[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102597918B1 - A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same - Google Patents

A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same Download PDF

Info

Publication number
KR102597918B1
KR102597918B1 KR1020200188525A KR20200188525A KR102597918B1 KR 102597918 B1 KR102597918 B1 KR 102597918B1 KR 1020200188525 A KR1020200188525 A KR 1020200188525A KR 20200188525 A KR20200188525 A KR 20200188525A KR 102597918 B1 KR102597918 B1 KR 102597918B1
Authority
KR
South Korea
Prior art keywords
sintered body
yttrium
oxyfluoride
sintered
manufacturing
Prior art date
Application number
KR1020200188525A
Other languages
Korean (ko)
Other versions
KR20220096256A (en
Inventor
이강호
송종섭
엄정혜
박정남
최현종
Original Assignee
(주)단단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)단단 filed Critical (주)단단
Priority to KR1020200188525A priority Critical patent/KR102597918B1/en
Publication of KR20220096256A publication Critical patent/KR20220096256A/en
Application granted granted Critical
Publication of KR102597918B1 publication Critical patent/KR102597918B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 이트륨 옥시불화물과 불화이트륨을 포함하는 소결체 및 그 제조방법에 관한 것이다. 본 발명의 소결체는 1000 ~ 1300℃ 온도 조건에서 소결되며, 소결밀도는 4.0 ~ 4.8 g/cm3 이고, 이트륨 옥시불화물 및 불화이트륨을 포함하여 구성된다. 또한 본 발명의 소결체 제조 방법은 이트리아(Y2O3)를 하소하는 단계와, 하소된 Y2O3와 YF3를 일정 비율로 칭량 및 혼합하여 슬러리를 만드는 단계와, 상기 슬러리에 유기첨가제를 첨가한 다음 분무건조하여 과립을 만드는 단계와, 상기 과립을 성형체로 제조하는 단계 및 상기 성형체를 소결하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a sintered body containing yttrium oxyfluoride and yttrium fluoride and a method for manufacturing the same. The sintered body of the present invention is sintered at a temperature of 1000 to 1300°C, has a sintered density of 4.0 to 4.8 g/cm 3 , and contains yttrium oxyfluoride and yttrium fluoride. In addition, the method for producing a sintered body of the present invention includes the steps of calcining yttria (Y 2 O 3 ), weighing and mixing the calcined Y 2 O 3 and YF 3 at a certain ratio to produce a slurry, and adding an organic additive to the slurry. It is characterized in that it includes the step of adding and then spray drying to make granules, manufacturing the granules into a molded body, and sintering the molded body.

Description

이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체 및 그 제조방법{A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same}Sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same}

본 발명은 이트륨 옥시불화물과 불화이트륨을 포함하는 소결체 및 그 제조방법에 관한 것으로서, 보다 상세하게는 내식성이 높고 상대적으로 낮은 온도에서 소결이 가능하며 소결밀도가 높은 이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체 및 그 제조 방법에 관한 것이다.The present invention relates to a sintered body containing yttrium oxyfluoride and yttrium fluoride and a method for manufacturing the same. More specifically, the present invention relates to a sintered body containing yttrium oxyfluoride and yttrium fluoride, which has high corrosion resistance, can be sintered at a relatively low temperature, and has a high sintering density. It relates to a sintered body and its manufacturing method.

불소계 부식성 가스를 이용한 플라즈마가 플라즈마 에칭 등 산업용도로 많이 사용된다. 이들 부식성 가스나 플루오르 플라즈마에 의해 제조장치의 구성 부재는 부식이 되기 쉽고, 또한 구성 부재의 표면으로부터 박리된 미세 입자가 제품의 표면에 부착되어 제품 불량의 원인이 되기 쉽다. Plasma using fluorine-based corrosive gas is widely used for industrial purposes such as plasma etching. Components of the manufacturing equipment are easily corroded by these corrosive gases or fluorine plasma, and fine particles peeled off from the surfaces of the components tend to adhere to the surface of the product, causing product defects.

따라서 플루오르 플라즈마에 대해 내식성이 높은 세라믹스가 벌크 재료로서 많이 사용된다. 이러한 벌크 재료 중 하나로서, 공개특허공보 제10-2019-0098129호에 있어서는 희토류 옥시불화물이 제안되어 있다. 상기 특허문헌에 기재된 희토류 옥시불화물은, 반응성이 높은 할로겐계 부식 가스나 그 플라즈마에 대해, 종래 사용되어 온 석영이나 YAG보다 내식성이 높은 것이다.Therefore, ceramics with high corrosion resistance to fluorine plasma are widely used as bulk materials. As one of these bulk materials, rare earth oxyfluoride is proposed in Patent Publication No. 10-2019-0098129. The rare earth oxyfluoride described in the above patent document has higher corrosion resistance against highly reactive halogen-based corrosive gases and their plasma than conventionally used quartz or YAG.

공개특허공보 제10-2019-0098129호(2019.08.21.공개)Public Patent Publication No. 10-2019-0098129 (published on August 21, 2019)

불소계 부식 가스나 고밀도 플루오르 플라즈마에 대해 높은 내식성을 요구하는 벌크 소재로 희토류 옥시불화물 소결체가 적합하지만 일반적으로 저강도이기 때문에, 가공 시에 균열이 발생되는 경우가 많고, 또한 가공면이나 코너부의 칩핑(chipping)이 발생되기 쉽다.Rare earth oxyfluoride sintered body is suitable as a bulk material that requires high corrosion resistance to fluorine-based corrosive gases or high-density fluorine plasma, but because it generally has low strength, cracks often occur during processing, and chipping (chiping) on the machined surface or corners is common. chipping) is likely to occur.

이러한 이유로 희토류 옥시불화물의 소결체에 대해 치수 정밀도를 높이거나, 표면 조도를 낮추거나 하는 가공이 그동안 쉽지 않았다. 이러한 관점에서 공개특허공보 제10-2019-0098129호에 기재된 희토류 옥시불화물의 소결체는 개량의 여지가 여전히 존재한다.For this reason, it has not been easy to process sintered bodies of rare earth oxyfluorides to increase dimensional accuracy or reduce surface roughness. From this perspective, there is still room for improvement in the sintered body of rare earth oxyfluoride described in Patent Publication No. 10-2019-0098129.

따라서 본 발명의 과제는, 고밀도 플루오르 부식 가스를 이용한 플라즈마에 대해 내식성이 강하면서도 소결밀도가 높아 오염물질이 덜 발생하는 소재를 찾는데 있다.Therefore, the task of the present invention is to find a material that has strong corrosion resistance against plasma using a high-density fluorine corrosive gas and has a high sintering density that generates less contaminants.

본 발명은 내식성이 높고, 상대적으로 낮은 온도에서 소결이 가능하며, 소결밀도가 높은 이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체를 제공하는 것으로서, 본 발명에서 제공하는 소결체는 1000 ~ 1300℃ 온도 조건에서 소결되며, 소결밀도는 4.0 ~ 4.8 g/cm3 인 것을 특징으로 한다.The present invention provides a sintered body containing yttrium oxyfluoride and yttrium fluoride that has high corrosion resistance, can be sintered at a relatively low temperature, and has a high sintering density. The sintered body provided by the present invention can be used at a temperature of 1000 to 1300°C. It is sintered and the sintered density is 4.0 to 4.8 g/cm 3 .

본 발명의 일 실시예에 따르면 상기 소결체는 Y2O3를 하소하는 단계; 하소된 Y2O3와 YF3를 일정 비율로 칭량 및 혼합하여 슬러리를 만드는 단계; 상기 슬러리에 유기첨가제를 첨가한 다음 분무건조하여 과립을 만드는 단계; 상기 과립을 성형체로 제조하는 단계; 및 상기 성형체를 소결하는 단계를 통해 제조될 수 있다.According to one embodiment of the present invention, the sintered body is prepared by calcining Y 2 O 3 ; Weighing and mixing calcined Y 2 O 3 and YF 3 at a certain ratio to create a slurry; Adding organic additives to the slurry and then spray drying to create granules; manufacturing the granules into molded bodies; and sintering the molded body.

본 발명에 의해 만들어진 소결체는 고밀도 플루오르 플라즈마 환경에 노출되더라도 오염입자의 발생량이 저감되게 된다. 또한, 불화이트륨이 소결 시 첨가제로 작용함으로서 소결온도가 감소하게 되며, 이로 인해 생산성이 증가하게 된다. Even when the sintered body produced by the present invention is exposed to a high-density fluorine plasma environment, the amount of polluting particles generated is reduced. Additionally, as yttrium fluoride acts as an additive during sintering, the sintering temperature decreases, thereby increasing productivity.

또한, 하소를 통해 이트리아(Y2O3)분말의 입도 제어가 가능함으로써 비표면적 증가로 인해 최종적으로 이트륨 옥시불화물의 반응성 및 소결성의 향상 효과가 발생한다.In addition, the particle size of yttria (Y 2 O 3 ) powder can be controlled through calcination, thereby increasing the specific surface area and ultimately improving the reactivity and sinterability of yttrium oxyfluoride.

도 1은 본 발명의 실시예에 따른 소결체의 제조방법을 설명하기 위한 공정 순서도이다.
도 2와 도 3은 하소 전 이트리아 분말과 하소 후 이트리아 분말의 입도 분포를 나타내는 그래프이다.
도 4 내지 도 6은 본 발명의 일 실시예에 따른 소결체의 XRD 그래프이다.
1 is a process flow chart for explaining a method of manufacturing a sintered body according to an embodiment of the present invention.
Figures 2 and 3 are graphs showing the particle size distribution of yttria powder before calcination and yttria powder after calcination.
Figures 4 to 6 are XRD graphs of the sintered body according to an embodiment of the present invention.

다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present application, when a part “includes” a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.

이하 본 발명을, 그 바람직한 실시 형태에 기초하여 설명한다. 본 발명의 이트륨 옥시불화물은 이트륨(Y), 산소(O), 불소(F)로 이루어지는 화합물이다. 이트륨 옥시불화물로 가장 기본적인 형태는 이트륨(Y), 산소(O), 불소(F)의 몰비가 Y:O:F=1:1:1인 YOF이다. 그러나 이트륨 옥시불화물로는, 상기의 몰비 이외의 화합물이어도 상관없다. 예를 들면, Y5O4F7, Y6O5F8, Y7O6F9 등이 이에 해당하며, 추가적으로 이들 중 1종 이상의 이트륨 옥시불화물이 혼합되어 있는 것도 가능하다.The present invention will be described below based on its preferred embodiments. Yttrium oxyfluoride of the present invention is a compound consisting of yttrium (Y), oxygen (O), and fluorine (F). The most basic form of yttrium oxyfluoride is YOF, where the molar ratio of yttrium (Y), oxygen (O), and fluorine (F) is Y:O:F = 1:1:1. However, yttrium oxyfluoride may be a compound other than the above molar ratio. For example, Y 5 O 4 F 7 , Y 6 O 5 F 8 , Y 7 O 6 F 9 , etc., and additionally, one or more of these yttrium oxyfluorides may be mixed.

본 발명에서 이트륨 옥시불화물을 사용하게 된 이유는 상기 화합물이 내식성을 유지하는데 가장 좋은 소재 중 하나이기 때문이다. 특히, 이트륨 옥시불화물은 넓은 온도 범위 내에서 상변태를 발생시키지 않는 특성을 갖고 있다. 이러한 이트륨 옥시불화물을 치밀성이 높은 소결체의 소재로 사용함으로써 고밀도 플루오르계 부식 가스의 차단을 효과적으로 높일 수 있다. The reason why yttrium oxyfluoride was used in the present invention is because the compound is one of the best materials for maintaining corrosion resistance. In particular, yttrium oxyfluoride has the property of not causing phase transformation within a wide temperature range. By using this yttrium oxyfluoride as a material for a highly dense sintered body, blocking of high-density fluorine-based corrosive gas can be effectively increased.

한편, 본 발명의 소결체에 포함되는 또 다른 화합물인 불화이트륨(YF3)은 종래 사용되던 산화이트륨계의 피막이 플루오르 플라즈마에 노출될 때 불소와 반응함으로써 피막이 손상되는 것을 보완하기 위해 연구되고 있는 소재이다. 불화이트륨 피막은 기공률이 적고, 비표면적이 작은 치밀한 피막을 형성할 수 있다는 점이 특징이다.Meanwhile, yttrium fluoride (YF 3 ), another compound included in the sintered body of the present invention, is a material that is being studied to compensate for damage to the conventionally used yttrium oxide-based film by reacting with fluorine when exposed to fluorine plasma. . The characteristic of the yttrium fluoride film is that it has a low porosity and can form a dense film with a small specific surface area.

다음으로, 본 발명의 소결체의 바람직한 제조방법에 대하여 설명한다. Next, a preferred method for manufacturing the sintered body of the present invention will be described.

도 1은 본 발명의 실시예에 따른 소결체의 제조방법을 설명하기 위한 공정 순서도이다.1 is a process flow chart for explaining a method of manufacturing a sintered body according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 소결체의 제조방법은 하소 단계(S100), 슬러리 제조 단계(S200), 과립제조 단계(S300), 성형체 제조 단계(S400), 소결 단계(S500)를 포함한다.Referring to Figure 1, the method for producing a sintered body of the present invention includes a calcination step (S100), a slurry production step (S200), a granule production step (S300), a molded body production step (S400), and a sintering step (S500).

우선, 첫번째 단계인 이트리아(Y2O3)를 하소하는 단계(S100)는 0.1 ㎛ 이상 2 ㎛ 미만의 평균 크기를 갖는 Y2O3 분말을 하소한다. 하소 단계의 온도조건은 500 ~ 1500 ℃이고 하소시간은 20분 내지 120분 동안 수행한다. 이 때 로내 분위기는 대기 또는 불활성 분위기인 것이 바람직하다.First, in the first step of calcining yttria (Y 2 O 3 ) (S100), Y 2 O 3 powder having an average size of 0.1 ㎛ or more and less than 2 ㎛ is calcined. The temperature conditions of the calcination step are 500 to 1500°C and the calcination time is 20 to 120 minutes. At this time, it is preferable that the atmosphere within the furnace is air or an inert atmosphere.

하소를 통해 얻는 효과는 이트리아 분말의 입도를 제어함으로써 비표면적의 증가와 YOF 반응성 및 소결성 향상 효과를 가져올 수 있다. The effect obtained through calcination can be an increase in specific surface area and improvement in YOF reactivity and sinterability by controlling the particle size of yttria powder.

본 발명의 일 실시예를 정리한 아래 표 1을 살펴보면, 하소 전 이트리아 분말의 경우 D50이 1.8 ㎛인 반면, 600 ℃ 대기 분위기에서 2시간 동안 하소된 이트리아 분말의 경우 D50은 절반 정도가 줄어든 0.8 ㎛로 나타나고 있으며(비표면적의 증가) 최종 결과물의 소결밀도는 3.8 g/cm3에서 4.1 ~ 4.3 g/cm3 으로 증가하였음을 알 수 있다. 이 때의 밀도는 겉보기 밀도를 의미한다. 하소 전 이트리아 분말(A)과 하소된 이트리아 분말(B)의 입도 분포 곡선을 각각 도 2, 도 3에 나타내었다.Looking at Table 1 below, which summarizes an example of the present invention, in the case of yttria powder before calcination, D50 is 1.8 ㎛, while in the case of yttria powder calcined for 2 hours in an air atmosphere at 600 ℃, D50 is reduced by about half. It appears to be 0.8 ㎛ (increase in specific surface area), and it can be seen that the sintered density of the final result increased from 3.8 g/cm 3 to 4.1 ~ 4.3 g/cm 3 . Density at this time means apparent density. The particle size distribution curves of the yttria powder before calcining (A) and the calcined yttria powder (B) are shown in Figures 2 and 3, respectively.

하소 전 분말(A)Powder before calcining (A) 하소된 분말(B)Calcined powder (B) 입도 제어particle size control D50 = 1.8 μmD 50 = 1.8 μm D50 = 0.8 μmD 50 = 0.8 μm 밀도 density 3.8 g/cm3 3.8g/ cm3 4.1 ~ 4.3 g/cm3 4.1 to 4.3 g/cm 3

그 다음 슬러리로 만드는 단계(S200)는 상기 하소된 Y2O3 분말을 불화이트륨(YF3) 분말과 YF3/(Y2O3 + YF3)= 0.65 내지 0.9의 비율이 되도록 칭량한 다음 혼합하여 슬러리를 만드는 단계이다. Next, in the step of making a slurry (S200), the calcined Y 2 O 3 powder is weighed so that the ratio of yttrium fluoride (YF 3 ) powder and YF 3 /(Y 2 O 3 + YF 3 ) = 0.65 to 0.9. This is the step of mixing to create a slurry.

불화이트륨의 첨가를 통해 최종 소결체는 보다 더 치밀해짐으로써 고밀도 플루오르 플라즈마 환경에 노출될 경우, 오염입자 발생량이 저감되고, 원하는 밀도 달성을 위해 필요한 소결온도가 감소하며, 결과적으로 생산성이 증가되는 효과를 가져온다. 불화이트륨의 함량이 0.65 보다 작거나 0.9 보다 크면 원하는 치밀한 밀도의 소결체를 얻을 수 없게 된다. Through the addition of yttrium fluoride, the final sintered body becomes more dense, which reduces the amount of contaminant particles generated when exposed to a high-density fluorine plasma environment, reduces the sintering temperature required to achieve the desired density, and ultimately increases productivity. bring If the yttrium fluoride content is less than 0.65 or greater than 0.9, a sintered body with the desired dense density cannot be obtained.

다음 단계인 과립을 만드는 단계는 상기 슬러리에 유기첨가제를 첨가한 다음분무건조하여 과립을 만드는 단계이다. 이 때 첨가되는 유기첨가제로는 폴리비닐알코올, 폴리비닐부티랄, 메틸셀룰로오스, 카르복시메틸셀룰로오스, 아크릴계 바인더, 폴리에틸렌글리콜, 및 폴리비닐피롤리돈 등이 사용될 수 있다.The next step, making granules, is to add organic additives to the slurry and then spray dry to make granules. Organic additives added at this time may include polyvinyl alcohol, polyvinyl butyral, methyl cellulose, carboxymethyl cellulose, acrylic binder, polyethylene glycol, and polyvinyl pyrrolidone.

과립을 만드는 장치로 사용되는 분무 건조 장치에서는 분쇄된 복수의 입자를 포함하는 슬러리의 액적이 열풍 중에 적하되고, 이에 의해 액적이 고체화되어 복수의 입자를 포함하는 과립이 만들어진다.In a spray drying device used as a device for making granules, droplets of a slurry containing a plurality of pulverized particles are dropped in hot air, whereby the droplets are solidified to produce granules containing a plurality of particles.

다음으로, 과립으로 된 혼합물은 성형체로 만들어지는 과정을 거치게 된다. 이 때, 성형체는 냉간 정수압 성형방법 또는 일축가압 성형방법에 의해 제조되며 바람직하게는 냉간 정수압 성형방법이 사용되고, 성형 압력은 10 ~ 200 MPa이 적용될 수 있다. Next, the granulated mixture goes through a process to form a molded body. At this time, the molded body is manufactured by a cold isostatic pressure molding method or a uniaxial pressure molding method. The cold isostatic pressure molding method is preferably used, and a molding pressure of 10 to 200 MPa can be applied.

냉간 정수압 성형방법은 성형되는 제품에 모든 방향으로 압력이 균일하게 전달되는 유체의 원리를 이용하는 것으로서 분말을 유연성을 갖는 몰드에 넣어 고압에 견딜 수 있는 압력용기 내부에 장입한 후 압력용기 내부를 유체를 이용하여 고압으로 형성시키게 된다.The cold isostatic pressure molding method uses the principle of a fluid that transmits pressure evenly in all directions to the product being molded. Powder is placed in a flexible mold and placed inside a pressure vessel that can withstand high pressure, and then the inside of the pressure vessel is filled with fluid. It is formed using high pressure.

상기 성형체는 마지막으로 소결과정을 거쳐 소결체가 된다. 소결조건은 1000 ~ 1300 ℃의 온도범위에서 0.5 ~ 10시간 동안 유지하면서 대기 분위기에서 열처리하는 것을 특징으로 한다. 소결은 상압 또는 가압소결이 가능하며, 가압소결의 경우에는 5 ~ 50 MPa의 압력을 가하는 것이 바람직하다. 압력을 가하는 소결 조건에서는 아르곤, 질소, 진공과 같은 불활성 분위기에서 열처리를 하는 것이 바람직하다. The molded body finally undergoes a sintering process to become a sintered body. Sintering conditions are characterized by heat treatment in an air atmosphere while maintaining the temperature range of 1000 ~ 1300 ℃ for 0.5 ~ 10 hours. Sintering can be done at normal pressure or pressure sintering, and in the case of pressure sintering, it is preferable to apply a pressure of 5 to 50 MPa. In pressure-applied sintering conditions, it is preferable to perform heat treatment in an inert atmosphere such as argon, nitrogen, or vacuum.

<실시예 1><Example 1>

아래 표 2는 불화이트륨과 이트리아의 혼합비율을 달리하여 소결체를 제조한 결과물이다. 이트리아의 하소조건은 1150 ℃에서 2시간 동안 진행하였으며, 소결조건은 1000 ℃에서 4시간 동안 대기압 분위기에서 수행하였다. 최종 산물인 소결체는 불화이트륨의 혼합 비율이 높아질 수록 밀도가 증가하여 대략 4.5 g/cm3 까지 달성될 수 있음을 알 수 있다.Table 2 below shows the results of manufacturing a sintered body by varying the mixing ratio of yttrium fluoride and yttria. Yttria's calcination conditions were performed at 1150°C for 2 hours, and sintering conditions were performed at 1000°C for 4 hours in an atmospheric pressure atmosphere. It can be seen that the density of the final product, the sintered body, increases as the mixing ratio of yttrium fluoride increases, reaching approximately 4.5 g/cm 3 .

YF3 : Y2O3 (몰비)YF 3 : Y 2 O 3 (molar ratio) 하소calcination 소결sintering 밀도 (g/cm3)Density (g/cm 3 ) 4 : 64:6 1150oC/2h1150 ° C/2h 1000℃/4h/
Air
1000℃/4h/
Air
3.1±0.043.1±0.04
6 : 46:4 3.2±0.063.2±0.06 7 : 37:3 4.2±0.044.2±0.04 8 : 28:2 4.5±0.024.5±0.02

<실시예 2><Example 2>

아래 표 3은 불화이트륨과 이트리아의 혼합비율을 8:2(몰비)로 고정한 채 소결체를 제조한 결과물이다. 이트리아의 하소조건은 800 ℃에서 2시간 또는 1000 ℃에서 4시간 동안 수행하였으며, 소결조건은 온도를 950 ~ 1400 ℃ 까지 달리하면서 대기압 분위기에서 수행하였다. Table 3 below shows the results of manufacturing a sintered body with the mixing ratio of yttrium fluoride and yttria fixed at 8:2 (molar ratio). Yttria's calcination conditions were performed at 800°C for 2 hours or at 1000°C for 4 hours, and the sintering conditions were performed in an atmospheric pressure atmosphere with the temperature varying from 950 to 1400°C.

먼저 하소온도가 800 ℃인 경우에는 최종 산물인 소결체의 밀도는 소결온도가 증가할 수록 밀도가 점차 증가하다가 1400 ℃ 에서는 오히려 소결밀도가 감소함을 알 수 있다. 한편, 하소온도가 1000 ℃인 경우에는, 소결온도를 1000 ℃에서 1300 ℃로 올림에 따라 밀도가 감소함을 알 수 있다.First, when the calcination temperature is 800 ℃, the density of the final product, the sintered body, gradually increases as the sintering temperature increases, but at 1400 ℃, the sintered density decreases. On the other hand, when the calcination temperature is 1000°C, it can be seen that the density decreases as the sintering temperature is increased from 1000°C to 1300°C.

YF3 : Y2O3 (몰비)YF 3 : Y 2 O 3 (molar ratio) 하소calcination 소결sintering 밀도 (g/cm3)Density (g/cm3) XRD DATAXRD DATA 8 : 28:2 800℃/2h800℃/2h 950oC/2h/Air950 ° C/2h/Air 3.7 ± 0.03 3.7 ± 0.03 1000oC/2h/Air1000 ° C/2h/Air 4.2 ± 0.054.2 ± 0.05 sample Csample C 1050oC/2h/Air1050 ° C/2h/Air 4.7 ± 0.054.7 ± 0.05 1200℃/2h/Air 1200℃/2h/Air 4.5 ± 0.024.5 ± 0.02 sample Asample A 1400℃/2h/Air 1400℃/2h/Air 3.4 ± 0.05 3.4 ± 0.05 1000℃/4h1000℃/4h 1000oC/6h/Air1000 ° C/6h/Air 4.5 ± 0.054.5 ± 0.05 sample Bsample B 1300oC/8h/Air1300 ° C/8h/Air 3.5 ± 0.043.5 ± 0.04

도 4 내지 도 6은 본 발명의 일 실시례의 제조방법에 따라 제조된 소결체의 XRD 그래프이다. 먼저 도 4는 표 3에서 sample A 조건으로 만들어진 소결체로서 XRD data 상 Y5O4F7과 YF3의 고유 peak이 선명하게 나타나고 있어, 상기 소결체에는 두 성분이 존재함을 알 수 있다. 이 때, XRD(SmartLab,Rigaku) 측정은 Cu-Ka 타겟을 사용하고,45 kV, 200 mA 범위에서 5O/min의 스캔 속도로, step size는 0.01O로 설정하여 측정하였다.Figures 4 to 6 are XRD graphs of the sintered body manufactured according to the manufacturing method of one embodiment of the present invention. First, Figure 4 is a sintered body made under the conditions of sample A in Table 3, and the unique peaks of Y 5 O 4 F 7 and YF 3 are clearly visible in the XRD data, showing that the two components exist in the sintered body. At this time, XRD (SmartLab, Rigaku) measurement was performed using a Cu-Ka target at a scan speed of 5 O / min in the range of 45 kV and 200 mA, and the step size was set to 0.01 O.

도 5는 sample B 조건으로 만들어진 소결체로서 Y5O4F7과 YF3 두 성분이 소결체 내에 존재함을 알 수 있다. 그리고 도 6은 sample C 조건으로 만들어진 소결체로서 Y6O5F8과 YF3 두 성분이 소결체 내에 존재함을 알 수 있다. Figure 5 is a sintered body made under sample B conditions, and it can be seen that two components Y 5 O 4 F 7 and YF 3 exist in the sintered body. And Figure 6 is a sintered body made under sample C conditions, and it can be seen that two components Y 6 O 5 F 8 and YF 3 exist in the sintered body.

이상과 같이, 본 발명의 소결체는, 희토류 옥시불화물에 기인하는 내식성과 함께 4.0 ~ 4.8 g/cm3 의 고밀도를 유지함으로써 고밀도 플루오르 플라즈마 환경에서도 오염물질의 발생이 저감되고, 상대적으로 낮은 온도(1000 ~ 1300 ℃)에서 소결이 종료될 수 있으므로 생산성 향상의 효과를 가져오게 된다. As described above, the sintered body of the present invention maintains a high density of 4.0 to 4.8 g/cm 3 along with corrosion resistance due to rare earth oxyfluoride, thereby reducing the generation of contaminants even in a high-density fluorine plasma environment, and maintaining the corrosion resistance at a relatively low temperature (1000 Since sintering can be completed at ~1300 ℃), it has the effect of improving productivity.

이상에서는 본 발명에 관한 몇 가지 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present invention has been described above with reference to several embodiments, those skilled in the art will understand the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that it can be modified and changed in various ways.

S100: 하소 단계
S200: 슬러리 제조 단계
S300: 과립 제조 단계
S400: 성형체 제조 단계
S500: 소결 단계
S100: Calcination step
S200: Slurry preparation step
S300: Granule manufacturing step
S400: Molded body manufacturing step
S500: Sintering stage

Claims (6)

하소된 이트리아(Y2O3)가 혼합된 성형체가 1000 ~ 1200 ℃ 온도 조건에서, 2시간 내지 8시간 소결되며,
소결밀도는 4.0 ~ 4.8 g/cm3 이고,
상기 하소는 500 ~ 1500 ℃ 온도 조건에서 20분 내지 120분 동안 진행하는 것을 특징으로 하는
이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체.
A molded body mixed with calcined yttria (Y 2 O 3 ) is sintered for 2 to 8 hours at a temperature of 1000 to 1200°C.
The sintered density is 4.0 ~ 4.8 g/cm 3 ,
The calcination is characterized in that it is carried out for 20 minutes to 120 minutes under temperature conditions of 500 to 1500 ° C.
A sintered body containing yttrium oxyfluoride and yttrium fluoride.
제1항에 있어서,
상기 이트륨 옥시불화물은 YOF, Y5O4F7, Y6O5F8, Y7O6F9 으로부터 이루어진 군에서 선택된 1종 이상을 포함하는,
이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체.
According to paragraph 1,
The yttrium oxyfluoride includes at least one selected from the group consisting of YOF, Y 5 O 4 F 7 , Y 6 O 5 F 8 , and Y 7 O 6 F 9 .
A sintered body containing yttrium oxyfluoride and yttrium fluoride.
제1항 또는 제2항의 소결체의 제조방법으로서,
이트리아(Y2O3)를 하소하는 단계;
하소된 Y2O3와 불화이트륨(YF3)을 일정 비율로 칭량 및 혼합하여 슬러리를 만드는 단계;
상기 슬러리에 유기첨가제를 첨가한 다음 분무건조하여 과립을 만드는 단계;
상기 과립을 성형체로 제조하는 단계; 및
상기 성형체를 소결하는 단계를 포함하는,
이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체의 제조방법.
As a method of manufacturing the sintered body of claim 1 or 2,
Calcining yttria (Y 2 O 3 );
Weighing and mixing calcined Y 2 O 3 and yttrium fluoride (YF 3 ) at a certain ratio to create a slurry;
Adding organic additives to the slurry and then spray drying to create granules;
manufacturing the granules into molded bodies; and
Comprising the step of sintering the molded body,
Method for producing a sintered body containing yttrium oxyfluoride and yttrium fluoride.
제3항에 있어서,
하소 전 Y2O3는 0.1 ㎛ 이상 2 ㎛ 미만의 평균 크기를 갖는 분말인 것을 특징으로 하는,
이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체의 제조방법.
According to paragraph 3,
Y 2 O 3 before calcination is characterized in that it is a powder having an average size of 0.1 ㎛ or more and less than 2 ㎛,
Method for producing a sintered body containing yttrium oxyfluoride and yttrium fluoride.
삭제delete 제3항에 있어서,
상기 소결단계는 1000 ~ 1200 ℃ 온도 조건에서 2시간 내지 8시간 동안 진행하며,
로내 분위기는 대기 또는 불활성분위기이고, 상압 또는 5 ~ 50 MPa 가압조건에서 수행되는 것을 특징으로 하는,
이트륨 옥시불화물 및 불화이트륨을 포함하는 소결체의 제조방법.
According to paragraph 3,
The sintering step is carried out for 2 to 8 hours at a temperature of 1000 to 1200 ° C.
The atmosphere within the furnace is atmospheric or inert, and is performed under normal pressure or pressurized conditions of 5 to 50 MPa.
Method for producing a sintered body containing yttrium oxyfluoride and yttrium fluoride.
KR1020200188525A 2020-12-30 2020-12-30 A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same KR102597918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200188525A KR102597918B1 (en) 2020-12-30 2020-12-30 A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200188525A KR102597918B1 (en) 2020-12-30 2020-12-30 A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20220096256A KR20220096256A (en) 2022-07-07
KR102597918B1 true KR102597918B1 (en) 2023-11-06

Family

ID=82398622

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200188525A KR102597918B1 (en) 2020-12-30 2020-12-30 A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102597918B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179296A1 (en) * 2019-03-07 2020-09-10 日本イットリウム株式会社 Sintered body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867322B1 (en) * 2015-03-05 2018-06-15 닛폰 이트륨 가부시키가이샤 Powder for producing sintering material and sintering material
WO2018116688A1 (en) 2016-12-20 2018-06-28 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179296A1 (en) * 2019-03-07 2020-09-10 日本イットリウム株式会社 Sintered body

Also Published As

Publication number Publication date
KR20220096256A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
KR101400598B1 (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
JP7481509B2 (en) Sintered ceramic bodies containing magnesium aluminate spinel
CN111620692B (en) Plasma etching resistant ceramic, preparation method thereof and plasma etching equipment
JPH06211573A (en) Production of transparent y2o3 sintered compact
KR20160043213A (en) Yttria Based Conductive Plasma-resistant Member And Methods Thereof
KR101652336B1 (en) LOW RESISTIVITY SiC CERAMICS MATERIALS USING PRESSURELESS SINTERING AND MANUFACTURING METHOD
KR101705024B1 (en) Aln substrate and method for producing same
KR102597918B1 (en) A sintered body containing yttrium oxyfluoride and yttrium fluoride and method of manufacturing the same
KR101661114B1 (en) A manufacturing method of high toughness-Yttria with addition of Alumina and zirconia
TW201835004A (en) Oriented AlN sintered body, and production method therefor
KR102608236B1 (en) Low temperature sintered Y2O3 ceramics and the manufacturing method of the same
JP2000302553A (en) Corrosion resistant fluoride based combined ceramics sintered compact
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2003048783A (en) Alumina ceramics joined body and method for manufacturing the same
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
WO2022163150A1 (en) Sintered body
KR102597644B1 (en) MgF2 added Y2O3 ceramics and the manufacturing method of the same
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
US20230373862A1 (en) Zirconia toughened alumina ceramic sintered bodies
JP2006290688A (en) Translucent ceramic
KR102626997B1 (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JP4963157B2 (en) Ceramic composite and method for producing the same
KR20240036629A (en) UV-activated red ceramic body containing YAG for use in semiconductor processing chambers
WO2024019940A2 (en) Process for sintering large diameter yag layers substantially free of unreacted yttrium oxide and yttrium rich phases

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant