 29 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp H2-P1 <400> 29 ctttgcatac atgcagtaca tcaatgtatt actgtagcat cctgactgtt gtgtaggctg 60 gagctgcttc g 71 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 FP <400> 30 cctgggtcat gctgaagcga 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 RP <400> 31 ctttgcatac atgcagtaca 20 <210> 32 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA H1-P4 <400> 32 ccgtgtttga accggtacgt aaagaagtta aaggctatgt ggttgatcca attccgggga 60 tccgtcgacc 70 <210> 33 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA H2-P1 <400> 33 ttgtatggct tttaattatt cgatagagac gttttcgaag tgatgtttgc gtgtaggctg 60 gagctgcttc g 71 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 FP <400> 34 ccgtgtttga accggtacgt 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 RP <400> 35 ttgtatggct tttaattatt 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 seq FP <400> 36 gcctctgaac aaggctccaa 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 seq RP <400> 37 acagcgccac cgggtataca 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 seq FP <400> 38 ttatcgcctg agttgccgtc 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 seq RP <400> 39 aaccattcga gagtcgggtc 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR IS186 seq FP <400> 40 cttcgctgat atggtgctaa 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR IS186 seq RP <400> 41 ctttccgttg ttgcgcacct 20 <210> 42 <211> 648 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for acrR <400> 42 atggcacgaa aaaccaaaca agaagcgcaa gaaacgcgcc aacacatcct cgatgtggct 60 ctacgtcttt tctcacagca gggggtatca tccacctcgc tgggcgagat tgcaaaagca 120 gctggcgtta cgcgcggtgc aatctactgg cattttaaag acaagtcgga tttgttcagt 180 gagatctggg aactgtcaga atccaatatt ggtgaactag agcttgagta tcaggcaaaa 240 ttccctggcg atccactctc agtattaaga gagatattaa ttcatgttct tgaatccacg 300 gtgacagaag aacggcgtcg attattgatg gagattatat tccacaaatg cgaatttgtc 360 ggagaaatgg ctgttgtgca acaggcacaa cgtaatctct gtctggaaag ttatgaccgt 420 atagaacaaa cgttaaaaca ttgtattgaa gcgaaaatgt tgcctgcgga tttaatgacg 480 cgtcgcgcag caattattat gcgcggctat atttccggcc tgatggaaaa ctggctcttt 540 gccccgcaat cttttgatct taaaaaagaa gcccgcgatt acgttgccat cttactggag 600 atgtatctcc tgtgccccac gcttcgtaat cctgccacta acgaataa 648 <210> 43 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for fadD/yeaY intergenic region <400> 43 ttgcttgttt ttaaagaaaa agaaacagcg gctggtccgc tgtttctgca ttcttacggt 60 aaagataaaa ataaatagtg acgcgcttcg caaccttttc gttgggtaat tatcaagctg 120 gtatgatgag ttaatattat gttaacggca tgtatatcat ttggggttgc gatgacgacg 180 aacacgcatt ttagaggtga agaa 204 <210> 44 <211> 1608 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for dppA <400> 44 atgcgtattt ccttgaaaaa gtcagggatg ctgaagcttg gtctcagcct ggtggctatg 60 accgtcgcag caagtgttca ggctaaaact ctggtttatt gctcagaagg atctccggaa 120 gggtttaacc cgcagctgtt tacctccggc accacctatg acgcctcttc cgtcccgctt 180 tataaccgtc tggttgaatt taaaatcggc accaccgaag tgatcccggg cctcgctgaa 240 aagtgggaag tcagcgaaga cggtaaaacc tataccttcc atctgcgtaa aggtgtgaag 300 tggcacgaca ataaagaatt caaaccgacg cgtgaactga acgccgatga tgtggtgttc 360 tcgttcgatc gtcagaaaaa cgcgcaaaac ccgtaccata aagtttctgg cggcagctac 420 gaatacttcg aaggcatggg cttgccagag ctgatcagtg aagtgaaaaa ggtggacgac 480 aacaccgttc agtttgtgct gactcgcccg gaagcgccgt tcctcgctga cctggcaatg 540 gacttcgcct ctattctgtc aaaagaatat gctgatgcga tgatgaaagc cggtacaccg 600 gaaaaactgg acctcaaccc aatcggaacc ggtccgttcc agttacagca gtatcaaaaa 660 gattcccgta tccgctacaa agcgtttgat ggctactggg gcaccaaacc gcagatcgat 720 acgctggttt tctctattac ccctgacgct tccgtgcgtt acgcgaaatt gcagaagaat 780 gaatgccagg tgatgccgta cccgaacccg gcagatatcg ctcgcatgaa gcaggataaa 840 tccatcaatc tgatggaaat gccggggctg aacgtcggtt atctctcgta taacgtgcag 900 aaaaaaccac tcgatgacgt gaaagttcgc caggctctga cctacgcggt gaacaaagac 960 gcgatcatca aagcggttta tcagggcgcg ggcgtatcag cgaaaaacct gatcccgcca 1020 accatgtggg gctataacga cgacgttcag gactacacct acgatcctga aaaagcgaaa 1080 gccttgctga aagaagcggg tctggaaaaa ggtttctcca tcgacctgtg ggcgatgccg 1140 gtacaacgtc cgtataaccc gaacgctcgc cgcatggcgg agatgattca ggcagactgg 1200 gcgaaagtcg gcgtgcaggc caaaattgtc acctacgaat ggggtgagta cctcaagcgt 1260 gcgaaagatg gcgagcacca gacggtaatg atgggctgga ctggcgataa cggggatccg 1320 gataacttct tcgccaccct gttcagctgc gccgcctctg aacaaggctc caactactca 1380 aaatggtgct acaaaccgtt tgaagatctg attcaaccgg cgcgtgctac cgacgaccac 1440 aataaacgcg ttgaactgta caaacaagcg caggtggtga tgcacgatca ggctccggca 1500 ctgatcatcg ctcactccac cgtgtttgaa ccggtacgta aagaagttaa aggctatgtg 1560 gttgatccat taggcaaaca tcacttcgaa aacgtctcta tcgaataa 1608 <210> 45 <211> 301 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for yhfA/crp intergenic region <400> 45 ttttgctact ccactgcgtc aattttcctg acagagtacg cgtactaacc aaatcgcgca 60 acggaaggcg acctgggtca tgctgaagcg agacaccagg agacacaaag cgaaagctat 120 gctaaaacag tcaggatgct acagtaatac attgatgtac tgcatgtatg caaaggacgt 180 cacattaccg tgcagtacag ttgatagccc cttcccaggt agcgggaagc atatttcggc 240 aatccagaga cagcggcgtt atctggctct ggagaaagct tataacagag gataaccgcg 300 c 301 <210> 46 <211> 15204 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for icd-icdC <400> 46 catgggttgg accgaagcgg ctgacttaat tgttaaaggt atggaaggcg caatcaacgc 60 gaaaaccgta acctatgact tcgagcgtct gatggatggc gctaaactgc tgaaatgttc 120 agagtttggt gacgcgatca tcgaaaacat gtaatgccgt agtttgttaa atttattaac 180 gggagcgtaa cgctcccgtt gttttttgtt aggctgctaa cggttatcaa aattttatca 240 aaaaaagtta tcaaaacccc tcggtagttt tggggtaggc tggccggtca ggtggtagtt 300 ctactactag tctcccacat agatattcct tagcttttta ttattgctgg cggacgctcg 360 ttaatattta aggtcttcat tgattaagac atccccaaag ttagttatgt attcactgtt 420 attaggacaa ttatgaatta ccactcctta cacccgctca aatattgtta aattgccggt 480 tttgtatcaa ctactcaccc gggactcgcc aggggacagc caacaggcat tgggtgcaat 540 caccttagcg ttcaggtaca tgcggaatgt aaaaaaggcc gcgagcgcgg ccccttcaca 600 tacatcttta gtactgagac tgtttaacct agggaattat tatcgtatta tattgcatta 660 caactcccaa cagtgacata tgaacttcct gctttactcc acgactttaa tatttcaagg 720 ccatgtgaag aacatatttc ttgcactgcg agttcatcga gtaatccata gtaagaaaca 780 ctttttgaat ttttgtaaat gtatccgtaa agatgttttc ttcctgtttc gtattttttg 840 aagtatgagc ttttatattg atttacaata agagtctcac ctcctgattt tagtaatctc 900 ttgatgctaa gaactatttt gtcgattgta tcccgacaag gaacggcaga gagaacatta 960 gagcaaagga tgaaatcgta acccccaatt attttgtcga catcctcgaa agcaactgta 1020 tttgcatttt tataatatcg tgggacatag tcaataattt tagttttaat tcctctaata 1080 atttgctctc tttcaagttg ccttttcgag tctagaaaag taacttcatc aaatttactg 1140 attaattcat cagaatatct aagttttccg cagccaaaat caagggcgtg gccatttttc 1200 tcaatgcttc taatatactc gcaaagatat ctagagggca tcgtatgagg ttttgctgca 1260 ttctctgagc gaatattaac tccgtgcata ttatagttca aagcaagtac cattcaatta 1320 atgttatttt tagtgaaaaa ttcttttatt ttatcgtccg ggatttttcc gacttgactt 1380 tcagttctgg gcttaactgt caaagcaaag ataataccac tcactgagaa tgataaaatt 1440 acaaaaaaga ataaagacag caaagaacct tcaacatgaa aaatatccat ttgtttgcaa 1500 aaaaagatta ttaggaagga aattaatgca attatcgaaa attcaaaaaa tatccaaaaa 1560 tagtatactt tattccagaa gagttcaata taatgtttgt cttcaatttt tcttacttca 1620 gggtaatata gattgctcat tacattgtga gcttcatctt tatttaattt tctgttgact 1680 ccagctctcc gtgataacgg ttttataatt agatgcttat cccaaagata tcgcacccga 1740 agtagtttgg ctgcattgtt atgtaggtct aacgcaccgc taattaaata tgcaaaaatc 1800 gcaaaagcac aaggtaatat accaaaagat agtgcccaat taataaagct ctcatgatct 1860 ttaataggtg ggacatactt ggttggtaat gttattaaag ggatgtattc gtaaataact 1920 agaagtatgc aatatattag cgtatttaag aaagttgctt tatgaagttt aggcaacatt 1980 tcattataat ttttgggggg ttcgaacata ttattcacct gagtcacgct ttaggatagt 2040 gtaatggtaa tatttaatta agtgtcatta tatacttttc agtaggttag ttacaatttt 2100 ttgtatctgt tcaggctgac ctagcttcgc tgacagacaa tattgtgatc agtagcacgt 2160 atcgaggagg agtagcgcta caaatttgac gctgggtgag aatctgaaat tgatagaaat 2220 gaaataatga aataatgaaa tgatgaaatg atgaaatgat gaaatgatga aatgatgaaa 2280 tgatgacaga gtgtccagtg ggcacggatg gtgtcttacg acatgcttac cttaatcgtt 2340 cccagtgtgc ctatagcaga tattctaaac atgtcgataa ttcattacgc atatagtatc 2400 gaacatagaa aaaactgaag attcatctta ttttgtatat actacctagc ccaacaatgt 2460 agaggttaac gaaaaatgcg ctcaccaatt tgtcatcttt tctcagcaat taattcatca 2520 ccatttaaga ttgcaccaga gaaggagcaa gatcttaaaa cgatagttga cgacaaaaaa 2580 attataattt cagttgtgag tgaacctggt tttaatatcc gagtcaggaa gaatgagagt 2640 aataattcac atgaaatagt tctaacagta gcttcacttg aatatatttg ggcattttcc 2700 aatttctttt gggtttttac gcaagagtac tccaaatctc agaaaaataa tgatgagcac 2760 tttgatttaa caggaaaaaa taggcttaaa aagtctgatg aacttcttaa atgggcaagg 2820 aaaaacttgc aaacaacagg ttgcgaatca tggcctaaaa aatgtcccaa gccagaagca 2880 tatttacaag gaagcgaaga ctcacaagtt gctagcgaga tatttctttg tgctattgct 2940 tggattcttc atcatgaaat aagtcatgtt gttttacagc atccattggt cactacagca 3000 ttctccactc aagaggagcg tgaagcagat tcacatgcta caaaatggat attaggcaac 3060 ctgtatgaat ccgctcctga attaaagaaa cgtgcacttg gcattgctac ggcagtgctt 3120 tgtatacaaa gcttagaagt tgaaaattac ttctgtttac aaaatacaca cccagctgca 3180 tatgagcgta tatattcgaa tatttcatgc taccctgtcg gaaatgaaga gttgattgaa 3240 gctctatgta cagtgatgct tcaatatctt ttccatggca aaaatatcaa tgtgaatcta 3300 gatggggagt ccttttcatc gattttaggt gatcttctct gtgatatttc acgtcttacc 3360 agtaactgat atggctgtcc gccgctcgct taaagtggac tttttagttt ttatcatgtg 3420 cggtgagaaa ttcaatgtgg cgttgagatg cttaaaggtt cacaacgcta ctttgctcca 3480 tcctttacct cgatcatcat gataacgatc ggtttgttgt tgtgttttat gaccaagtag 3540 tttttgtgtg tctaacccct gttctttata cagacgttca gataaagacc tttgctcatg 3600 gaatgtcgca ggtgaaccct ctccccagtc aattcttgct aaatctctcg ctttactaaa 3660 attcatcgtc aatgtattgg ctttaacctg cgctccgcgc tctgcttgtg aagttgaacg 3720 aaaaaaatgc actaagtatg cactgactgc atagtcacgg cagcgggcta ctacatcgcg 3780 taaactccag ttaatcgcat tgaggcgaag agaaagagga attgcgattt tgctcccggt 3840 cttttcctga atgacatgaa gatgatcatc ccaaatatcg ctaaatttca tacgcgaaat 3900 atcacctaac cgctgaccag taaccagcgc taacagcatg gcatttccca tgtaacgatg 3960 agtagcgtct gcgatatcga agattttttt ccattcttca aggctcagcc gttgtcgggt 4020 aatttttctt cttggttgtt tagtggctaa tgctgggtta tagccaggag gtacttctcc 4080 gtagtgctgc gcctctttga aaacatcaat caggacggag cgaactactt gtgccattct 4140 tggccgccca gcggcgatat actcatcaag caattgtgct atatctctga catcaacggc 4200 tgagatcaac ttcattcctg ctcgttctct gagcaaggat actggtttag ctttttgttt 4260 ataggtgttg agtcttatat caccactttt aagcctgtca tcctggatcg cttgatagcg 4320 atctaaccag gttgacgttg tgatagcctt tcctttgctg gttgcgatcc tgtcactgat 4380 agccagaatc tgccgggttc tttgttcagc caggcgagtg ttggcctcag tggcaatagc 4440 gatagcttca gcttcgtttg ttcccaaagc atggaatttt cctgtcactg gatgcttata 4500 ccgccaatag actttattta ccttcctact ataaagcgga tataagttag ggactgaaac 4560 attattctta cgcggtctgg ctgccattac tcaaaatccg ttgcaaaagt aatgagtcat 4620 ttttcttgat tacaggtgtt accaactccc caactaactc ggcgtcctca cgcactcgcc 4680 ataaccggcc ttgtttcatg gccggtggac aaaataaatt ctgcttagca taacgacgca 4740 atgtggacac acttggagga ttacttctgt atttttcagc agcccattct tcaagagtta 4800 acatttgaag catatgcgat caccttatta ctacactaac tgcttagtct cagcatatcg 4860 accctgcacg gtcggttagt ttctccacaa aacagagaag agcacctgtg gccacagcta 4920 tcaggatggg tcgggttatt aacccgtcat ccggggatac tcttctctgt tttgtaaaaa 4980 gggcggtacc agaaaggact aaggaaaaaa ctggtaccgc caagactaca cacagcataa 5040 agttgtggtg tcgggtgccc ccggtgcctg gcgaaggttg cacaccaggc gggtgggtat 5100 ccacagaagg tcgattgtca gcctcaacct taacccgcgt gcgctgagcc gcattcacca 5160 caacgctaag gattctctct ggttgaaaat acttagctgt tatgtgcctg tcttttcacc 5220 acttcaggct cggtggtatg ctggagttct cacacagcca gcaagcaagg aaacttaatg 5280 aaccagtttt atgttcacgt tcgtctattt gaagacacag ccgaacagac caaaaaattt 5340 gaagaattaa tgcttaactt tctgtaccag aaaacagtta aagagtctga cgatagctgc 5400 tgcagactga ttccagaggg atatatcctc aaaagtacaa tgaactgcca acaaatcctt 5460 gatcaaacat tttcaattgc taacagtgcc ggtgttgacg caaatatatt tgtctgtaaa 5520 tttgaacaaa gcgcatgctt acttccgtct gcttccttag ttggtaacga tttcgttcat 5580 tacgatctta cgcctaagcc catcaagctc gattcttaaa gccttaacca ttgtgtcgtg 5640 ataaacacgg ctcaccttct ctccattgca tggcagaggg gtgagtgtgt tagccatgaa 5700 attcatgaac tcggttcgac caggggcttg cgccccgcaa gtctttaatg cctgttttgc 5760 taacaaaatg cgggcctcag tgcctgcatt tggctctatc tgctgcaaac gtttagcgtc 5820 ttccagcaac aatgcgatca catgcttcaa attctgctca ttcatctatt ctctccactg 5880 aaatcatccg ctaacgaatc atcccggtct tcgtacgtac cgggcgggct acttcgtggg 5940 cgtcctgcct gtttgttgtt tctcttgggt acattatgta tctcaaaggt acattgtcaa 6000 gtataaaaaa acctgccgaa gcaggttcat aaacattgat taggctttga ttttgtatct 6060 tcttggtttt cctgagaaaa tcacagtacc aattatagag caattaccgt tgatcttaat 6120 gtaaggctca ggccagtttg ggtttaacgc tttgagataa cgctgtgtcc catcttctat 6180 caaccttttg aaggtggttt cacctgtatc gtgcatcaat gcaataacgt cgtcaccgtg 6240 gcaggcaggt acttcaggat cgacaaaaat catgtctccc gggcggtact catcaatcat 6300 tgaatcacct attacccgca agatataagt catttcccca cagggtacag ggcagggata 6360 cgtttctgct gtgctcaaat caacctcaga atatccaact tctttccatg ctccggcctg 6420 tacccatgat atgacaggga ctaatgtgat ttgtttatta gtgattgaaa catcaggttt 6480 ttttgtgatg ttcgttgtct ggtgttcttg atcgagccat cctacaggca ggtcgaaaca 6540 tttttcgatg tgtcgtgcca tgctgtcacc gatattttta gtagcaccat ctcccataaa 6600 cctgctggtc tgggttggct cgcgatcaat catagtggca aaggaagaat tcccgccaac 6660 accatctctc agttttctgg cgttagaccg ccggatgtca tggattgttt tcataacgaa 6720 attaaaaccc ttgtaccgtt aaggtacaag tatcttgaag gttcatttca atcatgtaat 6780 atgtacaccg gaggtacata ttgtatgaaa gcgtattggg actctttaac caaagaacag 6840 cagggcgagt tggccggaaa agttggctca acacctggct acttacggct ggttttcaat 6900 ggctataaaa aagccagttt tgtgctggct aaaaaacttg agcaatacac atcaggtgca 6960 attacgaaat ctgacttaag accggatatc tatccgaaag attagcagaa cactttcaat 7020 ttttaaccac agaacgatga ggctaatcgt gggtaagcat cactggaaaa tagaaaaaca 7080 gcctgagtgg tacgtgaaag ctgtcagaaa aactatcgcg gcgttgccga gtggttacgc 7140 tgaagcggct gactggctcg atgtaacaga aaacgcttta ttcaaccgcc ttcgtgcaga 7200 tggcgatcag attttcccgc tgggatgggc aatggtttta cagcgtgctg gtggcactca 7260 cttcattgct gatgctgtgg cgcagtctgc aaatggcgtc tttgtgtctc ttcctgacgt 7320 cgaggatgtg gacaacgccg atattaacca gcgtctgctg gaagtcattg aacagatcgg 7380 cagttattca aaacagattc gttcagcaat cgaagacggt gtagtggaac cgcatgagaa 7440 gacagcaatt aacgacgagc tgtatctctc aatttcgaag ctgcaggagc atgcagcact 7500 tgtctacaaa attttttgca tttcagaaag taatgacgcc cgcgagtgtg cagctccggg 7560 cgtcgtggcg tcgattgctt ctggttgtgg agaaactaac gcatgaacag tttaacaaca 7620 cactaccgtc gctcgcaact gattgcgctt cctgtaccgg gtggaaaagc gaaggtggaa 7680 tattgctatg cagtgaatgt accaggtgac agggaaattg taacccacag ctttgcagag 7740 tgggctgtgg gtgatttcaa ccggcagaag gagacagtcc tttgcgacaa gttaaccgct 7800 ggttcaaaga tcactacgga gtgcccgtca gagtcattcg ttgggagccg gaaacacaac 7860 gggttatcta cctccgcgaa ggttatgagc atgaatgctt cagcccgctc gaacagtttc 7920 gtcgtaaatt cagggaaata gaggtcggtc atgagcacta aattaaccgg ctatgtatgg 7980 gatggttgcg ctgcatcagg catgaagtta tccagcgtgg caattatggc ccgcctggct 8040 gatttcagta atgacgaagg tgtgtgctgg ccatcaattg aaaccattgc ccgtcagatt 8100 ggcgcgggga tgagtaccgt cagaacggct atcgcacggc tggaagcaga aggctggtta 8160 acgcgtaagg cgcgtcgcca gggtgatggt tcatcacccc actgtgccgt ggtggatgaa 8220 tatcacgagc acgccacaga tgcgctttac accacgatgc ttaccgggat gggggcgcga 8280 cgccagccac tgatgtgggc cattaccacc gccgggtaca acattgaggg gccgtgctac 8340 gacaaacggc gggaagtcat cgagatgctc aacggctcgg tgccaaacga tgaactgttc 8400 gggatcatct ataccgttga tgaaggtgac gactggaccg acccgcaggt gctggaaaaa 8460 gccaatccaa atattggcgt gtcggtttat cgcgaatttt tgttaagtca gcagcagcgt 8520 gcgaaaaata acgcccgtct ggcaaacgtc tttaaaacaa aacacctcaa tatctgggcg 8580 tcggcgcgtt cggcgtattt caacctggtg agctggcaga gctgcgagga taaatcactg 8640 acccttgagc agttcgaggg gcagccgtgc attctggcct ttgacctggc gcgtaagctg 8700 gatatgaaca gcatggcgcg actttatacc cgcgagattg acggtaaaac gcattactac 8760 agtgtggccc cgcgtttctg ggtaccgtat gacacggtgt acagcgtcga gaaaaatgaa 8820 gatcgccgga cagccgaacg ctttcagaaa tgggtggaaa tgggcgttct gaccgttacc 8880 gatggtgcgg aggtggatta tcgctacatc ctcgaagagg ccaaagcggc gaacaaaatc 8940 agcccggtca gtgagtcacc catcgacccc ttcggggcga ccgggctgtc acatgacctt 9000 gctgatgaag acctgaaccc cgtcaccatc attcagaact acaccaacat gtccgatccg 9060 atgaaagagc tggaagcggc gattgaatcg gggcgctttc atcatgacgg caatcccatc 9120 atgacctggt gtatcggcaa cgtggtcggc aaaaccattc cgggtaacga tgatgtggtg 9180 aagcccgtca aggagcaggc ggaaaacaaa atcgatggtg cagttgcgct gattatggcg 9240 gttggcagag ccatgctgta cgagaaagaa gacacgctgt ctgatcacat tgagtcctac 9300 gggatccgct cgctttaact gaggtaatta tgatcatgct gattctcgcg cctctggtgg 9360 gcgtgctggg tgcgcttttg ctggcgtatg gtgcctggct gatttatccc ccggcgggtt 9420 ttgttgttgc cggggcgctg tgcctgttct ggtcgtggct ggtggcgcga tatctcgacc 9480 gtacacagtc gtctgtcggc ggaggtaaat agtgttcttt tcgggattat ttcaacgaaa 9540 aagtgacgca ccggtgacca cgccagcaga gctggcggat gccatcgggc tgtcgtatga 9600 cacctatacc ggaaagcaga tcagcagtca gcgggctatg cgactgacgg cggttttttc 9660 ctgcgtcaga gtgctggcag agtcggtcgg gatgttgccc tgcaatctgt atcacctgaa 9720 cggcagcctg aagcagagag ccaccggcga acgtctgcat aaactgatct ccacgcatcc 9780 caatggctat atgacgccgc aggagttctg ggagctggtg gtcacctgtc tgtgcctgag 9840 gggaaacttt tacgcctaca aagtgaaagc atttggcgaa gtggctgaac tgctgcccgt 9900 cgatcccggc tgtgtggtat atgcgctggg aaggtgtcag cgatggcctg aaggtgaccg 9960 ccgggagtgt tattcagcgc gatgacctgg tgcagtacac gacaactgac gatgcaacca 10020 gctccggtgg tgtcctgcgc gtgccgatcg cctgctcaag tgcaggtgcg gtcggtaacg 10080 ctgacgacgg tacggcatta atcctggtca cgccggtgaa tggtctgccg tcttccggtg 10140 tggctgacac cctgacaggc ggatttgata ctgaagagct ggaaacgtgg cgcgcccgcg 10200 tcattgagcg gtattactgg acgccgcagg gcggggctga cggggactat gtcgtctggg 10260 ctaaagaagt gcccggcatt acccgcgcat ggacataccg tcacttgatg ggaacgggaa 10320 ctgtcggtgt gatgattgcc agcagtgacc tgattaatcc cattccggaa gaatcaacgg 10380 aaacggcggc aagacaacat atcgggccac tggccccggt ggcaggctct gatttgtatg 10440 tgttcaggcc ggtggcacat acggtggatt ttcatatccg cgtgacgccg gacacaccag 10500 aaatacgggc tgccattacc gcggagttgc gttcgttcct gctgcgtgat ggttatccgc 10560 agggagaact caaggtatcg cgtatcagtg aggcgatttc cggtgcgaac ggggaataca 10620 gccatcagtt gcttgcaccg gtggacaata tctccattgc gaaaaacgaa ctggcggtac 10680 tggggacgat ttcatggacg tgacaaacga tgattacatc cgcctgttat cggcactgtt 10740 gccgcccggt ccggtgtggt cagccagcga tccggcgatt gccggtgcgg caccgtcatt 10800 aacccgtgtt catcagcgtg cggatgccct gatgcgggag ctggatccgc gcaccaccac 10860 tgaactgata aaccgctggg agcgtctgtg cggtctgccg gatgaatgta ttccggcggg 10920 aacgcagacc cttcgccagc gtcagcaacg gctggatgcg aaggttaacc tggcgggcgg 10980 catcaacgag gatttttatc ttgcacagct tgctgccctg ggcagaccag atgccaccat 11040 cacgcgatac gacaaaagca ctttcacctg ctcatcggcc tgtactgacg cggtgaatgc 11100 gccggaatgg cggtattact ggcaggtcaa catgccagcc accaccaact ccacctggat 11160 gacatgtggc gatccctgtg attccgcact gcgtatctgg ggtgacaccg ttgtcgagtg 11220 tgtgcttaac aaactctgcc cgtcgcatac ctacgtaatt tttaaatatc cggagtaatc 11280 catgcatcgt atagacacga aaaccgcgca gaaggataag ttcggcgcgg gtaagaacgg 11340 ttttacccgt ggtaaccccc agaccggcac gcctgccacc gatctggatg atgactactt 11400 tgacatgttg caggaggaac tttgcagcgt ggtggaggca tccggtgcca gcctggagaa 11460 ggggcggcac gaccagttac ttaccgcact tcgcgcgctg ctgttaagcc gcaagaatcc 11520 gtttggcgat atcaaatcgg atggcactgt gcaaacggct ctcgaaaacc ttggtttggg 11580 agaaggagca aaactcaatg cagcaacggc tacattagga cgcaccggtt tcatagctat 11640 accggttatg attggtggta ttgagcaatc agtaatcatt cagtgggggt ggaatgccgc 11700 aaaagcatct gcctctgggg gggatggaaa tacagttgta ttcccggttg cgtttaataa 11760 tgcctgtgtt gccgttgttg caaattatga caatgtcagc gcacctatca atgcagtggc 11820 aacgggggga tatacaacca cttcgttttt attacggtgc gcagctcaaa cgggtagtta 11880 ttactataac tggattgcta ttgggtatta agatgaaaat atactgttgc ttaaataccg 11940 ttggtttttt tatggatggc tgtggcgtca ttccgccaga ttctaaagaa ataacggcag 12000 aacactggca gtcattatta aaatctcaag ctgaaggagg cgtgatcgat ttttctgttt 12060 ttcctccttc tattaaagag gttatccgta ctcatgatga tgaagtcgca gatgcgaact 12120 ttcaaaagca gatgcttatc tctgatgcaa ctgattttat caatagcaga cagtggcagg 12180 gtaaggctgc attgggaaga cttaaagaag atgagctgaa acaatataat ttgtggctgg 12240 attatctgga agcactggaa ctggttgata catccagtgc gccagatatt gaatggccta 12300 cgcctccggc agttcaggcc agatgacatc cggcgcggtg ctggtatctg ttgccgtcac 12360 cgcgtcaatg taatccagca cagcgttaag tctggttgtt tctgcctgcg tcagtttacg 12420 tccggcctgc aatttcagtt gaatcagact aatggaagcc attgcagcat caatcagtga 12480 ctggcgctgt gcttctgccg cgtctactgc ggcgctatgc tgtgcttcag tatcggtcac 12540 ccatttctca ccatcccatt tatcgtatgg agataaaggg gcgatagtgg ttgtattttc 12600 agggtaatca cccggagctt tgatttcttt tgattctcca gttttggtgc tatagaccgt 12660 ttcaccgcga tggtctggca catattccca tgagttaaaa tctgcagaac ggcagattgc 12720 ataaccagcc ttatgtgtac caggggcatc taaacaggaa catgccggaa tgccgacacc 12780 aacggcaaga tattcatttg aagtggaaat atattcccgt gtttcaccat cgtagttata 12840 aacggtaaca tcccctgcct ttgttgcaat aaggtcacta tttaatattg ctttatgcat 12900 caggctgccc tcacgatata gttaaatgca atattacgcg gacgcgtttc tgaggctgcg 12960 gcacctaaac catccactga ttgtttatat gttttaaagg ttccataatc cggggctggt 13020 aatccggcat cgtttgtgtt tcctcttttg ataatgtcag tgccactatt tacccatatt 13080 tcatcaaaat agaaattaat cgttgcatca gtcacaatcg tggatcttga cggtaatcca 13140 tgagcatgat cctccgttgc atacccctga atacttaaaa tagagcgacc tgtatcaatc 13200 ccccgcccgt catcccagcc acgaataaac tcaccacgta aatcaggcaa tttatttgtc 13260 ggataagcct ttgccagttc cgggtattct tcagcagaaa aagcggcacc attgcatttc 13320 agccagcctg ttggcggagt ggctgaaggc cacggaaccg ggacaccaac aggtaatgca 13380 gagccttctc ccaaaccaac gtttatgaaa atgaagaaat aacaagcaaa tggcatcatt 13440 cctgctttta ccagggggat ttaacatgct tattggctat gtacgcgtat caacaaatga 13500 ccagaacaca gatctacaac gtaatgcgct gaactgtgca ggatgcgagc tgatttttga 13560 agacaagata agcggcacaa agtccgaaag gccgggactg aaaaaactgc tcaggacatt 13620 atcggcaggt gacactctgg ttgtctggaa gctggatcgg ctggggcgta gtatgcggca 13680 tcttgtcgtg ctggtggagg agttgcgcga acgaggcatc aactttcgta gtctgacgga 13740 ttcaattgat accagcacac caatgggacg ctttttcttt catgtgatgg gtgccctggc 13800 tgaaatggag cgtgaactga ttgttgaacg aacaaaagct ggactggaaa ctgctcgtgc 13860 acagggacga attggtggac gtcgtcccaa acttacacca gaacaatggg cacaagctgg 13920 acgattaatt gcagcaggaa ctcctcgcca gaaggtggcg attatctatg atgttggtgt 13980 gtcaactttg tataagaggt ttcctgcagg ggataaataa agttaaagac actttgtgta 14040 caaaagaaag taaaacaaca gcaacttgtt gcaattttat caataaaagt agtattgtcg 14100 tgaaaaattg attaaagatt aatattatgc atgtttttga taataatgga attgaactga 14160 aagctgagtg ttcgataggt gaagaggatg gtgtttatgg tctaatcctt gagtcgtggg 14220 ggccgggtga cagaaacaaa gattacaata tcgctcttga ttatatcatt gaacggttgg 14280 ttgattctgg tgtatcccaa gtcgtagtat atctggcgtc atcatcagtc agaaaacata 14340 tgcattcttt ggatgaaaga aaaatccatc ctggtgaata ttttactttg attggtaata 14400 gcccccgcga tatacgcttg aagatgtgtg gttatcaggc ttattttagt cgtacgggga 14460 gaaaggaaat tccttccggc aatagaacga aacgaatatt gataaatgtt ccaggtattt 14520 atagtgacag tttttgggcg tctataatac gtggagaact atcagagctt tcacagccta 14580 cagatgatga atcgcttctg aatatgaggg ttagtaaatt aattaagaaa acgttgagtc 14640 aacccgaggg ctccaggaaa ccagttgagg tagaaagact acaaaaagtt tatgtccgag 14700 acccgatggt aaaagcttgg attttacagc aaagtaaagg tatatgtgaa aactgtggta 14760 aaaatgctcc gttttattta aatgatggaa acccatattt ggaagtacat catgtaattc 14820 ccctgtcttc aggtggtgct gatacaacag ataactgtgt tgccctttgt ccgaattgcc 14880 atagagaatt gcactatagt aaaaatgcaa aagaactaat cgagatgctt tacgttaata 14940 taaaccgatt acagaaataa aattatttat taaagtcaca tttaagacgt aataccctac 15000 agggtaaaaa ttttctctga tcttaacttc tgcaaatgtt aactgctatt tttatgctaa 15060 aaatggttat caaaactcaa aaacacatgt ttataatcaa tgagttatag aaatgctaag 15120 ggctaatgag ttatatgcaa attagtaaaa ttatgttgct atgtcagata gttacgattt 15180 agtcatctaa ctaatgctgc gcca 15204 <210> 47 <211> 360 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for yeaR <400> 47 atgcttcaaa tcccacagaa ttatattcat acgcgctcaa cgcctttctg gaataaacaa 60 actgcacctg ccggaatatt cgaacgtcat cttgataaag gaacgcgccc gggggtttac 120 ccacgccttt ccgttatgca tggggcggtc aaatatctcg gctacgctga tgaacacagt 180 gcagagcctg atcaggtgat ccttatcgaa gcggggcagt ttgcggtgtt ccctccagaa 240 aagtggcaca acattgaagc catgactgac gatacttatt tcaacattga cttcttcgtg 300 gctcctgaag tcctgatgga aggtgcgcaa caacggaaag tcattcataa cgggaaatga 360 360 <210> 48 <211> 1206 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for alkB <400> 48 atgctggaaa aacatcgtgt cctggatagt gccccggaat acgtggataa aaagaaatac 60 ctgtggattc tgtctacgct gtggccggcg accccgatga ttggcatctg gctggccaac 120 gaaacgggct ggggtatctt ttatggcctg gtgctgctgg tttggtacgg tgcactgccg 180 ctgctggacg caatgtttgg tgaagatttc aacaatccgc cggaagaagt ggttccgaaa 240 ctggaaaagg aacgttatta ccgcgtcctg acctatctga cggtgccgat gcattacgcg 300 gccctgattg tttccgcatg gtgggtcggc acccagccga tgtcatggct ggaaattggt 360 gcactggctc tgtcgctggg catcgtgaac ggtctggccc tgaataccgg ccatgaactg 420 ggtcacaaaa aggaaacgtt cgatcgctgg atggcaaaaa ttgttctggc tgtcgtgggc 480 tatggtcatt tctttatcga acacaacaag ggccatcacc gtgacgtcgc aaccccgatg 540 gatccggcta cgagccgtat gggtgaatct atctacaagt tcagtatccg tgaaatcccg 600 ggtgcattta tccgtgcatg gggtctggaa gaacagcgtc tgtctcgtcg cggccaaagc 660 gtgtggtctt ttgacaatga aattctgcaa ccgatgatta tcaccgtgat cctgtatgca 720 gttctgctgg ctctgtttgg cccgaaaatg ctggttttcc tgccgattca gatggcattt 780 ggttggtggc aactgacgag cgctaactat atcgaacatt acggcctgct gcgtcagaaa 840 atggaagatg gtcgctacga acatcaaaag ccgcatcaca gttggaactc caatcacatt 900 gtcagcaatc tggtgctgtt ccatctgcaa cgtcactctg accatcacgc acacccgacc 960 cgttcatatc aatcgctgcg tgattttccg ggtctgccgg cactgccgac gggctacccg 1020 ggtgcgttcc tgatggccat gatcccgcag tggtttcgca gtgttatgga tccgaaagtt 1080 gtcgactggg cgggcggtga tctgaataag attcaaatcg atgacagcat gcgtgaaacc 1140 tatctgaaaa agtttggcac ctcatcggcg ggtcattcat caagcacctc ggcagtggcg 1200 tcgtaa 1206 <210> 49 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for alkG <400> 49 atggcatcct ataagtgtcc ggactgtaac tatgtctatg atgaatctgc gggcaatgtg 60 catgaaggct tttcgccggg tacgccgtgg catctgattc cggaagattg gtgctgtccg 120 gactgcgcag tgcgtgataa actggacttt atgctgatcg aatctggcgt cggtgaaaag 180 ggcgtgacca gcacgcacac ctcaccgaac ctgagcgaag tttctggtac gagtctgacc 240 gcggaagcag tggttgcacc gacgtcgctg gaaaaactgc cgagcgctga tgtcaaaggc 300 caggacctgt ataagaccca accgccgcgt tccgatgcac agggcggtaa agcgtatctg 360 aagtggattt gcatcacctg tggccatatt tacgatgaag cgctgggtga cgaagccgaa 420 ggctttacgc cgggcacccg tttcgaagat attccggatg actggtgctg cccggattgt 480 ggtgcgacga aagaagatta tgtcctgtat gaagaaaagt aa 522 <210> 50 <211> 1158 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for alkT <400> 50 atggctatcg ttgtggttgg tgctggtacg gctggcgtca atgcggcgtt ttggctgcgt 60 caatacggct ataaaggtga aattcgtatt tttagccgtg aaagcgtggc accgtatcaa 120 cgcccgccgc tgagcaaagc cttcctgacc agcgaaatcg ctgaatctgc ggtgccgctg 180 aagccggaag gtttttacac caacaataac attacgatca gtctgaatac cccgattgtc 240 tccatcgatg tgggtcgtaa aattgttagc tctaaagacg gcaaggaata tgcatacgaa 300 aagctgatcc tggctacccc ggctagtgca cgtcgcctga cgtgcgaagg tagtgaactg 360 tccggcgttt gttatctgcg ttctatggaa gatgcaaaaa atctgcgtcg caagctggtc 420 gaatcagctt cggtggttgt cctgggcggt ggcgtgattg gcctggaagt tgcaagcgcg 480 gccgtcggtc tgggtaaacg tgtgacggtt atcgaagcaa ccccgcgtgt catggctcgc 540 gtggttaccc cggcagctgc gaacctggtg cgtgcacgcc tggaagcaga aggtatcgaa 600 tttaaactga acgcaaagct gacgagcatc aaaggtcgca acggccatgt tgaacagtgc 660 gtcctggaat ctggcgaaga aattcaagcc gatctgatcg tcgtgggtat tggcgcgatc 720 ccggaactgg aactggccac cgaagccgca ctggaagttt ccaacggtgt tgtcgtggat 780 gaccagatgt gcacctcaga tacgtcgatt tacgcgatcg gtgactgtgc gatggcgcgt 840 aatccgttct ggggcacgat ggtgcgcctg gaaaccattc ataacgctgt gacgcacgcg 900 cagattgttg ccagttccat ctgtggcacc agcacgccgg caccgacccc gccgcgtttt 960 tggtcggacc tgaagggtat ggcactgcaa ggtctgggtg cactgaaaga ttatgacaag 1020 ctggttgtcg ccattaataa cgaaaccctg gaactggaag tgctggcata caaacaggaa 1080 cgcctgatcg ctacggaaac catcaatctg ccgaagcgtc aaggtgccct ggcgggttca 1140 atcaaactgc cggactaa 1158 <210> 51 <211> 2807 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for dppA(mutation) <400> 51 atgcgtattt ccttgaaaaa gtcagggatg ctgaagcttg gtctcagcct ggtggctatg 60 accgtcgcag caagtgttca ggctaaaact ctggtttatt gctcagaagg atctccggaa 120 gggtttaacc cgcagctgtt tacctccggc accacctatg acgcctcttc cgtcccgctt 180 tataaccgtc tggttgaatt taaaatcggc accaccgaag tgatcccggg cctcgctgaa 240 aagtgggaag tcagcgaaga cggtaaaacc tataccttcc atctgcgtaa aggtgtgaag 300 tggcacgaca ataaagaatt caaaccgacg cgtgaactga acgccgatga tgtggtgttc 360 tcgttcgatc gtcagaaaaa cgcgcaaaac ccgtaccata aagtttctgg cggcagctac 420 gaatacttcg aaggcatggg cttgccagag ctgatcagtg aagtgaaaaa ggtggacgac 480 aacaccgttc agtttgtgct gactcgcccg gaagcgccgt tcctcgctga cctggcaatg 540 gacttcgcct ctattctgtc aaaagaatat gctgatgcga tgatgaaagc cggtacaccg 600 gaaaaactgg acctcaaccc aatcggaacc ggtccgttcc agttacagca gtatcaaaaa 660 gattcccgta tccgctacaa agcgtttgat ggctactggg gcaccaaacc gcagatcgat 720 acgctggttt tctctattac ccctgacgct tccgtgcgtt acgcgaaatt gcagaagaat 780 gaatgccagg tgatgccgta cccgaacccg gcagatatcg ctcgcatgaa gcaggataaa 840 tccatcaatc tgatggaaat gccggggctg aacgtcggtt atctctcgta taacgtgcag 900 aaaaaaccac tcgatgacgt gaaagttcgc caggctctga cctacgcggt gaacaaagac 960 gcgatcatca aagcggttta tcagggcgcg ggcgtatcag cgaaaaacct gatcccgcca 1020 accatgtggg gctataacga cgacgttcag gactacacct acgatcctga aaaagcgaaa 1080 gccttgctga aagaagcggg tctggaaaaa ggtttctcca tcgacctgtg ggcgatgccg 1140 gtacaacgtc cgtataaccc gaacgctcgc cgcatggcgg agatgattca ggcagactgg 1200 gcgaaagtcg gcgtgcaggc caaaattgtc acctacgaat ggggtgagta cctcaagcgt 1260 gcgaaagatg gcgagcacca gacggtaatg atgggctgga ctggcgataa cggggatccg 1320 gataacttct tcgccaccct gttcagctgc gccgcctctg aacaaggctc caactactca 1380 aaatggtgct acaaaccgtt tgaagatctg attcaaccgg cgcgtgctac cgacgaccac 1440 aataaacgcg ttgaactgta caaacaagcg caggtggtga tgcacgatca ggctccggca 1500 ctgatcatcg ctcactccac cgtgtttgaa ccggtacgta aagaagttaa aggctatgtg 1560 gttgatccat tagggaaggt gcgaataagc ggggaaattc ttctcggctg actcagtcat 1620 ttcatttctt catgtttgag ccgatttttt ctcccgtaaa tgccttgaat cagcctattt 1680 agaccgtttc ttcgccattt aaggcgttat ccccagtttt tagtgagatc tctcccactg 1740 acgtatcatt tggtccgccc gaaacaggtt ggccagcgtg aataacatcg ccagttggtt 1800 atcgtttttc agcaacccct tgtatctggc tttcacgaag ccgaactgtc gcttgatgat 1860 gcgaaatggg tgctccaccc tggcccggat gctggctttc atgtattcga tgttgatggc 1920 cgttttgttc ttgcgtggat gctgtttcaa ggttcttacc ttgccggggc gctcggcgat 1980 cagccagtcc acatccacct cggccagctc ctcgcgctgt ggcgcccctt ggtagccggc 2040 atcggctgag acaaattgct cctctccatg cagcagatta cccagctgat tgaggtcatg 2100 ctcgttggcc gcggtggtga ccaggctgtg ggtcaggcca ctcttggcat cgacaccaat 2160 gtgggccttc atgccaaagt gccactgatt gcctttcttg gtctgatgca tctccggatc 2220 gcgttgctgc tctttgttct tggtcgagct gggtgcctca atgatggtgg catcgaccaa 2280 ggtgccttga gtcatcatga cgcctgcttc ggccagccag cgattgatgg tcttgaacaa 2340 ttggcgggcc agttgatgct gctccagcag gtggcggaaa ttcatgatgg tggtgcggtc 2400 cggcaaggcg ctatccaggg ataaccgggc aaacagacgc atggaggcga tttcgtacag 2460 agcatcttcc atcgcgccat cgctcaggtt gtaccaatgc tgcatgcagt gaatgcgtag 2520 catggtttcc agcggataag gtcgccggcc attaccagcc ttggggtaaa acggctcgat 2580 gacttccacc atgttttgcc atggcagaat ctgctccatg cgggacaaga aaatctcttt 2640 tctggtctga cggcgcttac tgctgaattc actgtcggcg aaggtaagtt gatgactcat 2700 gatgaaccct gttctatggc tccagatgac aaacatgatc tcatatcagg gacttgttcg 2760 caccttcctt aggcaaacat cacttcgaaa acgtctctat cgaataa 2807 <210> 52 <211> 1195 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for IS5 <400> 52 ggaaggtgcg aacaagtccc tgatatgaga tcatgtttgt catctggagc catagaacag 60 ggttcatcat gagtcatcaa cttaccttcg ccgacagtga attcagcagt aagcgccgtc 120 agaccagaaa agagattttc ttgtcccgca tggagcagat tctgccatgg caaaacatgg 180 tggaagtcat cgagccgttt taccccaagg ctggtaatgg ccggcgacct tatccgctgg 240 aaaccatgct acgcattcac tgcatgcagc attggtacaa cctgagcgat ggcgcgatgg 300 aagatgctct gtacgaaatc gcctccatgc gtctgtttgc ccggttatcc ctggatagcg 360 ccttgccgga ccgcaccacc atcatgaatt tccgccacct gctggagcag catcaactgg 420 cccgccaatt gttcaagacc atcaatcgct ggctggccga agcaggcgtc atgatgactc 480 aaggcacctt ggtcgatgcc accatcattg aggcacccag ctcgaccaag aacaaagagc 540 agcaacgcga tccggagatg catcagacca agaaaggcaa tcagtggcac tttggcatga 600 aggcccacat tggtgtcgat gccaagagtg gcctgaccca cagcctggtc accaccgcgg 660 ccaacgagca tgacctcaat cagctgggta atctgctgca tggagaggag caatttgtct 720 cagccgatgc cggctaccaa ggggcgccac agcgcgagga gctggccgag gtggatgtgg 780 actggctgat cgccgagcgc cccggcaagg taagaacctt gaaacagcat ccacgcaaga 840 acaaaacggc catcaacatc gaatacatga aagccagcat ccgggccagg gtggagcacc 900 catttcgcat catcaagcga cagttcggct tcgtgaaagc cagatacaag gggttgctga 960 aaaacgataa ccaactggcg atgttattca cgctggccaa cctgtttcgg gcggaccaaa 1020 tgatacgtca gtgggagaga tctcactaaa aactggggat aacgccttaa atggcgaaga 1080 aacggtctaa ataggctgat tcaaggcatt tacgggagaa aaaatcggct caaacatgaa 1140 gaaatgaaat gactgagtca gccgagaaga atttccccgc ttattcgcac cttcc 1195 <210> 53 <211> 1709 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for yeaR(mutation) <400> 53 atgcttcaaa tcccacagaa ttatattcat acgcgctcaa cgcctttctg gaataaacaa 60 actgcacctg ccggaatatt cgaacgtcat cttgataaag gaacgcgccc gggggtttac 120 cccataagcg ctaacttaag ggttgaacca tctgaagaat gcgacgcctc ggtgcctcgt 180 taagacgatg cctcgcgttc ttcaattgcg ttttgtaggc tgtcagggat actgtcccac 240 gaatggccac ctgtaagctc cagatgacca tttttgttat tctccacaac gagttagttc 300 ttcttttcgg atccggcact tctggggggg aaatccagcg atggctggat tatgtcgtca 360 attaaaaatg cggcgagtag attagcaaat atccacgctt tcgcgagttc aggttccttt 420 gcacgcaaag catccaggtg cagcaaactt ttgagccgct taaaagccag ttcaatttgc 480 catcgcagac ggtaacaatc agccacttgc tctgctgaat attcatcttc cggtaatgat 540 gttagcaata gcacatggcc cgctgcttcc agcgtttccg cctgaactac tcgtcctttt 600 cgacgattct cgctgagcag tcgggtttta ctgattaatg ctttttcggg aggaagtgat 660 acggcaatga gacgtgccgg aaagggagct ccggcttttt tattacctga attgcctatc 720 attacagtgg tttcaccgtt cttaccgcaa tccagcccgc gcagaaaacc catcatgtca 780 aagcgcattc cttctgcagt taaccagcgc aatcctcgcc agtgaacccg gacgatataa 840 tcagcttctc caaaagcaag tgagcggata cattcgggac gcgaaccgaa tccccggtca 900 gcaatgcgta tctcgtctgc cgtttgcgca aatcggtcca gccgttcagc gtctctgctg 960 tcggttagct caaaatcagt gaactgacag gtatgaggat catatcccat atgtagtcgc 1020 cattcagcgc tgccgccccc gggcgcactg attgctgttc catcgacaag acgcaatctc 1080 tttccgcttg tacaacccgt aactgcggcg cgtacagcaa gtgtttgtgc ggcaagtatg 1140 ccaaaccagt cggcggcatt ccgcagccgc ttcaggagag ccacgtcaga taatgttgca 1200 acgtcatgga gctgagccca tgcagtgact tcacgtaatg acatcccccc ggggccgtaa 1260 gccagcccca gacgtagcag agttgcagca tcacgaattt cgcggcggcg ggttagagcc 1320 ccggcattac gtgccgaagt atccagttct tcgggcttac caatatgggc cagaattgct 1380 gaccagttat cgtgagagta attcatcggc acgttaaatc atatcaggcg taataccaca 1440 acccttaagt tagcgcttat ggggtttacc cacgcctttc cgttatgcat ggggcggtca 1500 aatatctcgg ctacgctgat gaacacagtg cagagcctga tcaggtgatc cttatcgaag 1560 cggggcagtt tgcggtgttc cctccagaaa agtggcacaa cattgaagcc atgactgacg 1620 atacttattt caacattgac ttcttcgtgg ctcctgaagt cctgatggaa ggtgcgcaac 1680 aacggaaagt cattcataac gggaaatga 1709 <210> 54 <211> 1343 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for IS186 <400> 54 cccataagcg ctaacttaag ggttgtggta ttacgcctga tatgatttaa cgtgccgatg 60 aattactctc acgataactg gtcagcaatt ctggcccata ttggtaagcc cgaagaactg 120 gatacttcgg cacgtaatgc cggggctcta acccgccgcc gcgaaattcg tgatgctgca 180 actctgctac gtctggggct ggcttacggc cccgggggga tgtcattacg tgaagtcact 240 gcatgggctc agctccatga cgttgcaaca ttatctgacg tggctctcct gaagcggctg 300 cggaatgccg ccgactggtt tggcatactt gccgcacaaa cacttgctgt acgcgccgca 360 gttacgggtt gtacaagcgg aaagagattg cgtcttgtcg atggaacagc aatcagtgcg 420 cccgggggcg gcagcgctga atggcgacta catatgggat atgatcctca tacctgtcag 480 ttcactgatt ttgagctaac cgacagcaga gacgctgaac ggctggaccg atttgcgcaa 540 acggcagacg agatacgcat tgctgaccgg ggattcggtt cgcgtcccga atgtatccgc 600 tcacttgctt ttggagaagc tgattatatc gtccgggttc actggcgagg attgcgctgg 660 ttaactgcag aaggaatgcg ctttgacatg atgggttttc tgcgcgggct ggattgcggt 720 aagaacggtg aaaccactgt aatgataggc aattcaggta ataaaaaagc cggagctccc 780 tttccggcac gtctcattgc cgtatcactt cctcccgaaa aagcattaat cagtaaaacc 840 cgactgctca gcgagaatcg tcgaaaagga cgagtagttc aggcggaaac gctggaagca 900 gcgggccatg tgctattgct aacatcatta ccggaagatg aatattcagc agagcaagtg 960 gctgattgtt accgtctgcg atggcaaatt gaactggctt ttaagcggct caaaagtttg 1020 ctgcacctgg atgctttgcg tgcaaaggaa cctgaactcg cgaaagcgtg gatatttgct 1080 aatctactcg ccgcattttt aattgacgac ataatccagc catcgctgga tttccccccc 1140 agaagtgccg gatccgaaaa gaagaactaa ctcgttgtgg agaataacaa aaatggtcat 1200 ctggagctta caggtggcca ttcgtgggac agtatccctg acagcctaca aaacgcaatt 1260 gaagaacgcg aggcatcgtc ttaacgaggc accgaggcgt cgcattcttc agatggttca 1320 acccttaagt tagcgcttat ggg 1343 <110> UNIST(ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY) <120> TRANSFORMED MICROORGANISM PRODUCING NONANEDIOIC ACID AND A METHOD FOR PRODUCING NONANEDIOIC ACID USING THE SAME <130> FPD/202012-0001 <160> 54 <170> KoPatentIn 3.0 <210 > 1 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR del H1 F <400> 1 tctggtatga tgagtccaac tttgttttgc tgtgttatgg aaatctcact gtgtaggctg 60 gagctgcttc 70 <210> 2 <2 11> 70 < 212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR del H2 R <400> 2 aacaaaaaa aacccctcgt ttgaggggtt tgctctttaa acggaaggga attccgggga 60 tccgtcgacc 70 <210> 3 <211> 21 <212> DNA <21 3> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR seq F <400> 3 gggcgagttt gtaccagtcg g 21 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadR seq R <400> 4 gcgcggcgac cgttcgctg 19 <210> 5 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE del H1 F <400> 5 ccatatcatc acaagtggtc agacctccta caagtaaggg gcttttcgtt gt gtaggctg 60 gagctgcttc 70 <210> 6 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE del H2 R <400> 6 ttacgcggct tcaactttcc gcactttctc cggcaacttt accggcttcg attccgggga 60 tccgtcgacc 70 <210> 7 < 211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE seq F <400> 7 aaaagttagc cagcgtttcc gccgc 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_fadE seq R <400> 8 acgttgggag atgagacgta tcagg 25 <210> 9 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD* MAGE Oligo <400> 9 atattaactc atcataccag cttgataatt acccaacgaa aagtttgtga agcgcgtcac 60 tatttatttt tatctttacc gtaagaatgc 90 <210> 10 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD back <400> 10 atattaactc atcataccag cttgataatt acccaacgaa aaggttgcga agcgcgtcac 60 tatttatttt tatctttacc gtaagaatgc 90 <210> 11 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD* tetA H1P1 F <400> 11 ctgtttctgc attcttacgg taaagataaa aataaatagt gacgc gcttc gtgtaggctg 60 gagctgcttc g 71 <210> 12 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PfadD* tetA H2P4 R <400> 12 taacataata ttaactcatc ataccagctt gataattacc caacgaaaag attccgggga 60 tccgtcgacc 70 <210> 13 <2 11 > 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR tetA H1P1 F <400> 13 cggcctgatg gaaaactggc tctttgcccc gcaatctttt gatcttaaaa gtgtaggctg 60 gagctgcttc g 71 <210> 14 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR tetA H2P4 R <400> 14 ggcacaggag atacatctcc agtaagatgg caacgtaatc gcgggcttct attccgggga 60 tccgtcgacc 70 <210> 15 <211> 90 <212> DNA <213> Artificial Sequence <220 > <223> nucleotide sequence for primer_acrR* MAGE Oligo <400> 15 gagatacatc tccagtaaga tggcaacgta atcgcgggct tctttttaag atcaaaagat 60 tgcggggcaa agagccagtt ttccatcagg 90 <210> 16 <211> 90 <212> DNA <213> Artificial Sequence <2 20> <223> nucleotide sequence for primer_acrR back <400> 16 atattaactc atcataccag cttgataatt acccaacgaa aaggttgcga agcgcgtcac 60 tatttatttt tatctttacc gtaagaatgc 90 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR seq F <400 > 17 cctgttaggg ctaagctgcc 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_acrR seq R <400> 18 cgccgtgttc tggcataaca 20 <210> 19 <211> 70 < 212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 H1-P4 <400> 19 aaagtaaatc ctggctctat tattctctcc gctgagatga tgctgcgcca attccgggga 60 tccgtcgacc 70 <210> 20 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 H2-P1 <400> 20 cgccttccat acctttaaca atcaggtcag ccgcttcagt ccaacccata gtgtaggctg 60 gagctgcttc g 71 <210> 21 <211> 90 <212> DNA <213> Artificial Sequence <2 20> <223 > nucleotide sequence for primer_e14 MAGE oligo <400> 21 tccatacctt taacaatcag gtcagccgct tcagtccaac ccatatggcg cagcatcatc 60 tcagcggaga gaataataga gccaggattt 90 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> < 223> nucleotide sequence for primer_e14 seq F <400> 22 gtaattcccc tgtcttcagg 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_e14 seq R <400> 23 aacaacgggc gtgttatacg 20 <210> 24 <211 > 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR H1-P4 <400> 24 cacctgccgg aatattcgaa cgtcatcttg ataaaggaac gcgcccgggg attccgggga 60 tccgtcgacc 70 <210> 25 <211> 71 <21 2> DNA < 213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR H2-P1 <400> 25 tcagcgtagc cgagatattt gaccgcccca tgcataacgg aaaggcgtgg gtgtaggctg 60 gagctgcttc g 71 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> nucleotide sequence for primer_yeaR IS186 FP <400> 26 cacctgccgg aatattcgaa 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR IS186 RP <400> 27 tcagcgtagc cgagatattt 20 <210> 28 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp H1-P4 <400> 28 cctgggtcat gctgaagcga gacaccagga gacacaaagc gaaagctatg attccgggg a 60 tccgtcgacc 70 <210 > 29 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp H2-P1 <400> 29 ctttgcatac atgcagtaca tcaatgtatt actgtagcat cctgactgtt gtgtaggctg 60 gagctgcttc g 71 <210> 30 <211 > 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 FP <400> 30 cctgggtcat gctgaagcga 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence < 220> <223> nucleotide sequence for primer_PyhfA/crp IS5 RP <400> 31 ctttgcatac atgcagtaca 20 <210> 32 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA H1-P4 <400> 32 ccgtgtttga accggtacgt aaagaagtta aaggctatgt ggttgatcca attccgggga 60 tccgtcgacc 70 <210> 33 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA H2-P1 <4 00> 33 ttgtatggct tttaattatt cgatagagac gttttcgaag tgatgtttgc gtgtaggctg 60 gagctgcttc g 71 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 FP <400> 34 ccgtgtttga accggtacgt 20 <2 10> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 RP <400> 35 ttgtatggct tttaattatt 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> < 223> nucleotide sequence for primer_dppA IS5 seq FP <400> 36 gcctctgaac aaggctccaa 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_dppA IS5 seq RP <400> 37 acagcgccac cgggtataca 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 seq FP <400> 38 ttatcgcctg agttgccgtc 20 <210> 39 <211> 2 0 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_PyhfA/crp IS5 seq RP <400> 39 aacattcga gagtcgggtc 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> nucleotide sequence for primer_yeaR IS186 seq FP <400> 40 cttcgctgat atggtgctaa 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for primer_yeaR IS186 seq RP <400 > 41 ctttccgttg ttgcgcacct 20 <210> 42 <211> 648 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for acrR <400> 42 atggcacgaa aaaccaaaca agaagcgcaa gaaacgcgcc aacacatcct cgatgtggct 60 ctacgtcttt tctcacagca gggggtatca tccacctcgc tgggcgagat tgcaaaagca 120 gctggcgtta cgcgcggtgc aatctactgg cattttaaag acaagtcgga tttgttcagt 180 gagatctggg aactgtcaga atccaatatt ggtgaactag agcttgagta tcaggcaaaa 240 ttccctggcg atccactctc agtattaaga gagatattaa ttcatgttct tgaatccacg 300 gtgacagaag aacggcgtcg attattgatg gagattatat tccacaaatg cgaatttgtc 360 ggagaaatgg ctgttgtgca acaggcacaa cgtaatctct gtctggaaag ttatgaccgt 420 atagaacaaa cgttaaaaca ttgtattgaa gcgaaaatgt tgcctgcgga tttaatgac g 480 cgtcgcgcag caattattat gcgcggctat atttccggcc tgatggaaaa ctggctcttt 540 gccccgcaat cttttgatct taaaaaagaa gcccgcgatt acgttgccat cttactggag 600 atgtatctcc tgtgccccac gcttcgtaat cctgccacta acgaataa 648 <210> 43 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for fa dD/yeaY intergenic region <400> 43 ttgcttgttt ttaaagaaaa agaaacagcg gctggtccgc tgtttctgca ttcttacggt 60 aaagataaaa ataaatagtg acgcgcttcg caaccttttc gttgggtaat tatcaagctg 120 gtatgatgag ttaatattat gttaacggca tgtatatcat ttggggttgc gatgacgacg 180 aacacgcatt ttagagg tga agaa 204 <210> 44 <211> 1608 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for dppA < 400> 44 atgcgtattt ccttgaaaaa gtcagggatg ctgaagcttg gtctcagcct ggtggctatg 60 accgtcgcag caagtgttca ggctaaaact ctggtttatt gctcagaagg atctccggaa 120 gggtttaacc cgcagctgtt tacctccggc accacctatg a cgcctcttc cgtcccgctt 180 tataaccgtc tggttgaatt taaaatcggc accaccgaag tgatcccggg cctcgctgaa 240 aagtgggaag tcagcgaaga cggtaaaacc tataccttcc atctgcgtaa aggtgtgaag 300 tggcacgaca ataaagaatt caaaccgacg cgtga actga acgccgatga tgtggtgttc 360 tcgttcgatc gtcagaaaaa cgcgcaaaac ccgtaccata aagtttctgg cggcagctac 420 gaatacttcg aaggcatggg cttgccagag ctgatcagtg aagtgaaaaa ggtggacgac 480 aacaccgttc agtttgtgct gactcgcccg gaagcgccgt tcctcgctga cctggcaatg 540 gacttcgcct ctattctgtc aaaagaata t gctgatgcga tgatgaaagc cggtacaccg 600 gaaaaaactgg acctcaaccc aatcggaacc ggtccgttcc agttacagca gtatcaaaaa 660 gattcccgta tccgctacaa agcgtttgat ggctactggg gcaccaaacc gcagatcgat 720 acgctggttt tctctattac ccctgacgct tccgtgcgtt acgcgaaatt gcagaagaat 780 gaatgccagg tgatgccgta cccgaacccg gcagatatcg ctcgcatgaa gcaggataaa 840 tccatcaatc tgatggaaat gccggggctg aacgtcggtt atctctcgta taacgtgcag 900 aaaaaaccac tcgatgacgt gaaagttcgc caggctctga cctacgcggt gaacaaagac 960 gcgatcatca aagcggttta tcagggcgcg ggcgtatcag cgaa aaacct gatcccgcca 1020 accatgtggg gctataacga cgacgttcag gactacacct acgatcctga aaaagcgaaa 1080 gccttgctga aagaagcggg tctggaaaaaa ggtttctcca tcgacctgtg ggcgatgccg 1140 gtacaacgtc cgtataaccc gaacg ctcgc cgcatggcgg agatgattca ggcagactgg 1200 gcgaaagtcg gcgtgcaggc caaaattgtc acctacgaat ggggtgagta cctcaagcgt 1260 gcgaaagatg gcgagcacca gacggtaatg atgggctgga ctggcgataa cggggatccg 1320 gataacttct tcgccaccct gttcagctgc gccgcctctg aacaaggctc caactactca 1380 aaatggtgct acaaaccgtt tgaagatctg attcaaccgg cgcgtgctac cgac gaccac 1440 aataaacgcg ttgaactgta caaacaagcg caggtggtga tgcacgatca ggctccggca 1500 ctgatcatcg ctcactccac cgtgtttgaa ccggtacgta aagaagttaa aggctatgtg 1560 gttgatccat taggcaaaca tcacttcgaa aacgtctcta tcgaataa 1608 <210> 45 <211> 301 < 212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for yhfA/crp intergenic region <400> 45 ttttgctact ccactgcgtc aattttcctg acagagtacg cgtactaacc aaatcgcgca 60 acggaaggcg acctgggtca tgctgaagcg agacaccagg a gacacaaag cgaaagctat 120 gctaaaacag tcaggatgct acagtaatac attgatgtac tgcatgtatg caaaggacgt 180 cacattaccg tgcagtacag ttgatagccc cttcccaggt agcgggaagc atatttcggc 240 aatccagaga cagcggcgtt atctggctct ggagaaagct tataacagag gataaccgcg 300 c 301 <210> 46 <211> 15204 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for icd -icdC <400> 46 catgggttgg accgaagcgg ctgacttaat tgttaaaggt atggaaggcg caatcaacgc 60 gaaaaccgta acctatgact tcgagcgtct gatggatggc gctaaactgc tgaaatgttc 120 agagtttggt gacgcgatca tcgaaaacat gtaatgccgt agtttgttaa atttattaac 180 gggagcgtaa cgctcccgtt gtt ttttgtt aggctgctaa cggttatcaa aattttatca 240 aaaaaagtta tcaaaacccc tcggtagttt tggggtaggc tggccggtca ggtggtagtt 300 ctactactag tctcccacat agatattcct tagcttttta ttattgctgg cggacgctcg 360 ttaatattta aggtcttcat tgattaagac atccccaaag ttagttatgt attcactgtt 420 attaggacaa ttatgaatta ccactcctta cacccgctca aatattgtta aattgccggt 480 tttgtatcaa ctactcaccc gggactcgcc aggggacagc caacaggcat tgggtgcaat 540 caccttagcg ttcaggtaca tgcggaatgt aaaaaaggcc gcgagcgcgg ccccttcaca 600 tacatcttta gtactgagac tgtttaacct agggaattat tatcgt atta tattgcatta 660 caactcccaa cagtgacata tgaacttcct gctttactcc acgactttaa tatttcaagg 720 ccatgtgaag aacatatttc ttgcactgcg agttcatcga gtaatccata gtaagaaaca 780 ctttttgaat ttttgtaaat gtatccgtaa agatgttttc ttcc tgtttc gtattttttg 840 aagtatgagc ttttatattg atttacaata agagtctcac ctcctgattt tagtaatctc 900 ttgatgctaa gaactatttt gtcgattgta tcccgacaag gaacggcaga gagaacatta 960 gagcaaagga tgaaatcgta acccccaatt attttgtcga catcctcgaa agcaactgta 1020 tttgcatttt tataatatcg tgggacatag tcaataattt tagttttaat tcctctaata 1080 atttgctctc tttcaagttg ccttttcgag tctagaaaag taacttcatc aaatttactg 1140 attaattcat cagaatatct aagttttccg cagccaaaat caagggcgtg gccatttttc 1200 tcaatgcttc taatatactc gcaaagatat ctagagggca tcgtatgagg ttt tgctgca 1260 ttctctgagc gaatattaac tccgtgcata ttatagttca aagcaagtac cattcaatta 1320 atgttattt tagtgaaaaa ttcttttatt ttatcgtccg ggatttttcc gacttgactt 1380 tcagttctgg gcttaactgt caaagcaaag ataataccac tcactgagaa tgataaaatt 1440 acaaaaaaga ataaagacag caaagaacct tcaacatgaa aaatatccat ttgtttgcaa 1500 aaaaagatta ttaggaagga aattaatgca attatcgaaa attcaaaaaaa tatccaaaaa 1560 tagtatactt tattccagaa gagttcaata taatgtttgt cttcaatttt tcttacttca 1620 gggtaatata gattgctcat tacattgtga gcttcatctt tatttaattt tctgttgact 1680 ccagctctcc gtgataacgg ttttataatt agatgcttat cccaaagata tcgcacccga 1740 agtagtttgg ctgcattgtt atgtaggtct aacgcaccgc taattaaata tgcaaaaatc 1800 gcaaaagcac aaggtaatat accaaaagat agtgcccaat taataaagct ctcatgatct 1860 ttaataggtg ggacatactt ggttggtaat gttattaaag ggatgtattc gtaaataact 1920 agaagtat gc aatatattag cgtatttaag aaagttgctt tatgaagttt aggcaacatt 1980 tcattataat ttttgggggg ttcgaacata ttattcacct gagtcacgct ttaggatagt 2040 gtaatggtaa tatttaatta agtgtcatta tatacttttc agtaggttag ttacaatttt 2100 ttgta tctgt tcaggctgac ctagcttcgc tgacagacaa tattgtgatc agtagcacgt 2160 atcgaggagg agtagcgcta caaatttgac gctgggtgag aatctgaaat tgatagaaat 2220 gaaataatga aataatgaaa tgatgaaatg atgaaatgat gaaatgatga aatgatgaaa 2280 tgatgacaga gtgtccagtg ggcacggatg gtgtcttacg acatgcttac cttaatcgtt 2340 cccagt gtgc ctatagcaga tattctaaac atgtcgataa ttcattacgc atatagtatc 2400 gaacatagaa aaaactgaag attcatctta ttttgtatat actacctagc ccaacaatgt 2460 agaggttaac gaaaaaatgcg ctcaccaatt tgtcatcttt tctcagcaat taattcatca 2520 ccattta aga ttgcaccaga gaaggagcaa gatcttaaaa cgatagttga cgacaaaaaaa 2580 attataattt cagttgtgag tgaacctggt tttaatatcc gagtcaggaa gaatgagagt 2640 aataattcac atgaaatagt tctaacagta gcttcacttg aatatatttg ggcattttcc 2700 aatttctttt gggtttttac gcaagagtac tccaaatctc agaaaaataa tgatgagcac 2760 tttgatttaa caggaaaaaa taggct taaa aagtctgatg aacttcttaa atgggcaagg 2820 aaaaacttgc aaacaacagg ttgcgaatca tggcctaaaa aatgtcccaa gccagaagca 2880 tatttacaag gaagcgaaga ctcacaagtt gctagcgaga tatttctttg tgctattgct 2940 tggattcttc atcatgaaat a agtcatgtt gttttacagc atccattggt cactacagca 3000 ttctccactc aagaggagcg tgaagcagat tcacatgcta caaaatggat attaggcaac 3060 ctgtatgaat ccgctcctga attaaagaaa cgtgcacttg gcattgctac ggcagtgctt 3120 tgtatacaaa gcttagaagt tgaaaattac ttctgtttac aaaatacaca cccagctgca 3180 tatgagcgta tatattcgaa tatttcatgc tacc ctgtcg gaaatgaaga gttgattgaa 3240 gctctatgta cagtgatgct tcaatatctt ttccatggca aaaatatcaa tgtgaatcta 3300 gatggggagt ccttttcatc gattttaggt gatcttctct gtgatatttc acgtcttacc 3360 agtaactgat atggctgtcc gcc gctcgct taaagtggac tttttagttt ttatcatgtg 3420 cggtgagaaa ttcaatgtgg cgttgagatg cttaaaggtt cacaacgcta ctttgctcca 3480 tcctttacct cgatcatcat gataacgatc ggtttgttgt tgtgttttat gaccaagtag 3540 tttttgtgtg tctaacccct gttctttata cagacgttca gataaagacc tttgctcatg 3600 gaatgtcgca ggtgaaccct ctcccc agtc aattcttgct aaatctctcg ctttactaaa 3660 attcatcgtc aatgtattgg ctttaacctg cgctccgcgc tctgcttgtg aagttgaacg 3720 aaaaaaatgc actaagtatg cactgactgc atagtcacgg cagcgggcta ctacatcgcg 3780 taaactccag ttaatcgcat tgaggcgaag agaaagagga attgcgattt tgctcccggt 3840 cttttcctga atgacatgaa gatgatcatc ccaaatatcg ctaaatttca tacgcgaaat 3900 atcacctaac cgctgaccag taaccagcgc taacagcatg gcatttccca tgtaacgatg 3960 agtagcgtct gcgatatcga agatttttt ccattcttca aggctcagcc gttgtcgggt 4020 aatttttctt cttggttgtt tagtggctaa tgctgggtta tagc caggag gtacttctcc 4080 gtagtgctgc gcctctttga aaacatcaat caggacggag cgaactactt gtgccattct 4140 tggccgccca gcggcgatat actcatcaag caattgtgct atatctctga catcaacggc 4200 tgagatcaac ttcattcctg ctcgttctct gagcaaggat actggtttag ctttttgttt 4260 ataggtgttg agtcttatat caccactttt aagcctgtca tcctggatcg cttgatagcg 4320 atctaaccag gttgacgttg tgatagcctt tcctttgctg g ttgcgatcc tgtcactgat 4380 agccagaatc tgccgggttc tttgttcagc caggcgagtg ttggcctcag tggcaatagc 4440 gatagcttca gcttcgtttg ttcccaaagc atggaatttt cctgtcactg gatgcttata 4500 ccgccaatag actttattta ccttcctact ataaagcgga tataagttag ggactgaaac 4560 attattctta cgcggtctgg ctgccattac tcaaaatccg ttgcaaaagt aatgagtcat 4620 ttttcttgat tacaggtgtt accaactccc caactaactc ggcgtcctca cgcactcgcc 4680 ataaccggcc ttgtttcatg gccggtggac aaaataaatt ctgcttagca taacgacgca 4740 atgtggacac acttggagga ttacttctgt atttttcagc agcccattct tcaagagtta 4800 acat ttgaag catatgcgat caccttatta ctacactaac tgcttagtct cagcatatcg 4860 accctgcacg gtcggttagt ttctccacaa aacagagaag agcacctgtg gccacagcta 4920 tcaggatggg tcgggttatt aacccgtcat ccggggatac tcttctctgt tttgtaaaaa 49 80 gggcggtacc agaaaggact aaggaaaaaaa ctggtaccgc caagactaca cacagcataa 5040 agttgtggtg tcgggtgccc ccggtgcctg gcgaaggttg cacaccaggc gggtgggtat 5100 ccacagaagg tcgattgtca gcctcaacct taacccgcgt gcgctgagcc gcattcacca 5160 caacgctaag gattctctct ggttgaaaat acttagctgt tatgtgcctg tcttttcacc 5220 acttca ggct cggtggtatg ctggagttct cacacagcca gcaagcaagg aaacttaatg 5280 aaccagtttt atgttcacgt tcgtctattt gaagacacag ccgaacagac caaaaaattt 5340 gaagaattaa tgcttaactt tctgtaccag aaaacagtta aagagtctga cgatagctgc 5400 t gcagactga ttccagaggg atatatcctc aaaagtacaa tgaactgcca acaaatcctt 5460 gatcaaacat tttcaattgc taacagtgcc ggtgttgacg caaatatatt tgtctgtaaa 5520 tttgaacaaa gcgcatgctt acttccgtct gcttccttag ttggtaacga tttcgttcat 5580 tacgatctta cgcctaagcc catcaagctc gattcttaaa gccttaacca ttgtgtcgtg 5640 ataaacacgg ctcacct tct ctccattgca tggcagaggg gtgagtgtgt tagccatgaa 5700 attcatgaac tcggttcgac caggggcttg cgccccgcaa gtctttaatg cctgttttgc 5760 taacaaaaatg cgggcctcag tgcctgcatt tggctctatc tgctgcaaac gtttagcgtc 58 20 ttccagcaac aatgcgatca catgcttcaa attctgctca ttcatctatt ctctccactg 5880 aaatcatccg ctaacgaatc atcccggtct tcgtacgtac cgggcgggct acttcgtggg 5940 cgtcctgcct gtttgttgtt tctcttgggt acattatgta tctcaaaggt acattgtcaa 6000 gtataaaaaa acctgccgaa gcaggttcat aaacattgat taggctttga ttttgtatct 6060 tcttggtttt cct gagaaaa tcacagtacc aattatagag caattaccgt tgatcttaat 6120 gtaaggctca ggccagtttg ggtttaacgc tttgagataa cgctgtgtcc catcttctat 6180 caaccttttg aaggtggttt cacctgtatc gtgcatcaat gcaataacgt cgtcaccgtg 6240 gcaggcaggt acttcaggat cgacaaaaat catgtctccc gggcggtact catcaatcat 6300 tgaatcacct attacccgca agatataagt catttcccca cagggtacag ggcagggata 6360 cgtttctgct gtgctcaaat caacctcaga atatccaact tctttccatg ctccggcctg 6420 tacccatgat atgacaggga ctaatgtgat ttgtttatta gtgattgaaa catcaggttt 6480 ttttgtgatg ttcgttgtct ggtgttcttg atcgagccat cctacaggca ggtcgaaaca 6540 tttttcgatg tgtcgtgcca tgctgtcacc gatattttta gtagcaccat ctcccataaa 6600 cctgctggtc tgggttggct cgcgatcaat catagtggca aaggaagaat tcccgccaac 6660 accatctctc agttt tctgg cgttagaccg ccggatgtca tggattgttt tcataacgaa 6720 attaaaaccc ttgtaccgtt aaggtacaag tatcttgaag gttcatttca atcatgtaat 6780 atgtacaccg gaggtacata ttgtatgaaa gcgtattggg actctttaac caaagaacag 6840 cagggcgagt tggccggaaa agttggctca acacctggct acttacggct ggttttcaat 6900 ggctataaaa aagccagttt tgtgctggct aaaaaacttg agcaatacac atcagg tgca 6960 attacgaaat ctgacttaag accggatatc tatccgaaag attagcagaa cactttcaat 7020 ttttaaccac agaacgatga ggctaatcgt gggtaagcat cactggaaaa tagaaaaaca 7080 gcctgagtgg tacgtgaaag ctgtcagaaa aactatcgcg gcgttgccga gtggttacgc 7140 tgaagcggct gactggctcg atgtaacaga aaacgcttta ttcaaccgcc ttcgtgcaga 7200 tggcgatcag attttcccgc tgggatgggc aatggtttta cagcgtgctg gtggcactca 7260 cttcattgct gatgctgtgg cgcagtctgc aaatggcgtc tttgtgtctc ttcctgacgt 7320 cgaggatgtg gacaacgccg atatta gcgtctg ctg gaagtcattg aacagatcgg 7380 cagttattca aaacagattc gttcagcaat cgaagacggt gtagtggaac cgcatgagaa 7440 gacagcaatt aacgacgagc tgtatctctc aatttcgaag ctgcaggagc atgcagcact 7500 tgtctacaaa attttttgca ttt cagaaag taatgacgcc cgcgagtgtg cagctccggg 7560 cgtcgtggcg tcgattgctt ctggttgtgg agaaactaac gcatgaacag tttaacaaca 7620 cactaccgtc gctcgcaact gattgcgctt cctgtaccgg gtggaaaaagc gaaggtggaa 7680 tattgctatg cagtgaatgt accaggtgac agggaaattg taacccacag ctttgcagag 7740 tgggctgtgg gtgatttcaa ccggcagaag gagacagtcc tttgcgacaa gttaaccgct 7 800 ggttcaaaga tcactacgga gtgcccgtca gagtcattcg ttgggagccg gaaacacaac 7860 gggttatcta cctccgcgaa ggttatgagc atgaatgctt cagcccgctc gaacagtttc 7920 gtcgtaaatt cagggaaata gaggtcggtc atgagcacta aattaacc gg ctatgtatgg 7980 gatggttgcg ctgcatcagg catgaagtta tccagcgtgg caattatggc ccgcctggct 8040 gatttcagta atgacgaagg tgtgtgctgg ccatcaattg aaaccatgc ccgtcagatt 8100 ggcgcgggga tgagtaccgt cagaacggct atcgcacggc tggaagcaga aggctggtta 8160 acgcgtaagg cgcgtcgcca gggtgatggt tcatcacccc actgtgccgt ggtggatgaa 822 0 tatcacgagc acgccacaga tgcgctttac accacgatgc ttaccgggat gggggcgcga 8280 cgccagccac tgatgtgggc cattaccacc gccgggtaca acattgaggg gccgtgctac 8340 gacaaacggc gggaagtcat cgagatgctc aacggctcgg tgccaaacga tgaact gttc 8400 gggatcatct ataccgttga tgaaggtgac gactggaccg acccgcaggt gctggaaaaaa 8460 gccaatccaa atattggcgt gtcggtttat cgcgaatttt tgttaagtca gcagcagcgt 8520 gcgaaaaata acgcccgtct ggcaaacgtc tttaaaacaa aacacctcaa tatctgggcg 8580 tcggcgcgtt cggcgtattt caacctggtg agctggcaga gctgcgagga taaatcactg 8640 acccttga gc agttcgaggg gcagccgtgc attctggcct ttgacctggc gcgtaagctg 8700 gatatgaaca gcatggcgcg actttatacc cgcgagattg acggtaaaac gcattactac 8760 agtgtggccc cgcgtttctg ggtaccgtat gacacggtgt acagcgtcga gaaaaatgaa 8820 gatcgccgga cagccgaacg ctttcagaaa tgggtggaaa tgggcgttct gaccgttacc 8880 gatggtgcgg aggtggatta tcgctacatc ctcgaagagg ccaaagcggc gaacaaaaatc 8940 agcccggtca gtgagtcacc catcgacccc ttcggggcga ccgggctgtc acatgacctt 9000 gctgatgaag acctgaaccc cgtcaccatc attcagaact acaccaacat gtccgatccg 9060 atgaaagagc tggaagcggc gattgaat cg gggcgctttc atcatgacgg caatcccatc 9120 atgacctggt gtatcggcaa cgtggtcggc aaaaccattc cgggtaacga tgatgtggtg 9180 aagcccgtca aggagcaggc ggaaaacaaa atcgatggtg cagttgcgct gattatggcg 9240 gttggcagag ccatgctgta cgagaaagaa gacacgctgt ctgatcacat tgagtcctac 9300 gggatccgct cgctttaact gaggtaatta tgatcatgct gattctcgcg cctctggtgg 9360 gcgtgctggg tgcgcttttg ctggcgtatg gtgcctggct gatttatccc ccggcgggtt 9420 ttgttgttgc cggggcgctg tgcctgttct ggtcgtggct ggtggcgcga tatctcgacc 9480 gtacacagtc g tctgtcggc ggaggtaaat agtgttcttt tcgggattat ttcaacgaaa 9540 aagtgacgca ccggtgacca cgccagcaga gctggcggat gccatcgggc tgtcgtatga 9600 cacctatacc ggaaagcaga tcagcagtca gcgggctatg cgactgacgg cggtttttt c 9660 ctgcgtcaga gtgctggcag agtcggtcgg gatgttgccc tgcaatctgt atcacctgaa 9720 cggcagcctg aagcagagag ccaccggcga acgtctgcat aaactgatct ccacgcatcc 9780 caatggctat atgacgccgc aggagttctg ggagctggtg gtcacctgtc tgtgcctgag 9840 gggaaacttt tacgcctaca aagtgaaagc atttggcgaa gtggctgaac tgctgcccgt 9900 cgatcccggc tgtgtggtat atgcgctggg aa ggtgtcag cgatggcctg aaggtgaccg 9960 ccgggagtgt tattcagcgc gatgacctgg tgcagtacac gacaactgac gatgcaacca 10020 gctccggtgg tgtcctgcgc gtgccgatcg cctgctcaag tgcaggtgcg gtcggtaacg 10080 ctg acgacgg tacggcatta atcctggtca cgccggtgaa tggtctgccg tcttccggtg 10140 tggctgacac cctgacaggc ggatttgata ctgaagagct ggaaacgtgg cgcgcccgcg 10200 tcattgagcg gtattactgg acgccgcagg gcggggctga cggggactat gtcgtctggg 10260 ctaaagaagt gcccggcatt acccgcgcat ggacataccg tcacttgatg ggaacgggaa 10320 ctgtcggtgt gatgattgcc agcagtgacc tgattaatcc cattccggaa gaat caacgg 10380 aaacggcggc aagacaacat atcgggccac tggccccggt ggcaggctct gatttgtatg 10440 tgttcaggcc ggtggcacat acggtggatt ttcatatccg cgtgacgccg gacacaccag 10500 aaatacgggc tgccattacc gcggagttgc gttcgtt cct gctgcgtgat ggttatccgc 10560 agggagaact caaggtatcg cgtatcagtg aggcgatttc cggtgcgaac ggggaataca 10620 gccatcagtt gcttgcaccg gtggacaata tctccattgc gaaaaacgaa ctggcggtac 10680 tggggacgat ttcatggacg tgacaaacga tgattacatc cgcctgttat cggcactgtt 10740 gccgcccggt ccggtgtggt cagccagcga tccggcgatt gccggtgcgg caccgtcatt 10800 aacccgtgtt catcagcgtg cggatgccct gatgcgggag ctggatccgc gcaccaccac 10860 tgaactgata aaccgctggg agcgtctgtg cggtctgccg gatgaatgta ttccggcggg 10920 aacgcagacc cttcgccagc gtcagcaacg gctgg atgcg aaggttaacc tggcgggcgg 10980 catcaacgag gatttttatc ttgcacagct tgctgccctg ggcagaccag atgccaccat 11040 cacgcgatac gacaaaagca ctttcacctg ctcatcggcc tgtactgacg cggtgaatgc 11100 gccggaatgg cggtattact ggcaggtcaa catgccagcc accaccaact ccacctggat 11160 gacatgtggc gatccctgtg attccgcact gcgtatctgg ggtgacaccg ttgtcgagtg 11220 tgtgcttaac aaactctgcc cgtcgcatac ctacgtaatt tttaaatatc cggagtaatc 11280 catgcatcgt atagacacga aaaccgcgca gaaggataag ttcggcgcgg gtaagaacgg 11340 ttttacccgt ggtaaccccc agaccggcac gcctgccacc gatctggatg atgactact t 11400 tgacatgttg caggaggaac tttgcagcgt ggtggaggca tccggtgcca gcctggagaa 11460 ggggcggcac gaccagttac ttaccgcact tcgcgcgctg ctgttaagcc gcaagaatcc 11520 gtttggcgat atcaaatcgg atggcactgt gcaaacggct ctcgaaaacc ttggtttggg 11580 agaaggagca aaactcaatg cagcaacggc tacattagga cgcaccggtt tcatagctat 11640 accggttatg attgg tggta ttgagcaatc agtaatcatt cagtgggggt ggaatgccgc 11700 aaaagcatct gcctctgggg gggatggaaa tacagttgta ttcccggttg cgtttaataa 11760 tgcctgtgtt gccgttgttg caaattatga caatgtcagc gcacctatca atgcagtggc 11820 aacgggggga tatacaacca cttcgttttt attacggtgc gcagctcaaa cgggtagtta 11880 ttactataac tggattgcta ttgggtatta agatgaaaat atactgttgc ttaaataccg 11940 ttggtttttt tatggatggc tgtggcgtca ttccgccaga ttctaaagaa ataacggcag 12000 aacactggca gtcattatta aaatctcaag ctgaaggagg cgtgatcgat ttttctgttt 12060 ttcctccttc tattaa agag gttatccgta ctcatgatga tgaagtcgca gatgcgaact 12120 ttcaaaagca gatgcttatc tctgatgcaa ctgattttat caatagcaga cagtggcagg 12180 gtaaggctgc attgggaaga cttaaagaag atgagctgaa acaatataat ttgtggctgg 12240 attatctgga agcactggaa ctggttgata catccagtgc gccagatatt gaatggccta 12300 cgcctccggc agttcaggcc agatgacatc cggcgcggtg ctggtatctg ttgccgtcac 12360 cgcgtcaatg taatccagca cagcgttaag tctggttgtt tctgcctgcg tcagtttacg 12420 tccggcctgc aatttcagtt gaatcagact aatggaagcc attgcagcat caatcagtga 12480 ctggcgctgt gcttctgccg c gtctactgc ggcgctatgc tgtgcttcag tatcggtcac 12540 ccatttctca ccatcccatt tatcgtatgg agataaaggg gcgatagtgg ttgtattttc 12600 agggtaatca cccggagctt tgatttcttt tgattctcca gttttggtgc tatagaccgt 126 60 ttcaccgcga tggtctggca catattccca tgagttaaaa tctgcagaac ggcagattgc 12720 ataaccagcc ttatgtgtac caggggcatc taaacaggaa catgccggaa tgccgacacc 12780 aacggcaaga tattcatttg aagtggaaat atattcccgt gtttcaccat cgtagttata 12840 aacggtaaca tcccctgcct ttgttgcaat aaggtcacta tttaatattg ctttatgcat 12900 caggctgccc tcacgatata gttaaatgca atattacgcg gacgcgt ttc tgaggctgcg 12960 gcacctaaac catccactga ttgtttatat gttttaaagg ttccataatc cggggctggt 13020 aatccggcat cgtttgtgtt tcctcttttg ataatgtcag tgccactatt tacccatatt 13080 tcatcaaaat agaaattaat cgttgcatca gtcaca atcg tggatcttga cggtaatcca 13140 tgagcatgat cctccgttgc atacccctga atacttaaaa tagagcgacc tgtatcaatc 13200 ccccgcccgt catcccagcc acgaataaac tcaccacgta aatcaggcaa tttatttgtc 13260 ggataagcct ttgccagttc cgggtattct tcagcagaaa aagcggcacc attgcatttc 13320 agccagcctg ttggcggagt ggctgaaggc cacggaaccg ggacaccaac aggtaatgca 13380 gagccttctc ccaaaccaac gtttatgaaa atgaagaaat aacaagcaaa tggcatcatt 13440 cctgctttta ccagggggat ttaacatgct tattggctat gtacgcgtat caacaaatga 13500 ccagaacaca gatctacaac gtaatgcgct gaactgtgca ggatg cgagc tgatttttga 13560 agacaagata agcggcacaa agtccgaaag gccgggactg aaaaaactgc tcaggacatt 13620 atcggcaggt gacactctgg ttgtctggaa gctggatcgg ctggggcgta gtatgcggca 13680 tcttgtcgtg ctggtggagg agttgcgcga acgaggcatc aactttcgta gtctgacgga 13740 ttcaattgat accagcacac caatgggacg ctttttcttt catgtgatgg gtgccctggc 13800 tgaaatggag cgtgaactga ttgttgaacg aacaaaagct ggactggaaa ctgctcgtgc 13860 acagggacga attggtggac gtcgtcccaa acttacacca gaacaatggg cacaagctgg 13920 acgattaatt gcagcaggaa ctcctcgcca ga aggtggcg attatctatg atgttggtgt 13980 gtcaactttg tataagaggt ttcctgcagg ggataaataa agttaaagac actttgtgta 14040 caaaagaaag taaaacaaca gcaacttgtt gcaattttat caataaaagt agtattgtcg 14100 tgaaaaattg attaaagatt aatattatgc atgtttttga taataatgga attgaactga 14160 aagctgagtg ttcgataggt gaagaggatg gtgtttatgg tctaatcctt gagtcgtggg 14220 ggcc gggtga cagaaacaaa gattacaata tcgctcttga ttatatcatt gaacggttgg 14280 ttgattctgg tgtatcccaa gtcgtagtat atctggcgtc atcatcagtc agaaaacata 14340 tgcattcttt ggatgaaaga aaaatccatc ctggtgaata ttttactttg attggtaata 14 400 gcccccgcga tatacgcttg aagatgtgtg gttatcaggc ttattttagt cgtacgggga 14460 gaaaggaaat tccttccggc aatagaacga aacgaatatt gataaatgtt ccaggtattt 14520 atagtgacag tttttgggcg tctataatac gtggagaact atcagagctt tcacagccta 14580 cagatgatga atcgcttctg aatatgaggg ttagtaaatt aattaagaaa acgttgagtc 14640 aacccgaggg ctccaggaaa ccagttgagg tagaaagact acaaaaagtt tatgtccgag 14700 acccgatggt aaaagcttgg attttacagc aaagtaaagg tatatgtgaa aactgtggta 14760 aaaatgctcc gttttattta aatgatggaa acccatattt ggaagtacat catgtaattc 14820 ccctgtcttc a ggtggtgct gatacaacag ataactgtgt tgccctttgt ccgaattgcc 14880 atagagaatt gcactatagt aaaaatgcaa aagaactaat cgagatgctt tacgttaata 14940 taaaccgatt acagaaataa aattatttat taaagtcaca tttaagacgt aataccctac 15000 agggtaaaaa ttttctctga tcttaacttc tgcaaatgtt aactgctatt tttatgctaa 15060 aaatggttat caaaactcaa aaacacatgt ttataat caa tgagttatag aaatgctaag 15120 ggctaatgag ttatatgcaa attagtaaaa ttatgttgct atgtcagata gttacgattt 15180 agtcatctaa ctaatgctgc gcca 15204 <210> 47 <211> 360 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for yeaR <400> 47 atgcttcaaa tcccacagaa ttatattcat acgcgctcaa cgcctttctg gaataaacaa 60 actgcacctg ccggaatatt cgaacgtcat cttgataaag gaacgcgccc gggggtttac 120 ccacgcct tt ccgttatgca tggggcggtc aaatatctcg gctacgctga tgaacacagt 180 gcagagcctg atcaggtgat ccttatcgaa gcggggcagt ttgcggtgtt ccctccagaa 240 aagtggcaca acattgaagc catgactgac gatacttatt tcaacattga cttcttcgtg 300 gctcctgaag tcctgatgga aggtgcgcaa caacggaaag tcattcataa cgggaaatga 360 360 <210> 48 <211> 1206 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for alkB <400> 48 atgctggaaa aacatcgtg t cctggatagt gccccggaat acgtggataa aaagaaatac 60 ctgtggattc tgtctacgct gtggccggcg accccgatga ttggcatctg gctggccaac 120 gaaacgggct ggggtatctt ttatggcctg gtgctgctgg tttggtacgg tgcactgccg 180 ctgctggacg caatgtttgg tgaagatttc aacaatccgc cggaagaagt ggttccgaaa 240 ctggaaaagg aacgtta tta ccgcgtcctg acctatctga cggtgccgat gcattacgcg 300 gccctgattg tttccgcatg gtgggtcggc acccagccga tgtcatggct ggaaattggt 360 gcactggctc tgtcgctggg catcgtgaac ggtctggccc tgaataccgg ccatgaactg 420 ggtcaca aaa aggaaacgtt cgatcgctgg atggcaaaaa ttgttctggc tgtcgtgggc 480 tatggtcatt tctttatcga acacaacaag ggccatcacc gtgacgtcgc aaccccgatg 540 gatccggcta cgagccgtat gggtgaatct atctacaagt tcagtatccg tgaaatcccg 600 ggtgcattta tccgtgcatg gggtctggaa gaacagcgtc tgtctcgtcg cggccaaagc 660 gtgtggtctt ttgacaat ga aattctgcaa ccgatgatta tcaccgtgat cctgtatgca 720 gttctgctgg ctctgtttgg cccgaaaatg ctggttttcc tgccgattca gatggcattt 780 ggttggtggc aactgacgag cgctaactat atcgaacatt acggcctgct gcgtcagaaa 840 atggaaga tg gtcgctacga acatcaaaag ccgcatcaca gttggaactc caatcacatt 900 gtcagcaatc tggtgctgtt ccatctgcaa cgtcactctg accatcacgc acacccgacc 960 cgttcatatc aatcgctgcg tgattttccg ggtctgccgg cactgccgac gggctacccg 1020 ggtgcgttcc tgatggccat gatcccgcag tggtttcgca gtgttatgga tccgaaagtt 1080 gtcgactggg cgggcggtga tctga ataag attcaaatcg atgacagcat gcgtgaaacc 1140 tatctgaaaa agtttggcac ctcatcggcg ggtcattcat caagcacctc ggcagtggcg 1200 tcgtaa 1206 <210> 49 <211> 522 <212> DNA <213> Artificial Sequence < 220> <223> nucleotide sequence for alkG <400> 49 atggcatcct ataagtgtcc ggactgtaac tatgtctatg atgaatctgc gggcaatgtg 60 catgaaggct tttcgccggg tacgccgtgg catctgattc cggaagattg gtgctgtccg 120 gactgcgcag tgcgtga taa actggacttt atgctgatcg aatctggcgt cggtgaaaag 180 ggcgtgacca gcacgcacac ctcaccgaac ctgagcgaag tttctggtac gagtctgacc 240 gcggaagcag tggttgcacc gacgtcgctg gaaaaactgc cgagcgctga tgtcaaaggc 300 cagg acctgt ataagaccca accgccgcgt tccgatgcac agggcggtaa agcgtatctg 360 aagtggattt gcatcacctg tggccatatt tacgatgaag cgctgggtga cgaagccgaa 420 ggctttacgc cgggcacccg tttcgaagat attccggatg actggtgctg cccggattgt 480 ggtgc gacga aagaagatta tgtcctgtat gaagaaaagt aa 522 <210> 50 <211> 1158 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for alkT <400> 50 atggctatcg ttgtggttgg tgctggtacg gctggcgtca atgcggcgtt ttggctgcgt 60 caatacggct ataaaggtga aattcgtatt tttagccgtg aaagcgtggc accgtatcaa 120 cgcccgccgc tgagcaaagc cttcct gacc agcgaaatcg ctgaatctgc ggtgccgctg 180 aagccggaag gtttttacac caacaataac attacgatca gtctgaatac cccgattgtc 240 tccatcgatg tgggtcgtaa aattgttagc tctaaagacg gcaaggaata tgcatacgaa 300 aagctgatcc tggctacccc ggctagtgca cgtcgcctga cgtgcgaagg tagtgaactg 360 tccggcgttt gttatctgcg ttctatggaa gatgcaaaaa atctgcgtcg ca agctggtc 420 gaatcagctt cggtggttgt cctgggcggt ggcgtgattg gcctggaagt tgcaagcgcg 480 gccgtcggtc tgggtaaacg tgtgacggtt atcgaagcaa ccccgcgtgt catggctcgc 540 gtggttaccc cggcagctgc gaacct ggtg cgtgcacgcc tggaagcaga aggtatcgaa 600 tttaaactga acgcaaagct gacgagcatc aaaggtcgca acggccatgt tgaacagtgc 660 gtcctggaat ctggcgaaga aattcaagcc gatctgatcg tcgtgggtat tggcgcgatc 720 ccggaactgg aactggccac cgaagccgca ctggaagttt ccaacggtgt tgtcgtggat 780 gaccagatgt gcacctcaga tacgtcgatt tacgcgatcg gtgactgtgc gatggcg cgt 840 aatccgttct ggggcacgat ggtgcgcctg gaaaccattc ataacgctgt gacgcacgcg 900 cagattgttg ccagttccat ctgtggcacc agcacgccgg caccgacccc gccgcgtttt 960 tggtcggacc tgaagggtat ggcactgcaa ggtctgggtg cactgaaaga ttatgacaag 1020 ctggttgtcg ccattaataa cgaaaccctg gaactggaag tgctggcata caaacaggaa 1080 cgcctgatcg ctacggaaac catcaatctg ccgaagcgtc aaggtgccct ggcgggttca 1140 atcaaactgc cggactaa 1158 <210> 51 <211> 2807 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for dppA(mutation) <400> 51 atgcgtattt cctt gaaaaa gtcagggatg ctgaagcttg gtctcagcct ggtggctatg 60 accgtcgcag caagtgttca ggctaaaact ctggtttatt gctcagaagg atctccggaa 120 gggtttaacc cgcagctgtt tacctccggc accacctatg acgcctcttc cgtcccgctt 180 tataaccgtc tggttgaatt taaaatcggc accaccgaag tgatcccggg cctcgctgaa 24 0 aagtgggaag tcagcgaaga cggtaaaacc tataccttcc atctgcgtaa aggtgtgaag 300 tggcacgaca ataaagaatt caaaccgacg cgtgaactga acgccgatga tgtggtgttc 360 tcgttcgatc gtcagaaaaa cgcgcaaaac ccgtaccata aagtttctgg cggca gctac 420 gaatacttcg aaggcatggg cttgccagag ctgatcagtg aagtgaaaaa ggtggacgac 480 aacaccgttc agtttgtgct gactcgcccg gaagcgccgt tcctcgctga cctggcaatg 540 gacttcgcct ctattctgtc aaaagaatat gctgatgcga tgatgaaagc cggtacaccg 600 gaaaaactgg acctcaaccc aatcggaacc ggtccgttcc agttacagca gtatcaaaaa 660 gattcccg ta tccgctacaa agcgtttgat ggctactggg gcaccaaacc gcagatcgat 720 acgctggttt tctctattac ccctgacgct tccgtgcgtt acgcgaaatt gcagaagaat 780 gaatgccagg tgatgccgta cccgaacccg gcagatatcg ctcgcatgaa gcaggataaa 840 tccatcaatc tgatggaaat gccggggctg aacgtcggtt atctctcgta taacgtgcag 900 aaaaaaccac tcgatgacgt gaaagttcgc caggctctga cctacgcggt gaacaaagac 960 gcgatcatca aagcggttta tcagggcgcg ggcgtatcag cgaaaaacct gatcccgcca 1020 accatgtggg gctataacga cgacgttcag gactacacct acgatcctga aaaagcgaaa 1080 gccttgctga aagaagc ggg tctggaaaaaa ggtttctcca tcgacctgtg ggcgatgccg 1140 gtacaacgtc cgtataaccc gaacgctcgc cgcatggcgg agatgattca ggcagactgg 1200 gcgaaagtcg gcgtgcaggc caaaattgtc acctacgaat ggggtgagta cctcaagcgt 1260 gcgaaagatg gcgagcacca gacggtaatg atgggctgga ctggcgataa cggggatccg 1320 gataacttct tcgccaccct gttcagctgc gccgcctctg aacaaggctc caactactca 1380 aaatggtgct acaaaccgtt tgaagatctg attcaaccgg cgcgtgctac cgacgaccac 1440 aataaacgcg ttgaactgta caaacaagcg caggtggtga tgcacgatca ggctccggca 1500 ctgatcatcg ctcactccac cgtgtt tgaa ccggtacgta aagaagttaa aggctatgtg 1560 gttgatccat tagggaaggt gcgaataagc ggggaaattc ttctcggctg actcagtcat 1620 ttcatttctt catgtttgag ccgatttttt ctcccgtaaa tgccttgaat cagcctattt 1680 agaccgtttc ttcgccattt aaggcgttat ccccagtttt tagtgagatc tctcccactg 1740 acgtatcatt tggtccgccc gaaacaggtt ggccagcgtg aataacatcg ccagttggtt 1800 atcgtttttc agcaacccct tgtatctggc tttcacgaag ccgaactgtc gcttgatgat 1860 gcgaaatggg tgctccaccc tggcccggat gctggctttc atgtattcga tgttgatggc 1920 cgttttgttc ttgcgt ggat gctgtttcaa ggttcttacc ttgccggggc gctcggcgat 1980 cagccagtcc acatccacct cggccagctc ctcgcgctgt ggcgcccctt ggtagccggc 2040 atcggctgag acaaattgct cctctccatg cagcagatta cccagctgat tgaggtcatg 2100 ct cgttggcc gcggtggtga ccaggctgtg ggtcaggcca ctcttggcat cgacaccaat 2160 gtgggccttc atgccaaagt gccactgatt gcctttcttg gtctgatgca tctccggatc 2220 gcgttgctgc tctttgttct tggtcgagct gggtgcctca atgatggtgg catcgaccaa 2280 ggtgccttga gtcatcatga cgcctgcttc ggccagccag cgattgatgg tcttgaacaa 2340 ttggcgggcc agttgatgct gctccagcag gtggcgg aaa ttcatgatgg tggtgcggtc 2400 cggcaaggcg ctatccaggg ataaccgggc aaacagacgc atggaggcga tttcgtacag 2460 agcatcttcc atcgcgccat cgctcaggtt gtaccaatgc tgcatgcagt gaatgcgtag 2520 catggtttcc agcggataag gtcgccggcc attaccagcc ttggggtaaa acggctcgat 2580 gacttccacc atgttttgcc atggcagaat ctgctccatg cgggacaaga aaatctcttt 2640 tctggtctga cggcgcttac tgctgaattc actgtcggcg aaggtaagtt gatgactcat 2700 gatgaaccct gttctatggc tccagatgac aaacatgatc tcatatcagg gacttgttcg 2760 caccttcctt aggcaaacat cacttcgaaa acgtctctat cgaataa 2807 <2 10> 52 <211> 1195 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for IS5 <400> 52 ggaaggtgcg aacaagtccc tgatatgaga tcatgtttgt catctggagc catagaacag 60 ggttcatcat gagtcatcaa cttaccttcg ccgacagtga attcagcagt aagcgccgtc 120 agaccagaaa agagattttc ttgtcccgca tggagcagat tctgccatgg caa aacatgg 180 tggaagtcat cgagccgttt taccccaagg ctggtaatgg ccggcgacct tatccgctgg 240 aaaccatgct acgcattcac tgcatgcagc attggtacaa cctgagcgat ggcgcgatgg 300 aagatgctct gtacgaaatc gcctccatgc gtctgtttgc ccggttatcc ctggatagcg 360 ccttgccgga ccgcaccacc atcatgaatt tccgccacct gctggagcag catcaactgg 420 cccgccaatt gttcaagacc atcaatcgct ggctggccga agcaggcgtc atgatgactc 480 aaggcacctt ggtcgatgcc accatcattg aggcacccag ctcgaccaag aacaaagagc 540 agcaacgcga tccggagatg catcagacca agaaaggcaa tcagtggcac tttggcatga 600 aggcccacat tggtgtcgat gccaagagtg gcctgaccca cagcctggtc accaccgcgg 660 ccaacgagca tgacctcaat cagctgggta atctgctgca tggagaggag caatttgtct 720 cagccgatgc cggctaccaa ggggcgccac agcgcgagga gctggccgag gtggatg tgg 780 actggctgat cgccgagcgc cccggcaagg taagaacctt gaaacagcat ccacgcaaga 840 acaaaacggc catcaacatc gaatacatga aagccagcat ccgggccagg gtggagcacc 900 catttcgcat catcaagcga cagttcggct tcgtgaaagc cagatacaag gggttgctga 960 aaaacgataa ccaactggcg atgttatca cgctggccaa cctgtttcgg gcggaccaaa 1020 tgatacgt ca gtgggagaga tctcactaaa aactggggat aacgccttaa atggcgaaga 1080 aacggtctaa ataggctgat tcaaggcatt tacgggagaa aaaatcggct caaacatgaa 1140 gaaatgaaat gactgagtca gccgagaaga atttccccgc ttattcgcac cttcc 1195 <210> 53 <211> 1709 < 212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for yeaR(mutation) <400> 53 atgcttcaaa tcccacagaa ttatattcat acgcgctcaa cgcctttctg gaataaacaa 60 actgcacctg ccggaatatt cgaacgtcat cttgataaag gaacgcgccc g ggggtttac 120 cccataagcg ctaacttaag ggttgaacca tctgaagaat gcgacgcctc ggtgcctcgt 180 taagacgatg cctcgcgttc ttcaattgcg ttttgtaggc tgtcagggat actgtcccac 240 gaatggccac ctgtaagctc cagatgacca tttttgttat tctccacaac gagttagttc 300 ttcttttcgg atccggcact tctggggggg aaatccagcg atggctggat tatgtcgtca 360 attaaaaatg cggcgagtag attagcaaat atccac gctt tcgcgagttc aggttccttt 420 gcacgcaaag catccaggtg cagcaaactt ttgagccgct taaaagccag ttcaatttgc 480 catcgcagac ggtaacaatc agccacttgc tctgctgaat attcatcttc cggtaatgat 540 gttagcaata gcacatggcc cgctgct tcc agcgtttccg cctgaactac tcgtcctttt 600 cgacgattct cgctgagcag tcgggtttta ctgattaatg ctttttcggg aggaagtgat 660 acggcaatga gacgtgccgg aaagggagct ccggcttttt tattacctga attgcctatc 720 attacagtgg tttcaccgtt cttaccgcaa tccagcccgc gcagaaaacc catcatgtca 780 aagcgcattc cttctgcagt taaccagcgc aatcctc gcc agtgaacccg gacgatataa 840 tcagcttctc caaaagcaag tgagcggata cattcgggac gcgaaccgaa tccccggtca 900 gcaatgcgta tctcgtctgc cgtttgcgca aatcggtcca gccgttcagc gtctctgctg 960 tcggttagct caaaatcagt gaactgacag gtatgaggat catatcccat atgtagtcgc 1020 cattcagcgc tgccgccccc gggcgcactg attgctgttc catcgacaag acgcaatctc 1080 tttccgcttg tacaacccgt aactgcggcg cgtacagcaa gtgtttgtgc ggcaagtatg 1140 ccaaaccagt cggcggcatt ccgcagccgc ttcaggagag ccacgtcaga taatgttgca 1200 acgtcatgga gctgagccca tgcagtgact tc acgtaatg acatcccccc ggggccgtaa 1260 gccagcccca gacgtagcag agttgcagca tcacgaattt cgcggcggcg ggttagagcc 1320 ccggcattac gtgccgaagt atccagttct tcgggcttac caatatgggc cagaattgct 1380 gaccagttat cgtgagagta att catcggc acgttaaatc atatcaggcg taataccaca 1440 acccttaagt tagcgcttat ggggtttacc cacgcctttc cgttatgcat ggggcggtca 1500 aatatctcgg ctacgctgat gaacacagtg cagagcctga tcaggtgatc cttatcgaag 1560 cggggcagtt tgcggtgttc cctccagaaa agtggcacaa cattgaagcc atgactgacg 1620 atacttattt caacattgac ttcttcgtgg ctcctgaagt cctgatggaa ggt gcgcaac 1680 aacggaaagt cattcataac gggaaatga 1709 <210> 54 <211> 1343 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for IS186 <400> 54 cccataagcg ctaacttaag ggttgtggta ttacgcctga tatgatttaa cgtgccgatg 60 aattactctc acgataactg gtcagcaatt ctggcccata ttggtaagcc cgaagaactg 120 gatacttcgg cacgtaatgc cggggctcta acccgccgcc gcga aattcg tgatgctgca 180 actctgctac gtctggggct ggcttacggc cccgggggga tgtcattacg tgaagtcact 240 gcatgggctc agctccatga cgttgcaaca ttatctgacg tggctctcct gaagcggctg 300 cggaatgccg ccgactggtt tggcatactt gccgca caaa cacttgctgt acgcgccgca 360 gttacgggtt gtacaagcgg aaagagattg cgtcttgtcg atggaacagc aatcagtgcg 420 cccgggggcg gcagcgctga atggcgacta catatgggat atgatcctca tacctgtcag 480 ttcactgatt ttgagctaac cgacagcaga gacgctgaac ggctggaccg atttgcgcaa 540 acgg cagacg agatacgcat tgctgaccgg ggattcggtt cgcgtcccga atgtatccgc 600 tcacttgctt ttggagaagc tgattatatc gtccgggttc actggcgagg attgcgctgg 660 ttaactgcag aaggaatgcg ctttgacatg atgggttttc tgcgcgggct gg attgcggt 720 aagaacggtg aaaccactgt aatgataggc aattcaggta ataaaaaaagc cggagctccc 780 tttccggcac gtctcattgc cgtatcactt cctcccgaaa aagcattaat cagtaaaacc 840 cgactgctca gcgagaatcg tcgaaaagga cgagtagttc aggcggaaac gctggaagca 900 gcgggccatg tgctattgct aacatcatta ccggaagatg aatattcagc agagcaagtg 960 gctgattgtt accgtctgcg atgg caaatt gaactggctt ttaagcggct caaaagtttg 1020 ctgcacctgg atgctttgcg tgcaaaggaa cctgaactcg cgaaagcgtg gatatttgct 1080 aatctactcg ccgcattttt aattgacgac ataatccagc catcgctgga tttccccccc 1140 agaagtgcc g gatccgaaaa gaagaactaa ctcgttgtgg agaataacaa aaatggtcat 1200 ctggagctta caggtggcca ttcgtgggac agtatccctg acagcctaca aaacgcaatt 1260 gaagaacgcg aggcatcgtc ttaacgaggc accgaggcgt cgcattcttc agatggttca 1320acccttaagt tagcgcttat ggg 1343

Claims (15)

i) fadRfadE 유전자가 결실되고,
ii) AcrR, FadD, DppA, Crp, e14 프로파지 및 YeaR가 돌연변이된 형질전환 대장균으로서,
상기 AcrR 돌연변이는 서열번호 42로 표시되는 염기서열 중 567번째 염기인 아데닌(A)이 결실된 것이고;
상기 FadD 돌연변이는 서열번호 43으로 표시되는 염기서열 중 90번째 염기인 구아닌(guanin) 및 94번째 염기인 사이토신(cytosine)이 아데닌(adenine)으로 치환된 것이고;
상기 DppA 돌연변이는 서열번호 44로 표시되는 염기서열 중 1570번째 염기에 이동성 유전인자 (mobile genetic element) IS5가 삽입된 것이고;
상기 Crp 돌연변이는 서열번호 45로 표시되는 염기서열 중 125번째 염기에 이동성 유전인자 IS5가 삽입된 것이고;
상기 e14 프로파지 돌연변이는 서열번호 46으로 표시되는 염기서열의 icd-icdC 유전자가 결실된 것이고;
상기 YeaR 돌연변이는 서열번호 47로 표시되는 염기서열 중 115번째 염기에 이동성 유전인자 IS186가 삽입된 것인, 형질전환 대장균.
i) fadR and fadE genes are deleted,
ii) Transformed E. coli in which AcrR, FadD, DppA, Crp, e14 prophage, and YeaR are mutated,
The AcrR mutation is one in which adenine (A), the 567th base of the base sequence shown in SEQ ID NO: 42, is deleted;
The FadD mutation is one in which guanine, the 90th base, and cytosine, the 94th base, of the base sequence shown in SEQ ID NO: 43 are substituted with adenine;
The DppA mutation is one in which the mobile genetic element IS5 is inserted at base 1570 of the base sequence shown in SEQ ID NO: 44;
The Crp mutation is one in which the mobility gene IS5 is inserted at the 125th base of the base sequence shown in SEQ ID NO: 45;
The e14 prophage mutant is one in which the icd-icdC gene of the nucleotide sequence shown in SEQ ID NO: 46 is deleted;
The YeaR mutation is a transformed E. coli in which the mobility gene IS186 is inserted at the 115th base of the base sequence shown in SEQ ID NO: 47.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete i) 제1항의 형질전환 대장균을 배양하는 단계; 및
ii) 상기 형질전환 대장균으로부터 생산되는 노난디오산을 수득하는 단계를 포함하는, 노난디오산의 생산방법으로서,
상기 배양은 노난산 존재 하에 형질전환 대장균을 배양하는 것을 특징으로 하는 것인, 노난디오산의 생산방법.
i) cultivating the transformed E. coli of paragraph 1; and
ii) A method for producing nonanedioic acid, comprising the step of obtaining nonanedioic acid produced from the transformed E. coli,
A method for producing nonanedioic acid, wherein the culture is characterized in that transformed E. coli is cultured in the presence of nonanoic acid.
삭제delete i) 야생형 대장균의 fadRfadE 유전자를 결실시키는 단계;
ii) 상기 대장균을 노난산이 유일탄소원인 최소배지에서 10일 이상 배양시키는 단계; 및
iii) 90일 이상 반복적으로 계대배양시키는 단계를 포함하는, 노난산으로부터 노난디오산을 생산하는 제1항의 형질전환 대장균을 제조하는 방법.
i) Deleting the fadR and fadE genes of wild-type E. coli;
ii) culturing the E. coli in a minimal medium in which nonanoic acid is the sole carbon source for more than 10 days; and
iii) A method of producing the transformed E. coli of claim 1 that produces nonanedioic acid from nonanoic acid, comprising the step of repeatedly subculturing for more than 90 days.
제10항에 있어서,
상기 ii) 단계에서 노난산은 적어도 3 g/L의 농도로 존재하는 것인, 방법.
According to clause 10,
In step ii), nonanoic acid is present at a concentration of at least 3 g/L.
제10항에 있어서,
상기 ii) 단계에서 최소배지가 NaH2PO4, KH2PO4, NaCl, NH4Cl, MgSO7H2O 및 CaCl2 가 첨가된 M9 최소배지인, 방법.
According to clause 10,
In step ii), the minimal medium is M9 minimal medium to which NaH 2 PO 4 , KH 2 PO 4 , NaCl, NH 4 Cl, MgSO 7H 2 O and CaCl 2 are added.
삭제delete 삭제delete 삭제delete
KR1020210016693A 2021-02-05 2021-02-05 Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same KR102608905B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210016693A KR102608905B1 (en) 2021-02-05 2021-02-05 Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210016693A KR102608905B1 (en) 2021-02-05 2021-02-05 Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same

Publications (2)

Publication Number Publication Date
KR20220113020A KR20220113020A (en) 2022-08-12
KR102608905B1 true KR102608905B1 (en) 2023-12-01

Family

ID=82803690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210016693A KR102608905B1 (en) 2021-02-05 2021-02-05 Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same

Country Status (1)

Country Link
KR (1) KR102608905B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116837016B (en) * 2023-08-29 2024-01-02 中国农业科学院北京畜牧兽医研究所 Method for constructing recombinant escherichia coli engineering strain for producing capsaicin-vanilla nonanamide, recombinant strain and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455167A (en) * 1991-05-21 1995-10-03 Calgene Inc. Medium-chain thioesterases in plants
CA2802186A1 (en) * 2010-06-10 2011-12-15 Korea Advanced Institute Of Science And Technology Microorganism variants having hydrocarbon producing ability and method for producing hydrocarbon using the same
US10907180B2 (en) 2015-07-08 2021-02-02 Rheinisch-Westfaelische Technische Hochshule Aachen (RWTH) Extracellular production of designer hydroxyalkanoyloxy alkanoic acids with recombinant bacteria
WO2017136344A1 (en) 2016-02-01 2017-08-10 INVISTA North America S.à.r.l. Process for producing c7 compounds starting from 9-hydroperoxidized linoleic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Improving Azelaic Acid Production in Escherichia coli via Adaptive Laboratory Evolution, 한국미생물학회 학술대회논문집, G004, 2019, p. 166.*

Also Published As

Publication number Publication date
KR20220113020A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
EP1183345B1 (en) Directed evolution of microorganisms
KR102223521B1 (en) Recombinant Microorganisms Producing Methyl-anthranilate and Method for Producing Methyl-anthranilate Using the Same
JP2011041582A (en) Method for producing l-amino acid by increase of cellulous nadph
JP2016529901A (en) Modified microorganisms for improving alanine production
US20210147889A1 (en) Method for enhancing continuous production of a natural compound during exponential growth phase and stationary phase of a microorganism
JP2004254544A (en) New lysine decaroboxylase gene and method for producing l-lysine
KR102608905B1 (en) Transformed microorganism producing nonanedioic acid and a method for producing nonanedioic acid using the same
KR101830001B1 (en) Strain overexpressing l-tryptophan by improving prpp synthesis pathway and process for producing l-tryptophan using the same
CN106574236B (en) Genetically modified (R) -lactic acid producing thermophilic bacteria
KR20210015881A (en) Method of manufacturing methacrylate
JP5707318B2 (en) Method for producing L-lysine
JP7194950B2 (en) Manufacture of hydroxytyrosol
EP2357222B1 (en) Scyllo-inositol-producing cell and scyllo-inositol production method using said cells
KR101214632B1 (en) Recombinant Microorganism Producing Taurine and Method for Preparing Taurine Using the Same
US20220411837A1 (en) Recombinant methanotrophic bacteria for indigo biosynthesis and methods thereof
CN111334534A (en) Method for the fermentative production of L-lysine using a strain of Corynebacterium glutamicum having a mutated Kup transporter
JP2021517806A (en) Use in the production of recombinant microorganisms, their production methods and coenzyme Q10
KR101781294B1 (en) High growth Escherichia coli using glycerol as carbon source
KR102683624B1 (en) Microorganisms with stabilized copy numbers of functional DNA sequences and related methods
KR101863239B1 (en) Microorganism Capable of Using Acetic Acid as Sole Carbon Source
JP5737650B2 (en) Acetoin producing cell and method for producing acetoin using the cell
CN106536543B (en) Genetic modification of (S) -lactic acid producing thermophilic bacteria
RU2829715C2 (en) Variant of corynebacterium glutamicum with improved ability to produce l-lysine and method of producing l-lysine using same
JP6604584B1 (en) Recombinant hydrogenophilus bacteria with improved valine-producing ability
FI129574B (en) Variant bacterial strains and processes for protein or biomass production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant