[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102556854B1 - Resource Circulation System - Google Patents

Resource Circulation System Download PDF

Info

Publication number
KR102556854B1
KR102556854B1 KR1020220089149A KR20220089149A KR102556854B1 KR 102556854 B1 KR102556854 B1 KR 102556854B1 KR 1020220089149 A KR1020220089149 A KR 1020220089149A KR 20220089149 A KR20220089149 A KR 20220089149A KR 102556854 B1 KR102556854 B1 KR 102556854B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
exhaust gas
tank
unit
reaction
Prior art date
Application number
KR1020220089149A
Other languages
Korean (ko)
Inventor
홍원방
박무신
홍정환
장인영
박성수
Original Assignee
홍원방
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍원방 filed Critical 홍원방
Priority to KR1020220089149A priority Critical patent/KR102556854B1/en
Priority to PCT/KR2023/010174 priority patent/WO2024019448A1/en
Application granted granted Critical
Publication of KR102556854B1 publication Critical patent/KR102556854B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Treating Waste Gases (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

The present invention relates to a resource circulation system, which allows efficient reuse of resources such as carbon dioxide absorber, comprising: a pretreatment unit which receives exhaust gas from an exhaust gas emission source and removes pollutants from the exhaust gas; a desulfurization unit which receives the exhaust gas from the pretreatment unit, removes sulfur oxides from the exhaust gas, and discharges the exhaust gas; a carbon dioxide absorption tank which receives the exhaust gas from a front end or rear end of the desulfurization unit, removes carbon dioxide and sulfur oxides from the exhaust gas by reaction with a carbon dioxide absorber, and discharges the treated gas; a primary precipitation tank which receives a reaction solution from the carbon dioxide absorption tank and precipitates foreign matter by coagulation with a coagulant; a secondary precipitation tank which receives the reaction solution from the primary precipitation tank, produces calcium carbonate by reaction with calcium oxide, and simultaneously removes carbon dioxide captured from the reaction solution to regenerate the carbon dioxide absorber; a receiving tank which receives the calcium carbonate from the secondary precipitation tank and stores the same; and a regenerated carbon dioxide absorber storage tank which receives the regenerated carbon dioxide absorber from the secondary precipitation tank and circulates the same to the carbon dioxide absorption tank.

Description

자원순환 시스템{Resource Circulation System} Resource Circulation System {Resource Circulation System}

본 발명은 발전소 등에서 배출되는 배기가스를 정화처리 하는 과정에서 이산화탄소 흡수제 등 자원을 재활용하는 시스템에 관한 것이다. The present invention relates to a system for recycling resources such as a carbon dioxide absorbent in the process of purifying exhaust gas discharged from a power plant.

화석연료를 사용하는 발전소 등에서는 연소후 배가스에 대량의 이산화탄소가 포함되어 있다. 이때 고온의 연소과정으로 인한 질소산화물(NOx) 발생은 탈질설비(SCR or SNCR)로써 제거하고 있으며, 또한 상대적으로 값비싼 LNG 발전의 경우는 제외하더라도, 우선 연료로 사용하는 화석연료의 종류에 따라 연료중의 황 성분으로 인해 연소후 황산화물(SOx)이 발생하고, Ash 및 중금속을 포함하는 Dust는 전기집진장치(EP)에서 제거하고 있다. In power plants using fossil fuels, a large amount of carbon dioxide is included in exhaust gas after combustion. At this time, the generation of nitrogen oxides (NOx) due to the high-temperature combustion process is removed with a denitrification facility (SCR or SNCR), and even if the case of relatively expensive LNG power generation is excluded, depending on the type of fossil fuel used as fuel, Sulfur oxide (SOx) is generated after combustion due to the sulfur component in the fuel, and dust containing ash and heavy metals is removed by an electric precipitator (EP).

SOx의 대기중 배출 억제를 위해 대규모 탈황 설비(FGD)를 운용하고 있으며, 거대한 흡수탑으로부터 석회석을 흡수제로 이용하여 황성분을 CaSO4의 형태로 제거하고 있다. 이러한 배가스 중에는 발생되어 제거되는 SOx의 100배가 넘는 CO2(366ton/hr, 500MWH 발전소 1기 기준)를 포함하고 있는데 그대로 대기중으로 배출하고 있는 실정이다(260만ton/년, 366Ton/hr*24시간*300일 기준).A large-scale desulfurization facility (FGD) is operated to suppress the emission of SOx into the atmosphere, and sulfur components are removed in the form of CaSO 4 from a huge absorption tower using limestone as an absorbent. Among these flue gases, CO 2 (366 ton/hr, based on one 500 MWH power plant) is more than 100 times greater than the amount of SOx generated and removed. *Based on 300 days).

이와 같은 거대한 량의 CO2를 제거 또는 저감하기 위해서는 석회석과 같은 흡수제 방식으로는 시설 및 운전이 규모에서부터 불가능 할 것이고 폐수발생 역시 막대할 것으로 예측된다. In order to remove or reduce such a huge amount of CO 2 , it is predicted that the facility and operation will be impossible from the scale and the generation of wastewater will be enormous with an absorbent method such as limestone.

따라서 경제성과 규모에서 실현 가능한 시설로부터 이산화탄소에 대해 우수한 흡착능과 저비용의 CO2 탈기 또는 수월한 형태의 자원 전환이 가능한 흡착제 개발이 요구되어지며, 또한 흡착제의 순환 시스템이 가능 하도록 하여 추가 약제비를 최소화 하고 폐수 발생을 억제하는 것이 바람직하다. Therefore, it is required to develop an adsorbent capable of excellent adsorption capacity for carbon dioxide and low-cost CO 2 degassing or easy resource conversion from a feasible facility in terms of economic feasibility and scale. It is desirable to suppress the occurrence.

대한민국 특허등록 제10-1938424호Republic of Korea Patent Registration No. 10-1938424

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 배가스 중 이산화탄소를 포함하는 오염물질의 처리과정에서 이산화탄소 흡수제 등 자원의 재이용이 효율적으로 이루어지도록 하는 시스템을 제공하고자 함이다. The present invention has been made to solve the above problems, and is intended to provide a system that efficiently reuses resources such as a carbon dioxide absorbent in the process of treating pollutants including carbon dioxide in exhaust gas.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 자원순환 시스템(이하, “본 발명의 시스템”이라함)은, 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 전처리부; 상기 전처리부에서 배기가스를 유입받아 배기가스로부터 황산화물을 제거하여 배출하는 탈황부; 상기 탈황부 전단 또는 후단에서 배기가스를 유입받아 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조; 상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조; 상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되는 2차 침전조; 상기 2차 침전조로부터 탄산칼슘을 전달받아 저장하는 수득조; 상기 2차 침전조로부터 재생된 이산화탄소 흡수제를 전달받아 상기 이산화탄소 흡수조로 순환시키는 재생 이산화탄소 흡수제 저장조;를 포함하는 것을 특징으로 한다. The resource circulation system according to the present invention (hereinafter referred to as "the system of the present invention") for achieving the above object is a preprocessing unit that receives exhaust gas discharged from an exhaust gas emission source and removes pollutants from the exhaust gas. ; a desulfurization unit receiving exhaust gas from the preprocessing unit and removing and discharging sulfur oxides from the exhaust gas; a carbon dioxide absorption tank receiving exhaust gas from the front or rear end of the desulfurization unit, reacting with the carbon dioxide absorbent to remove carbon dioxide and sulfur oxides from the exhaust gas, and discharging processed gas; a primary precipitation tank receiving the reaction liquid from the carbon dioxide absorption tank and precipitating foreign substances by a flocculation reaction with a coagulant; a second precipitation tank in which the reaction solution is introduced from the first precipitation tank and reacted with calcium oxide to produce calcium carbonate and the carbon dioxide absorbent is regenerated by removing carbon dioxide captured from the reaction solution; an acquisition tank for receiving and storing calcium carbonate from the secondary precipitation tank; and a regenerated carbon dioxide absorbent storage tank for receiving the regenerated carbon dioxide absorbent from the secondary precipitation tank and circulating it to the carbon dioxide absorbent tank.

하나의 예로 상기 탈황부에서 배출되는 처리가스 또는 상기 이산화탄소 흡수조를 통해 배출되는 처리가스는 열교환기를 거쳐 외부로 배출됨을 특징으로 한다. As an example, the processing gas discharged from the desulfurization unit or the processing gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.

하나의 예로 수산화나트륨 수용액, 일라이트 추출물, 사붕산나트륨, 물유리를 포함하도록 배합되어 이산화탄소 흡수제가 제조되며, 상기 이산화탄소 흡수조에 제조된 이산화탄소 흡수제를 공급하는 제조부가 더 포함되는 것을 특징으로 한다. As an example, a carbon dioxide absorbent is prepared by mixing an aqueous solution of sodium hydroxide, illite extract, sodium tetraborate, and water glass, and a manufacturing unit for supplying the prepared carbon dioxide absorbent to the carbon dioxide absorption tank is further included.

하나의 예로 상기 이산화탄소 흡수제에는 과산화수소가 더 포함되는 것을 특징으로 한다. As an example, the carbon dioxide absorbent may further contain hydrogen peroxide.

하나의 예로 상기 배출원 전단에는 배출원의 연료원으로서 공급되는 화석연료를 분쇄하는 석탄분쇄부가 더 구성되며, 상기 제조부에서는 상기 이산화탄소 흡수제 제조과정에서 생성되는 침전물을 상기 석탄분쇄부에 연소전 탈황촉매로 공급하는 것을 특징으로 한다. As an example, a coal crushing unit for crushing fossil fuel supplied as a fuel source of the emission source is further configured at the front end of the emission source, and in the manufacturing unit, the precipitate generated during the manufacturing process of the carbon dioxide absorbent is converted into a desulfurization catalyst before combustion in the coal crushing unit. characterized by supplying

하나의 예로 상기 수득조에서 저장되는 탄산칼슘은 상기 탈황부로 전달되어 배기가스로부터 황산화물이 제거되도록 하는 것을 특징으로 한다. As an example, the calcium carbonate stored in the obtaining tank is transferred to the desulfurization unit to remove sulfur oxides from the exhaust gas.

앞서 설명한 바와 같이, 본 발명은 배기가스에서 이산화탄소를 포함하는 오염물질의 처리에 있어 이산화탄소 및 황산화물을 동시에 처리할 수 있는 이산화탄소 흡수제를 사용하여 탈황설비 없이 또는 탈황설비에 부하없이 효율적으로 시스템을 운용할 수 있으며, 이산화탄소 흡수제에 포집된 이산화탄소를 불순물이 없는 고순도의 침강형 탄산칼슘으로 회수할 수 있도록 함과 동시에 이산화탄소 흡수제를 재생하여 순환시킬 수 있어 친환경적인 장점이 있다. As described above, the present invention efficiently operates the system without a desulfurization facility or without a load on the desulfurization facility by using a carbon dioxide absorbent capable of simultaneously treating carbon dioxide and sulfur oxides in the treatment of pollutants including carbon dioxide in exhaust gas. In addition, the carbon dioxide captured in the carbon dioxide absorbent can be recovered as high-purity precipitated calcium carbonate without impurities, and at the same time, the carbon dioxide absorbent can be recycled and circulated, which is environmentally friendly.

또한 본 발명의 시스템은 이산화탄소 흡수제의 제조과정에서 제조액 뿐만 아니라 발생되는 침전물의 경우도 배출원에서 사용되는 화석연료의 연소전 첨가 탈황촉매로 사용될 수 있어 폐기물의 발생을 제어하면서 자원을 순환시킬 수 있는 장점이 있다. In addition, the system of the present invention can be used as a desulfurization catalyst added before combustion of fossil fuel used in the emission source in the case of not only the production liquid but also the precipitate generated during the manufacturing process of the carbon dioxide absorbent, thereby circulating resources while controlling the generation of waste There are advantages.

또한 본 발명의 시스템은 수득된 탄산칼슘의 일부를 탈황부에서 황산화물의 제거에 이용할 수 있어 자원을 순환시킬 수 있는 장점이 있다. In addition, the system of the present invention has the advantage of recycling resources because a portion of the obtained calcium carbonate can be used to remove sulfur oxides in the desulfurization unit.

도 1은 본 발명의 시스템을 나타내는 블록도이고,
도 2는 본 발명에 적용되는 이산화탄소 흡수제의 이산화탄소 흡수 메커니즘을 나타내는 그림이고,
도 3은 황산화물의 제거에 관한 실험결과를 나타내는 그래프이고,
도 4는 이산화탄소의 제거에 관한 실험결과를 나타내는 그래프이다.
1 is a block diagram showing the system of the present invention;
2 is a diagram showing the carbon dioxide absorption mechanism of the carbon dioxide absorbent applied to the present invention,
Figure 3 is a graph showing the experimental results on the removal of sulfur oxides,
4 is a graph showing experimental results regarding the removal of carbon dioxide.

아래에서는 본 발명에 따른 양호한 실시 예를 상세히 설명한다.In the following, preferred embodiments according to the present invention will be described in detail.

본 발명의 시스템(1)은 도 1에서 보는 바와 같이 배기가스 배출원(4)에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 전처리부(5); 상기 전처리부(5)에서 배기가스를 유입받아 배기가스로부터 황산화물을 제거하여 배출하는 탈황부(6); 상기 탈황부(6) 전단 또는 후단에서 배기가스를 유입받아 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조(8); 상기 이산화탄소 흡수조(8)로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조(9); 상기 1차 침전조(9)로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되는 2차 침전조(10); 상기 2차 침전조(10)로부터 탄산칼슘을 전달받아 저장하는 수득조(11); 상기 2차 침전조(10)로부터 재생된 이산화탄소 흡수제를 전달받아 상기 이산화탄소 흡수조(8)로 순환시키는 재생 이산화탄소 흡수제 저장조(12);를 포함하는 것을 특징으로 한다. As shown in FIG. 1, the system 1 of the present invention includes a pre-processing unit 5 for receiving exhaust gas discharged from an exhaust gas emission source 4 and removing pollutants from the exhaust gas; a desulfurization unit 6 that receives exhaust gas from the preprocessing unit 5 and removes and discharges sulfur oxides from the exhaust gas; a carbon dioxide absorption tank (8) receiving exhaust gas from the front or rear end of the desulfurization unit (6), removing carbon dioxide and sulfur oxides from the exhaust gas by reaction with the carbon dioxide absorbent, and discharging processed gas; a primary precipitation tank (9) receiving the reaction solution from the carbon dioxide absorption tank (8) and precipitating foreign substances by coagulant reaction with the coagulant; a secondary precipitation tank (10) in which the reaction liquid is introduced from the primary precipitation tank (9) and reacted with calcium oxide to produce calcium carbonate and the carbon dioxide absorbent is regenerated by removing carbon dioxide captured from the reaction liquid; an acquisition tank 11 for receiving and storing calcium carbonate from the secondary precipitation tank 10; and a regenerated carbon dioxide absorbent storage tank 12 for receiving the regenerated carbon dioxide absorbent from the secondary precipitation tank 10 and circulating it to the carbon dioxide absorbent tank 8.

상기 전처리부(4)는 배출원(4)에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 구성으로 오염물질은 질소산화물, 더스트 등이 될 수 있으며, 상기 전처리부(4)에는 질소산화물 제거장치, 집진장치 등이 구성될 수 있다. The preprocessing unit 4 receives the exhaust gas discharged from the emission source 4 and removes pollutants from the exhaust gas, and the pollutants may be nitrogen oxides and dust. An oxide removal device, a dust collector, and the like may be configured.

상기 배출원(4)은 발전소 등으로 각종 오염물질로서 질소산화물, 황산화물, 이산화탄소가 혼합된 배기가스를 배출하는 장소, 설비 등을 통칭하는 개념이다.The emission source 4 is a concept that collectively refers to a place, facility, etc. that emits exhaust gas mixed with nitrogen oxides, sulfur oxides, and carbon dioxide as various pollutants such as a power plant.

상기 탈황부(6)는 배기가스로부터 황산화물을 제거토록 하는 구성으로 본 발명의 시스템(1)에 있어서는 이하에서 설명하는 이산화탄소 흡수조(8)에서 황산화물과 이산화탄소의 동시 제거가 가능한 이산화탄소 흡수제를 사용함에 따라 상기 탈황부(6)를 선택적으로 바이패스 시킬 수 있어 시스템의 간소화 및 탈황부(6)의 부하를 제어할 수 있게 되는 것이다. The desulfurization unit 6 is configured to remove sulfur oxides from exhaust gas, and in the system 1 of the present invention, a carbon dioxide absorbent capable of simultaneously removing sulfur oxides and carbon dioxide from the carbon dioxide absorption tank 8 described below is used. As it is used, the desulfurization unit 6 can be selectively bypassed, thereby simplifying the system and controlling the load of the desulfurization unit 6.

이러한 탈황부(5)에서 황산화물의 제거는 다양한 공지기술이 적용가능하며, 예로 탄산칼슘 슬러리를 배기가스와 접촉시켜 황산화물의 제거가 이루어지도록 하는 메커니즘이 적용될 수 있으며, 이에 의해 이하에서 설명하는 수득조(11)에서 수득된 탄산칼슘의 일부를 상기 탈황부(5)로 공급하여 배기가스로부터 탈황이 이루어지도록 할 수 있는 것이다. Various known techniques can be applied to the removal of sulfur oxides in the desulfurization unit 5, and for example, a mechanism for removing sulfur oxides by contacting a calcium carbonate slurry with exhaust gas can be applied. A portion of the calcium carbonate obtained in the obtaining tank 11 is supplied to the desulfurization unit 5 so that desulfurization can be performed from the exhaust gas.

즉 시스템 내에서 생성된 탄산칼슘을 시스템 내에 탈황을 위한 촉매로 재이용이 가능하도록 하는 것이다. 여기서 탄산칼슘에 의해 탈황이 이루어지도록 하는 작동기작은 공지의 작동기작이므로 그 상세 설명은 생략한다. That is, the calcium carbonate generated in the system can be reused as a catalyst for desulfurization in the system. Here, since the operating mechanism for desulfurization by calcium carbonate is a well-known operating mechanism, its detailed description will be omitted.

상기 열교환기(7)는 탈황부(6)를 거치거나 이산화탄소 흡수조(8)를 거친 처리가스를 통과시키면서 열교환이 이루어지도록 하는 것으로 상기 열교환기(7)의 경우도 다양한 공지 기술이 존재하는 바, 그 상세 설명은 생략한다. The heat exchanger 7 allows heat exchange while passing the processed gas through the desulfurization unit 6 or the carbon dioxide absorption tank 8, and various known technologies exist in the case of the heat exchanger 7. , its detailed description is omitted.

상기 이산화탄소 흡수조(8)는 상기 탈황부(6) 전단 또는 도면에 도시된 바는 없으나 후단에서 배기가스를 유입받아 수산화나트륨 수용액을 포함하는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 상기 열교환기(7)로 처리가스를 배출하는 구성에 해당한다. The carbon dioxide absorption tank 8 receives exhaust gas from the front or rear end of the desulfurization unit 6, and reacts with the carbon dioxide absorbent containing sodium hydroxide solution to remove carbon dioxide and sulfur oxides from the exhaust gas. It corresponds to a configuration in which the process gas is discharged to the heat exchanger (7) after removing the heat exchanger (7).

상기 이산화탄소 흡수조(8)는 상기에서 언급한 바와 같이 이산화탄소와 황산화물을 동시에 제거하는 이산화탄소 흡수제를 적용함에 따라 상기 탈황부(6)를 거치지 않은 배기가스가 유입되도록 할 수 있는 것은 물론 도면에 도시된 바는 없으나 탈황부(6)를 거친 배기가스를 유입하여 반응이 이루어지도록 할 수 있다.As mentioned above, the carbon dioxide absorbing tank 8 uses a carbon dioxide absorbent that simultaneously removes carbon dioxide and sulfur oxides, so that the exhaust gas that has not passed through the desulfurization unit 6 can flow in, as shown in the drawing. Although it has not been done, the reaction can be performed by introducing the exhaust gas that has passed through the desulfurization unit 6.

이러한 이산화탄소 흡수제는 도 1에서 보는 바와 같이 제조부(2)에서 제조가 되는데, 상기 이산화탄소 흡수제는 수산화나트륨 수용액, 일라이트 추출물, 사붕산나트륨, 물유리를 포함하는 것을 특징으로 한다.As shown in FIG. 1, the carbon dioxide absorbent is manufactured in the manufacturing unit 2, and the carbon dioxide absorbent is characterized in that it includes an aqueous solution of sodium hydroxide, illite extract, sodium tetraborate, and water glass.

상기 제조부(2)에서는 하기에서 설명하는 방법에 의해 이산화탄소 흡수제 및 탈황촉매로서 침전물이 제조되는 것이다. In the manufacturing unit 2, precipitate is produced as a carbon dioxide absorbent and a desulfurization catalyst by a method described below.

상기 제조방법에는 일라이트 분말을 40 내지 100℃로 가열된 물이 저장된 반응조에 투입하여 교반하는 단계(S10); 상기 반응조에 수산화나트륨을 투입하여 교반하는 단계(S20); 상기 반응조에서 상등액을 분리 및 여과하는 단계(S30); 상기 반응조에서 침전물을 분리하는 단계(S40);를 포함하는 것을 특징으로 한다. In the manufacturing method, the illite powder is added to a reaction tank in which water heated to 40 to 100 ° C. is stored and stirred (S10); Stirring by adding sodium hydroxide to the reactor (S20); Separating and filtering the supernatant in the reactor (S30); Separating the precipitate from the reactor (S40); characterized in that it comprises a.

우선 상기 S10단계에는 일라이트 분말을 40 내지 100℃로 가열된 물이 저장된 반응조에 투입하여 교반하는 단계를 갖는다. First, in step S10, the illite powder is put into a reaction tank in which water heated to 40 to 100 ° C. is stored and stirred.

본 단계(S10)를 통해 일라이트 추출물이 수득되는 바, 상기 일라이트는 {K0.75[Al1.75(Mg·Fe2+)0.25](Si3.50Al0.50)O10(OH)2}로 표현되는 대한민국 영동지방에서 대량으로 매장되어 있는 것이 밝혀진 광물이다. 백운모에 비하여 층전하가 낮고, 그 전하는 4면체판의 Al3+과 Si4+의 동형치환감소에 기인한다. 8면체판에서 약간의 동형치환이 일어난다. An illite extract is obtained through this step (S10), and the illite is expressed as {K 0.75 [Al 1.75 (Mg Fe 2 +) 0.25 ] (Si 3.50 Al 0.50 )O 10 (OH) 2 } It is a mineral that has been found to be buried in large quantities in the Yeongdong region of Korea. The layer charge is lower than that of muscovite mica, and the charge is due to isomorphic substitution reduction of Al 3+ and Si 4+ in the tetrahedral plate. Some isomorphic substitutions occur in the octahedral plate.

일라이트는 층간에 존재하는 K+에 의한 강한 결합력으로 비팽창성이며 층간격은 10Å이다. 따라서 액상에서 추출되어 전체 양이온 전하를 띠게 되고 킬레이션 결합 화합물로 변환되기 쉬운 광물이며 본 발명에서는 이런 금속 이물을 추출하기 용이하도록 미분화 일라이트를 사용하는 것이 타당하다. Illite is non-expandable due to the strong bonding force by K + existing between layers, and the layer spacing is 10 Å. Therefore, it is a mineral that is extracted from the liquid phase, has a total cationic charge, and is easily converted into a chelation compound, and in the present invention, it is appropriate to use undifferentiated illite to easily extract such a metal foreign material.

이러한 일라이트로부터 추출한 추출물은 산화칼륨 등 여러 종의 금속 산화물이 포함된 추출액으로서 액상에서 킬레이션 결합화합물로 변환되기 쉬운 광물을 제공하여 이하에서 설명하는 수산화나트륨 수용액의 이산화탄소 및 황산화물 흡수반응에 있어 반응 증진제로 작용하게 되는 것이다. The extract extracted from illite is an extract containing various metal oxides such as potassium oxide, and provides minerals that are easily converted into chelation compounds in the liquid phase in the carbon dioxide and sulfur oxides absorption reaction of sodium hydroxide aqueous solution described below. It acts as a reaction enhancer.

즉 상기 수산화나트륨 수용액의 SOx를 포함하는 이산화탄소 흡수에 있어 일라이트 추출물이 더 첨가되어 흡수효율을 높게 하는 것이다. That is, in the absorption of carbon dioxide containing SOx in the sodium hydroxide aqueous solution, the illite extract is further added to increase the absorption efficiency.

그 다음으로 상기 반응조에 수산화나트륨을 투입하여 교반하는 단계(S20)를 갖는다. Next, it has a step (S20) of stirring by adding sodium hydroxide to the reaction tank.

이렇게 하여 일라이트 추출물이 수산화나트륨 수용액에 혼합되도록 하는데, 상기 수산화나트륨 수용액은 고온, 고농도의 이산화탄소 및 COS(탄화수소, O2, SOx)가 포함된 혼합 가스도 동시에 제거될 수 있도록 하는 점에 특징이 있다. 즉 발전소 배기가스 등에서 황산화물(SOx)은 물론 이산화탄소도 동시에 흡수되도록 하는 것이다. In this way, the illite extract is mixed with an aqueous solution of sodium hydroxide, which is characterized in that it simultaneously removes a mixed gas containing high-temperature, high-concentration carbon dioxide and COS (hydrocarbon, O 2 , SOx) there is. That is, sulfur oxides (SOx) as well as carbon dioxide are simultaneously absorbed from power plant exhaust gas.

상기 수산화나트륨 수용액이 황산화물과 이산화탄소를 제거하는 원리는 하기 반응식과 같다. 즉, 삼산화황(아황산)과 이산화황은 하기에서 보는 바와 같이 각각 수산화나트륨과 반응하여 무수 황산나트륨과 아황산나트륨으로 추출됨으로써 제거된다. The principle of removing sulfur oxides and carbon dioxide from the sodium hydroxide aqueous solution is shown in the following reaction formula. That is, sulfur trioxide (sulfurous acid) and sulfur dioxide are removed by reacting with sodium hydroxide and being extracted with anhydrous sodium sulfate and sodium sulfite, respectively, as shown below.

그리고 이산화탄소는 하기 반응식과 같이 수산화나트륨과 반응하여 탄산나트륨을 생성함으로써 제거된다. 또한 생성된 탄산나트륨은 여분의 황산화물과 반응하여 황산화물 제거 효과를 더 증대시킬 수 있고, 아울러 생산되는 이산화탄소는 수산화나트륨에 의하여 제거되게 된다.And carbon dioxide is removed by reacting with sodium hydroxide to produce sodium carbonate as shown in the following reaction formula. In addition, the generated sodium carbonate reacts with excess sulfur oxides to further increase the sulfur oxide removal effect, and the produced carbon dioxide is removed by sodium hydroxide.

1) 2NaOH + SO3 = Na2SO4 + H2O1) 2NaOH + SO 3 = Na 2 SO 4 + H 2 O

2) 2NaOH + SO2 = Na2SO3 + H2O2) 2NaOH + SO 2 = Na 2 SO 3 + H 2 O

3) 2NaOH + CO2 = Na2CO3 + H2O3) 2NaOH + CO 2 = Na 2 CO 3 + H 2 O

4) NaOH + CO2 = NaHCO3 4) NaOH + CO 2 = NaHCO 3

이에 더하여 상기에서 언급한 바와 같이 반응 증진제로써 일라이트 추출액의 수산화나트륨과 반응식은 하기에서 보는 바와 같다. 일라이트의 주요성분에 대해서만 기재하였고 그외 Ca, Fe, Mg, Mn, Ti 및 P2O5와 같은 미량 성분들의 산화물들도 액상에서 안정한 금속 킬레이션 화합물을 형성하는데 높은 기여를 한다.In addition to this, as mentioned above, the reaction formula with sodium hydroxide of illite extract as a reaction enhancer is as shown below. Only the main components of illite have been described, and oxides of minor components such as Ca, Fe, Mg, Mn, Ti and P 2 O 5 also contribute to the formation of stable metal chelation compounds in the liquid phase.

1) 2NaOH + SiO2 = Na2O.SiO2 + H2O1) 2NaOH + SiO 2 = Na 2 O. SiO 2 + H 2 O

2) 2NaOH + K2O = Na2O + 2KOH2) 2NaOH + K 2 O = Na 2 O + 2KOH

3) Na2O + Al2O3 + H2O = 2NaAlO2 + H2O3) Na 2 O + Al 2 O 3 + H 2 O = 2NaAlO 2 + H 2 O

이에 더하여 본 발명에서는 상기 S20단계 전단에는, 상기 반응조에 사붕산나트륨을 투입하여 교반하는 단계(S10-1)가 더 포함되는 예를 제시한다. 이에 더하여 상기 S20단계 후단에는, 상기 반응조에 물유리를 투입하여 교반하는 단계(S20-1)가 더 포함되는 예를 제시한다. In addition to this, the present invention presents an example in which a step (S10-1) of adding sodium tetraborate to the reaction tank and stirring it before the step S20 is further included. In addition to this, an example in which a step (S20-1) of stirring by adding water glass to the reaction tank is further included after the step S20.

즉 일라이트 추출물 및 수산화나트륨 수용액에 사붕산나트륨(Na2B4O7·10H2O) 및 물유리(Na2SiO3)가 더 포함되는 예를 제시한다. That is, an example in which sodium tetraborate (Na 2 B 4 O 7 .10H 2 O) and water glass (Na 2 SiO 3 ) are further included in the illite extract and the aqueous sodium hydroxide solution is presented.

수산화나트륨 수용액에 일라이트 추출물에 더하여 사붕산나트륨 및 물유리가 더 포함되도록 하는 것이다. 이렇게 사붕산나트륨 및 물유리가 더 첨가되어 이산화탄소와 흡수제 성분이 직접적으로 반응하기 때문에 반응속도가 훨씬 빠르고 물질 이동 계수도 커지게 된다. In addition to the illite extract, the sodium hydroxide aqueous solution is to further include sodium tetraborate and water glass. As sodium tetraborate and water glass are further added in this way, carbon dioxide and the absorbent component react directly, so the reaction rate is much faster and the mass transfer coefficient is increased.

더욱이 사붕산나트륨 및 물유리는 점도가 높기 때문에 흡수된 기체상태의 이산화탄소가 빠져나가지 못하고 액체상태로 빠르게 녹아들어가면서 탄산으로 반응하게 되어 이산화탄소 흡수율을 배가시키도록 하는 것이다. Moreover, since sodium tetraborate and water glass have high viscosities, absorbed gaseous carbon dioxide cannot escape and quickly melts into a liquid state and reacts with carbonic acid, thereby doubling the absorption rate of carbon dioxide.

이에 더하여 본 발명에서는 상기 S20-1단계 후단에는, 상기 반응조에 과산화수소를 투입하여 교반하는 단계(S20-2)가 더 포함되는 예를 제시한다. 즉 반응촉진형 첨가제로 과산화수소(H2O2)가 더 첨가된 예를 제시하고 있다. In addition to this, the present invention suggests an example in which, after the step S20-1, a step (S20-2) of adding hydrogen peroxide to the reaction tank and stirring it (S20-2) is further included. That is, an example in which hydrogen peroxide (H 2 O 2 ) is further added as a reaction-promoting additive is presented.

수산화나트륨 수용액에서 사붕산나트륨 및 과산화수소의 반응식은 하기와 같다. The reaction formula of sodium tetraborate and hydrogen peroxide in aqueous sodium hydroxide solution is as follows.

1) Na2B4O7 + H2O = Na2O + 2B2O3 1) Na 2 B 4 O 7 + H 2 O = Na 2 O + 2B 2 O 3

2) 2NaOH + H2O2 = Na2O + H2O + 0.5O2 2) 2NaOH + H 2 O 2 = Na 2 O + H 2 O + 0.5O 2

따라서 이산화탄소 흡수 메커니즘은 도 2 및 하기 반응식과 같다. Therefore, the carbon dioxide absorption mechanism is shown in FIG. 2 and the following reaction formula.

1) CO2(g) + CO2(aq) + Na2O + 2OH- = CO2(g) + CO3-- + 2NaOH = CO2(aq) + CO3--1) CO 2 (g) + CO 2 (aq) + Na 2 O + 2OH- = CO 2 (g) + CO 3 -- + 2NaOH = CO 2 (aq) + CO 3 --

2) CO3-- + H2O + CO2(aq) = 2HCO3-2) CO 3 -- + H 2 O + CO 2 (aq) = 2HCO 3 -

3) CO2(aq) + OH- = HCO3-3) CO 2 (aq) + OH- = HCO 3 -

4) HCO3- + OH- = CO3-- + H2O4) HCO 3 - + OH- = CO 3 - + H 2 O

이렇게 반응이 완료되면 그 다음으로 상기 반응조에서 상등액을 분리 및 여과하는 단계(S30)를 갖는다. 상기 반응조에서 상등액을 분리하고, 상등액에 포함된 이물질을 제거하여 이산화탄소 흡수제가 제조되도록 하는 것이다. When the reaction is completed in this way, the next step is to separate and filter the supernatant in the reaction tank (S30). Separating the supernatant in the reaction tank and removing foreign substances contained in the supernatant to prepare a carbon dioxide absorbent.

그 다음으로 상기 반응조에서 침전물을 분리하는 단계(S40)를 갖는다. 이러한 침전물을 분리함으로써 연료 첨가제인 탈황촉매가 제조되는 것이다. Next, it has a step (S40) of separating the precipitate from the reactor. By separating these precipitates, a desulfurization catalyst, which is a fuel additive, is produced.

상기 반응조에서 침전물은 일라이트 등으로부터 추출된 성분이 포함된 것으로 Ca, Fe, Mg, Mn, Ti 등 다양한 종류의 금속염이 포함되는 것이다. The precipitate in the reaction tank contains components extracted from illite and the like, and includes various types of metal salts such as Ca, Fe, Mg, Mn, and Ti.

따라서 이러한 활성성분에 의해 제조액의 또다른 용도인 연소전 탈황촉매가 가능하고, 상기와 같이 분리된 침전물 역시 잔류 활성성분이 탈황촉매로 사용될 수 있는 것이다.Therefore, with these active ingredients, a pre-combustion desulfurization catalyst, which is another use of the prepared liquid, is possible, and the separated precipitate as described above can also be used as a desulfurization catalyst with the remaining active ingredients.

또한 상기 S40후단에는, 분리된 침전물에 계면활성제, 옥시산을 포함하는 첨가제를 혼합하는 단계(S40-1)가 더 포함되도록 할 수 있다.In addition, after S40, a step (S40-1) of mixing an additive including a surfactant and an oxyacid with the separated precipitate may be further included.

상기와 같이 분리된 침전물 즉 금속염 수용액에는 계면활성제, 옥시산을 포함하는 첨가제가 포함되도록 하는 것이다. The precipitate separated as described above, that is, the metal salt aqueous solution is to include an additive including a surfactant and an oxyacid.

상기 계면활성제는 탈황촉매가 넓은 표면적을 갖도록 분산제로서 작용하며, 비이온계 계면활성제를 이용하는 것이 바람직하다. 상기 비이온계 계면활성제는 수용액에서 이온으로 해리하는 기를 가지고 있지 않는 계면활성제로서 -OH기를 갖고 있다. 비교적 친수성은 작지만 분자내에 에스테르, 산아미드, 에테르결합을 갖고 있다. 상기 비이온성 계면활성제로는 에테르형, 에스테르에테르형, 에스테르형 및 함질소형이 있다. The surfactant acts as a dispersant so that the desulfurization catalyst has a large surface area, and it is preferable to use a nonionic surfactant. The nonionic surfactant is a surfactant that does not have a group that dissociates into ions in an aqueous solution and has an -OH group. Although relatively hydrophilic, it has ester, acid amide, and ether bonds in the molecule. The nonionic surfactant includes an ether type, an ester ether type, an ester type, and a nitrogen-containing type.

상기 에테르형 계면활성제로는 알킬 및 알킬아릴폴리옥시에틸렌에테르, 알킬아릴포름알데히드축합 폴리옥시에틸렌에테르, 폴리옥시프로필렌을 친유기로 하는 블록폴리머 및 폴리옥시에틸렌-폴리옥시프로필렌 공중합체 등을 들 수 있다. Examples of the ether-type surfactant include alkyl and alkylaryl polyoxyethylene ethers, alkylarylformaldehyde condensed polyoxyethylene ethers, block polymers and polyoxyethylene-polyoxypropylene copolymers having polyoxypropylene as a lipophilic group, and the like. .

상기 옥시산은 금속염 수용액에 있어 상기 금속 화합물의 용해 안정성을 높이기 위한 것이다. The oxyacid is used to increase the dissolution stability of the metal compound in the metal salt aqueous solution.

상기 옥시산은, 히드록시 카르복실산이며, 그의 구체예로서는 예컨대, 시트르산, 말산, 타르타르산, 타르트론산, 글리세르산, 히드록시 부티르산, 히드록시 아크릴산, 젖산, 글리콜산 등을 예시할 수가 있다. The oxyacid is a hydroxycarboxylic acid, and specific examples thereof include citric acid, malic acid, tartaric acid, tartronic acid, glyceric acid, hydroxybutyric acid, hydroxyacrylic acid, lactic acid, and glycolic acid.

한편 탈황활성을 향상시키고자 하는 경우 금속성분 간 응집을 제어하고, 분산도를 높여야 하는 바, 이를 위해 상기 첨가제에 옥시산이 첨가되도록 하여 금속염 수용액의 안정성을 어느 정도 향상시킬 수가 있지만 금속성분간 응집성을 충분히 제어할 수 없어 촉매능을 저하시키는 문제가 여전히 상존하는 것이다. On the other hand, in order to improve the desulfurization activity, it is necessary to control the aggregation between the metal components and increase the degree of dispersion. For this purpose, the stability of the aqueous metal salt solution can be improved to some extent by adding oxyacid to the additive, but the cohesiveness between the metal components can be sufficiently improved. The problem of uncontrollable degradation of catalytic performance still exists.

이에 상기 S40-1단계에서는, 상기 첨가제에 침강탄산염이 더 포함되도록 하는 예를 제시하고 있다. Accordingly, in the step S40-1, an example in which the precipitated carbonate is further included in the additive is presented.

상기 침강탄산염의 첨가에 의해 금속염에 미세한 코팅막이 형성되도록 하여 금속염 간 반발력이 증가하여 응집현상을 제어하게 되는 것이다. 바람직하게는 금속염과 침강탄산염이 혼합물로서 보관되어 혼합물로 첨가되어 수용액이 형성되도록 함으로써 보관과정에서도 입자 간에 뭉침현상을 방지해 주는 역할을 하도록 하는 것이 타당하다. By adding the precipitated carbonate, a fine coating film is formed on the metal salt, so that the repulsive force between the metal salts increases and the aggregation phenomenon is controlled. Preferably, the metal salt and the precipitated carbonate are stored as a mixture and added to the mixture to form an aqueous solution, so that it is reasonable to play a role in preventing aggregation between particles even during the storage process.

상기 침강탄산염은 염수과 같은 알칼리 토금속 함유수와 같이, 물에서부터 침강된 준안정성(metastable) 탄산염 화합물로 침강된 결정 및/또는 무정형 탄산염 화합물이 포함된다. The precipitated carbonate includes precipitated crystalline and/or amorphous carbonate compounds with metastable carbonate compounds precipitated from water, such as alkaline earth metal-containing water, such as brine.

이러한 탈황촉매는 상기 침전물을 분리시켜 건조시킴 없이 상기 조성들을 혼합후 일정시간 침전시켜 안정화를 시키며 침전물을 분리하여 건조시킴에 의해 도면에 도시된 바는 없으나 배출원(4)에서 연소시 첨가되는 고체형 탈황촉매로 사용되도록 할 수 있으며, 침전물을 분리시키고 남은 액상 형태의 조성물은 도 1에서 보는 바와 같이 배출원(4)에서 연료로 사용되는 화석연료를 분쇄하는 석탄분쇄부(3)에 투입되어 분쇄과정에서 석탄의 표면에 도포되는 액상형 탈황촉매로 사용되도록 하는 것이다. This desulfurization catalyst stabilizes the composition by precipitating for a certain period of time after mixing the precipitates without separating and drying the precipitates, and is not shown in the drawing by separating and drying the precipitates, but in a solid form added during combustion in the emission source (4). It can be used as a desulfurization catalyst, and the composition in liquid form remaining after separating the sediment is put into the coal crushing unit 3 for crushing the fossil fuel used as fuel in the emission source 4, as shown in FIG. to be used as a liquid desulfurization catalyst applied to the surface of coal.

상기 1차 침전조(9)는 상기 이산화탄소 흡수조(8)로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 구성으로 반응액으로부터 중금속, ash, SS 등 이물질이 응집에 의해 제거되도록 함으로써 후단의 2차 침전조(10)에서 수득되는 탄산칼슘의 순도를 높이도록 하는 것이며, 반응액을 재생시 불순물이 없는 재생 이산화탄소 흡수제가 재생되도록 하기 위한 것이다. The primary precipitation tank 9 receives the reaction solution from the carbon dioxide absorption tank 8 and precipitates foreign substances by coagulant reaction with the coagulant, so that foreign substances such as heavy metals, ash, and SS are removed from the reaction solution by coagulation. This is to increase the purity of calcium carbonate obtained in the secondary precipitation tank 10 at the rear, and to regenerate a regenerated carbon dioxide absorbent free of impurities when regenerating the reaction solution.

상기 응집제는 그 종류를 한정하지 않으며, 예로 수산화칼슘(Ca(OH)2)이 적용될 수 있다. The type of coagulant is not limited, and for example, calcium hydroxide (Ca(OH) 2 ) may be applied.

상기 2차 침전조(10)는 상기 1차 침전조(9)로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되도록 하는 구성에 해당한다. The secondary precipitation tank 10 receives the reaction solution from the primary precipitation tank 9 and reacts with calcium oxide to produce calcium carbonate and at the same time removes the carbon dioxide captured from the reaction solution so that the carbon dioxide absorbent is regenerated. corresponds to

여기서 반응액은 이산화탄소가 포집된 상태의 이산화탄소 흡수제로서 2차 침전조(10)에서는 산화칼슘의 투하에 의해 반응액에서 포집된 이산화탄소가 탄산칼슘으로 전환되도록 함으로써 동시에 이산화탄소 흡수제가 재생이 되도록 하는 것이다. Here, the reaction liquid is a carbon dioxide absorbent in which carbon dioxide is captured, and in the secondary precipitation tank 10, the carbon dioxide captured in the reaction liquid is converted into calcium carbonate by dropping calcium oxide so that the carbon dioxide absorbent is regenerated at the same time.

즉 상기 2차 침전조(10)에서 반응액에서 탄산으로 존재하는 포집된 이산화탄소의 당량수에 맞춰 CaO를 투입함으로써 유용한 자원인 고순도 고부가가치 침강성 탄산칼슘이 제조되도록 하는 것이다. That is, by adding CaO according to the equivalent number of carbon dioxide captured in the reaction solution in the secondary precipitation tank 10, high-purity, high-value-added precipitated calcium carbonate, which is a useful resource, is produced.

또한 이렇게 1차 침전조(9) 및 2차 침전조(10)를 거치면서 이물질은 물론 포집된 이산화탄소가 제거된 반응액은 재생 이산화탄소 흡수제로 재이용이 가능하게 되는 것이다. In addition, the reaction liquid from which foreign substances and captured carbon dioxide are removed through the first precipitation tank 9 and the second precipitation tank 10 can be reused as a regenerated carbon dioxide absorbent.

이산화탄소 저감목적을 달성하기 위해서도 추가 시설의 규모나 흡수제와 같은 비용 및 운전 편의성을 고려해야 되며 투입되는 에너지 비용도 중요한 항목 중의 하나이다. In order to achieve the purpose of reducing carbon dioxide, costs such as the size of additional facilities or absorbents and operational convenience must be considered, and the cost of energy input is also one of the important items.

따라서 본 발명에 따르면 제공된 이산화탄소 흡수제의 비용은 이산화탄소의 화학흡수 반응 후 다시 탄산칼슘으로 침전시켜 흡수력을 회복시키는 메커니즘을 가지면서, 순환 시스템을 통해 배관 및 흡수탑에서의 약간의 손실 외에는 없게 되고, 상기 2차 침전조(10)에서 CaO 투입시 발생하는 희석열에 의해 탄산칼슘 침전 후 여액의 온도가 60℃ 이상으로 유지되는 등 열에너지 손실도 거의 없이 오히려 발열반응이 전개된다. 물론 탄산칼슘은 60℃ 이상의 고온에서도 알카리성 물에 대한 용해도가 거의 없고, 다만 온도에 따르는 침전물의 Size나 결정형에 영향을 줄 뿐이다. Therefore, the cost of the carbon dioxide absorbent provided according to the present invention has a mechanism for recovering the absorption capacity by precipitating it again as calcium carbonate after the chemical absorption reaction of carbon dioxide, and there is no cost other than a slight loss in the piping and absorption tower through the circulation system. In the secondary precipitation tank 10, the temperature of the filtrate is maintained at 60 ° C or higher after calcium carbonate is precipitated by the heat of dilution generated when CaO is added, and an exothermic reaction develops with little heat energy loss. Of course, calcium carbonate has almost no solubility in alkaline water even at a high temperature of 60 ℃ or higher, but only affects the size or crystal form of the precipitate according to the temperature.

상기 2차 침전조(10)에서 수득되는 탄산칼슘은 수득조(11)에 저장이 되는데, 수득조(11)에 저장되는 탄산칼슘 중 일부는 상기에서 언급한 바와 같이 탈황부(6)에서 촉매로 재이용 되도록 하는 것이다. The calcium carbonate obtained in the secondary precipitation tank 10 is stored in the obtaining tank 11, and some of the calcium carbonate stored in the obtaining tank 11 is used as a catalyst in the desulfurization unit 6 as mentioned above. to be reused.

이렇게 수득한 탄산칼슘이 매우 높은 불순물이 없는 순도를 가지므로 그 자체로도 제지, 건설, 제강 등 산업 전반에 걸쳐 수요처의 제한 없이 사용할 수 있고, 소결과정을 통해 고순도의 이산화탄소와 소석회를 제조하여 자원 재활용 할 수 있다. 또한 이와 같은 순수한 탄산칼슘은 자연계의 영향이 없는 오염없는 자원으로써 최소한 폐광 매립 등에 활용 할 수도 있다. Since the obtained calcium carbonate has a very high impurity-free purity, it can be used by itself throughout the industry, such as papermaking, construction, and steelmaking, without any restrictions on demand sources, and through the sintering process, high-purity carbon dioxide and slaked lime are produced to produce resources. can be recycled In addition, such pure calcium carbonate can be used at least in landfills of abandoned mines as a pollution-free resource that is not affected by the natural world.

또한 본 발명의 시스템(1)은 이산화탄소를 직접 포집 후 저장이나 재활용 하는 것도 아닌, 대규모 시설도 불필요하면서 폐수발생이 없거나 요인이 적고, 탄산과 1:1 반응에 의해 매우 낮은 용해도의 탄산칼슘이 빠른 속도로 전량 침전됨으로써 작은 규모의 침전조에서 전환 에너지 비용도 오히려 탄산칼슘 발열반응으로 열에너지가 획득되며, 도면에 도시된 바는 없으나 성능을 회복한 이산화탄소 흡수제의 순환으로 추가적인 약제비 등 운전 경비도 최소화가 예상되어진다.In addition, the system (1) of the present invention does not directly capture and then store or recycle carbon dioxide, does not require large-scale facilities, does not generate wastewater or has few factors, and produces calcium carbonate of very low solubility by a 1: 1 reaction with carbonic acid quickly. As the entire amount is precipitated at a high rate, the conversion energy cost in a small-scale sedimentation tank is rather converted into heat energy by the exothermic reaction of calcium carbonate. It becomes.

역시 전환 산물로써 고순도의 침강형 탄산칼슘은 시장 규모와 가격 등에도 높은 부가가치를 예상해볼 수 있다.High-purity precipitated calcium carbonate, also a conversion product, can be expected to have high added value in terms of market size and price.

이하 실험 예에 의거 상기 이산화탄소 흡수제의 바람직한 실시 예를 설명한다. A preferred embodiment of the carbon dioxide absorbent will be described based on experimental examples below.

1,000Mesh로 분쇄된 Yellow상의 일라이트 1,350g을 60℃로 가열된 RO수 15L에 투입하여 30분간 교반하였다. 그 다음 사붕산나트륨 150g을 투입하여 10분간 교반하여 잘 녹인 후(약 10℃ 온도 강하) 수산화나트륨 300g을 천천히 투입 교반하여 희석열에 의해 반응액 온도가 70℃가되면 물유리 300g을 투입하고 1시간동안 교반하였다. 반응액 온도가 자연 강하되어 상온이 될때까지 교반하여 주었다. 상온에서 교반을 멈추고 overnight 정치하여 상등액을 여과하여 흡착제를 제조하였다. 1,350 g of yellow-phase illite pulverized with 1,000 mesh was added to 15 L of RO water heated to 60 ° C and stirred for 30 minutes. Then, 150 g of sodium tetraborate was added and stirred for 10 minutes to dissolve well (temperature drop of about 10 ° C), and then 300 g of sodium hydroxide was slowly added and stirred. Stir. The temperature of the reaction solution naturally dropped and was stirred until it reached room temperature. Stirring was stopped at room temperature and allowed to stand overnight, and the supernatant was filtered to prepare an adsorbent.

325Mesh로 분쇄된 Yellow상의 일라이트 540g을 60℃로 가열된 RO수 6L에 넣어 30분간 교반하였다. 사붕산나트륨 300g을 투입하고 30분간 교반하여 (반응액 약 20℃ 온도강하) 자연상태에서 반응액 온도가 40℃이하가 되었을 때 수산화나트륨900g을 천천히 투입 교반하여 희석열에 의해 반응액 온도가 80℃가되면 물유리 300g을 투입하고 1시간동안 교반하였다. 540 g of illite of the yellow phase pulverized with 325 mesh was put into 6 L of RO water heated to 60 ° C. and stirred for 30 minutes. Add 300g of sodium tetraborate and stir for 30 minutes (temperature drop of about 20℃ in the reaction solution). When it was, 300 g of water glass was added and stirred for 1 hour.

반응액온도가 자연 강하되어 60℃아래로 떨어지고 난 다음 과산화수소 90g을 투입한 뒤 반응액이 상온이 될때까지 교반하여 주었다. 상온에서 교반을 멈추고 overnight 정치하여 상등액을 여과하여 흡착제를 제조하였다. After the temperature of the reaction solution naturally dropped to below 60 ° C, 90 g of hydrogen peroxide was added and stirred until the reaction solution reached room temperature. Stirring was stopped at room temperature and allowed to stand overnight, and the supernatant was filtered to prepare an adsorbent.

<배기가스 분석장비><Exhaust gas analysis equipment>

NOVA 9K(MRU Emission Monitoring System, Germany)를 사용하였고, 각 측정 대상에 대한 센서, 측정범위 및 분해능은 하기에서 보는 바와 같다. NOVA 9K (MRU Emission Monitoring System, Germany) was used, and the sensor, measurement range, and resolution for each measurement object are as follows.

- O2(E.C) : 0 ~ 21 Vol% / 0.2%- O 2 (EC) : 0 ~ 21 Vol% / 0.2%

- CO2(NDIR) : 0 ~ 40 Vol% / 0.3%- CO 2 (NDIR) : 0 ~ 40 Vol% / 0.3%

- SO2(E.C) : 0 ~ 2,000 ppm / 5ppm- SO 2 (EC) : 0 ~ 2,000 ppm / 5ppm

* E.C : 전기화학식 센서, NDIR : 비분산적외선 센서* E.C: electrochemical sensor, NDIR: non-dispersive infrared sensor

<배기가스 분석방법><Exhaust gas analysis method>

-. SO2 분석-. SO 2 analysis

메세타 해리 화목난로에 착화탄을 넣고 점화한 뒤 5분후 갈탄을 1Kg 올려 연소를 시작하였다. 약 15분이 지난 뒤 실시예 1에서 제조한 액상형 탈황촉매 100g 을 고르게 분사 받은 갈탄 3Kg을 더 올리고 본격적으로 연소를 시작하였다. Ignition coal was put in the meseta dissociation firewood stove and ignited, and after 5 minutes, lignite was raised by 1Kg to start combustion. After about 15 minutes, 3 kg of lignite, which had been evenly sprayed with 100 g of the liquid desulfurization catalyst prepared in Example 1, was further raised and combustion was started in earnest.

연통으로 배기되는 배가스 중의 일부를 흡입하기 위해 연통 중간부에 구멍을 뚫고 실리콘 호스를 연결한 뒤 실리콘으로 틈새를 완전 밀폐하고 다이아프램 펌프를 통해 배가스를 흡입하여 플로우메터를 35L/분으로 조정하고 실험장치 중 반응조에 가스트랩 어뎁터의 In-Let 관으로 불어넣어 주었다. 가스트랩 어뎁터의 Out-Let 관으로 배출되는 배가스를 NOVA 9K에 연결해 주고 SO2의 량을 측정하였다.In order to suck in some of the exhaust gas exhausted through the flue, make a hole in the middle of the flue, connect a silicone hose, completely seal the gap with silicone, and inhale the exhaust gas through a diaphragm pump to adjust the flow meter to 35L/min and experiment. The reactor was blown into the reactor through the In-Let pipe of the gas trap adapter. The exhaust gas discharged through the Out-Let pipe of the gas trap adapter was connected to NOVA 9K, and the amount of SO 2 was measured.

-. CO2 분석-. CO 2 analysis

N2 Bombe와 Heating 장치가 부착된 CO2 Bombe를 준비한 뒤 각각 N2 30L/분, CO2 5L/분으로 Flow Meter를 조정하여 Y자 어뎁터를 통해 기체를 혼합하여 가스트랩 어뎁터의 In-Let 관을 통해 반응조에 불어 넣어 주었다. 가스트랩 어뎁터의 Out-Let 에서 CO2 농도를 측정하고, 다시 실시예 2에서 제조한 CO2 화학흡착제 1L를 Dropping Funnel을 통해 반응조에 투입한 뒤 CO2 농도를 측정하였다.After preparing an N 2 bombe and a CO 2 bombe with a heating device, adjust the flow meter to 30L/min of N 2 and 5L/min of CO 2 , respectively, and mix the gas through the Y-shaped adapter to in-let pipe of the gas trap adapter. was blown into the reactor through The CO 2 concentration was measured at the Out-Let of the gas trap adapter, and 1 L of the CO 2 chemical adsorbent prepared in Example 2 was introduced into the reaction tank through the dropping funnel, and then the CO 2 concentration was measured.

<실험예 1> SOx 제거능 측정<Experimental Example 1> SOx removal performance measurement

화목난로에서 갈탄 연소후 상기 실험장치를 통해 배가스 중 SOx 발생량을 측정하고 SOx 저감량을 측정하였다. After burning lignite in a firewood stove, the amount of SOx generated in exhaust gas was measured and the amount of SOx reduction was measured through the above experimental device.

실험결과가 도 3에 도시되고 있는 바, 그래프에서 보는 바와 같이 개략 37분에서 91분까지 실시예 1의 흡수제의 작용에 의해 SOx 저감능이 발현됨을 알 수 있다. The experimental results are shown in FIG. 3, and as shown in the graph, it can be seen that the SOx reducing ability is expressed by the action of the absorbent of Example 1 from approximately 37 minutes to 91 minutes.

<실험예 2> CO2 제거능 측정<Experimental Example 2> CO 2 Removal Ability Measurement

상기 실험장치에서 N2 Bombe 와 CO2 Bombe를 통해 14% CO2 Gas를 주 Reactor에 투입되도록 맞춘뒤 실시예 2에서 제조한 CO2 화학흡수제 1L를 넣고 투입되는 Gas를 통과하도록 한 뒤 CO2 저감량을 측정하였다.In the above experimental device, 14% CO 2 Gas was injected into the main reactor through N 2 Bombe and CO 2 Bombe, and then 1L of CO 2 chemical absorbent prepared in Example 2 was put in and passed through the input gas to reduce CO 2 was measured.

실험결과가 도 3에 도시되고 있는 바, 그래프상에 첫 번째 하강곡선이 실시예 2가 주입되어 CO2가 저감되고 있는 것을 나타내고 CO2의 저감이 이루어지던 중 상승곡선은 반응기의 뚜껑을 열어 외기가 유입되도록 함으로써 CO2가 상승되도록 한 뒤에 기 사용된 실시예 2의 흡수제를 재생한 재생 흡수제를 투입한 결과 다시 CO2의 저감이 이루어짐을 알 수 있다. As the experimental results are shown in FIG. 3, the first descending curve on the graph indicates that Example 2 is injected and CO 2 is reduced, and while the CO 2 is reduced, the rising curve shows that the lid of the reactor is opened and the outside air is released. It can be seen that CO 2 is reduced again as a result of introducing a regenerated absorbent obtained by regenerating the previously used absorbent of Example 2 after allowing CO 2 to rise.

<실험예 3> CaCO3 제조 및 CO2 흡수제의 재생<Experimental Example 3> Production of CaCO 3 and Regeneration of CO 2 Absorbent

실험예 2에서 CO2를 흡수한 흡수제 1L(용액 온도 32℃)를 2L Beaker에 옮기고 교반해 주면서 CaO(assay 90%) 62.16g을 투입하였다.(용액 온도 62℃로 상승) 투입과 동시에 흰색 고체가 석출되면서 회갈색의 CaO 입자가 빠르게 녹아들어간 뒤 고체를 여과하고 열풍건조 하여 흰색의 CaCO3 100.1g 을 얻었다. 여액은 다시 실험예 2의 CO2 흡수 재생액으로 사용하였다.In Experimental Example 2, 1L of the absorbent that absorbed CO 2 (solution temperature: 32°C) was transferred to a 2L Beaker, and 62.16 g of CaO (assay 90%) was added while stirring. As was precipitated, gray brown CaO particles were quickly dissolved, and then the solid was filtered and dried with hot air to obtain 100.1 g of white CaCO 3 . The filtrate was again used as the CO 2 absorption regeneration solution of Experimental Example 2.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기 실시예에 한정되지 않음은 물론이며, 본 발명이 속하는 분야에서 통상의 기술적 지식을 가진 자에 의해 상기 기재된 내용으로부터 다양한 수정 및 변형이 가능할 수 있음은 물론이다.As described above, although the present invention has been described with limited embodiments and drawings, the present invention is not limited to the above embodiments, of course, from the above description by a person having ordinary technical knowledge in the field to which the present invention belongs. Of course, various modifications and variations may be possible.

1 : 본 발명의 시스템 2 : 제조부
3 : 석탄분쇄부 4 : 배출원
5 : 전처리부 6 : 탈황부
7 : 열교환기 8 : 이산화탄소 흡수조
9 : 1차 침전조 10 : 2차 침전조
11 : 수득조 12 : 재생 이산화탄소 흡수제 저장조
1: system of the present invention 2: manufacturing unit
3: coal crushing unit 4: emission source
5: pretreatment unit 6: desulfurization unit
7: heat exchanger 8: carbon dioxide absorption tank
9: 1st precipitation tank 10: 2nd precipitation tank
11: harvesting tank 12: regenerated carbon dioxide absorbent storage tank

Claims (6)

배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 전처리부;
상기 전처리부에서 배기가스를 유입받아 배기가스로부터 황산화물을 제거하여 배출하는 탈황부;
상기 탈황부 전단 또는 후단에서 배기가스를 유입받아 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조;
수산화나트륨 수용액; 일라이트 분말을 40 내지 100℃로 가열된 물에 첨가하여 교반하여 제조되는 일라이트 추출물; 흡수된 기체상태의 이산화탄소가 빠져나가지 못하고 액체상태로 녹아들어가면서 탄산으로 반응하게 되어 이산화탄소 흡수율을 배가시키는 사붕산나트륨 및 물유리; 과산화수소를 포함하여 구성되되, 일라이트 분말을 40 내지 100℃로 가열된 물에 투입하여 교반한 후에, 순차적으로 사붕산나트륨을 투입하여 교반하고, 수산화나트륨을 투입하여 교반하며, 물유리를 투입하여 교반하고, 과산화수소를 투입하여 교반한후 상등액을 여과하여 이산화탄소 흡수제가 제조되며, 상기 이산화탄소 흡수조에 제조된 이산화탄소 흡수제를 공급하는 제조부;
상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조;
상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되는 2차 침전조;
상기 2차 침전조로부터 탄산칼슘을 전달받아 저장하는 수득조;
상기 2차 침전조로부터 재생된 이산화탄소 흡수제를 전달받아 상기 이산화탄소 흡수조로 순환시키는 재생 이산화탄소 흡수제 저장조;
를 포함하는 것을 특징으로 하는 자원순환 시스템.
a pre-processing unit receiving the exhaust gas discharged from the exhaust gas source and removing pollutants from the exhaust gas;
a desulfurization unit receiving exhaust gas from the preprocessing unit and removing and discharging sulfur oxides from the exhaust gas;
a carbon dioxide absorption tank receiving exhaust gas from the front or rear end of the desulfurization unit, reacting with the carbon dioxide absorbent to remove carbon dioxide and sulfur oxides from the exhaust gas, and discharging processed gas;
aqueous sodium hydroxide solution; an illite extract prepared by adding illite powder to water heated to 40 to 100° C. and stirring; Sodium tetraborate and water glass, which doubles the absorption rate of carbon dioxide by reacting with carbonic acid while the absorbed gaseous carbon dioxide cannot escape and melts into a liquid state; It is composed of hydrogen peroxide, but the illite powder is added to water heated to 40 to 100 ° C. and stirred, then sodium tetraborate is sequentially added and stirred, sodium hydroxide is added and stirred, and water glass is added and stirred a production unit for preparing a carbon dioxide absorbent by adding hydrogen peroxide, stirring, filtering the supernatant, and supplying the carbon dioxide absorbent to the carbon dioxide absorption tank;
a primary precipitation tank receiving the reaction liquid from the carbon dioxide absorption tank and precipitating foreign substances by a flocculation reaction with a coagulant;
a second precipitation tank in which the reaction solution is introduced from the first precipitation tank and reacted with calcium oxide to produce calcium carbonate and the carbon dioxide absorbent is regenerated by removing carbon dioxide captured from the reaction solution;
an acquisition tank for receiving and storing calcium carbonate from the secondary precipitation tank;
a regenerated carbon dioxide absorbent storage tank for receiving the regenerated carbon dioxide absorbent from the secondary precipitation tank and circulating it to the carbon dioxide absorbent;
A resource circulation system comprising a.
제 1항에 있어서,
상기 탈황부에서 배출되는 처리가스 또는 상기 이산화탄소 흡수조를 통해 배출되는 처리가스는 열교환기를 거쳐 외부로 배출됨을 특징으로 하는 자원순환 시스템.
According to claim 1,
The resource circulation system, characterized in that the processing gas discharged from the desulfurization unit or the processing gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.
삭제delete 삭제delete 제 1항에 있어서,
상기 배출원 전단에는 배출원의 연료원으로서 공급되는 화석연료를 분쇄하는 석탄분쇄부가 더 구성되며, 상기 제조부에서는 상기 이산화탄소 흡수제 제조과정에서 생성되는 침전물을 상기 석탄분쇄부에 탈황촉매로 공급하는 것을 특징으로 하는 자원순환 시스템.
According to claim 1,
In front of the emission source, a coal crushing unit for crushing fossil fuel supplied as a fuel source of the emission source is further configured, and in the manufacturing unit, the precipitate generated during the manufacturing process of the carbon dioxide absorbent is supplied to the coal crushing unit as a desulfurization catalyst. resource circulation system.
제 1항에 있어서,
상기 수득조에서 저장되는 탄산칼슘은 상기 탈황부로 전달되어 배기가스로부터 황산화물이 제거되도록 하는 것을 특징으로 하는 자원순환 시스템.


According to claim 1,
The calcium carbonate stored in the harvesting tank is transferred to the desulfurization unit to remove sulfur oxides from the exhaust gas.


KR1020220089149A 2022-07-19 2022-07-19 Resource Circulation System KR102556854B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220089149A KR102556854B1 (en) 2022-07-19 2022-07-19 Resource Circulation System
PCT/KR2023/010174 WO2024019448A1 (en) 2022-07-19 2023-07-17 Resource recycling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220089149A KR102556854B1 (en) 2022-07-19 2022-07-19 Resource Circulation System

Publications (1)

Publication Number Publication Date
KR102556854B1 true KR102556854B1 (en) 2023-07-19

Family

ID=87425657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220089149A KR102556854B1 (en) 2022-07-19 2022-07-19 Resource Circulation System

Country Status (2)

Country Link
KR (1) KR102556854B1 (en)
WO (1) WO2024019448A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020034205A (en) * 2000-07-31 2002-05-08 오하시 미츠오 Method of treating combustion gas and treating appartus
KR100934551B1 (en) * 2007-11-30 2009-12-29 김병준 How to remove sulfur oxides and carbon dioxide
KR101076140B1 (en) * 2011-03-28 2011-10-21 정훈 Liquid carbon dioxide produced by reaction of calcium hydroxide and calcium carbonate using rigid exhaust gas to remove sulfur compounds and the device
KR101322370B1 (en) * 2013-04-08 2013-10-29 극동환경화학 주식회사 Apparatus and method for collecting carbon dioxide of exhaust gas using combustion byproducts and absorption liquid
KR20140083180A (en) * 2012-12-24 2014-07-04 재단법인 포항산업과학연구원 Method and apparatus for removing carbon dioxide and SOx from flue gas
JP2017039105A (en) * 2015-08-21 2017-02-23 株式会社神戸製鋼所 Gas treatment system and gas treatment method
JP2018501082A (en) * 2014-10-28 2018-01-18 インターサージカル アクチェンゲゼルシャフト Chemical absorbent
KR101864999B1 (en) * 2017-09-18 2018-06-05 이철 A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same
KR101938424B1 (en) 2012-09-28 2019-01-14 한국전력공사 Device for Inorganic Carbonation of Carbon Dioxide
JP2019076810A (en) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 Acidic gas removal device and acidic gas removal method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020034205A (en) * 2000-07-31 2002-05-08 오하시 미츠오 Method of treating combustion gas and treating appartus
KR100934551B1 (en) * 2007-11-30 2009-12-29 김병준 How to remove sulfur oxides and carbon dioxide
KR101076140B1 (en) * 2011-03-28 2011-10-21 정훈 Liquid carbon dioxide produced by reaction of calcium hydroxide and calcium carbonate using rigid exhaust gas to remove sulfur compounds and the device
KR101938424B1 (en) 2012-09-28 2019-01-14 한국전력공사 Device for Inorganic Carbonation of Carbon Dioxide
KR20140083180A (en) * 2012-12-24 2014-07-04 재단법인 포항산업과학연구원 Method and apparatus for removing carbon dioxide and SOx from flue gas
KR101322370B1 (en) * 2013-04-08 2013-10-29 극동환경화학 주식회사 Apparatus and method for collecting carbon dioxide of exhaust gas using combustion byproducts and absorption liquid
JP2018501082A (en) * 2014-10-28 2018-01-18 インターサージカル アクチェンゲゼルシャフト Chemical absorbent
JP2017039105A (en) * 2015-08-21 2017-02-23 株式会社神戸製鋼所 Gas treatment system and gas treatment method
KR101864999B1 (en) * 2017-09-18 2018-06-05 이철 A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same
JP2019076810A (en) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 Acidic gas removal device and acidic gas removal method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Engineering Journal 255 (2014) 705-715(2014.07.01.)* *

Also Published As

Publication number Publication date
WO2024019448A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CA2952395C (en) Process and device for desulfurization-denitration of flue gas
CA2721677C (en) Capture and sequestration of carbon dioxide in flue gases
AU2008310755B2 (en) Coal fired flue gas treatment and process
US9653190B2 (en) Removal device for radioactive cesium
WO2004076033A1 (en) Method for absorbing and fixing carbon dioxide in combustion waste gas
US20110014106A1 (en) COMBUSTION FLUE GAS SOx TREATMENT VIA DRY SORBENT INJECTION
CN101869804B (en) Desulfuration process of sintering flue gas of semidry-method recirculating fluidized bed
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
JPH0833826A (en) Treatment of boiler waste combustion gas for coal fired thermal power plant and device therefor
US20150314155A1 (en) Treatment of Sodic Fly Ash for Reducing the Leachability of Selenium Contained Herein
KR102556853B1 (en) Carbon Dioxide Removing System From Exhaust Gases
CN110064293B (en) Method for desulfurization, denitrification and demercuration of flue gas
KR102556854B1 (en) Resource Circulation System
CN211770757U (en) Tail gas purification and waste heat utilization device of hot blast stove for active carbon desorption
KR101177608B1 (en) Method for absorbing CO2 in the emission gas and recycling Calcium Carbonate by utilizing eluate of coal ash in the anthracite-fired fluidized-bed power plant.
KR102471400B1 (en) Pre-Combustion of fossil fuel additive type combustion comburent and Desulfurization catalyst manufacturing method
CN102886203A (en) Flue gas desulfurization and demercuration method
KR102556856B1 (en) Carbon dioxide absorbent and method for producing desul
KR102556855B1 (en) A Carbon Dioxide Absorbent
CN111701437A (en) Flue gas desulfurizing agent
KR102497099B1 (en) Method For Treating Flue Gas Of Incinerator
US20230357004A1 (en) A method for the production of hydrogen
KR20090092544A (en) METHOD FOR REMOVING SOx IN THE SINTER FLUE GAS
JPH09236389A (en) Waste gas treatment apparatus of dl type sintering machine and treatment method
KR20230108747A (en) Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators

Legal Events

Date Code Title Description
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant