KR102501345B1 - 중첩 파셋 - Google Patents
중첩 파셋 Download PDFInfo
- Publication number
- KR102501345B1 KR102501345B1 KR1020217032341A KR20217032341A KR102501345B1 KR 102501345 B1 KR102501345 B1 KR 102501345B1 KR 1020217032341 A KR1020217032341 A KR 1020217032341A KR 20217032341 A KR20217032341 A KR 20217032341A KR 102501345 B1 KR102501345 B1 KR 102501345B1
- Authority
- KR
- South Korea
- Prior art keywords
- facet
- facets
- waveguide
- pair
- width
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims description 65
- 238000010168 coupling process Methods 0.000 claims description 23
- 238000005859 coupling reaction Methods 0.000 claims description 23
- 230000036961 partial effect Effects 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 14
- 239000000758 substrate Substances 0.000 description 59
- 238000000034 method Methods 0.000 description 25
- 238000002310 reflectometry Methods 0.000 description 17
- 238000000576 coating method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 230000009977 dual effect Effects 0.000 description 8
- 230000000670 limiting effect Effects 0.000 description 8
- 230000001902 propagating effect Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005286 illumination Methods 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 210000000887 face Anatomy 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0073—Optical laminates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Optical Couplings Of Light Guides (AREA)
- Eyeglasses (AREA)
- Optical Integrated Circuits (AREA)
Abstract
파셋의 중첩 구성에 대한 특정 관리는 공칭 관측점을 향해 아웃-커플링되는 이미지의 불균일성을 감소시킨다. 적어도 두 개의 평행한 표면인 제 1, 중간 및 최종 부분 반사 표면을 포함하는 도파관은 표면들 중 하나에 대한 파셋의 기하학적 투사에서, 파셋이 중첩되고, 바람직하게 인접 파셋이 중첩되고 비-인접 파셋의 시점 및 종점이 도파관의 적어도 일부분을 따라 일치하도록 구성된다.
Description
본 출원은 그 전체가 본 출원에 원용에 의해 포함되는, 본 발명자에 의해 2017년 3월 22일자로 출원된 미국 가 특허 출원(PPA) 일련번호 62/474,614 호의 이득을 주장한다.
본 발명은 일반적으로 광학기기에 관한 것이며, 특히 본 발명은 균일한 반사에 관한 것이다.
소형 광학 요소에 관한 중요한 용례 중의 하나는 광학 모듈이 이미징 렌즈 및 조합기의 역할을 하여, 2차원 디스플레이가 무한대로 이미지화되어 관찰자의 눈으로 반사되는 헤드 마운트 디스플레이(HMD)이다. 디스플레이는 음극선관 (CRT), 액정 디스플레이(LCD), 유기 발광 다이오드 어레이(OLED), 스캐닝 소스 또는 유사한 장치와 같은 공간 광 변조기(SLM)로부터 직접적으로 또는 릴레이 렌즈나 광섬유 다발에 의해 간접적으로 얻어질 수 있다. 디스플레이는 시준 렌즈에 의해 무한대로 이미지화되고 각각, 비-투시(non-see through) 또는 투시 용례를 위한 조합기로서 작용하는 반사 또는 부분 반사 표면에 의해 관찰자의 눈으로 전송되는 요소(픽셀)의 어레이를 포함한다. 전형적으로, 종래의 자유 공간 광학 모듈이 이러한 목적으로 사용된다. 시스템의 원하는 시야(FOV)가 증가함에 따라, 그러한 종래의 광학 모듈은 필연적으로 커지고, 무겁고, 부피가 커져, 성능은 적절할지라도 장치를 비실용적으로 만든다. 이는 모든 종류의 디스플레이에 관한 주요 단점이지만, 시스템이 필연적으로 가능한 한 가볍고 소형이어야 하는 헤드 마운트 용례의 경우에 특히 그러하다.
소형화를 위한 노력으로 여러 상이한 복잡한 광학적 해결책을 이끌어 냈으며, 그러한 모든 해결책은 한편으로 대부분의 실제 용례에 아직 충분히 소형화되지 못했고, 다른 한편으로 제작이 어렵다. 또한, 이들 설계로부터 초래되는 광학 시야각의 아이-모션-박스(EMB)는 대개 매우 작고, 전형적으로 8 mm 미만이다. 따라서, 광학 시스템의 성능은 관찰자의 눈에 대한 심지어 작은 움직임에도 매우 민감하고, 표시된 텍스트의 편리한 판독을 위한 충분한 동공 운동을 허용하지 않는다.
본 발명의 목적은 공칭 관측점을 향해 아웃-커플링되는 이미지의 불균일성을 감소시키는 중첩 파셋을 제공하는 것이다.
본 실시예의 교시에 따라서, 광학 장치가 제공되며, 상기 광학 장치는 서로 평행한 적어도 한 쌍의 제 1 표면, 광이 도파관에 커플링인되는 제 1 영역, 및 일련의 제 1 파셋(facet)을 갖는 도파관을 포함하며; 일련의 제 1 파셋이 제 1 영역의 기단에 위치되고, 한 쌍의 제 1 표면들 사이의 방향으로 제 1 폭을 갖는 제 1 파셋, 제 1 영역으로부터 일련의 제 1 파셋의 말단부에 있고, 한 쌍의 제 1 표면들 사이의 방향으로 제 3 폭을 갖는 최종 파셋, 및 제 1 파셋과 최종 파셋 사이에 있고, 한 쌍의 제 1 표면들 사이의 방향으로 제 2 폭을 갖는 하나 이상의 중간 파셋을 포함하며; 각각의 파셋은 폭이 파셋의 평면에 있고, 적어도 부분 반사 표면이고, 한 쌍의 제 1 표면들에 대해 비스듬한 각도이고, 파셋 폭의 기단 쪽에 파셋 시점을 갖고, 파셋 폭의 말단 쪽에 파셋 종점을 가지며; 기하학적 투사는 도파관으로부터 아웃-커플링되는 공칭 광선의 방향으로 한 쌍의 제 1 표면들 중 하나에 있으며, 공칭 광선은 도파관으로부터 커플링아웃되는 광의 중앙 광선이며; 최종 파셋과 하나 이상의 중간 파셋 각각의 기하학적 투사는 인접한 하나 이상의 중간 파셋과 제 1 파셋의 각각의 기하학적 투사와 중첩되며(overlap); 최종 파셋과 하나 이상의 중간 파셋 각각의 기하학적 투사는 하나 이상의 중간 파셋과 제 1 파셋의 인접하지 않은 파셋 종점의 각각의 기하학적 투사와 일치하며; 일치는 도파관의 적어도 일부분을 따른다.
선택적인 실시예에서, 제 1 파셋의 상기 제 1 폭은 하나 이상의 중간 파셋의 제 2 폭보다 더 작다. 다른 선택적인 실시예에서, 다수의 파셋은 도파관으로부터 아웃-결합되는(out-coupling) 공칭 광선과 교차하며, 파셋의 수는 제1 일련의 파셋 모두에 대해 일정하다. 다른 선택적인 실시예에서, 광은 이미지에 대응하며 중앙 광선은 이미지의 중심으로부터의 중심 광선이다. 다른 선택적인 실시예에서, 광은 이미지에 대응하며 중앙 광선은 이미지의 중앙 픽셀에 대응한다. 다른 선택적인 실시예에서, 최종 파셋은 공칭 반사율의 실질적으로 100 %인 반사율을 가지며, 공칭 반사율은 도파관의 특정 위치에서 필요한 전체 반사이다. 다른 선택적인 실시예에서, 제 3 폭은 제 2 폭보다 더 작다. 다른 선택적인 실시예에서, 제 3 폭은 제 2 폭의 실질적으로 절반이다. 다른 선택적인 실시예에서, 하나 이상의 중간 파셋의 수는 1, 2, 3, 4, 5 및 복수로 이루어지는 그룹으로부터 선택된다. 다른 선택적인 실시예에서, 일정한 수의 파셋이 한 쌍의 제 1 표면들 중 하나를 통해 도파관으로부터의 광 결합의 공칭 관측점을 향하는 시선에서 중첩된다. 다른 선택적인 실시예에서, 일련의 제 1 파셋들 중 하나의 파셋의 폭은 일련의 제 1 파셋들 중 인접한 하나의 파셋의 폭에 대해 단조롭게 변화한다. 다른 선택적인 실시예에서, 일련의 제 1 파셋들 중 한 쌍의 인접한 파셋들 사이의 간격은 일련의 제 1 파셋들 중 다른 한 쌍의 인접한 파셋들 사이의 인접한 간격에 대해 단조롭게 변화한다. 다른 선택적인 실시예에서, 제 1 영역으로부터의 광은 광의 적어도 일부분이 하나 이상의 중간 파셋들 중 하나와 마주치기 이전에 제 1 파셋과 만나는 정도이다. 다른 선택적인 실시예에서, 인접한 파셋들 사이의 간격은 도파관에 커플링인되는 광의 가간섭성 길이보다 더 크다.
선택적인 실시예에서, 제 1 폭은 상기 제 2 폭과 실질적으로 동일하며, 제 1 파셋은 인접한 중간 파셋의 기하학적 투사과 중첩되지 않는 제 1 파셋의 기하학적 투사에 대응하는 제 1 구역을 가진다. 다른 선택적인 실시예에서, 제 1 구역은 광에 대해 투명하다. 다른 선택적인 실시예에서, 제 1 구역은 인접 파셋 반사율의 실질적으로 두 배의 반사율을 가진다. 다른 선택적인 실시예에서, 파셋은 파셋 전반에 걸쳐 균일한 부분 반사율을 가진다.
선택적인 실시예에서, 도파관은 서로 평행하고 한 쌍의 제 1 표면과 평행하지 않은 한 쌍의 제 2 표면을 더 가지며; 파셋은 이미지가 한 쌍의 제 1 및 제 2 표면 모두에 대해 비스듬한 결합 각도로 초기 전파 방향으로 제 1 영역에서 도파관에 커플링인될 때, 이미지가 도파관을 따라 사중 내부 반사에 의해 전진하도록 구성된다. 다른 선택적인 실시예에서, 한 쌍의 제 2 표면은 한 쌍의 제 1 표면에 대해 수직이다. 다른 선택적인 실시예에서, 파셋은 한 쌍의 제 2 표면에 대해 비스듬한 각도이다.
선택적인 실시예에서, 제 1 파셋의 제 1 폭은 중간 파셋의 제 2 폭과 실질적으로 동일하며; 제 1 파셋의 제 1 반사율은 공칭 반사율의 50 %보다 더 크며; 제 1 파셋에 인접한 제 2 파셋은 제 2 반사율과 제 1 반사율을 더한 반사율이 실질적으로 공칭 반사율이 되도록 제 2 반사율을 가지며; 제 2 파셋에 인접한 제 3 파셋은 공칭 반사율의 50 %보다 더 크고 제 1 반사율보다 더 작은 제 3 반사율을 가지며; 제 3 파셋에 인접한 제 4 파셋은 제 4 반사율과 제 3 반사율을 더한 반사율이 실질적으로 공칭 반사율이 되도록 제 4 반사율을 가진다.
다른 선택적인 실시예에서, 제 1 파셋의 제 1 폭은 중간 파셋의 제 2 폭과 실질적으로 동일하며; 일련의 시작 홀수 파셋은 제 1 파셋 및 제 1 파셋으로부터의 주어진 수의 모든 다른 파셋을 포함하며; 일련의 시작 짝수 파셋은 제 1 파셋에 인접한 제 2 파셋 및 제 2 파셋으로부터의 주어진 수의 모든 다른 파셋을 포함하며; 파셋의 제 1 세트는 일련의 시작 홀수 파셋으로부터의 제 1 홀수 파셋 및 일련의 시작 홀수 파셋으로부터의 대응하는 제 1 짝수 파셋을 포함하며; 제 1 홀수 파셋은 공칭 반사율의 50%보다 더 큰 제 1 반사율을 가지며; 제 1 짝수 파셋은 제 2 반사율과 제 1 반사율을 더한 반사율이 실질적으로 공칭 반사율이 되도록 제 2 반사율을 가지며; 각각의 파셋의 후속 세트는 각각의 일련의 시작 홀수 및 짝수 파셋으로부터 다음 홀수 및 짝수 파셋을 포함하며; 후속 세트로부터의 각각의 홀수 파셋은 공칭 반사율의 50%보다 더 크고 이전 세트로부터의 홀수 파셋의 반사율보다 더 작은 홀수 반사율을 가지며; 후속 세트로부터의 각각의 짝수 파셋은 홀수 반사율과 대응하는 짝수 파셋의 짝수 반사율에 더한 반사율이 실질적으로 공칭 반사율이 되도록 짝수 반사율을 가진다.
본 발명에 따르는 중첩 파셋은 공칭 관측점을 향해 아웃-커플링되는 이미지의 불균일성을 감소시킬 수 있다.
실시예는 첨부 도면을 참조하여 단지 예로서 본 명세서에서 설명된다.
도 1은 종래의 폴딩(folding) 광학 장치의 측면도이다.
도 2는 예시적인 도광(light-guide) 광학 요소의 측면도이다.
도 3a 및 도 3b는 2개의 입사각 범위에 대해 선택적으로 반사하는 표면의 원하는 반사율 및 투과율 특성을 도시한다.
도 4는 도광 광학 요소의 예시적인 구성을 도시하는 도면이다.
도 5는 도광 광학 요소의 다른 구성을 도시하는 도면이다.
도 6은 대칭 구조를 갖는 횡단 동공 확장 1-차원 도파관의 상세 단면도를 도시하는 도면이다.
도 7은 이중 LOE 구성을 이용하여 두 축을 따라 빔을 확장시키는 방법을 도시하는 도면이다.
도 8은 이중 LOE 구성을 이용하여 2개의 축을 따라 빔을 확장시키는 다른 방법을 도시하는 도면이다.
도 9는 표준 안경테에 내장된 LOE의 예시적인 실시예를 도시한다.
도 10a는 이미지 균일성에 관한 변화의 효과를 도시하는, 비-중첩 파셋을 갖는 도파관의 개략도이다.
도 10b는 이미지 균일성에 관한 변화의 효과를 도시하는, 중첩 파셋을 갖는 도파관의 개략도이다.
도 11a 내지 도 11c는 상이한 각도 전파 구성을 갖는 중첩 파셋의 실시예를 위한 예시적인 대안 구성이다.
도 12a 및 도 12b는 각각, 2차원 광학 개구 배율기의 측면도 및 전면도이다.
도 12c 및 도 12d는 도 12a 및 도 12b의 광학 개구 배율기로부터 도파관에서 부분적으로 반사하는 내부 파셋에 대해 전파하는 이미지 광선의 2가지 가능한 기하학적 구조를 도시하는 개략도이다.
도 13은 두 세트의 세장형 평행 외부 면에 대해 비스듬히 경사진 내부 부분 반사 파셋을 갖는 2D 도파관의 실시예를 도시하는 개략적인 등각도이다.
도 14a 및 도 14b는 각각, 중첩 파셋으로 구성된 광학 개구 배율기의 개략적인 측면도 및 전면도이다.
도 15a 및 도 15b는 각각, 자유 공간 광학 배열로 확장을 수행하기 위해 도 14a 및 도 14b의 구성을 변경하는 광학 개구 배율기의 개략적인 측면도 및 전면도이다.
도 16a 내지 도 16c는 예시적인 파셋 실시예의 도면이다.
도 17a는 이중 파셋의 대략적인 스케치이다.
도 17b는 가변 파셋 간격의 대략적인 스케치이다.
도 17c는 도파관의 기단부로부터 말단부까지 감소하는 파셋 간격의 대략적인 스케치이다.
도 17d는 가변 파셋 폭의 대략적인 스케치이다.
도 18은 대칭 구조에 중첩 파셋을 적용하는 대략적인 스케치이다.
도 19a는 이중 중첩 구성에서의 전체 공칭 반사율의 그래프이다.
도 19b는 교대 파셋 반사율의 변화를 이용하는 이중 중첩 구성에서의 전체 공칭 반사율의 예시적인 그래프이다.
도 20a는 중첩 파셋을 갖는 도파관을 생성하는데 사용될 수 있는 공정을 도시한다.
도 20b 내지 도 20e는 결합 프리즘의 부착을 위한 예시적인 절차이다.
도 21a 내지 도 21d는 중첩 파셋을 갖는 도파관을 생성하기 위한 예시적인 절차의 추가 세부사항이다.
도 1은 종래의 폴딩(folding) 광학 장치의 측면도이다.
도 2는 예시적인 도광(light-guide) 광학 요소의 측면도이다.
도 3a 및 도 3b는 2개의 입사각 범위에 대해 선택적으로 반사하는 표면의 원하는 반사율 및 투과율 특성을 도시한다.
도 4는 도광 광학 요소의 예시적인 구성을 도시하는 도면이다.
도 5는 도광 광학 요소의 다른 구성을 도시하는 도면이다.
도 6은 대칭 구조를 갖는 횡단 동공 확장 1-차원 도파관의 상세 단면도를 도시하는 도면이다.
도 7은 이중 LOE 구성을 이용하여 두 축을 따라 빔을 확장시키는 방법을 도시하는 도면이다.
도 8은 이중 LOE 구성을 이용하여 2개의 축을 따라 빔을 확장시키는 다른 방법을 도시하는 도면이다.
도 9는 표준 안경테에 내장된 LOE의 예시적인 실시예를 도시한다.
도 10a는 이미지 균일성에 관한 변화의 효과를 도시하는, 비-중첩 파셋을 갖는 도파관의 개략도이다.
도 10b는 이미지 균일성에 관한 변화의 효과를 도시하는, 중첩 파셋을 갖는 도파관의 개략도이다.
도 11a 내지 도 11c는 상이한 각도 전파 구성을 갖는 중첩 파셋의 실시예를 위한 예시적인 대안 구성이다.
도 12a 및 도 12b는 각각, 2차원 광학 개구 배율기의 측면도 및 전면도이다.
도 12c 및 도 12d는 도 12a 및 도 12b의 광학 개구 배율기로부터 도파관에서 부분적으로 반사하는 내부 파셋에 대해 전파하는 이미지 광선의 2가지 가능한 기하학적 구조를 도시하는 개략도이다.
도 13은 두 세트의 세장형 평행 외부 면에 대해 비스듬히 경사진 내부 부분 반사 파셋을 갖는 2D 도파관의 실시예를 도시하는 개략적인 등각도이다.
도 14a 및 도 14b는 각각, 중첩 파셋으로 구성된 광학 개구 배율기의 개략적인 측면도 및 전면도이다.
도 15a 및 도 15b는 각각, 자유 공간 광학 배열로 확장을 수행하기 위해 도 14a 및 도 14b의 구성을 변경하는 광학 개구 배율기의 개략적인 측면도 및 전면도이다.
도 16a 내지 도 16c는 예시적인 파셋 실시예의 도면이다.
도 17a는 이중 파셋의 대략적인 스케치이다.
도 17b는 가변 파셋 간격의 대략적인 스케치이다.
도 17c는 도파관의 기단부로부터 말단부까지 감소하는 파셋 간격의 대략적인 스케치이다.
도 17d는 가변 파셋 폭의 대략적인 스케치이다.
도 18은 대칭 구조에 중첩 파셋을 적용하는 대략적인 스케치이다.
도 19a는 이중 중첩 구성에서의 전체 공칭 반사율의 그래프이다.
도 19b는 교대 파셋 반사율의 변화를 이용하는 이중 중첩 구성에서의 전체 공칭 반사율의 예시적인 그래프이다.
도 20a는 중첩 파셋을 갖는 도파관을 생성하는데 사용될 수 있는 공정을 도시한다.
도 20b 내지 도 20e는 결합 프리즘의 부착을 위한 예시적인 절차이다.
도 21a 내지 도 21d는 중첩 파셋을 갖는 도파관을 생성하기 위한 예시적인 절차의 추가 세부사항이다.
약어 및 정의
참조의 편의를 위해서, 이 구역은 본 명세서에 사용되는 약어, 머리글자 및 짧은 정의의 간략한 목록을 포함한다. 이 구역은 제한적인 것으로 간주되어서는 안된다. 더 자세한 설명은 아래 및 해당 표준에서 찾을 수 있다.
1D - 1차원
2D - 2차원
CRT - 음극선관
EMB - 아이 모션 박스
FOV - 시야
HMD - 헤드 마운트 디스플레이
HUD - 헤드업 디스플레이
LCD - 액정 디스플레이
LOE - 도광 광학 요소
OLED - 유기 발광 다이오드 어레이
SLM - 공간 광 변조기
TIR - 전체 내부 반사
상세한 설명
본 실시예에 따른 시스템의 원리 및 작동은 도면 및 첨부된 설명을 참조하여 더 잘 이해될 수 있다. 본 발명은 관찰자 쪽으로 균일한 반사를 생성시키는 광학 장치이다.
파셋 중첩 구성에 관한 특정 관리는 공칭 관측점을 향해 아웃-커플링되는(outcoupled) 이미지의 불균일성을 감소시킨다. 적어도 두 개의 표면인 제 1, 중간 및 최종 부분 반사 파셋을 포함하는 도파관은 그 표면 중 하나에 대한 파셋의 기하학적인 투사에서 파셋이 중첩되고, 바람직하게는 인접한 파셋이 중첩되고 비-인접 파셋의 시점 및 종점 도파관의 적어도 일부분을 따라 일치하도록 구성된다.
기본 기술 - 도 1 내지 도 9
도 1은 기판(2)이 디스플레이 소스(4)에 의해 조명되는 통상적인 종래의 폴딩(folding) 광학기기의 배열을 도시한다. 디스플레이는 시준 광학기기(6), 예를 들어 렌즈에 의해 시준된다. 디스플레이 소스(4)로부터의 광은 주 광선(11)이 기판 평면에 평행한 방식으로 제 1 반사 표면(8)에 의해 기판(2)에 커플링인된다. 제 2 반사 표면(12)은 기판으로부터의 광을 관찰자(14)의 눈에 결합시킨다. 이러한 구성의 소형임에도 불구하고, 이러한 구성은 심각한 단점을 겪는다. 특히, 매우 제한된 FOV만이 달성될 수 있다.
이제 도 2를 참조하면 예시적인 도광 광학 요소(LOE)의 측면도가 도시된다. 위의 제한을 완화하기 위해, 본 실시예는 도광 광학 요소(LOE) 내에 조립된 선택적인 반사 표면의 어레이를 이용한다. 제 1 반사 표면(16)은 장치 뒤에 위치된 광원(도시되지 않음)으로부터 나오는 시준된 디스플레이 광선(빔)(18)에 의해 조명된다. 본 도면에서 단순화를 위해, 단지 하나의 광선, 즉 입사 광선(38)(또한 "빔" 또는 "입사 광선"으로서 지칭됨)이 일반적으로 도시된다. 빔(18A 및 18B)과 같은 입사광의 다른 광선은 입사 광 동공의 좌측 및 우측 에지와 같은 입사 동공의 에지를 지정하는데 사용될 수 있다. 일반적으로, 본 명세서에서 이미지가 광 빔에 의해 표현되는 모든 곳에서, 빔은 이미지의 샘플 빔이며, 이는 전형적으로 이미지의 점 또는 픽셀에 각각 대응하는 약간 상이한 각도로 다중 빔에 의해 형성된다. 이미지의 극단으로서 특별히 지칭되는 경우를 제외하면, 도시된 빔은 전형적으로 이미지의 중심이다.
반사 표면(16)은 광원으로부터의 입사광을 반사시켜서, 광이 내부 전반사에 의해 도파관(20) 내에 포획되게 된다. 도파관(20)은 또한 "평면 기판" 및 "광-투과 기판"으로서 지칭된다. 도파관(20)은 서로 평행한 적어도 2개의 (주)표면을 포함하며, 이는 본 도면에서 하부 (주)표면(26) 및 상부 (주)표면(26A)으로서 도시된다.
입사 광선(38)은 기판의 기단부(도면의 우측)에서 기판으로 진입한다. 광은 도파관 및 하나 이상의 파셋, 보통 적어도 복수의 파셋 및 전형적으로는 여러 파셋을 통해 도파관의 말단부(도면의 좌측)를 향해 전파된다. 광은 전파의 초기 방향(28) 및 전파의 다른 방향(30) 모두에서 도파관을 통해 전파된다.
기판(20)의 표면에서 여러 번 반사된 이후에, 포착된 파(wave)는 기판으로부터의 광을 관찰자의 눈(24)에 결합시키는 선택적인 반사 표면(22)의 어레이에 도달한다. 대안 구성에서, 선택적인 반사 표면(22)은 기판(20)의 표면에서 먼저 반사하지 않고, 광선(18)이 기판으로 진입한 직후에 있다.
선택적인 반사 표면(22)과 같은 내부의 부분 반사 표면은 일반적으로, 본 명세서에서 "파셋(facet)"으로서 지칭된다. 한계 내에서, 파셋은 또한, 전체적으로 반사될 수 있거나(100% 반사율 또는 미러, 예를 들어, 기판의 말단부에 있는 최종 파셋), 최소한으로 반사될 수 있다. 증강 현실 용례에 대해, 파셋은 부분적으로 반사되어, 실세계로부터의 광이 상부 표면(26A)을 통해 진입하고, 파셋을 포함한 기판을 횡단하고, 하부 표면(26)을 통해 관찰자의 눈(24)으로 기판을 빠져나가게 한다. 가상 현실 용례에 대해, 파셋은 100 % 반사율을 갖는 미러에서의 제 1 결합과 같은 대안 반사율을 가질 수 있는데, 이는 실세계로부터의 이미지 광이 이러한 미러를 횡단하지 않아야 하기 때문이다. 내부 부분 반사 표면(22)은 일반적으로, 도파관(20)의 연신 방향에 대해 경사각(즉, 평행도 수직도 아닌)으로 도파관(20)을 적어도 부분적으로 횡단한다.
반사율에 대한 지칭은 일반적으로, 공칭 반사율에 관한 것이다. 공칭 반사율은 기판의 특정 위치에서 필요한 전반사이다. 예를 들어 파셋의 반사율이 50 %로서 지칭되면 일반적으로 이는 50%의 공칭 반사율을 지칭한다. 공칭 반사율이 10 %인 경우에, 50% 반사율은 5%의 파셋 반사율을 초래한다. 당업자라면 사용 문맥으로부터 퍼센트 반사율의 사용을 이해할 것이다. 부분 반사는 이에 한정되지 않지만, 광의 투과율 또는 편광의 사용을 포함한, 다양한 기술에 의해 실시될 수 있다.
도 3a 및 도 3b는 선택적인 반사 표면의 바람직한 반사율 거동을 도시한다. 도 3a에서, 광선(32)은 파셋(34)으로부터 부분 반사되고 기판(20)의 외부에 커플링-아웃된다(38B). 도 3b에서, 광선(36)은 임의의 두드러진 반사 없이 파셋(34)을 통해 투과된다.
도 4는 광을 기판에 결합하고 관찰자의 눈으로 입사시키는 선택적인 반사 표면 어레이의 상세 단면도이다. 볼 수 있는 바와 같이, 광원(4)으로부터의 광선(38)은 제 1 부분 반사 표면에 충돌한다. 광선의 일부(41)는 원래의 방향으로 계속되고 기판으로부터 커플링아웃된다. 광선의 다른 부분(42)은 내부 전반사에 의해 기판에 커플링인된다. 포획된 광선은 점(44)에서 다른 두 개의 부분 반사 표면(22)에 의해 기판으로부터 점차적으로 커플링-아웃된다. 제 1 반사 표면(16)의 코팅 특성은 반드시 다른 반사 표면(22, 46)의 코팅 특성과 유사하지 않아야 한다. 이 코팅은 2색성 금속, 또는 이색성 하이브리드 금속인 간단한 빔-스플리터일 수 있다. 유사하게, 비-투시 시스템의 경우에, 최종 반사 표면(46)은 간단한 미러일 수 있다.
도 5는 최종 표면(46)이 전반사 미러인 반사 표면의 어레이를 포함하는 장치의 상세 단면도이다. 최종 반사 표면(46)의 가장 좌측 부분은 그러한 경우에 광학적으로 활성화될 수 없고, 주변 광선(48)이 기판으로부터 커플링-아웃 될 수 없다. 따라서, 장치의 출력 개구가 약간 더 작아질 것이다. 그러나, 광학 효율은 훨씬 더 높을 수 있으며 LOE의 제작 공정은 훨씬 간단해질 수 있다.
도 2에 도시된 구성과는 달리, 반사 표면(16, 22)의 방위에 제약이 있다는 것에 주목하는 것이 중요하다. 이전의 구성에서, 모든 광은 반사 표면(16)에 의해 기판 내부에 결합된다. 따라서, 표면(16)은 표면(22)에 평행할 필요가 없다. 또한, 반사 표면은 광이 입력 파의 방향과 반대 방향으로 기판으로부터 커플링-아웃 될 수 있도록 지향될 수 있다. 그러나, 도 4에 예시된 구성에 대해, 입력 광의 일부는 표면(16)에 의해 반사되지 않고 입력 광(38)의 원래 방향으로 계속되고 출력 광(41)으로서 기판으로부터 즉시 커플링-아웃 된다. 따라서, 동일한 평면 파로부터 생기는 모든 광선이 동일한 출력 방향을 갖도록 보장하기 위해, 모든 반사 표면(22)이 서로 평행한 것으로 충분하지 않고, 표면(16)도 또한 이들 표면에 평행해야 한다.
도 4를 다시 참조하면, 기판으로부터 광을 커플링아웃하기 위한 2개의 반사 표면을 갖는 시스템을 설명하지만, 광학 시스템의 요구되는 출력 개구 및 기판의 두께에 따라 임의의 수의 반사 표면이 사용될 수 있다. 당연히, 단지 하나의 커플 링-아웃 표면만이 요구되는 경우가 있다. 그 경우에, 출력 개구는 본질적으로 시스템의 입력 개구 크기의 두 배일 수 있다. 단지 최종 구성에 요구되는 반사 표면은 단순한 빔-스플리터와 미러이다.
도 4에서 설명된 장치에서, 디스플레이 소스로부터의 광은 기판의 단부에서 기판으로 커플링인되지만, 대칭 시스템을 갖는 것이 바람직한 시스템이 있다. 즉, 입력 광은 기판의 중심 부분에서 기판으로 커플링인되어야 한다.
도 6은 대칭 구조를 갖는 횡단 동공 확장 1차원 도파관의 상세 단면도를 예시하는 도면이다. 본 도면은 두 개의 동일한 기판을 조합하여 대칭 광학 모듈을 제조하는 방법을 도시한다. 볼 수 있는 바와 같이, 디스플레이 소스(4)로부터의 광의 일부분은 기판으로부터 부분 반사 표면을 직접 통과한다. 광의 다른 부분은 각각, 부분 반사 표면(16R, 16L)에 의해 기판(20R)의 우측 및 기판(20L)의 좌측으로 커플링인된다. 그 후, 포획된 광은 각각, 반사 표면(22R, 22L)에 의해 점진적으로 커플링-아웃된다. 명백하게, 출력 개구는 시스템의 입력 개구의 크기의 3 배이며, 도 8에서 설명된 것과 동일한 배율이다. 그러나, 그 시스템과는 달리, 여기 시스템은 우측 및 좌측 기판의 접합 표면(29)에 대해 대칭이다.
이제, 도파관 상부에서 도 5 및 도 6의 예시적인 실시예인 도 7 및 도 8을 참조한다. 도 5 및 도 6의 구성은 입사 이미지를 측면으로 확장시킨다. 도 5의 장치는 도 7의 제 1 LOE(20a)를 실시하는데 사용될 수 있으며, 도 6의 장치는 도 8의 제 1 LOE(20a')를 실시하는데 사용될 수 있으며, 도 2의 장치는 제 2 LOE(20b)를 실시하는데 사용될 수 있다.
도 7은 이중 LOE 구성을 이용하여 2개의 축을 따라 빔을 확장시키는 대안의 방법을 도시한다. 입력 파(90)는 제 1 반사 표면(16a)에 의해 도 5에 도시된 것과 유사한 비대칭 구조를 갖는 제 1 LOE(20a)에 커플링인된 후에 η 축을 따라 전파된다. 부분 반사 표면(22a)은 광을 제 1 LOE(20a)로부터 커플링아웃시킨 후에, 광은 반 사 표면(16b)에 의해 제 2 비대칭 LOE(20b)에 커플링인된다. 그 후, 광은 ξ축을 따라 전파된 후에 선택적인 반사 표면(22b)에 의해 커플링-아웃 된다. 도시된 바와 같이, 원래의 빔(90)은 두 축을 따라 확대되며, 여기서 전체 확장은 요소(16a, 22b)의 측면 치수들 사이의 비율에 의해 결정된다. 도 7에 주어진 구성은 단지 이중 LOE 설정의 예이다. 또한, 2 이상의 LOE가 함께 조합되어 복잡한 광학 시스템을 형성하는 다른 구성이 또한 가능하다.
이제, 이중 LOE 구성을 이용하여 2개의 축을 따라 비임을 확장하는 다른 방법을 도시하는 도면인 도 8을 참조한다. 일반적으로, 광이 표면(16b)에 의해 제 2 LOE(20b)에 커플링인되는 구역은 외부 광에 대해 투명할 수 없고 투시 영역의 일부가 아니다. 따라서, 제 1 LOE(20a)는 그 자체가 투명할 필요는 없다. 결과적으로, 투시 시스템에서조차도, 본 도면에서 볼 수 있는 바와 같이 제 1 LOE(20a)가 대칭 구조를 갖도록 설계하는 것이 일반적으로 가능하다. 제 2 LOE(20b)는 사용자가 외부 장면을 볼 수 있게 하는 비대칭 구조를 가진다. 이 구성에서, 입력 빔(90)의 일부는 원래 방향(92)을 따라 제 2 LOE(20b)의 커플링-인 미러(16b)로 계속되는 반면에, 다른 부분(94)은 반사 표면(16a)에 의해 제 1 LOE(20a')에 커플링인되고, η축을 따라 전파된 후에 선택적인 반사 표면(22a)에 의해 제 2 LOE(20b)에 커플링인된다. 그 후, 두 부분은 반사 표면(16b)에 의해 제 2 비대칭 LOE(20b)에 결합되고, ξ축을 따라 전파된 후에 선택적인 반사 표면(22b)에 의해 커플링-아웃 된다.
도 9는 표준 안경테(107)에 내장된 LOE(20a/20a' 및 20b)의 실시예를 도시한다. 디스플레이 소스(4) 및 폴딩과 시준 광학기기(6)는 제 2 LOE(20b)의 에지에 위치되는 LOE(20a/20a')의 바로 다음에 안경테의 아암 부분(112) 안쪽에 조립된다. 디스플레이 소스가 소형 CRT, LCD 또는 OLED와 같은 전자 요소인 경우에 대해, 디스플레이 소스용 구동 전자기기(114)는 아암(112)의 후방 부분 내부에 조립될 수 있다. 전력 공급 및 데이터 인터페이스(116)는 리드(118) 또는 무선이나 광학 전송을 포함한 다른 통신 수단에 의해 아암(112)에 접속 가능하다. 대안으로, 배터리 및 소형 데이터 링크 전자기기가 안경테에 통합될 수 있다. 도 9에서 설명된 실시예는 단지 예일 뿐이다. 디스플레이 소스가 LOE 평면에 평행하게 또는 LOE의 상부에 장착되는 조립체를 포함한 다른 가능한 헤드 마운트 디스플레이 장치가 구성될 수 있다.
이러한 기본 기술에 대한 추가 세부사항은 미국 특허 7,643,214 호에서 찾아볼 수 있다.
제 1 실시예 - 도 10a 내지 도 21d
이제, 이미지 균일성에 대한 변화의 결과를 도시하는 비-중첩 파셋을 갖는 도파관의 개략도인 도 10a를 참조한다. 인지된 불균일성의 근원은 상이한 시야에서 내부 파셋의 각도 중첩과 관련이 있다. 여기에 도시된 도파관 영역(10 또는 20, 도 12a 및 도 12b 참조)에서, 도파관은 내부 파셋(두 개가 최종 파셋(2515) 및 제 1 파셋(2517)으로서 도시됨)을 포함한다. 아웃-커플링된 광의 대부분은 단일 내부 파셋으로부터 반사된다. 그러나, 파셋의 에지에서는 축외 각도에서 불균일성이 존재한다. 좌측(실선 화살표로 표시됨)을 가리키는 FOV의 영역에 대해, 종래의 갭 구역(2520)(또한, 일반적으로 "언더랩(underlapping) 구역", "블랙 라인" 구역 또는 "다크 스트립(dark strip)" 구역으로서 지칭됨)은 어떠한 광도 반사시키지 않는데, 이는 이 각도에서, 최종 파셋(2515)에 의해 반사된 광과 제 1 파셋(2517) 사이에 유효 갭이 존재하여 다크 스트립이 인지되게 하기 때문이다. 다른 한편으로, 우측(파선 화살표로 표시됨)에 아웃-커플링된 광은 종래의 밝은 구역(2525)(또한, 일반적으로 "부분 중첩 구역" 또는 "강렬한" 구역으로서 지칭됨)을 가지며, 이 구역 내에 2515 및 2517로부터 반사된 광의 중첩이 존재하여 도파관은 광량의 거의 두 배를 반사할 것이다. 따라서, 도 10a의 불균일성은 FOV 및 눈 위치의 상이한 영역에서 확장된 개구를 가로지르는 약 200 % 내지 0 %의 중간 이미지 세기에서 변화할 것이다.
이제, 이미지 균일성에 대한 변화의 결과를 도시하는, 중첩 파셋을 갖는 도파관의 개략도인 도 10b를 참조한다. 본 도면에 도시된 바와 같이, 파셋들 사이에 실질적인 중첩이 도입된다. 이 경우에, 인접한 파셋들 사이의 간격은 절반으로 되어, 대부분의 눈 위치에서 FOV의 대부분의 부분이 두 파셋으로부터의 중첩 반사를 통해 이미지로부터 조명을 수용하게 된다. 이 예시적인 경우에서, 단일의 중간 파셋(2535)은 최종 파셋(2515)과 제 1 파셋(2517) 사이에 구성된다. 이미지의 각도 극단 및 파셋의 극단 근처에서, 단지 하나의 파셋(중간 파셋(2535))으로부터 생기는 언더랩 구역(2540) 및 3 개의 인접한 파셋(2517, 2535 및 2515)들에 의해 기여되는 밝은 영역(2545)에 의해 도시된 바와 같이, 이미지의 특정 영역에 기여하는 중첩 파셋의 수의 변화가 여전히 있을 것이다. 따라서, 출력 불균일성은 중간 반사율의 50 %와 150 % 사이에서 변화할 것이다.
파셋(2517)의 제 1 절반부로부터의 광(우측으로부터 전파하는 광)은 이 위치에서 다음 파셋(2535)의 중첩이 없기 때문에, 즉 광을 관찰자에게 반사시키는 단지 하나의 파셋만이 있기 때문에, 감소된 에너지(광선/출력 빔(2546))로서 커플링-아웃될 것이다. 동일한 감소된 파워가 파셋(2515)(광선/출력 빔(2547))의 최종 절반부에서 발생한다. 이들 영역에서 반사율은 중간 반사율의 50 %일 것이다.
본 실시예의 특징은 파셋의 중첩 구성의 관리, 구체적으로 관찰자에게 광을 반사시키는 일정 개수(하나 초과)의 파셋을 얻기 위해 중첩을 최적화하는 것이다. 환언하면, 적어도 2 개의 파셋은 관찰자의 FOV를 향하여 광을 반사시킨다.
이제, 상이한 반사(각도 전파) 구성(이들 구성은 또한 도 12c 및 12d에 설명되어 있음)에 대한 중첩 파셋의 실시예를 위한 예시적인 대안 구성인 도 11a 내지 도 11c를 참조한다. 본 도면에서 단순화를 위해, 단지 하나의 광선만이, 즉 대응하는 아웃-커플링 광선(38B)을 갖는 입사 광선(38)(또한 "빔"으로서 지칭됨)만이 도시된다. 단순화를 위해, 횡단 결합이 도시되지 않았다. 아웃-커플링 광선(38B1) 중 일부는 내부 파셋(2560)을 통과하며 일부의 아웃-커플링 광선(38B2)은 직접적으로 커플링-아웃된다.
도 11a의 구성에서, 입사 광선(38)은 내부 파셋(2560)의 양 측면으로부터 내부 파셋(2560)을 횡단한다. 제 1 횡단은 파셋(2562)의 뒤쪽으로부터이며, 이러한 횡단에서 파셋의 이러한 측면 상의 코팅은 이러한 얕은 각도에 대해 투명해야 한다. 상기 빔은 또한 다른 측면으로부터, 즉 뒤쪽 반대편의 전방 측면 상에서 파셋(2564)을 횡단하며, 이러한 예시적인 가파른 각도에서 파셋의 코팅은 광의 일부가 도파관으로부터 지향되도록 부분 반사되어야 한다. (유사한 단일 파셋은 미국 특허 제 7,391,573 B2 호에 설명되어 있다).
도 11b 및 도 11c에 도시된 구성에서, 내부 파셋(2560)의 각도 및 광 전파 방향은 빔(입사광선(38))이 항상 파셋의 동일한 측면으로부터 내부 파셋(2560)을 통과하도록 설정된다. 파셋의 코팅은 반사율 및 투과율을 설정하여 적절한 빔(38B)이 반사되게 하는데 사용될 수 있다.
도 11b에서, 빔(38)은 파셋 코팅이 투명하도록 설계된 점(2568)에 도시된 바와 같이, 수직에 가까운 최초 내부 파셋(2560)을 교차한다. 제 2 횡단은 광의 일부가 커플링-아웃되도록(38B) 코팅이 부분 반사기가 되도록 설계된 점(2570)(수직으로부터 더 멀리)에 도시된 바와 같이 얕은 각을 이룬다.
도 11c에서, 파셋 코팅은 지점(2574)에 도시된 바와 같이 수직에 가까운 부분 반사기 및 지점(2576)에 도시된 바와 같이 수직으로부터 떨어진 각도에서 투명하게 설정된다.
이제 도면을 참조하면, 도 12a 내지 도 12d는 광학 개구 배율기의 1차원(1D) 및 2 차원(2D) 도파관에서의 중첩 파셋을 도시한다. 일반적으로, 본 발명의 실시예에 따른 광학 개구 배율기는 "x-축"에 대응하는 것으로서 본 명세서에서 임의로 도시된 연신 방향을 갖는 제 1 광 도파관(10)을 포함한다. 제 1 광 도파관(10)은 직사각형 횡단면을 형성하는 제 1 및 제 2 쌍의 평행 파셋(12a, 12b, 14a, 14b)을 가진다. 복수의 내부 부분 반사 표면(40)은 연신 방향에 대해 경사진 각도(즉, 평행도 수직도 아님)로 제 1 광학 도파관(10)을 적어도 부분적으로 횡단한다.
광학 개구 배율기는 또한, 슬랩형 도파관을 형성하는 제 3 쌍의 평행 파셋(22a, 22b)을 갖는 제 1 광학 도파관(10)에 광학적으로 결합되는 제 2 광학 도파관(20)을 포함한다. 즉, 다른 2차원 도파관(20)이 제 3 쌍의 평행 파셋(22a, 22b) 사이의 거리보다 적어도 한 자리수 더 크다. 여기서 또한, 복수의 부분 반 사 표면(45)은 바람직하게, 제 3 쌍의 평행 파셋에 대해 비스듬한 각도로 제 2 광학 도파관(20)을 적어도 부분적으로 횡단한다.
도파관들 사이의 광학 결합 및 부분 반사 표면(40, 45)의 전개 및 구성은 이미지가 제 1 및 제 2 쌍의 평행 파셋(12a, 12b, 14a, 14b)의 양측에 대하여 비스듬한 결합 각도로 전파(예를 들어, 광선(38))의 초기 방향(28)을 갖는 제 1 광학 도파관(10)에 커플링인될 때, 그 이미지가 제 1 광학 도파관(10)을 따라 사중 내부 반사(이미지(a1, a2, a3 및 a4))에 의해 전진되며, 그 이미지 세기의 일부분이 부분 반사 표면(40)에서 반사되어 제 2 광학 도파관(20)에 커플링인된 후에 제 2 광학 도파관(20) 내의 이중 반사(이미지(b1, b2))를 통해 전파하며, 그 이미지의 세기의 일부분이 부분 반사 표면(45)에서 반사되어 가시 이미지(c)로서 평행 면들 중 하나로부터 바깥쪽으로 지향되어 사용자의 눈(47)에 의해 보이게 하는 정도이다.
이제, 위의 설명의 실시예에 대한 제 1 예시를 도시하는, 2차원 광학 개구 배율기의 각각 개략적인 측면도 및 전면도인 도 12a 및 도 12b를 더 구체적으로 참조한다. 제 1 도파관(10)은 제 1 도파돤(10)이 2세트의 평행 파셋(이 경우에 제 1 및 제 2 쌍의 평행 파셋(12a, 12b, 14a, 14b)) 사이의 반사에 의해 2차원으로 주입된 이미지를 안내하는 의미에서 2차원(2D) 도파관으로서 본 명세서에서 지칭되는 반면에, 제 2 도파관(20)은 제 2 도파관(20)이 한 쌍의 평행 파셋(이 경우에 제 3 쌍의 평행 파셋(22a, 22b)) 사이에서 단지 1차원으로 주입된 이미지를 안내하는 의미에서 1차원 (1D) 도파관으로서 지칭된다.
불균일성 감소의 추가 개선은 도 12b에 도시된 바와 같이 중첩 내부 파셋에 의해 생성되는 "다중-경로" 이미지의 도입으로부터 초래될 수 있다. 유사한 공정이 일반적으로 중첩 파셋 실시예에 존재한다. (실선으로서 표시되고 "a"로 지정된)2D 도파관(10) 내에서 전파되는 광은 커플링-아웃되지만("b"로 지정됨), b로부터의 광 중 일부는 (파선 화살표로서 표시된)b'로서 커플링-아웃되기 이전에 (파선 화살표로서 표시된)a'에 후방-결합된다. 이러한 'a'와 'b' 사이의 후방-및-전방 결합은 광 평행도를 유지하면서 개구 전반에 걸친 세기의 평균화를 유발함으로써 빛의 균일성을 더욱 향상시킨다. 이러한 개선은 1D 도파관(20)에 대해 도 12a에 도시된 바와 같은 중첩 파셋을 사용하는 유사한 공정에 의해 다른 도파관에서 또한 실시될 수 있다. (실선 화살표로서 표시되고 빔 "b1" 및 "b2"로서 도시된)1D 도파관(20) 내에서 전파하는 광은 커플링-아웃되지만(빔 "c"로서 도시됨), 빔(c)으로부터의 광 중 일부는 (파선 화살표로 표시된)빔(c3 및 c4)으로서 커플링-아웃되기 이전에 (점선 화살표로 표시된)b2'에 후방-커플링된다.
광학 이미지 생성기(도시되지 않음)로부터의 광 빔(38)은 제 1 도파관(10)에 일정 각도로 주입된다. 결과적으로, 광은 도 12a의 측면도에 도시된 바와 같이 도파관의 모두 4개의 외부 파셋으로부터 반사되는 동안 도파관(10)을 따라 전파된다. 이 과정에서, 이미지가 파셋에 의해 내부 반사되는 것과 동일한 이미지를 나타내는 4개(a1, a2, a3, a4)의 빔 공액 벡터(conjugate vector)가 생성된다.
도파관(10) 내로 주입되는 빔(38)의 각도는 이러한 도파관의 모두 4개의 외부 파셋으로부터 반사되도록 설정된다. 광선은 얕은(스침(grazing)) 각도로 제 1 도파관(10)의 바닥 면(12b), 즉 제 2 도파관(20)에 인접한 면으로부터 반사되어야 하고, 바람직하게는 10°에서 20°의 급경사 각도로 전달되어야 한다. 이러한 특성은 전체 내부 반사(TIR) 또는 광학 코팅에 의해 달성될 수 있다. 회절 패턴은 동일한 표면에서 회절과 전달을 조합함으로써 이러한 광학 특성을 수행할 수 있다. 제 1 도파관(10)의 다른 3개의 면(12a, 14a, 및 14b)으로부터의 반사는 동일한 방식으로 또는 반사 코팅의 사용에 의해 생성될 수 있다.
제 1 도파관(10) 내의 안내된 광-빔의 일부(예를 들어, 빔(a1 및 a2))는 제 2 도파관(20)의 입력 결합 표면으로 하향으로 내부 평행 부분 반사기(파셋)(40)에 의해 반사된다. 제 2 도파관(20)에서, 이들 빔은 예시적인 빔(b1 및 b2)으로서 정의된다. 이러한 공정에서, 중첩 구성은 크로스-결합(cross-coupling)을 야기함으로써 (전술한 바와 같이)이미지 품질의 저하 없이 균일성을 향상시킨다.
빔(b1 및 b2)은 외부 면에 의해 반사되어 활용되고, 즉, 빔(b1)은 빔(b2)이 되도록 반사되고 (도 12a에 도시된 바와 같이)역으로 될 수 있다. 제 1 도파관(10)의 외부 전방 및 후방 면(14a, 14b)은 서로 평행해야 하며, 이러한 실시예에서 제 2 도파관(20)의 대응 외부 면(22a, 22b)에 평행해야 한다. 평행도에서의 임의의 편차는 빔(b1 및 b2)으로부터의 결합 이미지가 정밀한 공액 이미지가 되지 않게 되어 이미지 품질이 저하될 것이다.
제 2 도파관(20) 내의 내부 파셋(45)은 도파관 외부로 그리고 관찰자(47)의 눈 내로 빔(b2)을 반사시킨다. 내부 파셋(45)은 또한 중첩될 수 있어서, 파셋(40)에 대해 설명된 대로 이미지 균일성을 더욱 향상시킨다.
도파관(10 및 20) 내의 내부 파셋에 의한 반사 공정은 도 12c 및 도 12d에서 추가로 설명된다. 2개의 기본 구성이 도시되지만, 광 빔과 파셋의 상대 각도가 상이하다. 이러한 개략도에서, 대응하는 도파관의 측면도로부터 관찰되는 것과 동일한 기하학적 고려 사항이 각각 적용되기 때문에, 빔(a1, a2 및 b1)은 동일한 벡터(기준은 단지 빔(b1)이 됨)로서 도시된다. 빔(a3, a4 및 b2)은 동일한 벡터로서 또한 표시된다(기준은 단지 빔(b2)이 됨).
광 빔(b2)은 실제로 도 12c의 2 개의 벡터로 표시된 대로 동일한 방향으로 전파하는 광선 다발이다. 이러한 경우에, 하나의 벡터는 빔(b1)이 되도록 외부 면에 의해 내부 파셋(40)(또는 45) 상으로 반사되며, 여기서 하나의 벡터의 일부가 빔(c1)으로서 반사된다. 다른 빔(b2) 벡터는 벡터 빔(c2)으로서 파셋에 의해 직접 반사된다. 벡터 빔(c1 및 c2)은 정상 이미지를 나타내고 가상 이미지는 반드시 이러한 순서일 필요는 없다. 이러한 구성에서, 빔(b1 및 b2)은 동일한 측면으로부터 파셋(45)과 충돌한다.
도 12d는 본질적으로 동일한 공정을 설명하지만, 여기서는 빔(b1 및 b2)이 대향 측면으로부터 파셋(40 또는 45)에 충돌하는 그러한 기하학적 구조이다.
두 경우에서, S 및 P 편광에서 이미지(c1 및 c2)에 대한 반사의 크기는 이러한 파셋의 코팅에 의해 결정된다. 바람직하게, 하나의 반사는 이미지이며 다른 이미지가 원치 않는 "가상(ghost)" 이미지에 대응하기 때문에 다른 하나는 억제된다. 어느 입사 빔 각도의 범위가 반사되고 어느 입사 빔 각도 범위가 전달되는지를 제어하기 위한 적합한 코팅은 당업계에 공지되어 있고, 본 발명과 함께 공동 양도된 미국 특허 제7,391,573 호 및 제7,457,040 호에 상세히 설명되어 있음을 발견할 수 있다.
도 13은 여기서 155로 지정된 제 1 도파관(10)의 부분 반사 표면이 양 파셋(12a 및 14a)에 대해 비스듬한 각도인 대안의 실시예를 도시한다. (파선은 양측 외부 면에 수직인 평면과 단지 한 면에 대해 경사진 다른 평면을 보여줌으로써 파셋 경사의 시각화를 용이하게 하고자 하는 것이다.)
이제, 중첩 파셋으로 구성된 광학 개구 배율기의 각각 개략적인 측면도 및 전면도인 도 14a 및 도 14b를 참조한다. 본 도면의 일반적인 작동은 도 12a 및 도 12b를 참조하여 위에서 설명되었다. 파셋의 중첩은 2D 도파관(10)뿐만 아니라 1D 도파관(20)에도 적용된다. 이러한 예에서, 즉 도 14b에서, 2D 도파관(10)은 광학적 개구를 후자 쪽으로(본 도면에서 우측에서 좌측으로) 확장시키며, 1D 도파관(20)은 광을 관찰자(47)의 눈으로 전달하기 이전에 광학적 개구를 수직으로(본 도면에서 상부로부터 바닥으로) 확장한다.
도 14a에서, 광(입사 광선(38)으로서 도시됨)은 2D 도파관(10)에 커플링인된다. 이러한 도파관은 중첩 파셋(40)을 포함한다. 파선은 본 도면에서 이중-선으로 도시된 파셋(40)의 정렬을 도시하는데 사용된다. 이러한 실시예에서, 제 1 파셋(40a) 및 최종 파셋(40b)은 내부 파셋(40)의 중간 파셋보다 더 작은 면적을 가진다. 이는 아웃-커플링된 광('b')이 2D 도파관(10)의 시점과 종점을 포함하는 일정 수의 파셋에 의해 생기기 때문에, 2D 도파관(10)의 커플링-아웃된 광('b')을 실질적으로 균일하게 한다. 예를 들어, 출력 광선(b10) 및 출력 광선(b20)(실제로 도파관(10)으로부터 출력될 때 중첩되지만, 명료함을 위해 도면에서 약간 분리되게 도시됨)은 두 개의 파셋(제 1 파셋(40a) 및 내부 파셋(40)의 인접 파셋(40))에 의해 생기는 조합된 출력을 생성한다. 유사하게, 출력 광선(b30 및 b40)은 2 개의 파셋으로부터의 출력을 생성한다.
비교를 위해, 도 3을 다시 참조하며, 여기서 제 1 전체 파셋(2517)으로부터의 광 출력 빔(2546) 및 최종 전체 파셋으로부터의 광 출력 빔(2547)은 감소된 에너지로서 커플링-아웃된다. 부분적인 제 1 파셋(40a) 및 최종 파셋(40b)을 사용하면, 부분적인 제 1 파셋(40a) 및 최종 파셋(40b)이 인접 파셋(40)을 중첩하기 위해 더 짧기 때문에 이러한 감소된 에너지가 회피될 것이다. 조명된 최종 파셋이 100% 반사율(증강 뷰를 위해 사용될 때 100%의 공칭 반사율)을 갖도록 설계되면, 최종 파셋은 완전한 파셋(2515)과 유사하게 수행할 것이다.
2D 도파관(10)에 대해 설명된 중첩 파셋 구성은 1D 도파관(20)과 유사하게 작용한다. 내부 파셋(45)은 관찰자(47)에게 광을 반사시킨다. 1D 도파관 내부 파셋(45)은 2D 도파관 내부 파셋(40)에 대해 설명된 대로 중첩된다. 제 1 및 최종 파셋(40A 및 40B)과 유사하게, 제 1 및 최종 파셋(45a 및 45b)은 2D 도파관(10)에 대해 설명된 대로 조명 균일성을 유지하기 위해 감소된 면적을 가진다.
이제 도 15a 및 도 15b를 참조하면, 도 14a 및 도 14b의 기본 구조는 자유 공간 광학 장치(11)(예를 들어, 도 5 및 도 6에 설명된 대로)에 대한 측면 확장을 수행하기 위해 2D 도파관(10)을 대체하도록 변경된다. 1D 도파관(20)의 혁신적인 중첩 구조는 여전히 수직 확장을 수행하는데 사용된다.
이제, 예시적인 파셋 실시예의 스케치인 도 16a 내지 도 16c를 참조한다. 파셋은 이에 한정되지 않지만, 중첩의 양, 도파관 기판의 평행 표면(하부 표면(26) 및 상부 표면(26a)의 쌍과 같은 주 에지)에 대한 파셋의 각도 및 반사율을 포함한, 다양한 중첩 구성으로 배열될 수 있다. 파셋의 중첩은 이 명세서의 맥락에서 단일(중첩되지 않음), 이중 및 삼중(중첩) 파셋으로서 지칭되는 것으로 실시될 수 있다. 일반적으로, 두 개 이상의 파셋의 ("이중 파셋"으로 시작하는 정의에 의한)중첩은 "다중 파셋" 또는 "다중 중첩"으로서 지칭된다. 본 설명 및 비-제한적인 예로부터 자명해지는 바와 같이, 삼중 중첩을 넘어서는 추가의 중첩뿐만 아니라 부분 중첩도 가능하다. 본 도면에서 명료함을 위해, 입사 광선(38)으로부터 아웃-커플링 광선(38B)으로의 전파는 도시되지 않았다.
도 16a는 참조를 위해, 도 2를 참조하여 전술한 대로 단일 파셋, 또는 중첩되지 않은 종래 실시예를 도시한다. 도파관(20)은 두 개의 제 1 표면(26, 26A) 사이에 이중 선으로 도시된 파셋(22)을 포함한다. 제 1 영역(54)은 광(광선(38)으로 도시됨)이 기판에 커플링인되는 구역이다. 실선 화살표는 단지 하나의 파셋만을 횡단(단일 파셋 횡단)하는 아웃-커플링 광선(38B)을 도시한다. "횡단" 파셋과 "횡단되는" 파셋의 수에 대한 언급은 아웃-커플링되는 광선의 원점인 파셋을 계산하는 것을 포함한다. 파선은 파셋(22)의 정렬을 나타내는데 사용된다. 이러한 단일 파셋 구성에서, 파셋(22)은 중첩되지 않으며, 특히 인접한 파셋의 시작부와 정렬되는 하나의 파셋의 단부로 구성된다.
정렬에 대한 언급은 표면 중 하나로의 파셋의 기하학적 투사과 관련한 것으로서 당업자에게 자명할 것이다. 예를 들어, 예시적인 파셋(F1) 파셋-시점은 점(P1)에서 하부 표면(26)으로의 기하학적 투사를 가진다. 예시적인 파셋(F2) 파셋-종점은 또한 점(P1)에서 하부 표면(26)으로의 기하학적 투사를 가진다. 예시적인 파셋(F2) 파셋-시점은 점(P2)에서 하부 표면(26)으로의 기하학적 투사를 가진다. 예시적인 파셋(F3) 파셋-종점은 또한 점(P2)에서 하부 표면(26)으로의 기하학적 투사를 가진다.
도 16b는 이중 파셋(이중 파셋 횡단, 이중 중첩)의 스케치이다. 이는 실험으로 양호한 결과를 제공하는 동시에 (높은 수준의 횡단과 비교하여)제조 복잡성의 증가를 최소화하는 것으로 나타난 바람직한 실시예이다. 이중 파셋 중첩의 비-한정적인 예가 본 명세서에서 일반적으로 사용된다. 도파관(광 전달 기판, 도파관(20))은 (두 개의)제 1 표면(26) 사이에 이중 선으로서 도시된 중첩 내부 파셋(40)을 포함한다. 실선의 화살표는 입사 광선(38)을 도시한다. 다른 실선 화살표는 2 개의 파셋을 횡단한 이후에 기판으로부터 아웃-커플링되는 공칭 광선(nominal ray)(화살표 아웃-커플링 광선(38B))을 도시한다. 이러한 두 개의 파셋(파셋(F11) 및 파셋(F12))의 횡단은 이중 파셋 횡단이다. 유사한 도면에서와 같이, 파선은 파셋(40)의 정렬을 도시하는데 사용된다. 이 예에서, 단일의 제 1 부분 파셋(40a) 및 단일의 최종 부분 파셋(40b)이 도시된다.
도파관은 서로 평행한 적어도 한 쌍의 표면("제 1 표면"들로서 지칭되는 하부 표면(26) 및 상부 표면(26A))을 포함한다. 기판 폭(52)은 제 1 표면들 사이의 거리이다. 제 1 영역(54)은 광(광선(38)으로서 도시됨)이 기판에 커플링인되는 구역이다.
도파관은 일련의 파셋(56)을 포함한다. 일련의 파셋(56)은 제 1 파셋(40a), 최종 파셋(40b) 및 하나 이상의 중간 파셋(40c)을 포함한다. 제 1 파셋(40a)은 제 1 영역(54)의 기단에 위치되며, 기단은 일련의 파셋(56) 중 가장 가까운 부분이다. 제 1 파셋은 제 1 표면(26, 26a)들 사이의 방향으로 제 1 폭(52a)을 가진다.
최종 파셋(40b)은 제 1 영역(54)으로부터 일련의 파셋(56) 중 말단부(55)에 있다. 최종 파셋(40b)은 제 1 표면(26, 26a)들 사이의 방향으로 제 3 폭(52b)을 가진다.
하나 이상의 중간 파셋(40c)은 제 1 파셋(40a)과 최종 파셋(40b) 사이에 위치된다. (각각의)중간 파셋은 제 1 표면(26, 26a) 사이의 방향으로 제 2 폭(52c)을 가진다. 명료함을 위해, 단지 하나의 제 2 폭(52c)만이 도시된다. 전형적인 실시예에서, 모든 중간 파셋의 폭은 동일할 것이다. 그러나, 이 실시예는 비-제한적이고, 후술되는 바와 같이 각각의 파셋의 폭은 서로 다를 수 있다. 중간 파셋의 수는 용례에 따라 달라질 수 있다. 하나 이상의 중간 파셋의 전형적인 수는 1, 2, 3, 4, 5 및 복수를 포함한다.
일련의 파셋(56) 중 각각의 파셋은 전형적으로 적어도 부분적으로 반사 표면이고, 표면(26, 26a)에 대해 비스듬한 각도이고, 파셋 폭의 기단 측에 파셋 시점을 가지며, 파셋 폭의 말단 측에 파셋-종점을 가진다. 예시적인 파셋-시점이 점(57a)으로서 제 1 파셋(40a)에 대해, 점(57m)으로서 제 1 파셋(40a)에 인접한 중간 파셋에 대해, 점(57n)으로서 다음 중간 파셋에 대해, 그리고 점(57b)으로서 최종 파셋(40b)에 대해 도시된다. 유사하게, 예시적인 파셋-종점은 점(58a)으로서 제 1 파셋(40a)에 대해, 점(58m)으로서 제 1 파셋(40a)에 인접한 중간 파셋에 대해, 점(58n)으로서 다음 중간 파셋에 대해, 그리고 점(58b)으로서 최종 파셋(40b)에 대해 도시된다.
파셋의 중첩의 정렬이 이제 설명된다. 시작하기 위해, 기판(20)으로부터 아웃-커플링된 공칭 광선(38B)의 방향으로 표면들 중 하나(이 경우에 하부 표면(26)을 사용할 것임)로의 기하학적 투사를 정의한다. 공칭 광선(38B)은 전형적으로 기판(20)으로부터 커플링아웃되는 광의 실질적으로 중앙 광선이다. 일반적으로, 공칭 광선(38B)은 설계자가 광선 필드에서 최적의 성능을 갖기를 원하는 광선이다. 공칭 광선(38B)은 또한 기판(20) 상의 특정 위치에 대한 최적의 광선일 수 있다. 특정한 특히 바람직한 실시예에서, 공칭 광선은 도광 광학 요소의 평행 표면에 수직하도록 설계되지만, 다양한 설계 고려사항에 따라서 공칭 광선은 1 차원 또는 2 차원으로 이들 평행 표면에 대한 법선에 대해 경사질 수 있다. 공칭 광선(38B)이 기판(20)의 평행 표면(예를 들어 26)에 수직이 아니면, 공칭 광선(38B)은 표면에 대해 각도를 이루며, 공칭 광선(38B)은 기판(20)으로부터 아웃-커플링될 때 굴절하고 기판(20) 외부에 상이한 각도로 존재할 수 있음에 주목해야 한다. 본 명세서의 맥락에서, 공칭에 대한 지칭은 기판(20) 내부의 공칭 광선(38B)에 대한 것이다. 보통, 공칭 광선은 입력 이미지의 중심으로부터의 또는 중심 부근의 광선에 대응한다. 몇몇 실시예에서, 공칭 광선은 입사 이미지의 주 광선이다. 전형적으로, 입사 광(38)은 이미지에 대응하며, 중앙 광선은 이미지의 중심으로부터의 중심 광선이다. 추가로 또는 대안으로, 입사 광(38)은 이미지에 상응하며, 중앙 광선은 이미지의 중심 픽셀에 대응한다.
다음에, 최종 파셋(40b)과 하나 이상의 중간 파셋(40c) 각각의 기하학적 투사는 인접한 하나 이상의 중간 파셋(40c)과 제 1 파셋(40a)의 각각의 기하학적 투사과 중첩된다. 환언하면, 인접한 파셋은 중첩된다. 예를 들어, 말단부의 최종 파셋(40b)은 인접한 (도면에서)최좌측 중간 파셋과 중첩되며, 각각의 중간 파셋(40c)은 인접한 중간 파셋과 중첩되며, 기단부에 있는 최우측 중간 파셋은 제 1 파셋(40a)과 중첩된다.
또한, 최종 파셋(57b)의 파셋-시점 및 하나 이상의 중간 파셋(예컨대, 57n, 57m) 각각의 기하학적 투사는 바람직하게, 하나 이상의 중간 파셋(예컨대, 58n, 58m) 및 제 1 파셋(58a)의 비-인접 파셋-종점의 각각의 기하학적 투사과 실질적으로 일치한다. 환언하면, 각각의 파셋-시점은 공칭 광선 아웃-커플링의 방향으로 인접하지 않은 파셋 종점과 정렬되거나 바람직하게 거의 정렬된다(정렬되는 파셋 종점이 없기 때문에 제 1 파셋(40a)은 명백한 제외). 일치는 기판의 적어도 일부분을 따른다.
대안으로, 파셋의 중첩은 표면들 중 하나를 통해 기판으로부터의 광 커플링아웃의 공칭 관측점을 향한 시선에서 중첩되는 일정 수의 파셋으로서 설명될 수 있다. 환언하면, 공칭 점은 사용자의 눈(47)의 전형적인 위치, 즉 관찰자의 눈의 동공의 가장 가능성 있는 위치이다. 몇몇 용례에서, 공침 점은 관찰자의 안구 중심이다. 내부 파셋은 공칭 관측점을 향한 시선에서 중첩되는 일정한 수의 파셋을 가짐으로써 관찰자 쪽으로 균일한 반사를 생성하도록 최적화된다.
본 실시예의 특징은 파셋의 중첩 구성의 특정 관리이다. 이중 파셋 횡단의 경우에, 모든 제 1 파셋 및 중간 파셋의 파셋 종점은 인접한 중간 파셋 또는 최종 파셋의 중심과 동일한 선에 있다. 유사하게, 모든 최종 파셋과 중간 파셋의 파셋 시점은 인접한 중간 파셋 또는 최종 파셋의 중심과 동일한 선에 있다. 이 경우에, 다음의 예시적인 파셋은 다음의 점에서 하부 표면(26)으로의 기하학적 투사를 가진다:
점(P11)에서 파셋(F11)의 파셋 종점;
점(P12)에서 파셋(F11)의 중간;
점(P14)에서 파셋(F11)의 파셋 시점;
점(P12)에서 파셋(F12)의 파셋 종점;
점(P14)에서 파셋(F12)의 중간;
점(P14)에서 파셋(F13)의 파셋 종점; 및
광선(38B)이 점(P13)에서 파셋(F11 및 F12)을 횡단.
따라서, 중간 파셋(F11)의 기단부는 인접한 중간 파셋(F12)의 말단부와 중첩되고 중간 파셋(F11)의 파셋-시점은 인접하지 않은 중간 파셋(F13)의 파셋-종점과 정렬된다.
파셋은 정상적으로 서로 평행하고 일정한 간격이다. 즉, 일련의 파셋 중 한 쌍의 인접 파셋들 사이의 간격은 일련의 파셋 중 다른 한 쌍의 인접한 파셋들 사이의 간격과 동일하다. 예를 들어, 파셋(F11)과 파셋(F12) 사이의 간격(59a)은 파셋(F12)과 파셋(F13) 사이의 간격(59b)과 실질적으로 동일하다. 인접한 파셋 사이의 간격은 전형적으로, 기판에 커플링인되는 광의 가간섭성 길이보다 더 크다. 가간섭성 길이는 가간섭성 파(예를 들어, 전자기파)가 특정 정도의 가간섭성을 유지하는 전파 거리이다. 일반적으로, 가간섭성 길이는 스펙트럼 폭으로 나눈 파장 제곱이다. 파셋 간격이 도파관을 따라 변경되면, 중첩의 조건이 보존되어야 한다.
바람직한 실시예에서, 제 1 파셋의 제 1 폭은 하나 이상의 중간 파셋의 제 2 폭보다 더 작다. 환언하면, 제 1 파셋은 부분 파셋이다. 예시적인 실시예에서, 제 1 폭은 실질적으로 제 2 폭의 절반이다.
다른 옵션에서, 제 3 폭은 제 2 폭보다 더 작다. 환언하면, 최종 파셋은 부분 파셋, 바람직하게 중간 파셋의 폭의 절반(제 3 폭은 제 2 폭의 실질적으로 절반)이다. 다른 옵션에서, 최종 절반 파셋은 공칭 반사율의 실질적으로 100 %인 반사율을 가진다. 예를 들어, (이중 중첩의 경우에서와 같이)공칭 반사율이 50 %라면, 도파관의 말단 절반 단부에서 최종 파셋은 50 %의 반사율을 가질 것이다. 예를 들어, 도 10b에서, 파셋(2517)의 절반이 100 % 공칭 반사율이라면, 광선(2546)은 아웃-커플링된 광의 나머지와 동일한 세기를 가질 것이다. 유사하게, 파셋(2515)의 절반이 100 % 반사율을 가지면, 광선(2547)은 또한 아웃-커플링된 광의 나머지와 동일한 세기를 가질 것이다.
제 1 영역으로부터의 광의 전파는 하나 이상의 중간 파셋 중 하나와 마주치기 이전에 광의 적어도 일부가 제 1 파셋과 만나는 정도이다.
이제, 삼중 파셋(삼중 파셋 횡단, 삼중 중첩)의 스케치인 도 16c를 참조한다. 다른 예와 유사하게, 도파관(도파관(20))은 제 1 표면(26, 26A)들 사이에 이중 선으로 도시된 중첩 내부 파셋(40)을 포함한다. 실선 화살표는 3 개의 파셋을 횡단한 이후에 기판으로부터 아웃-커플링되는 공칭 광선(화살표 아웃-커플링 광선38B))을 나타낸다. 유사한 도면에서와 같이, 파선은 파셋(40)의 정렬을 도시하는데 사용된다. 이 예에서, 다수(구체적으로 2 개)의 제 1 부분 파셋 및 다수(2 개)의 최종 부분 파셋이 도시된다.
일반적으로, 다수의 파셋이 도파관 기판으로부터 아웃-커플링된 공칭 광선에 의해 횡단된다. 더블 파셋 횡단의 예에서, 횡단된 파셋의 수는 2이다. 유사하게, 삼중 파셋 횡단의 예에서, 횡단된 파셋의 수는 3이다. 일반적으로, 횡단된 파셋의 수는 모든 일련의 파셋에 대해 일정하다. 횡단된 일정한 수의 파셋으로 도파관을 구성하는 것은 다양한 구성으로 실시될 수 있다. 예를 들어, 도 16b를 참조하여 설명된 대로, 제 1 파셋(40a)의 제 1 폭(52a)은 인접한 중간 파셋(중간 파셋(40c) 중 하나의 파셋)의 제 2 폭(52c)의 실질적으로 절반일 수 있다. 다른 예에서, 제 1 파셋의 1/4 및 인접 파셋의 3/4가 사용될 수 있다. 다른 예에서, 제 1 파셋(40a)과 제 1 인접 파셋(F14) 모두가 다음 인접 파셋(F15)의 폭의 일부인 도 16c를 참조한다.
중첩 파셋의 실시를 위해 예시적인 1D 도파관(예를 들어, 1D 도파관(20))을 사용하는 본 설명에 기초하여, 당업자는 2D 도파관(예를 들어, 2D 도파관(10)) 및 다른 도파관 구성을 위해 중첩 파셋을 실시할 수 있을 것이다.
도 14a, 도 14b 및 도 13을 참조한다. 일반적으로, 2D 도파관에서, 도파관은 제 1 표면(26, 26a 또는 12b, 12a) 및 제 2 쌍의 표면(14a, 14b)을 포함한다. 제 2 표면(14a, 14b)은 서로 평행하고 제 1 표면(12b, 12a)과 평행하지 않다. 제 1 표면에 대한 파셋의 폭과 유사하게, 제 1 파셋은 제 2 표면들 사이의 방향으로 제 4 폭을 가지며, 최종 파셋은 제 2 표면들 사이의 방향으로 제 6 폭을 가지며, 하나 이상의 중간 파셋은 제 2 표면들 사이의 방향으로 제 5 폭을 가진다. 2D 도파관의 특징은 이미지가 제 1 및 제 2 표면 모두에 대해 비스듬한 결합 각도로 초기 전파 방향을 갖는 제 1 영역에서 도파관에 커플링인될 때, 이미지가 도파관을 따라 사중 내부 반사에 의해 전진되도록 구성된다.
대안 실시예에서, 제 2 표면은 제 1 표면에 수직이다. 다른 대안 실시예에서, 각각의 파셋은 제 2 표면에 대해 비스듬한 각을 이룬다.
이제, 대안의 파셋 구성의 대략적인 스케치인 도 17a 내지 도 17d를 참조한다. 본 도면에서, 파셋은 평행하다.
이제, 비교를 위해 도 16b에 상세히 설명된 대로 이중 파셋의 대략적인 스케치인 도 17a를 참조한다. 도파관이 사용자의 눈(47)을 향해 이미지를 투사하기 때문에, 상이한 광선이 상이한 각도로 전파함으로써, 도 10a을 참조하여 위에서 설명된 바와 같이, 균일성을 감소시키는(불균일성을 도입하는) 중첩 및 언더랩을 생성시킨다. 도 17a(유사하게, 도 16b 및 도 10b)의 중첩 구성은 도 10a(유사하게, 도 16a)의 비-중첩 구성에 비하여 이러한 불균일성 효과를 감소시킨다. 많은 용례에 대해, 이러한 이중 파셋 구성으로 충분하며, 그 중첩으로 불균일성을 충분히 억제한다.
이제, 가변 파셋 간격의 대략적인 스케치인 도 17b를 참조한다. 도 17a의 이중 파셋 구성으로부터의 불균일성의 추가 감소는 도 17b에 도시되며, 여기서 일련의 파셋 중 한 쌍의 인접한 파셋들 사이의 간격은 일련의 파셋 중 다른 한 쌍의 인접한 파셋들 사이의 인접한 간격에 대해 변화한다. 바람직한 실시예에서, 간격 변화는 한 쌍의 인접한 파셋과 인접한 파셋의 인접한 쌍 사이에서 변화가 없다. 예를 들어, 간격(59d)은 간격(59c)보다 더 크며, 간격(59e)은 간격(59d)보다 더 크다. 출력 광선(38B)이 기판(간략화를 위해 도시되지 않음)을 벗어날 때 수직으로 구부러지기 때문에, 파셋들의 간격의 변화는 출력 광선(38B)의 굴절로 인해 감소될 수 있다. 본 구성에서, 공칭 파의 상이한 각도가 처리되며, 중첩은 관찰자(사용자의 눈(47))에 대해 일정하다. 이러한 비-제한적인 예에서, 공칭 출력 광선은 항상 2 개의 파셋을 통과할 것이다. 본 도면에서, 기판(20)의 중심에 있는 공칭 광선(38B)은 기판(20)의 단부(기단부 및 말단부)에서 공칭 광선과 각도가 다르다는 것에 주목해야 한다.
이제, 도파관의 기단부로부터 말단부로의 파셋 간격을 감소시키는 대략적인 스케치인 도 17c를 참조한다. 도파관(20)은 도파관의 제 1 부분에 제 1 간격을, 그리고 도파관(20)의 제 2 부분에 적어도 제 2 간격을 포함한다. 이 비-제한적인 예에서, 제 1 부분(61a)은 비-중첩 파셋을 포함한다. 제 2 부분(61c)은 이중 중첩 파셋을 포함하며, 다른 부분(61e)은 삼중 중첩 파셋을 포함한다. 부분(61b 및 61d)은 하나의 별개의 중첩으로부터 다른 별개의 중첩으로의 전이 부분, 또는 전이 구역이다. 대안 실시예에서, 부분들의 중첩은 별개가 아닌, 연속적으로 변하거나, 도파관으로부터의 유효 출력 세기를 관리하도록 설계된 다른 간격 구성일 수 있다.
도파관을 따라 일정한 반사 세기를 유지하기 위해, 모든 파셋은 기단부로부터 시작하여 말단부 방향으로 반사율이 증가하는 더 높은 반사 계수를 가져야 한다. 반사 세기의 이러한 관리는 관찰자에게 출력의 균일성(세기의 균일성)을 개선한다. 본 도면에서, 모든 파셋의 반사율은 일정하게 유지될 수 있지만, 파셋들 사이의 간격은 요구되는 반사율에 따라 변한다. 광은 기단부(본 도면의 우측)로부터 도파관으로 주입되며 따라서 기단부에서 가장 높은 세기를 가진다. 기단부에서 파셋들 사이의 간격이 가장 크며, 파셋들 사이의 중첩이 최소화된다. 광이 도파관(도시되지 않음)을 따라 전파됨에 따라, 광의 파워는 감소되며, 파셋들의 더 높은 중첩은 이러한 파워의 감소를 보상한다. 따라서, 전반적인 파워 출력은 도파관을 따라 유지된다.
연속성은 중첩 정수의 비-연속적 변화 또는 중첩 불연속성이 관찰되지 않는 파셋의 좁은 간격에서의 연속적인 변화(비-정수)에 의해 도파관을 따라 유지될 수 있다.
파셋의 간격과 높이를 도파관 전반에서 일정하게 유지되게 하려면, 최적화 절차에서 파셋의 중첩 대 언더랩의 영향을 고려해야 한다. 중첩 파셋은 더 많은 출력 파워와 더 많은 비-균일성 혼합을 제공한다. 또한, 중첩은 100 % 내지 150 %(또는 100 % ± 20 %)의 세기 변화를 일으키는 반면에, 언더랩은 50 % 내지 100 %(또는 100 % ± 33 %)를 생성한다. 중첩에서, 상대 세기 변화가 더 낮아진다. 따라서, 하나 이상의 파셋들의 반사율은 일련의 파셋들에서 다른 하나 이상의 파셋의 다른 반사율로부터 변한다.
또한, 관찰자의 눈은 세기 변화에 선형적으로 반응하지 않고, 오히려 눈은 대수 반응을 가짐에 주목해야 한다. 이는 또한, 언더랩이 관찰자 인식에 더 많은 영향을 가진다는 것을 의미한다. 위와 같은 점을 감안할 때, 중첩을 증가시키는 비용으로 언더랩을 줄이기 위해서는 더 많은 고려가 주어져야 한다.
이제, 가변 파셋 폭의 대략적인 스케치인 도 17d를 참조한다. 도 17a의 이중 파셋 구성으로부터의 불균일성의 추가 감소가 본 도면에 도시되며, 여기서 일련의 파셋 중 하나의 파셋의 폭이 일련의 파셋 중 인접한 하나의 파셋의 폭에 대해 변한다. 바람직한 실시예에서, 폭 변화는 파셋 중 하나와 일련의 전체 파셋에 대한 인접한 파셋 사이에서 변하지 않는다. 본 도면에서, 일련의 파셋이 기단부로부터 말단부로 횡단하면서 도파관의 바닥으로부터 상부 쪽으로 폭이 짧아진다. 대안 실시예는 양 측면으로부터(상부 및 바닥으로부터 각각의 파셋의 중심 쪽으로) 폭을 단축시키는 것이다. 본 예에서, 폭(59e)은 폭(59d)보다 더 크고, 폭(59f)은 폭(59e)보다 더 크다.
파셋 간격을 변경하는 도 17b 및 파셋 폭을 변경하는 도 17d의 실시예 모두에서, 광 빔(출력 광선(38B))의 공칭 수렴시의 관찰자(사용자의 눈(47))는 중첩 또는 언더 랩을 보지 못할 것이다. 그러나, 눈의 위치의 임의의 변경은 이중 파셋 구성에 의해 억제되는 일부 중첩/언더랩을 생성할 것이다.
이제, 도 6 및 도 8을 참조하여 설명된 바와 같은 대칭 구조에 중첩 파셋을 적용하는 대략적인 스케치인 도 18을 참조한다. 본 도면에서, 도 17b의 중첩 구성과 유사한, 상부 횡단 도파관만이 도시된다. 이 대칭 구성에서, (도 16b의 제 1 영역(54)과 유사한)제 1 영역은 (광선(38)으로서 도시된)광이 기판, 이 경우에 도파관의 중간 영역에 커플링인되는 구역이다. 도파관의 대칭 좌우 측 각각은 광이 기판의 각각의 측면에 커플링인되는 구역(대안으로 인접한 제 1 영역 및 제 2 영역으로서 지칭됨)을 가지며, 좌우측의 파셋은 동등하며 반대 경사이다. 이 대칭 구조는 또한, 도 17a의 파셋의 평행 구성 및 도 17d의 가변 폭 구성으로 실시될 수 있다.
중첩 구성에서, (제 1 전체)파셋(2517) 및 (최종 전체)파셋(2515)이 부분적으로 중첩되지 않는 도 10b를 다시 참조한다. 전술한 바와 같이, 특히 파셋(2517)의 시점은 파셋(2535)과 중첩되지 않으며 파셋(2515)의 종점은 파셋(2535)과 중첩되지 않는다. 따라서, 커플링-아웃된 광(2546, 2547)의 세기는 이러한 중첩되지 않은 구역에서 덜 강하다. 예를 들어, 이중 중첩 구성에서 제 1 전체 파셋의 절반은 중첩되지 않으며 파워의 절반이 중첩되지 않은 부분으로부터 커플링-아웃될 것이다.
중첩되지 않은 시점과 종점 구역에서 세기가 낮아지는 문제점을 극복하기 위해서 여러 기술이 사용될 수 있다.
1. 도 14b의 요소(40a 및 40b) 및 도 16b를 참조하여 위에서 설명된 바와 같이, 시점 및 종점에서 더 짧은 파셋을 사용.
2. 다른 (중간)파셋의 공칭 반사율에 비해 중첩되지 않은 구역의 반사율을 증가시키는 고 반사 코팅으로 중첩되지 않은 구역을 코팅.
3. 후술하는 바와 같이, 파셋의 특성 반사율을 비-중첩으로부터 중첩으로 점진적으로 변경.
특성 반사율을 점진적으로 변경시키는 기술은 간략화를 위해 이중 중첩 구성을 사용하여 지금 설명되지만, 이러한 기술은 더 높은 중첩 구성에 적용될 수 있다.
이제, 이중 중첩 구성에서의 전체 공칭 반사율의 그래프인 도 19a를 참조한다. x-축은 광이 도파관(기판)에 커플링인 제 1 영역(54)에 가까운 제 1 파셋인 "1"(일)로 번호가 붙은 파셋에서 시작하는 파셋을 도시한다. 증가하는 번호가 붙은 파셋은 도파관의 말단부(55)를 향하는 파셋("1")에 후속하는 파셋이다. y-축은 전체 공칭 반사율의 백분율로서의 반사율을 도시한다. 얇은 선의 흑색 박스는 각각의 개별 파셋의 반사율(공칭 반사율의 백분율)이며, 두꺼운 흑색 선은 특성 반사율 - 아웃-커플링된 광선이 겪는 유효 반사율 - 이다. 일정한 공칭 반사율, 예를 들어 요구되는 공칭 반사율의 50 %를 갖는 각각의 파셋이 도시된다.
특성 반사율은 광선이 아웃-커플링되는 도파관 부분에 대한 개별 반사율의 합이다. 알 수 있는 바와 같이, 본 예에서 파셋 "1"로부터의 중첩되지 않은 구역으로부터 아웃-커플링된 특성 반사율은 도 10b 광선(2546)(또는 광선(2547))에서 볼 수 있는 바와 같이, (공칭 반사율의)50 %이다. 파셋 "1"과 파셋 "2"의 중첩(두 인접 파셋의 중첩)으로부터 아웃-커플링되는 특성 반사율은 (공칭 반사율의)100 %를 달성한다. 따라서, 도파관의 시점과 그 후속 부분 사이(50 % 대 100 %)에는 불연속이 있다.
이제, 교대 파셋 반사율의 변화를 사용하는 이중 중첩 구성에서의 전체 공칭 반사율의 예시적인 그래프인 도 19b를 참조한다. 본 도면에서, 파셋 "1"(제 1 파셋)은 대략적으로 중첩되지 않게(즉, 대략 100 %의 공칭 값을 갖게) 설계되며, 파셋 "2"(제 2 파셋)는 최소 반사를 갖도록 설계된다. 따라서, 조합될 때, 제 1 및 제 2 파셋은 대략 전혀 중첩되지 않는 특성 반사율을 가진다. 유사하게, 파셋 "3"(제 3 파셋)은 파셋 "1"과 거의 동일한 반사율을 갖지만 감소되며, 파셋 "4"는 파셋 "2"와 거의 동일한 반사율을 갖지만 증가한다. 본 도면에서, 파셋 "7" 및 "8"은 50 % (공칭)반사율을 가지므로, 도 19a에서 설명된 이중 중첩 구성과 같은 특성 반사율을 초래한다. 쇄선은 (더 많은 비-중첩 코팅 매개변수로 시작하는)홀수 번호 파셋의 반사율을 나타내는 반면에, 파선은 짝수 번호 파셋의 반사율을 나타낸다(증가하는 중첩 특성을 나타낸다). 두꺼운 흑색 (실)선은 도 19a의 파셋 "1"의 50 % 특성 반사율에 비해서, 제 1 절반 파셋의 절반이 아닌 반사율을 보여주는 (이중 중첩과 중첩이 없는 제 1 파셋에 의해 유발되는)두 개의 인접한 파셋의 반사율을 합한 특성 반사율을 나타낸다.
도 19a의 구성이 도파관의 시점과 후속 부분(50 % 대 100 %) 사이에 불연속성을 갖지만, 도 19b의 혁신적인 구성은 이러한 불연속성을 감소시킨다. 잔류 불연속성은 수렴 속도에 따라 달라지며, 예를 들어 6 개의 파셋 이후의 수렴에 대해서 불연속성은 대략 10 %가 될 것이다. 따라서, 중첩되지 않는 시점과 종점 구역에서 세기가 낮은 문제점을 극복한다. 본 구성은 도파관의 말단부에서 반대로 반복될 수 있다. 반사율의 변화 기울기(쇄선 및 파선)는 일련의 파셋의 결과적인 효과와 특성 반사율을 변화시키기 위해 변경될 수 있다. 도파관은 도파관의 길이에 대한 중첩 및 비-중첩 특성 반사율의 다양한 조합을 가질 수 있다. 예를 들어, 본 도면의 파셋 "4" 및 "5"는 파셋 "7" 및 "8"의 구성으로 수렴하지 않고 일련의 파셋의 적어도 일부에 대해 반복될 수 있다.
도 20a는 제 1 1D 도파관(10)을 제조하는데 사용될 수 있는 비-한정적이지만 바람직한 공정을 도시한다. 명료함을 위해, 도면에서 내부 파셋은 척도 또는 밀도로 도시되지 않는다.
코팅된 투명한 평행 판 세트는 적층물(stack, 400)로서 함께 부착된다. 적층물은 절편(slice, 404)을 생성하기 위해 대각선(402)으로 절단된다. 필요하다면, 커버 투명 판(405)이 절편(404)의 상부 및/또는 바닥(도시되지 않음)에 부착될 수 있다. 다음에, 절편(404)은 2D 도파관(406)을 생성시키기 위해, 1D 파셋 경사가 필요하면 파셋의 에지(404 상의 파선)에 수직으로 절단되거나, 2D 파셋 경사가 필요하면 대각선(404 상의 쇄선)으로 절단된다.
또한, 도 20b 내지 도 20e는 결합 프리즘의 부착을 위한 예시적인 절차이다. 슬라이싱된 2D 도파관(406)은 도 20b에 도시되며, 중첩 파셋을 가진다(시선 당 2 개의 파셋을 반영함). 이는 단지 비-제한적인 예일 뿐이며 중첩되지 않는 파셋이 또한 가능하다.
도 20b에 도시된 바와 같이, (명확성을 위해 투명하지 않게 도시된)2D 도파관(406)은 예를 들어, 도시된 바와 같이 점선(420A)을 따라 절단된다. 이러한 절단은 어떤 방향에서도 가능하지만, 수직 절단은 엄격한 색인 일치 요건을 완화한다. 바람직하게, 도 20c에서 볼 수 있는 바와 같이, 절단은 조명의 균일성을 유지하기 위해 중첩 파셋이 존재하는 곳(도 20c의 절단 단부 참조)에서 수행된다. 그렇지 않으면, 제 1 파셋은 감소된 조명을 초래하는 중첩 없이 반사할 것이다. 투명한 연장부(413)가 필요에 따라 추가될 수 있으며 프리즘(414)이 도파관(406)에 부착되어 (도 20d에 도시된 바와 같은)연장 및 결합 프리즘을 갖는 2D 도파관(416)을 생성한다. 연장이 필요하지 않은 경우에, 결합 프리즘(414)은 (도 20d에 도시된 바와 같이)조립된 도파관(417)을 생성하기 위해 도파관(406)에 직접 부착될 수 있다. 도파관(406)의 말단부는 임의의 잔여 광이 그로부터 분산될 수 있도록 남겨질 수 있고, 선택적으로 미광 반사를 최소화하기 위해 광 흡수재(예를 들어, 흑색 도료)로 도장될 수 있다.
도 21a 내지 도 21d는 중첩 파셋을 갖는 도파관을 생성하기 위한 예시적인 절차이다. 도 21a에서, 슬라이싱된 2D 도파관(406)은 도파관의 기단부가 될 지점에서 점선(420A)을 따라 예를 들어, 양 측면을 따라 수직으로 절단되고, 도파관의 말단부가 될 지점에서 점선(420B)을 따라 절단된다. 이는 각각의 기단부 및 말단부에 부분 파셋(40a 및 40b)을 갖는 도파관(420)을 생성한다. 도 21b의 실시예에서, 도파관(426 및 424)은 도파관(420)의 기단부와 말단부에 각각 부착되며, (420, 424 및 426의)조합이 조합된 도파관(428)의 도 21c의 부드러운 외부 표면들(면들)을 생성하도록 연마된다. 이 조합된 도파관(428)에서, 부착된 도파관(426 및 424)은 도파관(406)만큼 정확한 굴절률을 가질 필요가 없다.
이러한 제조 방법은 또한, 정확한 굴절률 일치의 필요성을 제거하기 위해 중첩 파셋 없는 도파관에도 적용될 수 있다.
도 21d에서, 선택적으로, 조합된 도파관(428)의 외부 표면들의 평활도 및 광학 특성은 굴절률 일치를 갖는 외부 면(427)을 부착하여 도파관(429)을 생성함으로써 개선될 수 있다.
도 21c 및 도 21d는 별도의 구성요소 주변을 도시하지만, (입사 광선(38)과 같은)광에 대해서, 그 주변은 투명하며, 단지 외부 면과 경사 코팅된 내부 면만이 광을 반사한다는 것을 주목해야 한다.
본 방법(도 20a 내지 도 21d)은 1D 도파관뿐만 아니라 2D 도파관에도 적용될 수 있다.
가변 파셋 간격, 폭 및 반사율과 같은 본 설명에서의 다양한 실시예가 명확성을 위해 별도로 설명되었다. 당업자는 이들 실시예가 조합될 수 있음을 인식할 것이다. 예를 들어, 도파관의 기단부로부터 말단부로 파셋의 폭을 변화시키면서 파셋 간격이 감소되도록 변화시키는 것이다.
전술한 예, 사용된 수 및 예시적인 계산은 그 실시예의 설명을 돕기 위한 것임에 주목해야 한다. 부적절한 인쇄 오류, 수학적 오류 및/또는 간소화된 계산의 사용은 본 발명의 유용성 및 기본 이점을 손상시키지 않는다.
첨부된 청구범위가 다중 종속성 없이 작성된 경우, 이는 단지 그러한 다중 종속성을 허용하지 않는 권한에서의 공식 요건을 수용하기 위해서만 수행된 것이다. 청구범위 다중 종속성을 제공함으로써 암시될 수 있는 모든 가능한 특징의 조합은 명백하게 예상되며 본 발명의 일부로 간주되어야 함에 주목해야 한다.
상기 설명은 단지 예로서 제공되는 것으로 의도되고, 많은 다른 실시예가 첨부된 청구범위에서 정해지는 대로의 본 발명의 범위 내에서 가능하다는 것이 이해될 것이다.
4 : 디스플레이 소스 6 : 시준 광학기기
16 : 제 1 반사 표면
20 : 기판 22, 22b : 반사 표면
26 : 하부 표면 26A : 상부 표면
34 : 파셋 46 : 최종 반사 표면
107 : 표준 안경테
114 : 디스플레이 소스용 구동 전자기기
116 : 전력 공급 및 데이터 인터페이스
118 : 리드 400 : 적층물
404 : 절편 406 : 도파관
16 : 제 1 반사 표면
20 : 기판 22, 22b : 반사 표면
26 : 하부 표면 26A : 상부 표면
34 : 파셋 46 : 최종 반사 표면
107 : 표준 안경테
114 : 디스플레이 소스용 구동 전자기기
116 : 전력 공급 및 데이터 인터페이스
118 : 리드 400 : 적층물
404 : 절편 406 : 도파관
Claims (19)
- (a) 서로 평행한 적어도 한쌍의 제1 외부 표면을 갖는 도파관; 및
(b) 시준된 이미지 광을 상기 도파관에 진입시켜(introduce) 상기 한쌍의 제1 외부 표면으로부터의 내부 반사에 의해 상기 도파관내에 상기 시준된 이미지 광을 전파하도록(propagate) 상기 도파관에 광학적으로 결합되는, 시준 이미지 소스로서, 상기 시준된 이미지 광은 상기 시준된 이미지 광의 중심에 있는 공칭 광선을 포함하는, 시준 이미지 소스를 포함하고,
상기 도파관은 일련의 파셋을 더 포함하고,
각각의 파셋은:
(A) 상기 시준된 이미지 광을 상기 도파관으로부터 커플링아웃하도록 상기 한쌍의 제1 외부 표면으로부터 내부적으로 반사되는 상기 시준된 이미지 광을 부분적으로 반사하는 부분 반사 표면이고;
(B) 상기 한쌍의 제1 외부 표면에 대해 비스듬한 각도로 있고;
(C) 상기 도파관 내부에 있고;
상기 도파관으로부터 커플링아웃된 공칭 광선의 방향으로 상기 한쌍의 제1 외부 표면중 하나의 외부 표면상의 파셋중 하나의 파셋의 기하학적 투사는 상기 파셋중 하나의 파셋에 인접한 파셋의 각각의 기하학적 투사와 중첩되고, 상기 중첩은 상기 도파관중 적어도 일부분을 따르는
광학 장치. - 제1항에 있어서,
(c) 상기 도파관으로부터 커플링아웃된 상기 시준된 이미지 광이 제2 도파관에 커플링인되도록 상기 도파관에 대해 배치된 제2 도파관을 더 포함하는
광학 장치.
- 제1항에 있어서,
상기 도파관은:
상기 도파관에 상기 시준된 이미지 광이 커플링인되는 제1 영역을 더 포함하고;
각각의 상기 파셋은 상기 제1 영역 방향의 전방 면 및 상기 전방 면 반대편의 후방 면을 갖고,
상기 비스듬한 각도 및 상기 시준된 이미지 광의 커플링인은 상기 시준된 이미지 광이 상기 전방 면으로부터 상기 후방 면까지 상기 파셋을 항상 통과하게 하는
광학 장치.
- 제1항에 있어서,
상기 도파관은:
상기 도파관에 광이 커플링인되는 제1 영역을 추가로 포함하고,
상기 일련의 파셋은:
(A) (Ⅰ) 상기 제1 영역의 기단에 위치되고, (Ⅱ) 상기 한쌍의 제1 외부 표면 사이의 방향으로 제1 폭을 갖는 제1 파셋;
(B) (Ⅰ) 상기 제1 영역으로부터 상기 일련의 파셋 중 종단에 있고, (Ⅱ) 상기 한쌍의 제1 외부 표면 사이의 방향으로 제3 폭을 갖는 최종 파셋; 및
(C) (Ⅰ) 상기 제1 파셋 및 상기 최종 파셋 사이에 있고, (Ⅱ) 상기 한쌍의 제1 외부 표면 사이의 방향으로 제2 폭(52c)을 갖는 하나 이상의 중간 파셋을 포함하고,
각각의 상기 파셋은:
(ⅰ) 폭이 상기 파셋의 평면에 있고,
(ⅱ) 상기 파셋의 폭의 기단쪽에 파셋-시점을 갖고; 및
(ⅲ) 상기 파셋의 폭의 종단쪽에 파셋-종점을 갖고;
상기 최종 파셋과 하나 이상의 중간 파셋 각각의 기하학적 투사는 인접한 하나 이상의 중간 파셋과 상기 제 1 파셋의 각각의 기하학적 투사와 중첩되는
광학 장치.
- 제4항에 있어서,
상기 제1 파셋의 상기 제1 폭은 상기 하나 이상의 중간 파셋의 상기 제2 폭보다 작은
광학 장치.
- 제1항에 있어서,
다수의 상기 파셋은 상기 도파관으로부터 커플링아웃된 상기 공칭 광선에 의해 교차되고, 파셋의 수는 상기 일련의 파셋 전부에 대해 일정한
광학 장치.
- 제4항에 있어서,
상기 최종 파셋은 공칭 반사율의 100%인 반사율을 가지며, 공칭 반사율은 상기 도파관의 특정 위치에서 필요한 전체 반사인
광학 장치.
- 제4항에 있어서,
상기 제 3 폭은 제 2 폭의 절반인
광학 장치.
- 제1항에 있어서,
일정한 수의 파셋은 상기 한쌍의 제1 외부 표면들 중 하나를 통해 상기 도파관으로부터의 커플링아웃된 광의 공칭 관측점을 향하는 시선에서 중첩되는
광학 장치.
- 제4항에 있어서,
일련의 파셋들 중 하나의 파셋의 폭은 일련의 파셋들 중 인접한 하나의 파셋의 폭에 대해 단조롭게(mnonotonically) 변화하는
광학 장치.
- 제1항에 있어서,
일련의 파셋들 중 한 쌍의 인접한 파셋들 사이의 간격은 일련의 파셋들 중 다른 한 쌍의 인접한 파셋들 사이의 인접한 간격에 대해 변화하는
광학 장치.
- 제4항에 있어서,
제 1 영역으로부터의 광의 전파는, 광의 적어도 일부분이 하나 이상의 중간 파셋들 중 하나와 마주치기 이전에 상기 제 1 파셋과 마주치도록 하는
광학 장치.
- 제4항에 있어서,
(a) 상기 제1 폭은 상기 제2 폭과 동일하며;
(b) 상기 제 1 파셋은 인접한 중간 파셋의 기하학적 투사와 중첩되지 않는 상기 제 1 파셋의 기하학적 투사에 대응하는 제 1 구역을 갖는
광학 장치.
- 제1항에 있어서,
각각의 상기 파셋은 상기 파셋 전반에 걸쳐 균일한 부분 반사율을 갖는
광학 장치.
- 제1항에 있어서,
상기 도파관은:
(a) 서로 평행하고 한쌍의 제1 외부 표면과 평행하지 않은 한쌍의 제2 외부 표면; 및
(b) 이미지가 한쌍의 제1 외부 표면 및 한쌍의 제2 외부 표면 모두에 대해 비스듬한 결합 각도로 초기 전파 방향으로 제 1 영역에서 상기 도파관에 커플링인될 때, 이미지가 상기 도파관을 따라 사중(four-fold) 내부 반사에 의해 전진하도록 구성되는 파셋을 더 갖는
광학 장치.
- 제15항에 있어서,
상기 한쌍의 제2 외부 표면은 상기 한쌍의 제1 외부 표면에 대해 수직인
광학 장치.
- 제15항에 있어서,
각각의 파셋은 상기 한쌍의 제2 외부 표면에 대해 비스듬한 각도인
광학 장치.
- 제4항에 있어서,
상기 최종 파셋의 파셋-시점과 상기 하나 이상의 중간 파셋 각각의 기하학적 투사는 상기 하나 이상의 중간 파셋과 상기 제 1 파셋의 인접하지 않은 파셋-종점의 각각의 기하학적 투사와 일치하는
광학 장치.
- 제1항에 있어서,
상기 도파관은 하나 이상의 외부 면을 더 포함하고, 각각의 상기 외부 면은 상기 한쌍의 제1 외부 표면의 한 표면에 부착되고, 상기 외부 면은 상기 한쌍의 제1 외부 표면과 일치하는 굴절률을 갖는
광학 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237004919A KR20230025946A (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762474614P | 2017-03-22 | 2017-03-22 | |
US62/474,614 | 2017-03-22 | ||
PCT/IL2018/050025 WO2018173035A1 (en) | 2017-03-22 | 2018-01-08 | Overlapping facets |
KR1020187007806A KR102319611B1 (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187007806A Division KR102319611B1 (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237004919A Division KR20230025946A (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210128013A KR20210128013A (ko) | 2021-10-25 |
KR102501345B1 true KR102501345B1 (ko) | 2023-02-17 |
Family
ID=63586315
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217032341A KR102501345B1 (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
KR1020237004919A KR20230025946A (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
KR1020187007806A KR102319611B1 (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237004919A KR20230025946A (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
KR1020187007806A KR102319611B1 (ko) | 2017-03-22 | 2018-01-08 | 중첩 파셋 |
Country Status (8)
Country | Link |
---|---|
US (4) | US10481319B2 (ko) |
EP (1) | EP3397997A4 (ko) |
JP (2) | JP6956414B2 (ko) |
KR (3) | KR102501345B1 (ko) |
CN (3) | CN113341566B (ko) |
IL (1) | IL262107B (ko) |
TW (2) | TWI751262B (ko) |
WO (1) | WO2018173035A1 (ko) |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
US10048499B2 (en) | 2005-11-08 | 2018-08-14 | Lumus Ltd. | Polarizing optical system |
IL232197B (en) | 2014-04-23 | 2018-04-30 | Lumus Ltd | Compact head-up display system |
IL235642B (en) | 2014-11-11 | 2021-08-31 | Lumus Ltd | A compact head-up display system is protected by an element with a super-thin structure |
IL237337B (en) | 2015-02-19 | 2020-03-31 | Amitai Yaakov | A compact head-up display system with a uniform image |
KR102482528B1 (ko) | 2016-10-09 | 2022-12-28 | 루머스 리미티드 | 직사각형 도파관을 사용하는 개구 배율기 |
JP6829482B2 (ja) | 2016-11-08 | 2021-02-10 | ルムス エルティーディー. | 光学遮断端部を備えた光ガイド装置およびその製造方法 |
WO2018138714A1 (en) | 2017-01-28 | 2018-08-02 | Lumus Ltd. | Augmented reality imaging system |
KR102692944B1 (ko) | 2017-02-22 | 2024-08-07 | 루머스 리미티드 | 광 가이드 광학 어셈블리 |
KR102501345B1 (ko) | 2017-03-22 | 2023-02-17 | 루머스 리미티드 | 중첩 파셋 |
IL251645B (en) | 2017-04-06 | 2018-08-30 | Lumus Ltd | Waveguide and method of production |
CN114879410B (zh) | 2017-07-19 | 2024-07-05 | 鲁姆斯有限公司 | 光学系统 |
KR102561362B1 (ko) | 2017-09-29 | 2023-07-28 | 루머스 리미티드 | 증강 현실 디스플레이 |
TWI829656B (zh) | 2017-10-22 | 2024-01-21 | 以色列商魯姆斯有限公司 | 採用光具座的頭戴式增強現實設備 |
US11092810B2 (en) | 2017-11-21 | 2021-08-17 | Lumus Ltd. | Optical aperture expansion arrangement for near-eye displays |
IL274894B2 (en) | 2017-12-03 | 2024-04-01 | Lumus Ltd | Optical instrument alignment methods |
US10506220B2 (en) | 2018-01-02 | 2019-12-10 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
RU2020100251A (ru) | 2018-01-02 | 2022-02-03 | Лумус Лтд. | Дисплеи дополненной реальности с активным выравниванием и соответствующие способы |
US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
US10802285B2 (en) * | 2018-03-05 | 2020-10-13 | Invensas Corporation | Remote optical engine for virtual reality or augmented reality headsets |
US11221294B2 (en) | 2018-04-08 | 2022-01-11 | Lumus Ltd. | Optical sample characterization |
JP7416407B2 (ja) | 2018-05-14 | 2024-01-17 | ルムス エルティーディー. | ニアアイディスプレイ用の細分された光学的な開口部を備えたプロジェクター構造及び対応する光学系 |
EP3794397A4 (en) | 2018-05-17 | 2021-07-07 | Lumus Ltd. | CLOSE-UP DISPLAY WITH OVERLAPPING PROJECTOR ARRANGEMENTS |
IL259518B2 (en) | 2018-05-22 | 2023-04-01 | Lumus Ltd | Optical system and method for improving light field uniformity |
MX2020012512A (es) | 2018-05-23 | 2021-02-16 | Lumus Ltd | Sistema optico que incluye elemento optico de guia de luz con superficies internas parcialmente reflejantes. |
EP3807620B1 (en) | 2018-06-21 | 2023-08-09 | Lumus Ltd. | Measurement technique for refractive index inhomogeneity between plates of a lightguide optical element |
US11415812B2 (en) | 2018-06-26 | 2022-08-16 | Lumus Ltd. | Compact collimating optical device and system |
KR20210031705A (ko) | 2018-07-16 | 2021-03-22 | 루머스 리미티드 | 편광 내부 반사기를 사용하는 광 가이드 광학 요소 |
AU2019330119B2 (en) | 2018-08-26 | 2023-08-24 | Lumus Ltd. | Reflection suppression in near eye displays |
TWI827663B (zh) * | 2018-09-06 | 2024-01-01 | 以色列商魯姆斯有限公司 | 具有雷射二極體照明的近眼顯示器 |
AU2019335612B2 (en) | 2018-09-09 | 2024-07-11 | Lumus Ltd. | Optical systems including light-guide optical elements with two-dimensional expansion |
JP7402543B2 (ja) | 2018-11-08 | 2023-12-21 | ルーマス リミテッド | ダイクロイックビームスプリッタカラーコンバイナを有する光学デバイスおよび光学システム |
TW202026685A (zh) | 2018-11-08 | 2020-07-16 | 以色列商魯姆斯有限公司 | 具有反射鏡的光導顯示器 |
DE202019106214U1 (de) | 2018-11-11 | 2020-04-15 | Lumus Ltd. | Augennahe Anzeige mit Zwischenfenster |
JP7161934B2 (ja) * | 2018-12-21 | 2022-10-27 | 株式会社日立エルジーデータストレージ | 映像表示装置及び映像表示システム |
KR20210113594A (ko) * | 2019-01-15 | 2021-09-16 | 루머스 리미티드 | 대칭 광 가이드 광학 요소를 제작하는 방법 |
JP7128751B2 (ja) * | 2019-01-23 | 2022-08-31 | 株式会社日立エルジーデータストレージ | 導光板および映像表示装置 |
CN113330348B (zh) * | 2019-01-24 | 2023-01-24 | 鲁姆斯有限公司 | 包括具有三阶段扩展的loe的光学系统 |
IL264551B2 (en) * | 2019-01-29 | 2024-09-01 | Oorym Optics Ltd | A compact head-up display system with high efficiency and a small entry key |
CN113474715A (zh) | 2019-02-28 | 2021-10-01 | 鲁姆斯有限公司 | 紧凑型准直图像投影仪 |
WO2020183229A1 (en) | 2019-03-12 | 2020-09-17 | Lumus Ltd. | Image projector |
CN111694150A (zh) * | 2019-03-14 | 2020-09-22 | 中强光电股份有限公司 | 近眼显示装置 |
TWI846858B (zh) | 2019-04-15 | 2024-07-01 | 以色列商魯姆斯有限公司 | 製造光導光學元件的方法 |
CN118131484A (zh) * | 2019-05-06 | 2024-06-04 | 鲁姆斯有限公司 | 光导光学元件 |
CN118534643A (zh) | 2019-06-27 | 2024-08-23 | 鲁姆斯有限公司 | 基于经由光导光学元件对眼睛成像来进行眼睛追踪的设备和方法 |
CA3145818C (en) * | 2019-07-04 | 2023-12-12 | Lumus Ltd. | Image waveguide with symmetric beam multiplication |
US11774757B2 (en) * | 2019-07-22 | 2023-10-03 | Apple Inc. | Optical module for head-mountable device |
JP7196038B2 (ja) * | 2019-08-26 | 2022-12-26 | 株式会社日立エルジーデータストレージ | 映像表示装置、及びそれを用いたヘッドマウントディスプレイ |
KR102413405B1 (ko) * | 2019-08-29 | 2022-06-27 | 한국전자기술연구원 | 출사동 확장이 가능한 반사형 도파관 디스플레이의 제조 방법 |
JP7432339B2 (ja) * | 2019-10-29 | 2024-02-16 | 株式会社日立エルジーデータストレージ | ヘッドマウントディスプレイ |
EP4434674A1 (en) | 2019-11-25 | 2024-09-25 | Lumus Ltd. | Method of polishing a surface of a waveguide |
IL270991B (en) | 2019-11-27 | 2020-07-30 | Lumus Ltd | A light guide with an optical element to perform polarization mixing |
CA3162579C (en) | 2019-12-05 | 2024-01-30 | Lumus Ltd | Light-guide optical element employing complementary coated partial reflectors, and light-guide optical element having reduced light scattering |
EP4042232A4 (en) | 2019-12-08 | 2022-12-28 | Lumus Ltd. | OPTICAL SYSTEMS WITH COMPACT IMAGE PROJECTOR |
KR20220118445A (ko) | 2019-12-25 | 2022-08-25 | 루머스 리미티드 | 도광 광학 엘리먼트와 연관된 광학 배열체를 사용하여 눈으로부터 광을 방향 전환시키는 것에 기초한 시선 추적을 위한 광학계 및 방법 |
CN114846384B (zh) * | 2019-12-30 | 2024-05-24 | 鲁姆斯有限公司 | 包括具有二维扩展的光导光学元件的光学系统 |
TWI740355B (zh) * | 2020-01-20 | 2021-09-21 | 尚立光電股份有限公司 | 光導引光學元件 |
JP7417752B2 (ja) * | 2020-01-22 | 2024-01-18 | レイア、インコーポレイテッド | 湾曲した反射マルチビーム要素を有するマルチビューバックライト、マルチビューディスプレイ、および方法 |
US11933985B2 (en) * | 2020-02-02 | 2024-03-19 | Lumus Ltd. | Method for producing light-guide optical elements |
JP7563781B2 (ja) * | 2020-04-05 | 2024-10-08 | ルーマス リミテッド | 二次元拡大型導光光学素子を含む光学システム |
KR20240006093A (ko) | 2020-05-24 | 2024-01-12 | 루머스 리미티드 | 복합 도광 광학 요소의 제조 방법 |
EP4085287A4 (en) | 2020-05-24 | 2023-07-12 | Lumus Ltd. | COMPOSITE LIGHT-TRANSDUCING OPTICAL ELEMENTS |
EP4242709A3 (en) * | 2020-08-23 | 2023-11-22 | Lumus Ltd. | Optical system for two-dimensional expansion of an image reducing glints and ghosts from the waveduide |
JP2022039127A (ja) * | 2020-08-28 | 2022-03-10 | 株式会社日立エルジーデータストレージ | ヘッドマウントディスプレイ |
DE202021104723U1 (de) | 2020-09-11 | 2021-10-18 | Lumus Ltd. | An ein optisches Lichtleiterelement gekoppelter Bildprojektor |
CN112103323B (zh) * | 2020-09-22 | 2022-09-27 | 京东方科技集团股份有限公司 | 显示面板及其制造方法和显示装置 |
EP4222416A4 (en) * | 2020-10-01 | 2024-03-27 | Lumus Ltd. | COMPOSITE OPTICAL LIGHT GUIDE ELEMENTS |
DE102020006442B3 (de) * | 2020-10-13 | 2021-10-28 | Sioptica Gmbh | Optisches Element mit variabler Transmission, Verfahren zur Herstellung eines solchenoptischen Elements und Verwendung eines solchen optischen Elements in einem Bildschirm |
US11668933B2 (en) | 2020-11-09 | 2023-06-06 | Lumus Ltd. | Color corrected back reflection in AR systems |
JP7465830B2 (ja) * | 2021-02-18 | 2024-04-11 | 株式会社日立エルジーデータストレージ | ヘッドマウントディスプレイ |
CA3205394C (en) | 2021-02-25 | 2023-11-21 | Lumus Ltd. | Optical aperture multipliers having a rectangular waveguide |
CN116724268B (zh) * | 2021-02-25 | 2024-10-25 | 鲁姆斯有限公司 | 具有矩形波导的光学孔径倍增器 |
US11860369B2 (en) | 2021-03-01 | 2024-01-02 | Lumus Ltd. | Optical system with compact coupling from a projector into a waveguide |
CN117425843A (zh) * | 2021-06-07 | 2024-01-19 | 鲁姆斯有限公司 | 具有矩形波导的光学孔径倍增器的制造方法 |
IL309966B2 (en) | 2021-07-04 | 2024-07-01 | Lumus Ltd | Display with stacked light guide elements providing different parts of the field of view |
TW202346937A (zh) * | 2022-04-03 | 2023-12-01 | 以色列商魯姆斯有限公司 | 採用與光導集成的二向色組合器的顯示器 |
US20240094552A1 (en) * | 2022-05-18 | 2024-03-21 | Meta Platforms Technologies, Llc | Geometrical waveguide with partial-coverage beam splitters |
GB202217444D0 (en) * | 2022-11-22 | 2023-01-04 | Vividq Ltd | Reflective image replicating waveguide |
WO2024172815A1 (en) * | 2023-02-15 | 2024-08-22 | Google Llc | Variable depth blazed waveguide |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100490850B1 (ko) * | 1996-03-12 | 2005-05-24 | 세이코 엡슨 가부시키가이샤 | 편광변환장치 및 그 제조방법, 그리고 투사형 표시장치 |
US20130163089A1 (en) | 2011-12-23 | 2013-06-27 | David D. Bohn | Reflective array waveguide |
WO2014209734A1 (en) | 2013-06-27 | 2014-12-31 | Microsoft Corporation | Waveguide including light turning gaps |
WO2015175648A1 (en) | 2014-05-16 | 2015-11-19 | Corning Incorporated | Edge lighted backlight unit for liquid crystal display device |
Family Cites Families (318)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2748659A (en) | 1951-02-26 | 1956-06-05 | Jenaer Glaswerk Schott & Gen | Light source, searchlight or the like for polarized light |
US2886911A (en) | 1953-07-23 | 1959-05-19 | George K C Hardesty | Duo-panel edge illumination system |
US2795069A (en) | 1956-02-07 | 1957-06-11 | George K C Hardesty | Laminated metal-plastic illuminable panel |
DE1422172B1 (de) | 1961-12-07 | 1970-11-12 | Kopperschmidt & Co Carl W | Periskop |
US3491245A (en) | 1967-04-10 | 1970-01-20 | George K C Hardesty | Guided light display panel |
GB1330836A (en) | 1969-11-24 | 1973-09-19 | Vickers Ltd | Optical field-flattening devices |
US3626394A (en) | 1970-04-09 | 1971-12-07 | Magnavox Co | Magneto-optical system |
US3667621A (en) | 1970-10-20 | 1972-06-06 | Wisconsin Foundry And Machine | Fluid power system for a self-contained unloading unit |
US3737212A (en) | 1970-12-14 | 1973-06-05 | Gen Electric | Diffraction optics head up display |
GB1377627A (en) | 1971-09-01 | 1974-12-18 | Rank Organisation Ltd | Beam splitting prisms |
CH563945A5 (ko) | 1971-10-20 | 1975-07-15 | Balzers Patent Beteilig Ag | |
US3857109A (en) | 1973-11-21 | 1974-12-24 | Us Navy | Longitudinally-pumped two-wavelength lasers |
US3873209A (en) | 1973-12-10 | 1975-03-25 | Bell Telephone Labor Inc | Measurement of thin films by optical waveguiding technique |
FR2295436A1 (fr) | 1974-12-16 | 1976-07-16 | Radiotechnique Compelec | Dispositif coupleur directif pour fibres optiques multimodes |
US3940204A (en) | 1975-01-23 | 1976-02-24 | Hughes Aircraft Company | Optical display systems utilizing holographic lenses |
US3969023A (en) | 1975-03-06 | 1976-07-13 | American Optical Corporation | Method and apparatus for detecting layers of stress in lenses |
GB1514977A (en) | 1975-12-02 | 1978-06-21 | Standard Telephones Cables Ltd | Detecting oil in water |
US4084883A (en) | 1977-02-28 | 1978-04-18 | The University Of Rochester | Reflective polarization retarder and laser apparatus utilizing same |
DE3000402A1 (de) | 1979-01-19 | 1980-07-31 | Smiths Industries Ltd | Anzeigevorrichtung |
US4355864A (en) | 1980-03-26 | 1982-10-26 | Sperry Corporation | Magnetooptic switching devices |
US4331387A (en) | 1980-07-03 | 1982-05-25 | Westinghouse Electric Corp. | Electro-optical modulator for randomly polarized light |
FR2496905A1 (fr) | 1980-12-24 | 1982-06-25 | France Etat | Episcope a reflexions multimodes |
DE3266408D1 (en) | 1981-10-14 | 1985-10-24 | Gec Avionics | Optical arrangements for head-up displays and night vision goggles |
US4516828A (en) | 1982-05-03 | 1985-05-14 | General Motors Corporation | Duplex communication on a single optical fiber |
FR2562273B1 (fr) | 1984-03-27 | 1986-08-08 | France Etat Armement | Dispositif d'observation a travers une paroi dans deux directions opposees |
US4715684A (en) | 1984-06-20 | 1987-12-29 | Hughes Aircraft Company | Optical system for three color liquid crystal light valve image projection system |
JPS61198102A (ja) * | 1985-02-27 | 1986-09-02 | Furukawa Electric Co Ltd:The | フイルタ付き光導波路の製造方法 |
US4711512A (en) | 1985-07-12 | 1987-12-08 | Environmental Research Institute Of Michigan | Compact head-up display |
US4805988A (en) | 1987-07-24 | 1989-02-21 | Nelson Dones | Personal video viewing device |
US4798448A (en) | 1988-02-16 | 1989-01-17 | General Electric Company | High efficiency illumination system for display devices |
US4932743A (en) | 1988-04-18 | 1990-06-12 | Ricoh Company, Ltd. | Optical waveguide device |
GB2220081A (en) | 1988-06-21 | 1989-12-28 | Hall & Watts Defence Optics Lt | Periscope apparatus |
EP0365406B1 (fr) | 1988-10-21 | 1993-09-29 | Thomson-Csf | Système optique de collimation notamment pour visuel de casque |
FR2638242B1 (fr) | 1988-10-21 | 1991-09-20 | Thomson Csf | Systeme optique de collimation, notamment pour visuel de casque |
CN1043203A (zh) | 1988-12-02 | 1990-06-20 | 三井石油化学工业株式会社 | 光输出控制方法及其装置 |
JPH02182447A (ja) | 1989-01-09 | 1990-07-17 | Mitsubishi Electric Corp | 誘電体多層反射膜 |
US5880888A (en) | 1989-01-23 | 1999-03-09 | Hughes Aircraft Company | Helmet mounted display system |
US4978952A (en) | 1989-02-24 | 1990-12-18 | Collimated Displays Incorporated | Flat screen color video display |
FR2647556B1 (fr) | 1989-05-23 | 1993-10-29 | Thomson Csf | Dispositif optique pour l'introduction d'une image collimatee dans le champ visuel d'un observateur et casque comportant au moins un tel dispositif |
US5157526A (en) | 1990-07-06 | 1992-10-20 | Hitachi, Ltd. | Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same |
US5096520A (en) | 1990-08-01 | 1992-03-17 | Faris Sades M | Method for producing high efficiency polarizing filters |
US5751480A (en) | 1991-04-09 | 1998-05-12 | Canon Kabushiki Kaisha | Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit |
FR2683918B1 (fr) | 1991-11-19 | 1994-09-09 | Thomson Csf | Materiau constitutif d'une lunette de visee et arme utilisant cette lunette. |
US5270748A (en) | 1992-01-30 | 1993-12-14 | Mak Technologies, Inc. | High-speed eye tracking device and method |
US5367399A (en) | 1992-02-13 | 1994-11-22 | Holotek Ltd. | Rotationally symmetric dual reflection optical beam scanner and system using same |
US5383053A (en) | 1992-04-07 | 1995-01-17 | Hughes Aircraft Company | Virtual image display having a high efficiency grid beamsplitter |
US5301067A (en) | 1992-05-06 | 1994-04-05 | Plx Inc. | High accuracy periscope assembly |
US5231642A (en) | 1992-05-08 | 1993-07-27 | Spectra Diode Laboratories, Inc. | Semiconductor ring and folded cavity lasers |
US5369415A (en) | 1992-06-29 | 1994-11-29 | Motorola, Inc. | Direct retinal scan display with planar imager |
ATE164221T1 (de) | 1992-08-13 | 1998-04-15 | Hewlett Packard Co | Spektroskopische systeme zur analyse von kleinen und kleinsten substanzmengen |
US6144347A (en) | 1992-10-09 | 2000-11-07 | Sony Corporation | Head-mounted image display apparatus |
US5537173A (en) | 1992-10-23 | 1996-07-16 | Olympus Optical Co., Ltd. | Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film |
IL103900A (en) | 1992-11-26 | 1998-06-15 | Electro Optics Ind Ltd | Optical system |
JP2777041B2 (ja) | 1993-02-12 | 1998-07-16 | 京セラ株式会社 | 時計用カバーガラス |
DE69434719T2 (de) | 1993-02-26 | 2007-02-08 | Yeda Research And Development Co., Ltd. | Optische holographische Vorrichtungen |
GB2278222A (en) | 1993-05-20 | 1994-11-23 | Sharp Kk | Spatial light modulator |
US5284417A (en) | 1993-06-07 | 1994-02-08 | Ford Motor Company | Automotive fuel pump with regenerative turbine and long curved vapor channel |
CA2173624C (en) | 1993-10-07 | 2005-03-29 | Gregory Lee Heacock | Binocular head mounted display system |
US5555329A (en) | 1993-11-05 | 1996-09-10 | Alliesignal Inc. | Light directing optical structure |
JPH07199236A (ja) | 1993-12-28 | 1995-08-04 | Fujitsu Ltd | 光スイッチ及び光分配器 |
US7262919B1 (en) | 1994-06-13 | 2007-08-28 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
FR2721872B1 (fr) | 1994-07-01 | 1996-08-02 | Renault | Dispositif d'amelioration de la vision d'une scene routiere |
JP3219943B2 (ja) | 1994-09-16 | 2001-10-15 | 株式会社東芝 | 平面直視型表示装置 |
JPH08114765A (ja) | 1994-10-15 | 1996-05-07 | Fujitsu Ltd | 偏光分離・変換素子並びにこれを用いた偏光照明装置及び投射型表示装置 |
US5650873A (en) | 1995-01-30 | 1997-07-22 | Lockheed Missiles & Space Company, Inc. | Micropolarization apparatus |
JPH08313843A (ja) | 1995-05-16 | 1996-11-29 | Agency Of Ind Science & Technol | 視線追従方式による広視野高解像度映像提示装置 |
GB9521210D0 (en) | 1995-10-17 | 1996-08-28 | Barr & Stroud Ltd | Display system |
GB2306741A (en) | 1995-10-24 | 1997-05-07 | Sharp Kk | Illuminator |
US6404550B1 (en) | 1996-07-25 | 2002-06-11 | Seiko Epson Corporation | Optical element suitable for projection display apparatus |
US5829854A (en) | 1996-09-26 | 1998-11-03 | Raychem Corporation | Angled color dispersement and recombination prism |
US5886822A (en) | 1996-10-08 | 1999-03-23 | The Microoptical Corporation | Image combining system for eyeglasses and face masks |
US6204974B1 (en) | 1996-10-08 | 2001-03-20 | The Microoptical Corporation | Compact image display system for eyeglasses or other head-borne frames |
JPH10133055A (ja) | 1996-10-31 | 1998-05-22 | Sharp Corp | 光結合器及びその製造方法 |
US5724163A (en) | 1996-11-12 | 1998-03-03 | Yariv Ben-Yehuda | Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer |
WO1998021612A1 (en) | 1996-11-12 | 1998-05-22 | Planop - Planar Optics Ltd | Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer |
US5919601A (en) | 1996-11-12 | 1999-07-06 | Kodak Polychrome Graphics, Llc | Radiation-sensitive compositions and printing plates |
JPH10160961A (ja) | 1996-12-03 | 1998-06-19 | Mitsubishi Gas Chem Co Inc | 光学素子 |
US5944964A (en) | 1997-02-13 | 1999-08-31 | Optical Coating Laboratory, Inc. | Methods and apparatus for preparing low net stress multilayer thin film coatings |
US6292296B1 (en) | 1997-05-28 | 2001-09-18 | Lg. Philips Lcd Co., Ltd. | Large scale polarizer and polarizer system employing it |
DE19725262C2 (de) | 1997-06-13 | 1999-08-05 | Vitaly Dr Lissotschenko | Optische Strahltransformationsvorrichtung |
DE69834539D1 (de) | 1997-06-16 | 2006-06-22 | Koninkl Philips Electronics Nv | Projektionsgerät |
US5883684A (en) | 1997-06-19 | 1999-03-16 | Three-Five Systems, Inc. | Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield |
US5896232A (en) | 1997-08-07 | 1999-04-20 | International Business Machines Corporation | Highly efficient and compact frontlighting for polarization-based reflection light valves |
RU2124746C1 (ru) | 1997-08-11 | 1999-01-10 | Закрытое акционерное общество "Кванта Инвест" | Дихроичный поляризатор |
GB2329901A (en) | 1997-09-30 | 1999-04-07 | Reckitt & Colman Inc | Acidic hard surface cleaning and disinfecting compositions |
US6091548A (en) | 1997-10-01 | 2000-07-18 | Raytheon Company | Optical system with two-stage aberration correction |
EP1027627B1 (en) | 1997-10-30 | 2009-02-11 | MYVU Corporation | Eyeglass interface system |
US6154321A (en) | 1998-01-20 | 2000-11-28 | University Of Washington | Virtual retinal display with eye tracking |
WO1999052002A1 (en) | 1998-04-02 | 1999-10-14 | Elop Electro-Optics Industries Ltd. | Holographic optical devices |
US6222971B1 (en) | 1998-07-17 | 2001-04-24 | David Slobodin | Small inlet optical panel and a method of making a small inlet optical panel |
US6231992B1 (en) | 1998-09-04 | 2001-05-15 | Yazaki Corporation | Partial reflector |
JP2000155234A (ja) | 1998-11-24 | 2000-06-06 | Nippon Electric Glass Co Ltd | 光ファイバ用毛細管 |
JP2000187177A (ja) | 1998-12-22 | 2000-07-04 | Olympus Optical Co Ltd | 画像表示装置 |
US20050024849A1 (en) | 1999-02-23 | 2005-02-03 | Parker Jeffery R. | Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides |
KR100745877B1 (ko) | 1999-04-21 | 2007-08-02 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 반사 lcd용 광학 시스템 |
US6798579B2 (en) | 1999-04-27 | 2004-09-28 | Optical Products Development Corp. | Real imaging system with reduced ghost imaging |
US6728034B1 (en) | 1999-06-16 | 2004-04-27 | Matsushita Electric Industrial Co., Ltd. | Diffractive optical element that polarizes light and an optical pickup using the same |
JP3913407B2 (ja) | 1999-07-09 | 2007-05-09 | 株式会社リコー | 屈折率分布の測定装置及び方法 |
US20030063042A1 (en) | 1999-07-29 | 2003-04-03 | Asher A. Friesem | Electronic utility devices incorporating a compact virtual image display |
CA2386856A1 (en) | 1999-10-14 | 2001-04-19 | Stratos Product Development Llc | Virtual imaging system |
JP2001141924A (ja) | 1999-11-16 | 2001-05-25 | Matsushita Electric Ind Co Ltd | 分波素子及び分波受光素子 |
JP3828328B2 (ja) | 1999-12-28 | 2006-10-04 | ローム株式会社 | ヘッドマウントディスプレー |
US6421148B2 (en) | 2000-01-07 | 2002-07-16 | Honeywell International Inc. | Volume holographic diffusers |
EP2275845B1 (en) | 2000-01-28 | 2017-04-26 | Seiko Epson Corporation | Optical reflection polarizer |
US6789910B2 (en) | 2000-04-12 | 2004-09-14 | Semiconductor Energy Laboratory, Co., Ltd. | Illumination apparatus |
US6362861B1 (en) | 2000-05-02 | 2002-03-26 | Agilent Technologies, Inc. | Microdisplay system |
IL136248A (en) | 2000-05-21 | 2004-08-31 | Elop Electrooptics Ind Ltd | System and method for changing light transmission through a substrate |
CZ302883B6 (cs) * | 2000-06-05 | 2012-01-04 | Lumus Ltd. | Optické zarízení obsahující svetlem propustnou podložku |
US6307612B1 (en) | 2000-06-08 | 2001-10-23 | Three-Five Systems, Inc. | Liquid crystal display element having a precisely controlled cell gap and method of making same |
IL136849A (en) | 2000-06-18 | 2004-09-27 | Beamus Ltd | Optical dynamic devices particularly for beam steering and optical communication |
US6324330B1 (en) | 2000-07-10 | 2001-11-27 | Ultratech Stepper, Inc. | Folded light tunnel apparatus and method |
EP1326102B1 (en) | 2000-07-24 | 2007-10-10 | Mitsubishi Rayon Co., Ltd. | Surface illuminant device |
KR100388819B1 (ko) | 2000-07-31 | 2003-06-25 | 주식회사 대양이앤씨 | 헤드 마운트 디스플레이용 광학 시스템 |
US6490104B1 (en) | 2000-09-15 | 2002-12-03 | Three-Five Systems, Inc. | Illumination system for a micro display |
IL138895A (en) | 2000-10-05 | 2005-08-31 | Elop Electrooptics Ind Ltd | Optical switching devices |
US6542307B2 (en) | 2000-10-20 | 2003-04-01 | Three-Five Systems, Inc. | Compact near-eye illumination system |
GB0108838D0 (en) | 2001-04-07 | 2001-05-30 | Cambridge 3D Display Ltd | Far field display |
JP4772204B2 (ja) | 2001-04-13 | 2011-09-14 | オリンパス株式会社 | 観察光学系 |
KR100813943B1 (ko) | 2001-04-30 | 2008-03-14 | 삼성전자주식회사 | 복합 반사프리즘 및 이를 채용한 광픽업장치 |
GB2375188B (en) | 2001-04-30 | 2004-07-21 | Samsung Electronics Co Ltd | Wearable Display Apparatus with Waveguide Having Diagonally Cut End Face |
GB0112871D0 (en) | 2001-05-26 | 2001-07-18 | Thales Optics Ltd | Improved optical device |
US6672721B2 (en) | 2001-06-11 | 2004-01-06 | 3M Innovative Properties Company | Projection system having low astigmatism |
US6690513B2 (en) | 2001-07-03 | 2004-02-10 | Jds Uniphase Corporation | Rhomb interleaver |
US6791760B2 (en) | 2001-07-24 | 2004-09-14 | Itt Manufacturing Enterprises, Inc. | Planar diffractive relay |
US6556282B2 (en) | 2001-09-04 | 2003-04-29 | Rosemount Aerospace, Inc. | Combined LOAS and LIDAR system |
US20030090439A1 (en) | 2001-09-07 | 2003-05-15 | Spitzer Mark B. | Light weight, compact, remountable face-supported electronic display |
DE10150656C2 (de) | 2001-10-13 | 2003-10-02 | Schott Glas | Reflektor für eine Hochdruck-Gasentladungslampe |
US6775432B2 (en) | 2001-10-19 | 2004-08-10 | Santanu Basu | Method and apparatus for optical wavelength demultiplexing, multiplexing and routing |
JP2003140081A (ja) | 2001-11-06 | 2003-05-14 | Nikon Corp | ホログラムコンバイナ光学系 |
JP2003149643A (ja) | 2001-11-16 | 2003-05-21 | Goyo Paper Working Co Ltd | 液晶表示用フロントライト |
FR2834799B1 (fr) | 2002-01-11 | 2004-04-16 | Essilor Int | Lentille ophtalmique presentant un insert de projection |
HRP20020044B1 (en) | 2002-01-16 | 2008-11-30 | Mara-Institut D.O.O. | Indirectly prestressed, concrete, roof-ceiling construction with flat soffit |
IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
DE10216169A1 (de) | 2002-04-12 | 2003-10-30 | Zeiss Carl Jena Gmbh | Anordnung zur Polarisation von Licht |
ITTO20020625A1 (it) | 2002-07-17 | 2004-01-19 | Fiat Ricerche | Guida di luce per dispositivi di visualizzazione di tipo "head-mounted" o "head-up" |
EP1418459A1 (en) | 2002-11-08 | 2004-05-12 | 3M Innovative Properties Company | Optical device comprising cubo-octahedral polyhedron as light flux splitter or light diffusing element |
US20050174641A1 (en) | 2002-11-26 | 2005-08-11 | Jds Uniphase Corporation | Polarization conversion light integrator |
US20090190890A1 (en) | 2002-12-19 | 2009-07-30 | Freeland Riley S | Fiber optic cable having a dry insert and methods of making the same |
US7175304B2 (en) | 2003-01-30 | 2007-02-13 | Touchsensor Technologies, Llc | Integrated low profile display |
US7205960B2 (en) | 2003-02-19 | 2007-04-17 | Mirage Innovations Ltd. | Chromatic planar optic display system |
US20040199053A1 (en) | 2003-04-01 | 2004-10-07 | Scimed Life Systems, Inc. | Autosteering vision endoscope |
EP1465047A1 (en) | 2003-04-03 | 2004-10-06 | Deutsche Thomson-Brandt Gmbh | Method for presenting menu buttons |
US7206133B2 (en) | 2003-05-22 | 2007-04-17 | Optical Research Associates | Light distribution apparatus and methods for illuminating optical systems |
US20060132914A1 (en) | 2003-06-10 | 2006-06-22 | Victor Weiss | Method and system for displaying an informative image against a background image |
JP2005084522A (ja) | 2003-09-10 | 2005-03-31 | Nikon Corp | コンバイナ光学系 |
IL157836A (en) | 2003-09-10 | 2009-08-03 | Yaakov Amitai | Optical devices particularly for remote viewing applications |
IL157838A (en) | 2003-09-10 | 2013-05-30 | Yaakov Amitai | High-brightness optical device |
IL157837A (en) | 2003-09-10 | 2012-12-31 | Yaakov Amitai | Substrate-guided optical device particularly for three-dimensional displays |
KR20050037085A (ko) | 2003-10-17 | 2005-04-21 | 삼성전자주식회사 | 광터널, 균일광 조명장치 및 이를 채용한 프로젝터 |
US7430355B2 (en) | 2003-12-08 | 2008-09-30 | University Of Cincinnati | Light emissive signage devices based on lightwave coupling |
US7101063B2 (en) | 2004-02-05 | 2006-09-05 | Hewlett-Packard Development Company, L.P. | Systems and methods for integrating light |
JP2005308717A (ja) | 2004-03-23 | 2005-11-04 | Shin Etsu Chem Co Ltd | 光ファイバ母材のコア部非円率の測定方法及びその装置 |
CN100410727C (zh) | 2004-03-29 | 2008-08-13 | 索尼株式会社 | 光学装置以及虚像显示装置 |
JP4609160B2 (ja) | 2004-05-17 | 2011-01-12 | 株式会社ニコン | 光学素子、コンバイナ光学系、及び情報表示装置 |
EP1748305A4 (en) | 2004-05-17 | 2009-01-14 | Nikon Corp | OPTICAL ELEMENT, COMBINER OPTICAL SYSTEM, AND IMAGE DISPLAY UNIT |
TWI282017B (en) | 2004-05-28 | 2007-06-01 | Epistar Corp | Planar light device |
IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
IL162573A (en) | 2004-06-17 | 2013-05-30 | Lumus Ltd | Optical component in a large key conductive substrate |
JPWO2006001254A1 (ja) | 2004-06-29 | 2008-04-17 | 株式会社ニコン | イメージコンバイナ及び画像表示装置 |
IL163361A (en) | 2004-08-05 | 2011-06-30 | Lumus Ltd | Optical device for light coupling into a guiding substrate |
JP2006145644A (ja) | 2004-11-17 | 2006-06-08 | Hitachi Ltd | 偏光分離装置及びそれを用いた投射型表示装置 |
JP5282358B2 (ja) * | 2004-12-06 | 2013-09-04 | 株式会社ニコン | 画像表示光学系及び画像表示装置 |
US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
IL166799A (en) | 2005-02-10 | 2014-09-30 | Lumus Ltd | Aluminum shale surfaces for use in a conductive substrate |
EP1849033B1 (en) | 2005-02-10 | 2019-06-19 | Lumus Ltd | Substrate-guided optical device utilizing thin transparent layer |
US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
JP2008533507A (ja) | 2005-02-10 | 2008-08-21 | ラマス リミテッド | 特に視力強化光学系のための基板案内光学装置 |
EP1848966A1 (en) | 2005-02-17 | 2007-10-31 | Lumus Ltd | Personal navigation system |
FR2883078B1 (fr) | 2005-03-10 | 2008-02-22 | Essilor Int | Imageur optique destine a la realisation d'un afficheur optique |
WO2006098097A1 (ja) | 2005-03-14 | 2006-09-21 | Nikon Corporation | 画像表示光学系及び画像表示装置 |
US8187481B1 (en) | 2005-05-05 | 2012-05-29 | Coho Holdings, Llc | Random texture anti-reflection optical surface treatment |
US7405881B2 (en) | 2005-05-30 | 2008-07-29 | Konica Minolta Holdings, Inc. | Image display apparatus and head mount display |
US8718437B2 (en) | 2006-03-07 | 2014-05-06 | Qd Vision, Inc. | Compositions, optical component, system including an optical component, devices, and other products |
JP5030134B2 (ja) | 2005-08-18 | 2012-09-19 | 株式会社リコー | 偏光変換素子、偏光変換光学系および画像投影装置 |
US9081178B2 (en) * | 2005-09-07 | 2015-07-14 | Bae Systems Plc | Projection display for displaying an image to a viewer |
IL171820A (en) | 2005-11-08 | 2014-04-30 | Lumus Ltd | A polarizing optical component for light coupling within a conductive substrate |
US10048499B2 (en) | 2005-11-08 | 2018-08-14 | Lumus Ltd. | Polarizing optical system |
WO2007062098A2 (en) | 2005-11-21 | 2007-05-31 | Microvision, Inc. | Display with image-guiding substrate |
CN101336089A (zh) | 2006-01-26 | 2008-12-31 | 诺基亚公司 | 眼睛跟踪器设备 |
IL173715A0 (en) | 2006-02-14 | 2007-03-08 | Lumus Ltd | Substrate-guided imaging lens |
JP2007219106A (ja) | 2006-02-16 | 2007-08-30 | Konica Minolta Holdings Inc | 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ |
IL174170A (en) | 2006-03-08 | 2015-02-26 | Abraham Aharoni | Device and method for two-eyed tuning |
CN200941530Y (zh) | 2006-08-08 | 2007-08-29 | 牛建民 | 一种半导体激光散斑发生装置 |
IL177618A (en) | 2006-08-22 | 2015-02-26 | Lumus Ltd | Optical component in conductive substrate |
US20080151375A1 (en) | 2006-12-26 | 2008-06-26 | Ching-Bin Lin | Light guide means as dually effected by light concentrating and light diffusing |
JP5191771B2 (ja) * | 2007-04-04 | 2013-05-08 | パナソニック株式会社 | 面状照明装置とそれを用いた液晶表示装置 |
WO2008129539A2 (en) | 2007-04-22 | 2008-10-30 | Lumus Ltd. | A collimating optical device and system |
US8139944B2 (en) | 2007-05-08 | 2012-03-20 | The Boeing Company | Method and apparatus for clearing an optical channel |
IL183637A (en) | 2007-06-04 | 2013-06-27 | Zvi Lapidot | Head display system |
US20090010023A1 (en) * | 2007-07-05 | 2009-01-08 | I2Ic Corporation | Light source having transparent layers |
US7589901B2 (en) | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
JP2009128565A (ja) | 2007-11-22 | 2009-06-11 | Toshiba Corp | 表示装置、表示方法及びヘッドアップディスプレイ |
FR2925171B1 (fr) | 2007-12-13 | 2010-04-16 | Optinvent | Guide optique et systeme optique de vision oculaire |
US8369019B2 (en) | 2008-04-14 | 2013-02-05 | Bae Systems Plc | Waveguides |
EP2332195A2 (en) | 2008-08-19 | 2011-06-15 | Plextronics, Inc. | Organic light emitting diode lighting devices |
US8358266B2 (en) * | 2008-09-02 | 2013-01-22 | Qualcomm Mems Technologies, Inc. | Light turning device with prismatic light turning features |
JP2010060770A (ja) | 2008-09-03 | 2010-03-18 | Epson Toyocom Corp | 光学物品及び光学物品の製造方法 |
WO2010032029A1 (en) | 2008-09-16 | 2010-03-25 | Bae Systems Plc | Improvements in or relating to waveguides |
US7949214B2 (en) | 2008-11-06 | 2011-05-24 | Microvision, Inc. | Substrate guided relay with pupil expanding input coupler |
US8317352B2 (en) | 2008-12-11 | 2012-11-27 | Robert Saccomanno | Non-invasive injection of light into a transparent substrate, such as a window pane through its face |
EP2373924B2 (en) | 2008-12-12 | 2022-01-05 | BAE Systems PLC | Improvements in or relating to waveguides |
JP2010170606A (ja) | 2009-01-21 | 2010-08-05 | Fujinon Corp | プリズムアセンブリの製造方法 |
JP5133925B2 (ja) | 2009-03-25 | 2013-01-30 | オリンパス株式会社 | 頭部装着型画像表示装置 |
WO2010116291A2 (en) | 2009-04-08 | 2010-10-14 | International Business Machines Corporation | Optical waveguide with embedded light-reflecting feature and method for fabricating the same |
WO2010124028A2 (en) | 2009-04-21 | 2010-10-28 | Vasylyev Sergiy V | Light collection and illumination systems employing planar waveguide |
US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US20100291489A1 (en) | 2009-05-15 | 2010-11-18 | Api Nanofabrication And Research Corp. | Exposure methods for forming patterned layers and apparatus for performing the same |
JP2011039490A (ja) * | 2009-07-17 | 2011-02-24 | Sony Corp | 画像表示装置、頭部装着型ディスプレイ及び光ビーム伸長装置 |
TW201115231A (en) | 2009-10-28 | 2011-05-01 | Coretronic Corp | Backlight module |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
JP2011199672A (ja) | 2010-03-19 | 2011-10-06 | Seiko Instruments Inc | ガラス基板の接合方法、ガラス接合体、パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計 |
JP5499854B2 (ja) | 2010-04-08 | 2014-05-21 | ソニー株式会社 | 頭部装着型ディスプレイにおける光学的位置調整方法 |
US9028123B2 (en) | 2010-04-16 | 2015-05-12 | Flex Lighting Ii, Llc | Display illumination device with a film-based lightguide having stacked incident surfaces |
WO2011130720A2 (en) | 2010-04-16 | 2011-10-20 | Flex Lighting Ii, Llc | Sign comprising a film-based lightguide |
JP5499985B2 (ja) | 2010-08-09 | 2014-05-21 | ソニー株式会社 | 表示装置組立体 |
JP5471986B2 (ja) * | 2010-09-07 | 2014-04-16 | 株式会社島津製作所 | 光学部品及びそれを用いた表示装置 |
US8649099B2 (en) | 2010-09-13 | 2014-02-11 | Vuzix Corporation | Prismatic multiple waveguide for near-eye display |
US8743464B1 (en) | 2010-11-03 | 2014-06-03 | Google Inc. | Waveguide with embedded mirrors |
US8666208B1 (en) | 2010-11-05 | 2014-03-04 | Google Inc. | Moldable waveguide with embedded micro structures |
JP2012123936A (ja) | 2010-12-06 | 2012-06-28 | Omron Corp | 面光源装置及び立体表示装置 |
JP5645631B2 (ja) | 2010-12-13 | 2014-12-24 | 三菱電機株式会社 | 波長モニタ、光モジュールおよび波長モニタ方法 |
US8939579B2 (en) | 2011-01-28 | 2015-01-27 | Light Prescriptions Innovators, Llc | Autofocusing eyewear, especially for presbyopia correction |
JP5633406B2 (ja) * | 2011-02-04 | 2014-12-03 | セイコーエプソン株式会社 | 虚像表示装置 |
JP5747538B2 (ja) | 2011-02-04 | 2015-07-15 | セイコーエプソン株式会社 | 虚像表示装置 |
US8699842B2 (en) * | 2011-05-27 | 2014-04-15 | Google Inc. | Image relay waveguide and method of producing same |
JP2012252091A (ja) | 2011-06-01 | 2012-12-20 | Sony Corp | 表示装置 |
US8639073B2 (en) | 2011-07-19 | 2014-01-28 | Teraxion Inc. | Fiber coupling technique on a waveguide |
JP6119091B2 (ja) | 2011-09-30 | 2017-04-26 | セイコーエプソン株式会社 | 虚像表示装置 |
GB201117029D0 (en) | 2011-10-04 | 2011-11-16 | Bae Systems Plc | Optical waveguide and display device |
JP5826597B2 (ja) | 2011-10-31 | 2015-12-02 | シャープ株式会社 | 擬似太陽光照射装置 |
JP5879973B2 (ja) | 2011-11-30 | 2016-03-08 | ソニー株式会社 | 光反射部材、光ビーム伸長装置、画像表示装置及び光学装置 |
US8873148B1 (en) | 2011-12-12 | 2014-10-28 | Google Inc. | Eyepiece having total internal reflection based light folding |
FR2983976B1 (fr) | 2011-12-13 | 2017-10-20 | Optinvent | Guide optique a elements de guidage superposes et procede de fabrication |
US10030846B2 (en) | 2012-02-14 | 2018-07-24 | Svv Technology Innovations, Inc. | Face-lit waveguide illumination systems |
US9297996B2 (en) | 2012-02-15 | 2016-03-29 | Microsoft Technology Licensing, Llc | Laser illumination scanning |
US8665178B1 (en) | 2012-03-01 | 2014-03-04 | Google, Inc. | Partially-reflective waveguide stack and heads-up display using same |
US9274338B2 (en) * | 2012-03-21 | 2016-03-01 | Microsoft Technology Licensing, Llc | Increasing field of view of reflective waveguide |
US8736963B2 (en) | 2012-03-21 | 2014-05-27 | Microsoft Corporation | Two-dimensional exit-pupil expansion |
US9523852B1 (en) | 2012-03-28 | 2016-12-20 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
IL219907A (en) | 2012-05-21 | 2017-08-31 | Lumus Ltd | Integrated head display system with eye tracking |
WO2013179102A1 (en) | 2012-05-29 | 2013-12-05 | NLT-Spine Ltd. | Laterally deflectable implant |
US20130321432A1 (en) | 2012-06-01 | 2013-12-05 | QUALCOMM MEMES Technologies, Inc. | Light guide with embedded fresnel reflectors |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
CN104737061B (zh) | 2012-06-11 | 2018-01-16 | 奇跃公司 | 使用波导反射器阵列投射器的多深度平面三维显示器 |
US8909985B2 (en) | 2012-07-12 | 2014-12-09 | International Business Machines Corporation | Multiple hyperswap replication sessions |
US8913324B2 (en) | 2012-08-07 | 2014-12-16 | Nokia Corporation | Display illumination light guide |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
FR2999301B1 (fr) | 2012-12-12 | 2015-01-09 | Thales Sa | Guide optique d'images collimatees a dedoubleur de faisceaux optiques et dispositif optique associe |
US8947783B2 (en) | 2013-01-02 | 2015-02-03 | Google Inc. | Optical combiner for near-eye display |
JP6065630B2 (ja) | 2013-02-13 | 2017-01-25 | セイコーエプソン株式会社 | 虚像表示装置 |
DE102013106392B4 (de) | 2013-06-19 | 2017-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung einer Entspiegelungsschicht |
US10222535B2 (en) | 2013-07-02 | 2019-03-05 | 3M Innovative Properties Company | Flat light guide |
JPWO2015012280A1 (ja) | 2013-07-24 | 2017-03-02 | コニカミノルタ株式会社 | 視線検出装置 |
US20150081313A1 (en) | 2013-09-16 | 2015-03-19 | Sunedison Llc | Methods and systems for photovoltaic site installation, commissioining, and provisioning |
CA2918100C (en) | 2013-09-27 | 2023-03-14 | Trustees Of Princeton University | Anodically bonded cells with optical elements |
DE102013219625B3 (de) | 2013-09-27 | 2015-01-22 | Carl Zeiss Ag | Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung sowie Anzeigevorrichtung mit einem solchen Brillenglas |
JP6225657B2 (ja) * | 2013-11-15 | 2017-11-08 | セイコーエプソン株式会社 | 光学素子および画像表示装置並びにこれらの製造方法 |
CN109597202B (zh) | 2013-11-27 | 2021-08-03 | 奇跃公司 | 虚拟和增强现实系统与方法 |
JP6287131B2 (ja) | 2013-12-02 | 2018-03-07 | セイコーエプソン株式会社 | 虚像表示装置 |
US9423552B2 (en) | 2014-02-24 | 2016-08-23 | Google Inc. | Lightguide device with outcoupling structures |
US9311525B2 (en) | 2014-03-19 | 2016-04-12 | Qualcomm Incorporated | Method and apparatus for establishing connection between electronic devices |
JP6442149B2 (ja) | 2014-03-27 | 2018-12-19 | オリンパス株式会社 | 画像表示装置 |
CN108572449B (zh) | 2014-03-31 | 2021-09-14 | 联想(北京)有限公司 | 显示装置和电子设备 |
CN103941398B (zh) * | 2014-04-09 | 2016-10-19 | 北京理工大学 | 透过式眼镜显示器 |
DE102014207490B3 (de) | 2014-04-17 | 2015-07-02 | Carl Zeiss Ag | Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung und Anzeigevorrichtung mit einem solchen Brillenglas |
IL232197B (en) | 2014-04-23 | 2018-04-30 | Lumus Ltd | Compact head-up display system |
US9766459B2 (en) | 2014-04-25 | 2017-09-19 | Microsoft Technology Licensing, Llc | Display devices with dimming panels |
JP6096713B2 (ja) | 2014-05-21 | 2017-03-15 | 株式会社東芝 | 表示装置 |
JP6746282B2 (ja) | 2014-07-09 | 2020-08-26 | 恵和株式会社 | 光学シート、エッジライト型のバックライトユニット及び光学シートの製造方法 |
IL235642B (en) | 2014-11-11 | 2021-08-31 | Lumus Ltd | A compact head-up display system is protected by an element with a super-thin structure |
IL236491B (en) | 2014-12-25 | 2020-11-30 | Lumus Ltd | A method for manufacturing an optical component in a conductive substrate |
IL236490B (en) | 2014-12-25 | 2021-10-31 | Lumus Ltd | Optical component on a conductive substrate |
US10359632B2 (en) | 2015-01-06 | 2019-07-23 | Vuzix Corporation | Head mounted imaging apparatus with optical coupling |
CN104536138B (zh) * | 2015-01-25 | 2017-04-05 | 上海理湃光晶技术有限公司 | 带有锯齿夹层结构的平面波导双目光学显示器件 |
US20160234485A1 (en) | 2015-02-09 | 2016-08-11 | Steven John Robbins | Display System |
IL237337B (en) | 2015-02-19 | 2020-03-31 | Amitai Yaakov | A compact head-up display system with a uniform image |
US10007117B2 (en) | 2015-09-10 | 2018-06-26 | Vuzix Corporation | Imaging light guide with reflective turning array |
US11016298B2 (en) | 2015-10-05 | 2021-05-25 | Magic Leap, Inc. | Microlens collimator for scanning optical fiber in virtual/augmented reality system |
US10345594B2 (en) | 2015-12-18 | 2019-07-09 | Ostendo Technologies, Inc. | Systems and methods for augmented near-eye wearable displays |
US11256100B2 (en) | 2016-01-06 | 2022-02-22 | Vuzix Corporation | Head-mounted display with pivoting imaging light guide |
IL244181B (en) | 2016-02-18 | 2020-06-30 | Amitai Yaakov | Compact head-up display system |
US10473933B2 (en) | 2016-02-19 | 2019-11-12 | Microsoft Technology Licensing, Llc | Waveguide pupil relay |
US10302957B2 (en) | 2016-02-24 | 2019-05-28 | Magic Leap, Inc. | Polarizing beam splitter with low light leakage |
CN205787362U (zh) * | 2016-02-26 | 2016-12-07 | 中国航空工业集团公司洛阳电光设备研究所 | 光波导元件、二维扩展光波导器件、平视显示装置及照明装置 |
US20170343810A1 (en) | 2016-05-24 | 2017-11-30 | Osterhout Group, Inc. | Pre-assembled solid optical assembly for head worn computers |
WO2017199232A1 (en) | 2016-05-18 | 2017-11-23 | Lumus Ltd. | Head-mounted imaging device |
US20170353714A1 (en) | 2016-06-06 | 2017-12-07 | Navid Poulad | Self-calibrating display system |
TWI614527B (zh) | 2016-08-18 | 2018-02-11 | 盧姆斯有限公司 | 具有一致影像之小型頭戴式顯示系統 |
US10466479B2 (en) | 2016-10-07 | 2019-11-05 | Coretronic Corporation | Head-mounted display apparatus and optical system |
KR102482528B1 (ko) | 2016-10-09 | 2022-12-28 | 루머스 리미티드 | 직사각형 도파관을 사용하는 개구 배율기 |
JP6829482B2 (ja) | 2016-11-08 | 2021-02-10 | ルムス エルティーディー. | 光学遮断端部を備えた光ガイド装置およびその製造方法 |
CA3045046A1 (en) | 2016-11-30 | 2018-06-07 | Magic Leap, Inc. | Method and system for high resolution digitized display |
KR20190000456U (ko) | 2016-12-02 | 2019-02-19 | 루머스 리미티드 | 소형 시준 이미지 프로젝터를 구비한 광학 시스템 |
CN108254918B (zh) * | 2016-12-28 | 2021-10-26 | 精工爱普生株式会社 | 光学元件和显示装置 |
WO2018122859A1 (en) | 2016-12-31 | 2018-07-05 | Lumus Ltd. | Eye tracker based on retinal imaging via light-guide optical element |
EP3566092B1 (en) | 2017-01-04 | 2022-10-05 | Lumus Ltd. | Optical system for near-eye displays |
KR102692944B1 (ko) | 2017-02-22 | 2024-08-07 | 루머스 리미티드 | 광 가이드 광학 어셈블리 |
AU2018239264B2 (en) | 2017-03-21 | 2023-05-18 | Magic Leap, Inc. | Eye-imaging apparatus using diffractive optical elements |
KR102501345B1 (ko) | 2017-03-22 | 2023-02-17 | 루머스 리미티드 | 중첩 파셋 |
JP2018165740A (ja) | 2017-03-28 | 2018-10-25 | セイコーエプソン株式会社 | 表示装置 |
IL251645B (en) | 2017-04-06 | 2018-08-30 | Lumus Ltd | Waveguide and method of production |
KR102456533B1 (ko) | 2017-05-23 | 2022-10-19 | 삼성전자주식회사 | 홀로그램 재생 장치 및 그 제어 방법 |
CN107238928B (zh) | 2017-06-09 | 2020-03-06 | 京东方科技集团股份有限公司 | 一种阵列波导 |
CN114879410B (zh) | 2017-07-19 | 2024-07-05 | 鲁姆斯有限公司 | 光学系统 |
KR102561362B1 (ko) | 2017-09-29 | 2023-07-28 | 루머스 리미티드 | 증강 현실 디스플레이 |
TWI829656B (zh) | 2017-10-22 | 2024-01-21 | 以色列商魯姆斯有限公司 | 採用光具座的頭戴式增強現實設備 |
US20190170327A1 (en) | 2017-12-03 | 2019-06-06 | Lumus Ltd. | Optical illuminator device |
WO2019106636A1 (en) | 2017-12-03 | 2019-06-06 | Lumus Ltd. | Optical device testing method and apparatus |
US10506220B2 (en) | 2018-01-02 | 2019-12-10 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
JP7416407B2 (ja) | 2018-05-14 | 2024-01-17 | ルムス エルティーディー. | ニアアイディスプレイ用の細分された光学的な開口部を備えたプロジェクター構造及び対応する光学系 |
TWM587757U (zh) | 2018-05-27 | 2019-12-11 | 以色列商魯姆斯有限公司 | 具有場曲率影響減輕的基於基板引導的光學系統 |
US11415812B2 (en) | 2018-06-26 | 2022-08-16 | Lumus Ltd. | Compact collimating optical device and system |
AU2019335612B2 (en) | 2018-09-09 | 2024-07-11 | Lumus Ltd. | Optical systems including light-guide optical elements with two-dimensional expansion |
DE202019106214U1 (de) | 2018-11-11 | 2020-04-15 | Lumus Ltd. | Augennahe Anzeige mit Zwischenfenster |
WO2021055278A2 (en) | 2019-09-19 | 2021-03-25 | Akalana Management Llc | Optical systems with reflective prism input couplers |
US11378391B2 (en) | 2020-02-14 | 2022-07-05 | Toyota Motor Engineering & Manufacturing North America, Inc. | Closed spray testing container for spray measurement verification |
-
2018
- 2018-01-08 KR KR1020217032341A patent/KR102501345B1/ko active IP Right Grant
- 2018-01-08 CN CN202110512527.2A patent/CN113341566B/zh active Active
- 2018-01-08 CN CN201880000521.3A patent/CN109416433B/zh active Active
- 2018-01-08 WO PCT/IL2018/050025 patent/WO2018173035A1/en unknown
- 2018-01-08 JP JP2018504910A patent/JP6956414B2/ja active Active
- 2018-01-08 EP EP18700698.6A patent/EP3397997A4/en active Pending
- 2018-01-08 TW TW107100850A patent/TWI751262B/zh active
- 2018-01-08 KR KR1020237004919A patent/KR20230025946A/ko not_active Application Discontinuation
- 2018-01-08 CN CN202311570696.7A patent/CN117572644A/zh active Pending
- 2018-01-08 KR KR1020187007806A patent/KR102319611B1/ko active IP Right Grant
- 2018-01-08 TW TW110141712A patent/TWI800974B/zh active
- 2018-04-12 US US15/951,171 patent/US10481319B2/en active Active
- 2018-10-03 IL IL262107A patent/IL262107B/en active IP Right Grant
-
2019
- 2019-11-18 US US16/686,231 patent/US11125927B2/en active Active
-
2021
- 2021-09-20 US US17/478,982 patent/US11536975B2/en active Active
- 2021-09-27 JP JP2021156920A patent/JP7289462B2/ja active Active
-
2022
- 2022-12-20 US US18/084,714 patent/US20230118490A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100490850B1 (ko) * | 1996-03-12 | 2005-05-24 | 세이코 엡슨 가부시키가이샤 | 편광변환장치 및 그 제조방법, 그리고 투사형 표시장치 |
US20130163089A1 (en) | 2011-12-23 | 2013-06-27 | David D. Bohn | Reflective array waveguide |
WO2014209734A1 (en) | 2013-06-27 | 2014-12-31 | Microsoft Corporation | Waveguide including light turning gaps |
WO2015175648A1 (en) | 2014-05-16 | 2015-11-19 | Corning Incorporated | Edge lighted backlight unit for liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
US20230118490A1 (en) | 2023-04-20 |
JP2022020626A (ja) | 2022-02-01 |
CN109416433B (zh) | 2021-06-01 |
US20190212487A1 (en) | 2019-07-11 |
CN113341566B (zh) | 2023-12-15 |
KR20230025946A (ko) | 2023-02-23 |
JP2023103432A (ja) | 2023-07-26 |
KR20210128013A (ko) | 2021-10-25 |
EP3397997A4 (en) | 2020-02-12 |
JP6956414B2 (ja) | 2021-11-02 |
JP7289462B2 (ja) | 2023-06-12 |
CN117572644A (zh) | 2024-02-20 |
TW201835624A (zh) | 2018-10-01 |
KR102319611B1 (ko) | 2021-11-01 |
CN113341566A (zh) | 2021-09-03 |
US20200110211A1 (en) | 2020-04-09 |
KR20190127534A (ko) | 2019-11-13 |
US11536975B2 (en) | 2022-12-27 |
TWI751262B (zh) | 2022-01-01 |
TW202212884A (zh) | 2022-04-01 |
US11125927B2 (en) | 2021-09-21 |
EP3397997A1 (en) | 2018-11-07 |
US20220003914A1 (en) | 2022-01-06 |
CN109416433A (zh) | 2019-03-01 |
US10481319B2 (en) | 2019-11-19 |
JP2020512566A (ja) | 2020-04-23 |
WO2018173035A1 (en) | 2018-09-27 |
IL262107B (en) | 2019-03-31 |
TWI800974B (zh) | 2023-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102501345B1 (ko) | 중첩 파셋 | |
US11747537B2 (en) | Light guide optical assembly | |
KR20200115528A (ko) | 격자 미러를 갖춘 회절 디스플레이 소자 | |
JP2017161564A (ja) | 導光装置及び虚像表示装置 | |
JP7580144B2 (ja) | 重複ファセット | |
US20230400618A1 (en) | Single mode full color waveguide combiner using asymmetric transmissive and reflective diffraction gratings | |
CN118426172A (zh) | 光波导模组及显示设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |