[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102511994B1 - Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same - Google Patents

Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same Download PDF

Info

Publication number
KR102511994B1
KR102511994B1 KR1020210005979A KR20210005979A KR102511994B1 KR 102511994 B1 KR102511994 B1 KR 102511994B1 KR 1020210005979 A KR1020210005979 A KR 1020210005979A KR 20210005979 A KR20210005979 A KR 20210005979A KR 102511994 B1 KR102511994 B1 KR 102511994B1
Authority
KR
South Korea
Prior art keywords
carbon filter
coating solution
electrocatalyst
coating
coated
Prior art date
Application number
KR1020210005979A
Other languages
Korean (ko)
Other versions
KR20220103410A (en
Inventor
최성호
나경덕
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020210005979A priority Critical patent/KR102511994B1/en
Publication of KR20220103410A publication Critical patent/KR20220103410A/en
Application granted granted Critical
Publication of KR102511994B1 publication Critical patent/KR102511994B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2065Carbonaceous material the material being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/045Deodorising additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0492Surface coating material on fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 전기촉매 코팅 탄소필터의 제조방법 및 이에 의해 제조된 탄소필터를 이용하여 휘발성 유기화합물을 제거하는 방법에 관한 것으로, 더욱 상세하게는 전기에 의한 촉매현상을 나타내는 전기촉매를 탄소필터에 코팅함으로써 우수한 휘발성 유기화합물 제거기능을 갖는 전기촉매 코팅 탄소필터에 관한 것이다.The present invention relates to a method for manufacturing an electrocatalyst-coated carbon filter and a method for removing volatile organic compounds using the carbon filter produced thereby, and more particularly, to coating a carbon filter with an electrocatalyst exhibiting a catalytic phenomenon by electricity. Accordingly, it relates to an electrocatalyst coated carbon filter having excellent volatile organic compound removal function.

Description

전기촉매 코팅 탄소필터의 제조방법 및 이를 이용한 휘발성 유기화합물 제거방법{Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same}Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same

본 발명은 휘발성 유기화합물 제거 기능을 갖는 전기촉매가 코팅된 탄소필터의 제조방법 및 이를 이용하여 제조된 전기촉매 코팅 탄소필터를 이용하여 휘발성 유기화합물을 제거하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a carbon filter coated with an electrocatalyst having a volatile organic compound removal function, and a method for removing volatile organic compounds using the electrocatalyst coated carbon filter manufactured using the same.

최근 산업 발전과 함께 주거, 근로 등을 포함한 생활 방식이 실외에서 실내로 점차 변화함에 따라 실내의 쾌적한 환경 유지 및 에너지 사용 절감과 열효율 증진을 위해 건물의 밀폐화 및 단열재 사용이 많아지고 있다. 그러나 이로 인해 실내 오염물질 발생 문제가 심각해짐에 따라 실내공기질에 대한 문제가 제기되었으며, 더불어 이와 관련된 선언 및 법령 등이 발표되었다. 국내 역시 이와 관련된 법안이 제정되었으며, 실내공기질 관리를 위한 다양한 연구가 이루어지고 있다.As lifestyles including housing and work gradually change from outdoors to indoors with recent industrial development, the use of airtightness and insulation materials in buildings is increasing to maintain a pleasant indoor environment, reduce energy consumption, and improve thermal efficiency. However, as the indoor pollutant generation problem became serious, the problem of indoor air quality was raised, and related declarations and laws were announced. In Korea, related laws have also been enacted, and various studies are being conducted for indoor air quality management.

실내 오염물질 중 휘발성 유기화합물(Volatile Organic Compounds; VOCs)은 합판, 접착제를 포함하는 각종 건축재에 흔히 함유되어 있으며, 이 외에도 가구, 가정용품, 살충제, 연소기구, 화장품, 향수 등에 존재한다. 또한, 산업체에서 많이 사용하는 용매에서부터 화학 및 제약공장이나 플라스틱 건조공정에서 배출되는 유기가스에 이르기까지 매우 다양하며, 끓는점이 낮은 액체연료, 파라핀, 올레핀, 방향족화합물 등 생활주변에서 흔히 사용하는 탄화수소류가 거의 해당된다. 휘발성 유기화합물은 대기 중에서 질소산화물(NOx)과 함께 광화학반응으로 오존 등 광화학산화제를 형성하여 광화학스모그를 유발하며, 벤젠과 같은 물질은 발암성 물질로서 인체에 매우 유해하고, 스티렌을 포함한 대부분의 휘발성 유기화합물은 악취를 일으킨다. 휘발성 유기화합물이 인체에 미치는 영향으로는 호흡기자극, 발암성, 심장과 간장, 위장신경계 및 중추신경의 이상을 유발하며, 휘발성화합물이 인체에 고농도로 노출되면 피로, 두통, 졸음, 현기증, 허탈감, 심장 부정맥, 마비 및 사망 등 급성장애를 일으킨다고 보고되었다. 이처럼 휘발성 유기화합물이 인체에 미치는 건강 피해나 새집증후군 또는 화학물질과민증 등으로 인해 사회문제로 크게 되두되면서 휘발성 유기화합물을 저감 또는 제거하기 위한 노력이 이루어지고 있다.Among indoor pollutants, volatile organic compounds (VOCs) are commonly contained in various building materials including plywood and adhesives, and are also present in furniture, household items, insecticides, combustion appliances, cosmetics, perfumes, and the like. In addition, hydrocarbons that are widely used in daily life, such as liquid fuels with low boiling points, paraffins, olefins, and aromatic compounds, range from solvents widely used in industry to organic gases emitted from chemical and pharmaceutical factories or plastic drying processes. is almost applicable. Volatile organic compounds cause photochemical smog by forming photochemical oxidants such as ozone through photochemical reactions with nitrogen oxides (NOx) in the air, and substances such as benzene are carcinogenic and are very harmful to the human body. Organic compounds cause odors. The effects of volatile organic compounds on the human body include respiratory irritation, carcinogenicity, heart and liver, gastrointestinal nervous system and central nervous system abnormalities. It has been reported to cause acute disorders including cardiac arrhythmias, paralysis and death. Efforts are being made to reduce or remove volatile organic compounds as they have become a major social problem due to health damage, sick house syndrome, or chemical hypersensitivity caused by volatile organic compounds to the human body.

한편, 광촉매는 빛을 흡수하여 다양한 화학반응을 일으키는 물질로, TiO2, ZnO, ZnS 등이 대표적이며, 반응조건 및 활성을 고려할 때 TiO2의 효율이 가장 좋은 것으로 알려져 있다. TiO2 광촉매는 반도체성 물질로 빛(380 nm 이하)을 조사하면 광산화, 광환원, 친수화 반응을 일으키며, 활성산소의 생성과 물 분자의 배위가 동시에 일어나 활성산소의 힘으로 분해력을, 물 분자의 배위 영향으로 친수성을 나타낸다. 산소로부터는 수퍼옥사이드 음이온(O2-)이, 물로부터는 수산라디칼(*OH)이 생성되며, 이들의 분해작용으로 표면의 유기물들이 분해된다. 이러한 특성으로 인해 광촉매는 다양한 분야에 응용되고 있으며, 공기 중 휘발성 유기화합물의 분해와 제거에도 이용되고 있다.On the other hand, a photocatalyst is a material that causes various chemical reactions by absorbing light, and TiO 2 , ZnO, ZnS, etc. are typical examples, and TiO 2 is known to have the best efficiency when considering reaction conditions and activity. TiO 2 photocatalyst is a semiconducting material that causes photooxidation, photoreduction, and hydrophilization when irradiated with light (380 nm or less). shows hydrophilicity due to the coordination effect of Superoxide anion (O 2- ) is generated from oxygen and hydroxyl radical (*OH) is generated from water, and organic substances on the surface are decomposed by their decomposition. Due to these characteristics, photocatalysts are applied in various fields and are also used for decomposition and removal of volatile organic compounds in the air.

일 예로, 한국등록특허 제10-0945311호에는 가시광에 의해 광활성화되어 공기 중의 오염물질을 분해시키는 광촉매 코팅층이 구비된 복합 광촉매 필터 및 이를 이용한 공기정화장치에 대해 개시되어 있으며, 한국공개특허 제10-2019-0063496호에는 광원 일체형 이산화티탄 광촉매 필터에 대해 개시되어 있다.For example, Korean Patent Registration No. 10-0945311 discloses a composite photocatalytic filter equipped with a photocatalytic coating layer that is photoactivated by visible light to decompose pollutants in the air and an air purifying device using the same, and Korean Patent Publication No. 10 -2019-0063496 discloses a light source-integrated titanium dioxide photocatalyst filter.

그러나 이산화티탄의 광촉매 반응이 공기청정에 기여하는 유효성에도 불구하고 광 조사효율, 반응면적 및 처리량, 반응의 선택성 문제로 인해 기대하는 만큼의 성능을 얻지 못하는 문제가 있어 이에 대한 개선이 필요하며, 효과적으로 휘발성 유기화합물을 저감 및 제거할 수 있는 기술 개발이 요구되고 있다.However, despite the effectiveness of the photocatalytic reaction of titanium dioxide in contributing to air cleaning, there is a problem in that the performance as expected is not obtained due to problems in light irradiation efficiency, reaction area and throughput, and selectivity of the reaction, so improvement is needed. There is a demand for technology development capable of reducing and removing volatile organic compounds.

한편, 전기촉매란 광 에너지 대신에 전기를 금속산화물 촉매에 가해 전자를 발생시키고, 이 전자가 금속산화물 나노입자의 표면에 존재하다가, 산소에 전이되어 수퍼옥사이드 음이온(O2-)이, 물로부터는 수산라디칼(*OH)이 생성되며, 이 활성분자의 분해작용으로 표면의 유기물들이 분해된다. 이러한 특성으로 인해 전기촉매는 폭넓은 분야에서 응용되고 있으며, 공기 중 휘발성 유기화합물의 분해와 제거에도 이용되고 있다. 따라서 광촉매는 광을 사용하는 단점을 가지는 반면에 전기화학 촉매의 경우 광을 사용하지 않는 장점을 가진다. 반면에 금속산화물 촉매에 직접적으로 전기를 가할 수 있는 기질이 필요하다. 그러나 전기촉매의 개발은 전무한 상황이다.On the other hand, an electrocatalyst generates electrons by applying electricity to a metal oxide catalyst instead of light energy, and these electrons exist on the surface of metal oxide nanoparticles and then are transferred to oxygen to form superoxide anions (O 2- ) from water. hydroxyl radical (*OH) is generated, and organic matter on the surface is decomposed by the decomposition of this active molecule. Due to these characteristics, electrocatalysts are applied in a wide range of fields, and are also used for decomposition and removal of volatile organic compounds in the air. Therefore, the photocatalyst has the disadvantage of using light, whereas the electrochemical catalyst has the advantage of not using light. On the other hand, a substrate that can directly apply electricity to the metal oxide catalyst is required. However, development of an electrocatalyst is non-existent.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 탄소섬유 부직포(전기를 가하는 기질)에 이산화티탄을 코팅함으로써 휘발성 유기화합물 제거성능을 갖는 탄소필터의 제조방법 및 이를 이용한 휘발성 유기화합물 제거방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the problems of the prior art as described above, and a method for manufacturing a carbon filter having volatile organic compound removal performance by coating titanium dioxide on a carbon fiber nonwoven fabric (a substrate to which electricity is applied) and a volatile organic compound using the same It is an object of the present invention to provide a method for removing a compound.

상기 목적을 달성하기 위해 본 발명은, 1) 계면활성제를 용매에 용해시켜 제1 코팅용액을 제조하는 단계; 2) 탄소섬유 부직포에 상기 제1 코팅용액을 코팅하는 단계; 3) 이산화티탄 및 실리카 바인더를 혼합하여 제2 코팅용액을 제조하는 단계; 4) 상기 제1 코팅용액이 코팅된 상기 탄소섬유 부직포에 상기 제2 코팅용액을 코팅하는 단계; 및 5) 상기 제2 코팅용액이 코팅된 상기 탄소섬유 부직포를 건조하는 단계;를 포함하는 전기촉매 코팅 탄소필터의 제조방법을 제공한다.The present invention to achieve the above object, 1) preparing a first coating solution by dissolving a surfactant in a solvent; 2) coating the first coating solution on the carbon fiber nonwoven fabric; 3) preparing a second coating solution by mixing titanium dioxide and a silica binder; 4) coating the second coating solution on the carbon fiber nonwoven fabric coated with the first coating solution; and 5) drying the carbon fiber nonwoven fabric coated with the second coating solution.

상기 실리카 바인더는 테트라에틸 오르토실리케이트(Tetraethyl orthosilicate), 테트라메틸 오르토실리케이트(Tetramethyl orthosilicate), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 디메틸디메톡시실란(Dimethyldimethoxysilane) 또는 에틸 트리에톡시실란(Ethyltridethoxysilane)이며,The silica binder is tetraethyl orthosilicate, tetramethyl orthosilicate, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane or ethyl tri It is ethoxysilane (Ethyltridethoxysilane),

상기 계면활성제는 트리톤 x-100(triton x-100), 소듐도데실설페이트(sodium dodecyl sulfate), 퍼플루오로옥탄 설포네이트(perfluorooctane sulfonate), 소듐스테아레이트(sodium stearate), 소듐리그노설포네이트(sodium lignosulfonate) 및 폴리스티렌 설포네이트(polystyrene sulfonate)로 이루어진 군에서 선택되는 1종 이상이고,The surfactant is triton x-100, sodium dodecyl sulfate, perfluorooctane sulfonate, sodium stearate, sodium lignosulfonate ( sodium lignosulfonate) and at least one selected from the group consisting of polystyrene sulfonate,

상기 용매는 물 또는 유기 용매를 포함한다.The solvent includes water or an organic solvent.

상기 이산화티탄 및 실리카 바인더는 1:0.2~5 몰비로 혼합되며, 상기 계면활성제는 제1 코팅용액 100 중량부에 대하여 0.5 내지 5 중량부가 혼합된다.The titanium dioxide and the silica binder are mixed in a molar ratio of 1:0.2 to 5, and the surfactant is mixed in an amount of 0.5 to 5 parts by weight based on 100 parts by weight of the first coating solution.

상기 전기촉매 코팅 탄소필터는 휘발성 유기화합물 제거 기능을 갖는다.The electrocatalyst coated carbon filter has a function of removing volatile organic compounds.

상기 2)단계 및 4)단계에서의 코팅방법은 침지 또는 스프레이 방식이다.The coating method in steps 2) and 4) is a dip or spray method.

또한, 다른 측면에서 본 발명은 상기 제조방법으로 제조된 전기촉매 코팅 탄소필터에 전압을 인가하는 단계; 및 2) 상기 전기촉매 코팅 탄소필터에 코팅된 전기촉매의 분해작용으로 공기 중의 휘발성 유기화합물이 제거되는 단계;를 포함하는 휘발성 유기화합물 제거방법을 제공한다.In another aspect, the present invention provides a step of applying a voltage to the electrocatalyst-coated carbon filter manufactured by the manufacturing method; and 2) removing volatile organic compounds in the air by the decomposition of the electrocatalyst coated on the electrocatalyst-coated carbon filter.

본 발명에 따른 전기촉매 코팅 탄소필터는 화학적으로 안정하고 환경과 인체에 무해한 물질인 이산화티탄을 사용함에 따라 인체에 무해하며, 전기촉매로서 휘발성 유기화합물 제거 능력이 우수하여 실내 공기청정기, 산업체 내부 공기질 향상, 축사 및 음식물 악취 제거, 병원 및 학교 내 항균제거 등 다양한 분야에 응용 가능하다.The electrocatalyst coated carbon filter according to the present invention is harmless to the human body as it uses titanium dioxide, which is chemically stable and harmless to the environment and the human body. It can be applied to various fields such as improvement, barn and food odor removal, and antibacterial removal in hospitals and schools.

또한, 버스 정류장 및 야외시설 등 활동공간 가운데 휘발성 유기화합물의 농도가 높을 것으로 예상되는 장소나 시설의 정화장치에 활용될 수 있다.In addition, it can be used for purifying devices in places or facilities where the concentration of volatile organic compounds is expected to be high among activity spaces such as bus stops and outdoor facilities.

또한, 본 발명은 전기화학적 반응을 이용하여 휘발성 유기화합물을 제거하므로 따로 광 조사장치가 필요하지 않아 경제적이다.In addition, since the present invention removes volatile organic compounds using an electrochemical reaction, it is economical because a separate light irradiation device is not required.

도 1은 일 실시예에 따른 전기촉매 코팅 탄소필터의 SEM 측정 결과를 나타낸 것이다.
도 2는 일 실시예에 따른 전기촉매 코팅 탄소필터의 CV 측정 결과를 나타낸 것이다.
도 3은 일 실시예에 따른 전기촉매 코팅 탄소필터의 butane gas 제거효과 측정 결과를 나타낸 것이다.
도 4는 일 실시예에 따른 전기촉매 코팅 탄소필터의 휘발성 유기화합물 제거효과 측정 결과를 나타낸 것이다.
1 shows SEM measurement results of an electrocatalyst-coated carbon filter according to an embodiment.
2 shows CV measurement results of an electrocatalyst-coated carbon filter according to an embodiment.
Figure 3 shows the results of measuring the butane gas removal effect of the electrocatalyst-coated carbon filter according to an embodiment.
Figure 4 shows the results of measuring the volatile organic compound removal effect of the electrocatalyst coated carbon filter according to an embodiment.

이하, 본 발명에 따른 전기촉매 코팅 탄소필터의 제조방법 및 이를 이용한 휘발성 유기화합물 제거방법에 대해 구체적으로 설명한다.Hereinafter, a method for manufacturing an electrocatalyst-coated carbon filter according to the present invention and a method for removing volatile organic compounds using the same will be described in detail.

본 발명에서 사용된 용어 "전기촉매"는 전기를 가했을 때 촉매 현상이 발생하는 물질을 의미한다.The term "electrocatalyst" used in the present invention refers to a material in which a catalytic phenomenon occurs when electricity is applied.

본 발명에 따른 전기촉매 코팅 탄소필터의 제조방법은 1) 계면활성제를 용매에 용해시켜 제1 코팅용액을 제조하는 단계; 2) 탄소섬유 부직포에 상기 제1 코팅용액을 코팅하는 단계; 3) 이산화티탄 및 실리카 바인더를 혼합하여 제2 코팅용액을 제조하는 단계; 4) 상기 제1 코팅용액이 코팅된 상기 탄소섬유 부직포에 상기 제2 코팅용액을 코팅하는 단계; 및 5) 상기 제2 코팅용액이 코팅된 상기 탄소섬유 부직포를 건조하는 단계;를 포함한다.A method for manufacturing an electrocatalyst-coated carbon filter according to the present invention includes the steps of 1) preparing a first coating solution by dissolving a surfactant in a solvent; 2) coating the first coating solution on the carbon fiber nonwoven fabric; 3) preparing a second coating solution by mixing titanium dioxide and a silica binder; 4) coating the second coating solution on the carbon fiber nonwoven fabric coated with the first coating solution; and 5) drying the carbon fiber nonwoven fabric coated with the second coating solution.

본 발명은 이산화티탄을 전기전도성을 갖는 탄소섬유 부직포에 코팅함으로써 전기를 인가하여 전기촉매의 높은 분해효율과 탄소섬유 부직포의 흡착 메커니즘에 의해 휘발성 유기화합물을 효과적으로 제거할 수 있다.According to the present invention, by coating titanium dioxide on a carbon fiber nonwoven fabric having electrical conductivity, electricity can be applied to effectively remove volatile organic compounds by the high decomposition efficiency of the electrocatalyst and the adsorption mechanism of the carbon fiber nonwoven fabric.

이산화티탄은 태양광 또는 형광등에 포함된 자외선광에 의해 최외각 전자를 들뜨게 하는 성질 혹은 전기를 가해서 최외각 전자를 들뜨게 하여 이 들뜬 전자가 산소 혹은 물에 전이되어 강력한 산화환원 능력을 갖는 물질로, 뛰어난 전기활성으로 인해 화학적, 생물학적 안정성, 내구성, 경제성 등의 장점을 갖는다. 이산화티탄의 기본적인 분해작용 원리를 살펴보면, 빛 혹은 전기에 의해 촉매 입자에 전자가 전이되고 이 전자가 촉매 표면의 수증기에 전이되어 하이드록시 라디칼(radical)이 형성되어 강한 산화력을 가지며, 라디칼이 유기화합물과 반응하면서 이를 분해한다. 즉, 이산화티탄 표면이 자외선을 받아 양이온성 정공과 음이온의 전자를 발생하고, 여기서 정공은 산화반응을, 전자는 환원반응으로 오염물질을 제거하며, 이 반응은 이산화티탄이 활성화될 때 그 효과가 발휘된다. 그러나 자외선으로 인해 생성된 정공과 전자가 재결합하거나 또는 반응이 진행될수록 생성되는 중간오염물질이 표면에 부착하여 촉매의 활성이 상실됨에 따라 이산화티탄의 활성이 저하될 수 있는 문제가 있다. 또한, 활성을 위해서는 자외선을 필요로 하는 한계가 있다. 이에 본 발명에서는 탄소섬유 부직포를 이용하여 전기촉매를 제조하였다. 상기와 같은 원리로 전기촉매는 촉매 입자의 전자를 전기로 전이시켜, 촉매 입자 표면에 있는 수증기에 전이되어 하이드록시 라디칼을 생성함으로써 분해작용을 수행한다.Titanium dioxide is a material that excites the outermost electrons by sunlight or ultraviolet light included in fluorescent lamps or by applying electricity to excite the outermost electrons, and these excited electrons are transferred to oxygen or water and have strong redox ability. Due to its excellent electroactivity, it has advantages such as chemical and biological stability, durability, and economy. Looking at the basic decomposition principle of titanium dioxide, electrons are transferred to catalyst particles by light or electricity, and these electrons are transferred to water vapor on the surface of the catalyst to form hydroxyl radicals, which have strong oxidizing power. reacts with it to break it down. That is, the surface of titanium dioxide receives ultraviolet rays to generate cationic holes and negative electrons, where the holes undergo an oxidation reaction and the electrons undergo a reduction reaction to remove contaminants. This reaction is effective when titanium dioxide is activated. exerted However, there is a problem in that the activity of titanium dioxide may decrease as holes and electrons generated by ultraviolet rays recombine or as intermediate pollutants generated as the reaction proceeds adhere to the surface and the activity of the catalyst is lost. In addition, there is a limitation in requiring ultraviolet rays for activation. Accordingly, in the present invention, an electrocatalyst was prepared using a carbon fiber nonwoven fabric. According to the above principle, the electrocatalyst converts the electrons of the catalyst particles into electricity, which is transferred to water vapor on the surface of the catalyst particles to generate hydroxyl radicals, thereby performing decomposition.

상기 실리카 바인더는 실리카를 주성분으로 하는 무기 바인더로서, 일반적으로 사용되는 실리카계 바인더일 수 있으며, 일 예로, 테트라에틸 오르토실리케이트(Tetraethyl orthosilicate), 테트라메틸 오르토실리케이트(Tetramethyl orthosilicate), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 디메틸디메톡시실란(Dimethyldimethoxysilane) 또는 에틸 트리에톡시실란(Ethyltridethoxysilane)일 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는 테트라에틸 오르토실리케이트일 수 있다. 실리카 바인더를 사용하는 이유는 전기촉매에서 발생한 활성종이 기질과 반응을 일으키지 않기 위함이며, 만약 유기 바인더를 사용하면 전기촉매에서 발생한 활성종이 유기 바인더와 반응하여 재오염물질이 발생할 수 있다.The silica binder is an inorganic binder containing silica as a main component, and may be a commonly used silica-based binder, for example, tetraethyl orthosilicate, tetramethyl orthosilicate, methyltriethoxysilane (Methyltriethoxysilane), phenyltriethoxysilane, dimethyldimethoxysilane, or ethyltriethoxysilane, but is not limited thereto. Preferably it may be tetraethyl orthosilicate. The reason for using the silica binder is to prevent active species generated from the electrocatalyst from reacting with the substrate, and if an organic binder is used, active species generated from the electrocatalyst may react with the organic binder to generate recontamination.

상기 계면활성제는 당 분야에서 범용적으로 사용되고 있는 각종 비이온성 계면활성제, 음이온성 계면활성제, 양이온성 계면활성제 또는 양쪽성 계면활성제 등이 사용 가능하며, 일 예로, 트리톤 x-100(triton x-100), 소듐도데실설페이트(sodium dodecyl sulfate), 퍼플루오로옥탄 설포네이트(perfluorooctane sulfonate), 소듐스테아레이트(sodium stearate), 소듐리그노설포네이트(sodium lignosulfonate) 및 폴리스티렌 설포네이트(polystyrene sulfonate)로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는 트리톤 x-100(triton x-100)일 수 있다.As the surfactant, various nonionic surfactants, anionic surfactants, cationic surfactants, or amphoteric surfactants that are commonly used in the art can be used. For example, Triton x-100 (triton x-100) ), sodium dodecyl sulfate, perfluorooctane sulfonate, sodium stearate, sodium lignosulfonate and polystyrene sulfonate. It may be one or more selected from the group, but is not limited thereto. Preferably it may be triton x-100 (triton x-100).

상기 용매는 당 분야에서 통상적으로 사용되는 용매는 모두 가능하며, 바람직하게는 물 또는 유기 용매를 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 유기 용매는 저급 알킬기를 가진 알콜일 수 있으며, 일 예로, 에틸알콜, 메틸알콜, 부틸알콜, 세크부틸알콜, 프로필알콜, 이소프로필알콜 또는 이소프로판올 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.The solvent may be any solvent commonly used in the art, and preferably may include water or an organic solvent, but is not limited thereto. The organic solvent may be an alcohol having a lower alkyl group, and for example, ethyl alcohol, methyl alcohol, butyl alcohol, secbutyl alcohol, propyl alcohol, isopropyl alcohol, or isopropanol may be used, but is not limited thereto.

상기 이산화티탄 및 실리카 바인더는 점도 등을 고려하여 적절히 혼합될 수 있으며, 바람직하게는 1:0.2~5 몰비로 혼합될 수 있고, 더욱 바람직하게는 1:0.5~2 몰비로 혼합될 수 있으나, 이에 제한되는 것은 아니다.The titanium dioxide and silica binder may be appropriately mixed in consideration of viscosity, etc., preferably at a molar ratio of 1:0.2 to 5, more preferably at a molar ratio of 1:0.5 to 2, but It is not limited.

상기 계면활성제는 당 분야에서 통상적으로 사용되는 적정 비율로 혼합될 수 있으며, 일 예로, 제1 코팅용액 100 중량부에 대하여 0.5 내지 5 중량부가 혼합될 수 있고, 더욱 바람직하게는 1 내지 3 중량부일 수 있다. 그러나 이에 제한되는 것은 아니다.The surfactant may be mixed in an appropriate ratio commonly used in the art, and for example, 0.5 to 5 parts by weight may be mixed with respect to 100 parts by weight of the first coating solution, and more preferably 1 to 3 parts by weight can However, it is not limited thereto.

상기 2)단계 및 4)단계에서의 코팅방법은 침지 또는 스프레이 방식일 수 있으나, 이에 제한되는 것은 아니다.The coating method in steps 2) and 4) may be a immersion or spray method, but is not limited thereto.

또한, 다른 측면에서 본 발명은 상기 제조방법으로 제조된 전기촉매 코팅 탄소필터에 전압을 인가하는 단계; 및 2) 상기 전기촉매 코팅 탄소필터에 코팅된 전기촉매의 분해작용으로 공기 중의 휘발성 유기화합물이 제거되는 단계;를 포함하는 휘발성 유기화합물 제거방법을 제공한다.In another aspect, the present invention provides a step of applying a voltage to the electrocatalyst-coated carbon filter manufactured by the manufacturing method; and 2) removing volatile organic compounds in the air by the decomposition of the electrocatalyst coated on the electrocatalyst-coated carbon filter.

이하, 본 발명을 실시예를 참조하여 더욱 상세히 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

[[ 실시예Example 1] One]

증류수(pH 8.0, 50 mL), Triton x-100 (2 wt%), 이산화티탄(TiO2) 2 mol, 테트라에틸 오르토실리케이트(Tetraethyl orthosilicate; 이하, TEOS로 약기함) 1 mol을 혼합하여 코팅용액을 제조한 후 탄소섬유 부직포에 코팅한 후 건조하였다. 코팅은 침지 방식으로 진행하였다.Distilled water (pH 8.0, 50 mL), Triton x-100 (2 wt%), 2 mol of titanium dioxide (TiO 2 ), and 1 mol of tetraethyl orthosilicate (hereinafter abbreviated as TEOS) were mixed to obtain a coating solution. After manufacturing, it was coated on a carbon fiber nonwoven fabric and then dried. Coating was carried out by immersion.

[[ 실시예Example 2] 2]

탄소섬유 부직포에 증류수(pH 8.0, 50 mL), Triton x-100 (2 wt%)을 혼합한 용액을 먼저 코팅한 후 이산화티탄(2 mol)과 테트라에틸 오르토실리케이트(1 mol)를 혼합한 용액을 코팅하고 건조하였다. 코팅은 침지 방식으로 진행하였다.Carbon fiber nonwoven fabric is first coated with a mixture of distilled water (pH 8.0, 50 mL) and Triton x-100 (2 wt%), followed by a mixture of titanium dioxide (2 mol) and tetraethyl orthosilicate (1 mol). was coated and dried. Coating was carried out by immersion.

[[ 비교예comparative example 1] One]

비교예 1은 아무것도 처리되지 않은 탄소섬유 부직포이다.Comparative Example 1 is a carbon fiber nonwoven fabric that has not been treated with anything.

[[ 실험예Experimental example 1] 탄소필터의 표면 분석 1] Carbon filter surface analysis

주사전자현미경 (FE-SEM (S-4800), Hitachi Co. Ltd, Japan)을 이용하여 제조된 탄소필터의 표면을 분석하여 코팅 여부를 확인하였다. 도 1에서 보는 바와 같이, 비교예 1은 아무것도 코팅되어 있지 않은 반면, 탄소섬유 부직포에 이산화티탄이 코팅된 실시예 1 및 실시예 2는 표면이 이산화티탄으로 코팅되어 있는 것을 관찰할 수 있으며, 이로써 탄소필터의 표면에 이산화티탄의 코팅이 성공적으로 이루어졌음을 알 수 있다.The surface of the manufactured carbon filter was analyzed using a scanning electron microscope (FE-SEM (S-4800), Hitachi Co. Ltd, Japan) to confirm whether or not the coating was present. As shown in FIG. 1, Comparative Example 1 was not coated with anything, whereas in Examples 1 and 2 in which titanium dioxide was coated on the carbon fiber nonwoven fabric, it could be observed that the surface was coated with titanium dioxide. It can be seen that the coating of titanium dioxide was successfully performed on the surface of the carbon filter.

[[ 실험예Experimental example 2] 탄소필터의 전기화학적 특성 분석 2] Analysis of electrochemical characteristics of carbon filter

제조된 탄소필터에 대하여 PBS (pH 7.4, 30 mL) 용액에서 Cyclic Voltammetry (VersaSTAT 3 Potentiostat Galvanostat, AMETEK PAR, U.S.A.) 분석을 실시하였다. 이때 3전극 시스템을 사용하였으며, 작업 전극으로 ITO glass, 상대 전극으로 백금 선(Platinium wire), 기준 전극으로 Ag/AgCl을 이용하였다. 도 2에서 그래프의 넓이는 전자의 이동 통로를 의미하며, 이 전위 창이 넓을수록 전자의 이동이 용이하며, 이는 곧 전도성을 나타낸다. 실시예 1 및 실시예 2의 탄소필터 모두 전기전도성을 갖는 것을 확인할 수 있으며, 실시예 1보다 실시예 2가 더 넓은 전위 창을 가져 실시예 2의 전도성이 더 우수한 것을 확인하였다.Cyclic Voltammetry (VersaSTAT 3 Potentiostat Galvanostat, AMETEK PAR, USA) analysis was performed on the prepared carbon filter in PBS (pH 7.4, 30 mL) solution. At this time, a three-electrode system was used, and ITO glass was used as the working electrode, platinum wire was used as the counter electrode, and Ag/AgCl was used as the reference electrode. In FIG. 2, the width of the graph means the passage of electrons, and the wider the potential window, the easier the movement of electrons, which indicates conductivity. It can be seen that both of the carbon filters of Examples 1 and 2 have electrical conductivity, and it was confirmed that Example 2 has a wider potential window than Example 1, and that Example 2 has better conductivity.

[[ 실험예Experimental example 3] butane gas 제거 성능 평가 3] Butane gas removal performance evaluation

실시예 1에 대한 butane gas 제거 성능 평가를 실시하였다. 먼저 70 cm3 규모의 아크릴 박스 내부에 butane gas를 70Ψ로 30분간 유입하고 가스 포집기(LFS-113, Sensidyne, LP)로 30분 동안 가스를 포집하였다. 제조된 탄소필터에 2V를 가하여 3시간 동안 가스를 제거한 후 30분 동안 가스를 포집하는 과정을 3번 반복하여 수행하였으며, GC(Gas Chromatography)를 이용하여 분석하였다. 그 결과, 도 3에서 보는 바와 같이, 9시간 동안 가스 제거를 수행한 결과, 42.81%의 butane gas 제거율을 보임을 확인하였다.Butane gas removal performance was evaluated for Example 1. First, butane gas was introduced into a 70 cm 3 acrylic box at 70Ψ for 30 minutes, and the gas was collected for 30 minutes with a gas collector (LFS-113, Sensidyne, LP). After removing the gas for 3 hours by applying 2V to the prepared carbon filter, the process of collecting the gas for 30 minutes was repeated three times and analyzed using GC (Gas Chromatography). As a result, as shown in FIG. 3, as a result of performing gas removal for 9 hours, it was confirmed that a butane gas removal rate of 42.81% was shown.

[[ 실험예Experimental example 4] 4] VOCsVOCs 제거 성능 평가 Removal performance evaluation

실시예 2에 대하여 THF, ether, acetone, toluene 제거 성능 평가를 실시하였다. 상기 4개의 용액을 70 cm3 규모의 아크릴 박스 내부에서 기화시킨 후 제조된 탄소필터에 2V를 가하여 가스를 제거하였으며, VOC 센서(HI-120A, (주)휴마테크)를 이용하여 측정하였다. 그 결과, 도 4를 참조하면, 88분 후 THF 제거율은 27.71%, 64분 후 ether 제거율은 13.84%, 38분 후 acetone 제거율은 15.03%, 70분 후 toluene 제거율은 24.93%를 나타내었다. 평균적으로 10분~15분당 0.2~0.4 ppm의 제거율을 보이는 것을 알 수 있다.For Example 2, THF, ether, acetone, and toluene removal performance were evaluated. After vaporizing the above four solutions inside an acrylic box of 70 cm 3 scale, 2V was applied to the prepared carbon filter to remove gas, and the VOC sensor (HI-120A, Co., Ltd.) was measured using a VOC sensor (HI-120A, Humatech). As a result, referring to FIG. 4, the THF removal rate after 88 minutes was 27.71%, the ether removal rate after 64 minutes was 13.84%, the acetone removal rate after 38 minutes was 15.03%, and the toluene removal rate after 70 minutes was 24.93%. On average, it can be seen that the removal rate is 0.2 to 0.4 ppm per 10 to 15 minutes.

상기 실험예 3의 결과와 비교하여 보면, 이산화티탄, 바인더, 계면활성제를 혼합하여 탄소 부직포에 1차 코팅을 진행한 실시예 1의 경우 10분~15분당 0.003~0.005 ppm의 제거율을 보이나, 탄소 부직포에 계면활성제를 먼저 코팅한 후 이산화티탄과 바인더를 혼합한 용액을 2차로 코팅한 실시예 2의 경우 10분~15분당 0.2~0.4 ppm의 제거율을 보여 실시예 1 대비 약 75배 정도 더 높은 성능을 나타내는 것을 알 수 있다. 이를 통해 이산화티탄, 바인더, 계면활성제를 모두 혼합하여 1차로 코팅을 진행한 경우보다 계면활성제 먼저 코팅한 후 이산화티탄과 바인더의 혼합용액을 코팅하는 경우가 더 우수한 효과를 나타내는 것을 알 수 있다. 이로써 본 발명에 의해 제조된 전기촉매 코팅 탄소필터는 VOCs 제거율이 우수함에 따라 VOCs 제거를 위한 필터로 이용 가능할 것으로 사료된다.Compared to the results of Experimental Example 3, in the case of Example 1 in which the primary coating was performed on the carbon nonwoven fabric by mixing titanium dioxide, a binder, and a surfactant, a removal rate of 0.003 to 0.005 ppm per 10 to 15 minutes was shown, but carbon In the case of Example 2, in which a surfactant was first coated on the nonwoven fabric and then a solution of titanium dioxide and a binder was secondly coated, the removal rate was 0.2 to 0.4 ppm per 10 to 15 minutes, which was about 75 times higher than that of Example 1. performance can be seen. Through this, it can be seen that the case of coating the mixed solution of titanium dioxide and the binder after coating the surfactant first shows a better effect than the case of performing the first coating by mixing titanium dioxide, the binder, and the surfactant. Accordingly, it is considered that the electrocatalyst coated carbon filter prepared according to the present invention can be used as a filter for removing VOCs as the VOCs removal rate is excellent.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 한다.The above description is merely illustrative of the present invention, and those skilled in the art will be able to make various modifications without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in this specification are intended to explain, not limit, the present invention, and the spirit and scope of the present invention are not limited by these embodiments. The protection scope of the present invention should be construed according to the claims below, and all techniques within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (10)

1) 계면활성제를 용매에 용해시켜 제1 코팅용액을 제조하는 단계;
2) 탄소섬유 부직포에 상기 제1 코팅용액을 코팅하는 단계;
3) 이산화티탄 및 실리카 바인더를 혼합하여 제2 코팅용액을 제조하는 단계;
4) 상기 제1 코팅용액이 코팅된 상기 탄소섬유 부직포에 상기 제2 코팅용액을 코팅하는 단계; 및
5) 상기 제2 코팅용액이 코팅된 상기 탄소섬유 부직포를 건조하는 단계;를 포함하는 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
1) preparing a first coating solution by dissolving a surfactant in a solvent;
2) coating the first coating solution on the carbon fiber nonwoven fabric;
3) preparing a second coating solution by mixing titanium dioxide and a silica binder;
4) coating the second coating solution on the carbon fiber nonwoven fabric coated with the first coating solution; and
5) drying the carbon fiber nonwoven fabric coated with the second coating solution; manufacturing method of an electrocatalyst coated carbon filter comprising
제1항에 있어서, 상기 실리카 바인더는 테트라에틸 오르토실리케이트(Tetraethyl orthosilicate), 테트라메틸 오르토실리케이트(Tetramethyl orthosilicate), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 디메틸디메톡시실란(Dimethyldimethoxysilane) 또는 에틸 트리에톡시실란(Ethyltridethoxysilane)인 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the silica binder is tetraethyl orthosilicate, tetramethyl orthosilicate, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane (Dimethyldimethoxysilane) or ethyl triethoxysilane (Ethyltridethoxysilane) Method for producing an electrocatalyst coated carbon filter
제1항에 있어서, 상기 계면활성제는 트리톤 x-100(triton x-100), 소듐도데실설페이트(sodium dodecyl sulfate), 퍼플루오로옥탄 설포네이트(perfluorooctane sulfonate), 소듐스테아레이트(sodium stearate), 소듐리그노설포네이트(sodium lignosulfonate) 및 폴리스티렌 설포네이트(polystyrene sulfonate)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the surfactant is triton x-100, sodium dodecyl sulfate, perfluorooctane sulfonate, sodium stearate, Method for manufacturing an electrocatalyst coated carbon filter, characterized in that at least one selected from the group consisting of sodium lignosulfonate and polystyrene sulfonate
제1항에 있어서, 상기 용매는 물 또는 유기 용매를 포함하는 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the solvent includes water or an organic solvent.
제1항에 있어서, 상기 이산화티탄 및 실리카 바인더는 1:0.2~5 몰비로 혼합되는 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the titanium dioxide and the silica binder are mixed in a molar ratio of 1:0.2 to 5.
제1항에 있어서, 상기 계면활성제는 제1 코팅용액 100 중량부에 대하여 0.5 내지 5 중량부가 혼합되는 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the surfactant is mixed in an amount of 0.5 to 5 parts by weight based on 100 parts by weight of the first coating solution.
제1항에 있어서, 상기 전기촉매 코팅 탄소필터는 휘발성 유기화합물 제거 기능을 갖는 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the electrocatalyst coated carbon filter has a function of removing volatile organic compounds.
제1항에 있어서, 상기 2)단계 및 4)단계에서의 코팅방법은 침지 또는 스프레이 방식인 것을 특징으로 하는 전기촉매 코팅 탄소필터의 제조방법
The method of claim 1, wherein the coating method in steps 2) and 4) is immersion or spray method.
삭제delete 삭제delete
KR1020210005979A 2021-01-15 2021-01-15 Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same KR102511994B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210005979A KR102511994B1 (en) 2021-01-15 2021-01-15 Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210005979A KR102511994B1 (en) 2021-01-15 2021-01-15 Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same

Publications (2)

Publication Number Publication Date
KR20220103410A KR20220103410A (en) 2022-07-22
KR102511994B1 true KR102511994B1 (en) 2023-03-20

Family

ID=82606102

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210005979A KR102511994B1 (en) 2021-01-15 2021-01-15 Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same

Country Status (1)

Country Link
KR (1) KR102511994B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240113251A (en) * 2023-01-13 2024-07-22 한국화학연구원 Oxidation Filter Module for Removing Volatile Organic Compounds and Oxidation Filter System Based on Electrification for Removing Volatile Organic Compounds Including the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097343A (en) * 2014-11-20 2016-05-30 花王株式会社 Method for producing catalyst fiber structure
KR101860777B1 (en) * 2017-12-11 2018-05-25 주식회사 지스코 Method for activating catalyst, and method for selective removing of nitrogen oxide using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097343A (en) * 2014-11-20 2016-05-30 花王株式会社 Method for producing catalyst fiber structure
KR101860777B1 (en) * 2017-12-11 2018-05-25 주식회사 지스코 Method for activating catalyst, and method for selective removing of nitrogen oxide using the same

Also Published As

Publication number Publication date
KR20220103410A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
Naciri et al. Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: recent progress, new trends, and future perspectives
Nath et al. An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review
KR101334967B1 (en) Photocatalytic material, method of decomposing organic substance, interior member, air cleaning device, and device for producing oxidizing agent
CN102198405B (en) Composite catalyst for purifying indoor formaldehyde and preparation method of composite catalyst
Priya et al. A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases
Ohko et al. Photocatalytic oxidation of nitrogen dioxide with TiO2 thin films under continuous UV-light illumination
KR101334970B1 (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and appatarus for preparation of oxidizing agent
Shayegan et al. Effect of surface fluorination of P25-TiO2 coated on nickel substrate for photocatalytic oxidation of methyl ethyl ketone in indoor environments
KR102009397B1 (en) Photocatalys and method for preparing the same
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
Reddy et al. A review of photocatalytic treatment for various air pollutants
KR102511994B1 (en) Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same
KR101407444B1 (en) Decomposition/elimination method using a photocatalytic material
CN106390871A (en) Co-doped nanometer titania sol and modified HEPA filter screen
JP2007098294A (en) Composite photocatalyst body
KR100395264B1 (en) Photocatalytic composition having functions of air purification and antimicrobial activity and a moth-proof net coated with the composition
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
JP5598919B2 (en) Environment-resistant visible light responsive photocatalyst film structure and photocatalyst promoter
KR102130373B1 (en) Photocatalys and method for preparing the same
KR102349217B1 (en) Photocatalyst coating material, manufacturing method for the same, and construction material including the same
CA2985252A1 (en) Application photocatalysis for treatment of vocs and formaldehyde contaminations
KR100562476B1 (en) Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof
US20220143261A1 (en) Photocatalyst and preparation method therefor
JP3837517B2 (en) Functional adsorbent and method for producing the same
KR20040003759A (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant