[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102457270B1 - Method of manufactruring piezoelectric thin film and device using the same - Google Patents

Method of manufactruring piezoelectric thin film and device using the same Download PDF

Info

Publication number
KR102457270B1
KR102457270B1 KR1020200055234A KR20200055234A KR102457270B1 KR 102457270 B1 KR102457270 B1 KR 102457270B1 KR 1020200055234 A KR1020200055234 A KR 1020200055234A KR 20200055234 A KR20200055234 A KR 20200055234A KR 102457270 B1 KR102457270 B1 KR 102457270B1
Authority
KR
South Korea
Prior art keywords
thin film
piezoelectric thin
layer
sacrificial layer
film
Prior art date
Application number
KR1020200055234A
Other languages
Korean (ko)
Other versions
KR20210136669A (en
Inventor
안상정
Original Assignee
웨이브로드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웨이브로드 주식회사 filed Critical 웨이브로드 주식회사
Priority to KR1020200055234A priority Critical patent/KR102457270B1/en
Priority to PCT/KR2021/005805 priority patent/WO2021225426A1/en
Publication of KR20210136669A publication Critical patent/KR20210136669A/en
Application granted granted Critical
Publication of KR102457270B1 publication Critical patent/KR102457270B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H01L41/22
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • H01L41/18
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

본 개시는 ScxAl1 - xN로 된 압전 박막을 제조하는 방법에 있어서, 성막 기판 위에 성막 기판 제거를 위한 희생층을 형성하는 단계; 그리고, 희생층 위에 wurzite 구조의 ScxAl1 - xN 압전 박막을 성막하는 단계;를 포함하는 압전 박막을 제조하는 방법에 관한 것이다.The present disclosure provides a method for manufacturing a piezoelectric thin film made of Sc x Al 1 - x N, the method comprising: forming a sacrificial layer for removing the deposition substrate on the deposition substrate; And, it relates to a method of manufacturing a piezoelectric thin film comprising; forming a Sc x Al 1 - x N piezoelectric thin film of a wurzite structure on the sacrificial layer.

Description

압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자{METHOD OF MANUFACTRURING PIEZOELECTRIC THIN FILM AND DEVICE USING THE SAME}Method of manufacturing a piezoelectric thin film and a device using the thin film

본 개시(Disclosure)는 전체적으로 압전 박막 및 이 박막을 이용하는 소자에 관한 것으로, 특히 ScxAl1 - xN 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자에 관한 것이다. 압전 박막은 고품질의 고주파 필터(high-frequency filters), 에너지 회수장치(energy harvesters), 초음파 트랜스듀서(ultrasonic transducers), 바이오 및 사물인터넷 용도의 센서(sensors for bio & IoT) 등을 포함한 다양한 공진기(resonators) 응용 제품 등에 이용된다. 최근에, 이들 박막은 스마트 폰과 같은 포터블 전자 장치(portable electronic devices)에 사용되는 필터에서 음향 공진기(acoustic resonators; 예: SAW 공진기(surface acoustic wave resonator), BAW 공진기(bulk acoustic wave resonator))로서 역할과 바이오 및 사물인터넷 용도의 고감도 센서에서 주목받고 있다. 이상에 압전 박막의 용도를 예시하였지만, 이 박막의 용도가 여기에 제한되는 것은 아니다.The present disclosure generally relates to a piezoelectric thin film and a device using the thin film, and more particularly, to a method for manufacturing a Sc x Al 1 - x N piezoelectric thin film and a device using the thin film. Piezoelectric thin films are used in a variety of resonators, including high-quality high-frequency filters, energy harvesters, ultrasonic transducers, and sensors for bio & IoT. resonators) applications, etc. Recently, these thin films have been used as acoustic resonators (eg, surface acoustic wave resonators, BAW resonators) in filters used in portable electronic devices such as smart phones. It is attracting attention as a high-sensitivity sensor for its role and bio and IoT applications. Although the use of the piezoelectric thin film has been exemplified above, the use of the thin film is not limited thereto.

여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Herein, background information related to the present disclosure is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).

문헌 Nano Energy 51 (2018) 146-161, “AlN piezoelectric thin films for energy harvesting and acoustic devices”에 따르면, AlN 압전 박막은 높은 종적 음향파 속도(high longitudinal acoustic wave velocity; 대략 11,000m/s), 높은 열적 안정성(high thermal satbility, 녹는점; 2100℃, 압전 특성 유지 온도; 1150℃), 큰 에너지 밴드갭(wide energy bandgap, 6.2eV), 그리고 우수한 압전능과 유전율(excellent piezoelectric and dielectric properties) 등의 유일무이한 물성을 갖고 있어, 고품질의 고주파 필터(high-frequency filters), 에너지 회수장치(energy harvesters), 초음파 트랜스듀서(ultrasonic transducers), 바이오 및 사물인터넷 용도의 센서(sensors for bio & IoT) 등을 포함한 다양한 공진기(resonaters) 응용 제품으로 현재 폭발적으로 사용되고 있는 동시에, 향후 고품질의 기능성과 다양성(functionality and versatility) 강화를 통한 초소형화 고효율성 제품이 절대 필요한 분야에서는 가장 각광받고 있는 물질이다. 일반적으로 AlN 압전 박막 물질을 성막(thin film synthesis)하는 방법으로는 400℃ 전후의 온도에서 다결정 증착(poly-crystal deposition)하는 PVD(physical vapor deposition; 대표적으로 sputtering)와 1000℃ 전후의 온도에서 단결정 성장(epitaxial single crystal growth)하는 CVD(chemical vapor deposition; 대표적으로 MOCVD, HVPE)으로 알려져 있다. 현재는 AlN 압전 박막의 성막(증착,성장) 공정과 이러한 성막 공정을 감안한 소자 설계로 인해서 고저항성 Si 성막 기판 위에 순차적으로 절연층(대표적으로 SiO2) 및/또는 전극 기능을 포함한 금속층의 단층 또는 다층 박막(대표적으로 Mo, Ti, Pt, W, Al)을 형성시킨 다음, 400℃ 전후의 온도에서 다결정 AlN 증착 성막을 통한 소자 설계 제작, 또는 필요시에 후속 열처리 공정을 추가하여 설계된 소자를 제작하고 있는 실정이다. 하지만 도 15에서 상세히 후술하겠지만 물리적인 공정 한계로 인해 400℃ 전후의 온도에서 절연층 및/또는 금속 박막 위에 최적화시킨 공정으로 증착된 AlN 압전 박막은 집합조직화된 다결정(textured poly-crystal) 미세조직(microstucture)으로 1000℃ 전후의 고온에서 증착 성막된 고순도 단결정(epitaxial single crystal) 미세조직의 AlN 압전 박막에 비해서 압전능 관련 물성을 포함한 물리적 특성이 우수하지 않고, 이로 인해서 설계 제작된 각종 AlN 압전 박막 소자들은 성능과 응용 확장 관점에서 한계를 갖고 있다. 다시 말해서, 종래 기술에서 AlN 압전 박막과 이를 이용한 장치에 있어서의 결정 품질(결정성과 극성)은 AlN 성막 전에 형성된 절연층 및/또는 금속층의 단층 또는 다층 박막 위에 성막 가능한 것으로 증착 성막 온도 및 표면 물질 상태 등의 물리적 인자들에 제한되기 때문에, AlN 압전 박막을 고순도 단결정의 재료로 구성하는 것은 곤란하였다. 이러한 한계을 극복하고 고순도 단결정의 AlN 압전 박막을 얻고 장치를 제작하기 위한 여러 방법들이 제시되고 있는데, 일 예로 MOCVD 장치로 1000℃ 전후의 고온에서 AlN 물질과 동일/유사한 결정 구조(crystal structure)를 갖는 단결정 성막 기판(epitaxial synthesis substrate, Sapphire, SiC)에 직접 성장(growth) 성막하거나 또는 실리콘(Si) 단결정 성막 기판 위에 스퍼터링(sputtering) 장치로 가능한 최대 고온에서 직접 증착(deposition) 성막시킨 후, 웨이퍼 본딩(wafer-bonding)과 성막 기판 분리(lift off)를 통해서 소자 기판(device substrate)으로의 AlN 압전 박막 전사(transfer) 기술을 통해 소자를 완성시키는 방법들이 제시되고 있다.According to the document Nano Energy 51 (2018) 146-161, “AlN piezoelectric thin films for energy harvesting and acoustic devices”, AlN piezoelectric thin films have high longitudinal acoustic wave velocity (approximately 11,000 m/s), high high thermal stability (melting point; 2100°C, piezoelectric property retention temperature; 1150°C), wide energy bandgap (6.2eV), and excellent piezoelectric and dielectric properties Because of its unique properties, it is used in high-quality high-frequency filters, energy harvesters, ultrasonic transducers, and sensors for bio & IoT applications. It is currently being used explosively as a variety of resonator application products including In general, as a method of forming an AlN piezoelectric thin film material (thin film synthesis), PVD (physical vapor deposition; typically sputtering), which is poly-crystal deposition at a temperature of about 400 ° C., and single crystal at a temperature of about 1000 ° C. CVD (chemical vapor deposition; typically MOCVD, HVPE) is known as epitaxial single crystal growth. At present, due to the film formation (deposition, growth) process of AlN piezoelectric thin film and the device design in consideration of this film formation process, the insulating layer (typically SiO 2 ) and/or the metal layer including the electrode function are sequentially on the high-resistance Si film-forming substrate, or After forming a multi-layered thin film (typically Mo, Ti, Pt, W, Al), design a device through polycrystalline AlN deposition at a temperature around 400°C, or add a subsequent heat treatment process if necessary to fabricate a designed device is currently doing. However, as will be described in detail later in FIG. 15, due to physical process limitations, the AlN piezoelectric thin film deposited with an optimized process on the insulating layer and/or the metal thin film at a temperature around 400° C. has a textured poly-crystal microstructure ( Compared to AlN piezoelectric thin films of high purity epitaxial single crystal microstructure deposited at a high temperature around 1000°C with microstructure), physical properties including piezoelectricity-related properties are not excellent. As a result, various AlN piezoelectric thin film devices designed They have limitations in terms of performance and application expansion. In other words, in the prior art, the crystal quality (crystallinity and polarity) in the AlN piezoelectric thin film and the device using the same can be deposited on the single or multi-layer thin film of the insulating layer and/or the metal layer formed before the AlN film formation, and the deposition film formation temperature and surface material state It has been difficult to construct an AlN piezoelectric thin film from a material of high purity single crystal because it is limited by physical factors such as. Several methods have been proposed to overcome this limitation and to obtain a high-purity single-crystal AlN piezoelectric thin film and fabricate a device. Direct growth film formation on an epitaxial synthesis substrate (Sapphire, SiC) or deposition on a silicon (Si) single crystal film formation substrate at the highest possible temperature with a sputtering device, followed by wafer bonding ( Methods for completing a device through an AlN piezoelectric thin film transfer technology to a device substrate through wafer-bonding and film-forming substrate lift-off have been proposed.

도 1은 미국 공개특허공보 US2015-0033520호에 제시된 압전 박막을 이용한 소자들을 나타내는 도면으로서, 도 1(a)에는 FBAR(20; Film Bulk Acoustic Resonator)의 일 예가 제시되어 있으며, 도 1(b)에는 SMR(20'; Solidly Mounted Resonator)가 제시되어 있다. FBAR과 SMR은 BAW 공진기에 속한다. FBAR(20)은 한 쌍의 전극(22,24), 한 쌍의 전극(22,24) 사이에 놓이는 압전 박막(26) 그리고 소자 기판(30)을 포함한다. 한 쌍의 전극(22,24)과 압전 박막(26)은 소자 기판(30)에 형성된 캐비티(28) 위에 놓인다(suspended). SMR(20')은 한 쌍의 전극(22',24'), 한 쌍의 전극(22',24') 사이에 놓이는 압전 박막(26') 그리고 소자 기판(30')을 포함한다. FBAR(20)과 달리 캐비티(28) 반사기(reflectror)를 대신하여 다층 구조의 브래그 리플렉터(27'; Bragg Reflector) 반사기가 구비된다.1 is a view showing devices using a piezoelectric thin film disclosed in US Patent Publication No. US2015-0033520, and in FIG. 1 (a), an example of an FBAR (20; Film Bulk Acoustic Resonator) is presented, and FIG. SMR (20'; Solidly Mounted Resonator) is presented. FBAR and SMR belong to BAW resonators. The FBAR 20 includes a pair of electrodes 22 and 24 , a piezoelectric thin film 26 placed between the pair of electrodes 22 and 24 , and a device substrate 30 . A pair of electrodes 22 and 24 and a piezoelectric thin film 26 are suspended in a cavity 28 formed in the device substrate 30 . The SMR 20' includes a pair of electrodes 22' and 24', a piezoelectric thin film 26' interposed between the pair of electrodes 22' and 24', and a device substrate 30'. Unlike the FBAR 20 , a Bragg reflector 27 ′ having a multilayer structure is provided instead of a reflector in the cavity 28 .

도 2 내지 도 4는 미국 공개특허공보 US2015-0033520호에 제시된 AlN 압전 박막 및 이를 이용한 소자를 제조하는 방법을 나타내는 도면으로서, 먼저 사파이어(Al2O3) 성막 기판에 단결정 AlN 압전 박막을 성장한다(도 2(a)). 이때 종래 Si 성막 기판 위에 SiO2 막과 Mo로 된 전극을 형성한 다음, PVD(Phisical Vapor Deposition)인 스퍼터링을 통해 AlN 압전 박막을 형성하는 것과 달리, HVPE 또는 CVD(Chemical Vapor Depostion)인 MOVCD를 이용하여 양질의 고순도 단결정 AlN 압전 박막을 형성한다. 다음으로, 컨택 전극을 형성한다(도 2(b). SMR을 제조하는 경우에, 먼저 별도로 마련된 반도체 소자 기판에 브래그 리플렉터(SiO2/W) 반사기를 형성한다(도 3(c)). 다음으로 AlN 압전 박막 구조물(40)과 브래그 리플렉터 반사기 구조물(42)을 웨이퍼 본딩한다(도 3(d). 다음으로 본딩된 구조물(44)로부터 레이저 리프트 오프(Laser Lift Off; LLO)를 통해 사파이어 성막 기판을 분리한다(도 3(e)). 마지막으로 사파이어 성막 기판이 분리된 구조물(46)에 상부 전극을 형성한다(도 3(f)). FBAR을 제조하는 경우에, 먼저 별도로 마련된 반도체 소자 기판에 에어 캐비티를 형성한다(도 4(c)). 다음으로 AlN 압전 박막 구조물(40)과 캐비티 구조물(52)을 결합한다(도 4(d). 다음으로 본딩된 구조물(54)로부터 레이저 리프트 오프(LLO)를 통해 사파이어 성막 기판을 분리한다(도 4(e)). 마지막으로 사파이어 성막 기판이 분리된 구조물(56)에 상부 전극을 형성한다(도 4(f)). 2 to 4 are views showing an AlN piezoelectric thin film and a method of manufacturing a device using the same as presented in US Patent Publication No. US2015-0033520, first, a single crystal AlN piezoelectric thin film is grown on a sapphire (Al 2 O 3 ) film-forming substrate. (Fig. 2(a)). At this time, unlike the conventional formation of a SiO 2 film and an electrode made of Mo on a Si film substrate and then forming an AlN piezoelectric thin film through sputtering, which is PVD (Physical Vapor Deposition), HVPE or CVD (Chemical Vapor Deposition) MOVCD is used. to form a high-quality, high-purity, single-crystal AlN piezoelectric thin film. Next, a contact electrode is formed (Fig. 2(b). In the case of manufacturing SMR, a Bragg reflector (SiO 2 /W) reflector is first formed on a separately provided semiconductor device substrate (Fig. 3(c)). The AlN piezoelectric thin film structure 40 and the Bragg reflector reflector structure 42 are wafer-bonded (Fig. 3(d)). Next, a sapphire film is formed from the bonded structure 44 through Laser Lift Off (LLO). The substrate is separated (Fig. 3(e)). Finally, an upper electrode is formed on the structure 46 from which the sapphire deposition substrate is separated (Fig. 3(f)). In the case of manufacturing the FBAR, first a separately prepared semiconductor device An air cavity is formed in the substrate (Fig. 4(c)) Next, the AlN piezoelectric thin film structure 40 and the cavity structure 52 are combined (Fig. 4(d). Next, the laser from the bonded structure 54) The sapphire deposition substrate is separated through lift-off (LLO) (Fig. 4(e)) Finally, an upper electrode is formed in the structure 56 from which the sapphire deposition substrate is separated (Fig. 4(f)).

종래에 Si 성막 기판 상부에 실리콘 산화물(SiO2) 및/ 또는 금속(전극) 물질 위에 스퍼터링(sputtering) 장치를 통해 증착 성막된 다결정(polycrystalline) AlN 압전 박막과 비교할 때 사파이어 성막 기판 위에 MOCVD 성장 성막된 단결정(single crytalline) AlN 압전 박막은 공진기(resonator)의 성능과 품질을 대폭 향상시킨다 하겠다. 그러나 사파이어 성막 기판 위에 6.2eV 에너지 밴드갭(energy bandgap), 즉 파장으로 변환시에 200nm 단파장의 광학 물성을 갖는 AlN 압전 박막을 직접 성장시킨 다음, 이를 현재 상용되는 ArF(193nm) & KrF(248nm) 등의 엑시머 레이저 광 에너지원를 이용하여 분리하는 것은 결코 쉽지 않은 일이다. 이러한 이유는 레이저 광 에너지원을 이용하여 두 물질층을 분리하기 위해서는 경계면(interface)에서 레이저 광 에너지원의 강한 흡수와 열에너지로의 변환을 거친 열화학분해 반응(thermo-chemical decomposition reaction) 과정을 통해 이루어지는데, 이러한 메카니즘(mechanism)을 통해 성막 기판으로부터 기능을 갖는 특정 성막된 박막을 분리하는 공정을 “레이저 리프트 오프(laser lift off; LLO)”라 일컫고 있다. 레이저 리프트 오프(LLO) 메카니즘의 시발점은 레이저 광 에너지원을 흡수하여 열에너지원으로 변환시킬 수 있는 적정한 물질로 구성된 희생층(sacrificial ayer)이 광학적으로 투명한 성막 기판과 특정 성막된 박막 사이에 존재되어야 한다. 이 희생층(sacrificial ayer) 물질의 적정 조건은 광학적으로 투명한 사파이어 성막 기판 후면을 통해 조사 입사된 레이저의 파장(wavalength)보다 충분히 큰 파장의 에너지 밴드갭을 갖는 광학적으로 투명한 반도체인 동시에, 광 에너지원을 최대한 많이 흡수할 수 있는 비정질, 다결정(amorphous or polycrystalline), 또는 다층(multi layer)의 미세구조(microstructure)를 갖는 물질 영역이 절대적으로 필요로 한데, 상기 미국 공개특허공보 US2015-0033520호에 제시된 방법에서는 이러한 점을 간과하고 기술한 것이다.Compared to a polycrystalline AlN piezoelectric thin film deposited through a sputtering device on a silicon oxide (SiO 2 ) and/or metal (electrode) material on a conventional Si deposition substrate, MOCVD growth deposition on a sapphire deposition substrate The single-crystalline AlN piezoelectric thin film greatly improves the performance and quality of the resonator. However, an AlN piezoelectric thin film having optical properties of a short wavelength of 200 nm when converted to a wavelength of 6.2 eV energy bandgap is directly grown on a sapphire film-forming substrate, and then it is directly grown on the currently commercially available ArF (193 nm) & KrF (248 nm), etc. It is by no means easy to isolate using the excimer laser light energy source of For this reason, in order to separate the two material layers using a laser light energy source, strong absorption of the laser light energy source at the interface and a thermo-chemical decomposition reaction through conversion into thermal energy are performed. The process of separating a specific deposited thin film having a function from the deposition substrate through this mechanism is called “laser lift off (LLO)”. The starting point of the laser lift-off (LLO) mechanism is that a sacrificial ayer composed of a suitable material that can absorb the laser light energy source and convert it into a thermal energy source must be present between the optically transparent deposition substrate and the specific deposited thin film. . A suitable condition for this sacrificial ayer material is an optically transparent semiconductor having an energy bandgap of a wavelength sufficiently larger than the wavelength of the laser irradiated and incident through the back surface of the optically transparent sapphire film formation substrate, and at the same time, an optical energy source. An amorphous, polycrystalline (amorphous or polycrystalline), or a material region having a multi-layer microstructure that can absorb as much as possible is absolutely required. The method overlooked and described this point.

도 5는 미국 공개특허공보 US2006-0145785호에 제시된 AlN 압전 박막을 제조하는 방법의 일 예를 나타내는 도면으로서, 사파이어 성막 기판(200), 사파이어 성막 기판(200)에 성장된 버퍼층(210; 예: GaN), 버퍼층(210) 위에 형성된 AlN 압전 박막(220) 그리고 AlN 압전 박막(220) 위에 형성된 접합용 금속(230; 예: Au)이 제시되어 있다. 버퍼층(210)을 구성하고 있는 갈륨 나이트라이드(GaN)은 3.4eV(파장 변환 시, 364nm) 에너지 밴드갭을 갖는 물질이고 동시에 저온 성장 성막된 비정질 미세구조(amorphous microstucture)를 갖고 있어, AlN에 비해 상기 GaN 버퍼층(210)은 희생층(sacrificial layer)으로 역할을 충분히 할 수 있어 광학적으로 투명한 사파이어 성막 기판(200)과 AlN 압전 박막(220)의 분리를 용이하게 하는 이점을 가지지만, GaN 버퍼층(210)과 AlN 압전 박막(220) 간에는 상당한 격자상수 및 열팽창계수의 물성 차이가 존재하므로, 공진기 등의 기능성 압전 박막으로 사용할 수 있는 일정한 임계 두께(critical thickness, 대략 100nm) 이상으로 MOCVD 성장된 고순도 단결정 AlN 압전 박막(220)을 확보하는데 현재까지 공지된 공정 및 기술로는 결코 쉽지 않다.5 is a view showing an example of a method for manufacturing an AlN piezoelectric thin film presented in US Patent Publication No. US2006-0145785, a sapphire deposition substrate 200, a buffer layer 210 grown on the sapphire deposition substrate 200; e.g.: GaN), an AlN piezoelectric thin film 220 formed on the buffer layer 210 , and a bonding metal 230 (eg, Au) formed on the AlN piezoelectric thin film 220 are presented. Gallium nitride (GaN) constituting the buffer layer 210 is a material having an energy bandgap of 3.4 eV (at the time of wavelength conversion, 364 nm) and at the same time has an amorphous microstructure formed as a low-temperature growth film. The GaN buffer layer 210 has the advantage of facilitating the separation of the optically transparent sapphire deposition substrate 200 and the AlN piezoelectric thin film 220 because it can sufficiently serve as a sacrificial layer, but the GaN buffer layer ( 210) and the AlN piezoelectric thin film 220, there is a significant difference in properties of lattice constant and thermal expansion coefficient, so a high-purity single crystal MOCVD-grown to a certain critical thickness (approximately 100 nm) that can be used as a functional piezoelectric thin film such as a resonator In order to secure the AlN piezoelectric thin film 220, it is by no means easy with known processes and technologies to date.

도 6은 Solid-State Electronics 54 (2010) 1041-1046에 제시된 AlN 압전 박막을 제조하는 방법의 일 예를 나타내는 도면으로서, 제조 방법은 도 6(a)에 도시된 바와 같이, (001) 실리콘 성막 기판(61)에 직접적으로 스퍼터링 증착된 AlN 압전 박막(62)을 성막하는 단계, 도 6(b)에 도시된 바와 같이, AlN 압전 박막(62) 위에 하부 전극(63)을 형성하는 단계, 또 6(c)에 도시된 바와 같이, 하부 전극(63) 위에 형성된 음향파 미러(64; acoustic mirror)를 형성하는 단계, 도 6(d)에 도시된 바와 같이, 음향파 미러(64) 위에 웨이퍼 본딩 결합된 캐리어 웨이퍼(65; carrier wafer)를 형성하는 단계, 도 6(e)에 도시된 바와 같이, (100) 실리콘 성막 기판(61)을 습식에칭으로 제거하는 단계, 그리고 도 6(f)에 도시된 바와 같이, 최종적으로 (100) 실리콘 성막 기판(61)이 제거된 AlN 압전 박막(62)에 상부 전극(66)을 형성하는 단계를 포함하며, 이를 통해 SMR BAW 구조 공진기가 제조된다. 이러한 방법에 의하면, 실리콘 성막 기판에 SiO2 및/또는 금속(전극)을 형성한 다음 AlN 압전 박막을 형성한 구조(예: 문헌(“Optimization of sputter deposition Process for piezoelectric AlN ultra-thin Films”, Semester Project, Advanced NEMS group, Autumn Semester 2017, Roman Welz, January 23, 2018, SECTION MICROTECHNIQUE)와 비교할 때, 품질 개선을 위한 별도의 추가 공정(CMP; chemical-mechanical polishing)이 불필요한 장점과 균일한 두께를 갖는 압전 박막 획득이 가능하고 동시에 압전 박막 품질에 지대한 영향을 미치는 전극(금속) 표면에 형성된 자연 산화물(native oxide)을 배제할 수 있는 이점이 있어 종래 제조 공정에 비해 품질과 비용관점에서 우위를 확보할 수 있다고 지적되어 있다.6 is a view showing an example of a method for manufacturing an AlN piezoelectric thin film presented in Solid-State Electronics 54 (2010) 1041-1046, the manufacturing method is as shown in FIG. 6(a), (001) silicon film formation Forming a sputter-deposited AlN piezoelectric thin film 62 directly on the substrate 61, as shown in FIG. 6(b), forming a lower electrode 63 on the AlN piezoelectric thin film 62; As shown in 6(c), forming an acoustic mirror 64 formed on the lower electrode 63, as shown in FIG. 6(d), a wafer on the acoustic wave mirror 64 Forming a bonded carrier wafer 65, as shown in FIG. 6(e), removing the (100) silicon deposition substrate 61 by wet etching, and FIG. 6(f) As shown in Fig. , it includes the step of forming the upper electrode 66 on the AlN piezoelectric thin film 62 from which the (100) silicon deposition substrate 61 is finally removed, and through this, the SMR BAW structure resonator is manufactured. According to this method, a structure in which SiO 2 and/or metal (electrode) is formed on a silicon deposition substrate and then an AlN piezoelectric thin film is formed (eg, “Optimization of sputter deposition Process for piezoelectric AlN ultra-thin Films”, Semester Project, Advanced NEMS group, Autumn Semester 2017, Roman Welz, January 23, 2018, SECTION MICROTECHNIQUE), a separate additional process (CMP; chemical-mechanical polishing) for quality improvement is unnecessary and has a uniform thickness. It is possible to obtain a piezoelectric thin film and at the same time has the advantage of excluding the native oxide formed on the surface of the electrode (metal), which has a great influence on the quality of the piezoelectric thin film. It has been pointed out that

이외에도 SiC 성막 기판 위에 고순도 AlN 압전 박막을 성장하는 방법이 있으나, SiC 성막 기판이 고비용인데다가, SiC 성막 기판 위에 고순도 AlN 박막 성장 후에 이미 공지된 AlN 압전 박막 공진기 제조공정에서 화학적 습식에칭을 통해 SiC 성막 기판이 제거되기 때문에 재사용이 가능하지 않으므로 원천적으로 AlN 압전 박막 공진기 고비용 원가문제를 해결할 수 없어 고려하지 않는다.In addition, there is a method of growing a high-purity AlN piezoelectric thin film on a SiC film-forming substrate, but the SiC film-forming substrate is expensive, and after growing a high-purity AlN thin film on a SiC film-forming substrate, SiC film formation through chemical wet etching in the known AlN piezoelectric thin film resonator manufacturing process Since the substrate is removed, it cannot be reused, so it is not considered because it cannot solve the problem of high cost and cost of the AlN piezoelectric thin film resonator.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Implementation of the Invention'.

여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features). Herein, a general summary of the present disclosure is provided, which should not be construed as limiting the scope of the present disclosure (This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).

본 개시에 따른 일 측면에 의하면(According to one aspect of the present disclosure), ScxAl1 - xN로 된 압전 박막을 제조하는 방법에 있어서, 성막 기판 위에 성막 기판 제거를 위한 희생층을 형성하는 단계; 그리고, 희생층 위에 wurzite 구조의 ScxAl1 - xN 압전 박막을 성막하는 단계;를 포함하는 압전 박막을 제조하는 방법이 제공된다.According to one aspect according to the present disclosure (According to one aspect of the present disclosure), in the method of manufacturing a piezoelectric thin film of Sc x Al 1 - x N, forming a sacrificial layer for removing the deposition substrate on the deposition substrate step; And, forming a Sc x Al 1 - x N piezoelectric thin film of a wurzite structure on the sacrificial layer; a method of manufacturing a piezoelectric thin film comprising a.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Implementation of the Invention'.

도 1은 미국 공개특허공보 US2015-0033520호에 제시된 압전 박막을 이용한 소자들을 나타내는 도면,
도 2 내지 도 4는 미국 공개특허공보 US2015-0033520호에 제시된 AlN 압전 박막 및 이를 이용한 소자를 제조하는 방법을 나타내는 도면,
도 5는 미국 공개특허공보 US2006-0145785호에 제시된 AlN 압전 박막을 제조하는 방법의 일 예를 나타내는 도면,
도 6은 Solid-State Electronics 54 (2010) 1041-1046에 제시된 AlN 압전 박막을 제조하는 방법의 일 예를 나타내는 도면,
도 7은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 일 예를 나타내는 도면,
도 8은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 9는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 10은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 11 내지 도 13은 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 일 예를 나타내는 도면,
도 14 및 도 15는 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 또 다른 예를 나타내는 도면,
도 16은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 17은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 18은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 19는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 20은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 21은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 22 및 도 23은 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 또 다른 예를 나타내는 도면,
도 24는 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 25는 ScxAl1 - xN 및 ScxGa1 - xN의 물성을 나타내는 그래프,
도 26은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 27은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 28은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 29는 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 30은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면.
1 is a view showing devices using a piezoelectric thin film presented in US Patent Publication No. US2015-0033520,
2 to 4 are views showing an AlN piezoelectric thin film presented in US Patent Publication No. US2015-0033520 and a method of manufacturing a device using the same;
5 is a view showing an example of a method for manufacturing an AlN piezoelectric thin film presented in US Patent Publication No. US2006-0145785;
6 is a view showing an example of a method for manufacturing an AlN piezoelectric thin film presented in Solid-State Electronics 54 (2010) 1041-1046;
7 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure; A drawing showing an example,
8 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure; A drawing showing another example,
9 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
10 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
11 to 13 are views showing an example of a method of manufacturing a resonator using the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure;
14 and 15 are views showing another example of a method of manufacturing a resonator using the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure;
16 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
17 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
18 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
19 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
20 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure. A drawing showing another example,
21 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; A drawing showing another example,
22 and 23 are views showing another example of a method of manufacturing a resonator using the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure;
24 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure;
25 is a graph showing the physical properties of Sc x Al 1 - x N and Sc x Ga 1 - x N;
26 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure;
27 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure;
28 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure;
29 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure;
30 is a view illustrating a method for manufacturing a piezoelectric thin film according to the present disclosure and another example of a piezoelectric thin film structure;

이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings (The present disclosure will now be described in detail with reference to the accompanying drawing(s)).

도 7은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 일 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3) 그리고 AlxGa1 -xN (0.5≤x≤1) 압전 박막(4)을 포함한다.7 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure; As a view showing an example, the structure includes a sapphire film-forming substrate 1, a first semiconductor layer 2, a sacrificial layer 3, and an Al x Ga 1 -x N (0.5≤x≤1) piezoelectric thin film 4 . include

도 8은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3) 그리고 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)을 포함하며, 추가적으로 희생층(3)과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 사이에 제2 반도체층(5)을 포함한다.8 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure; As another example, the structure includes a sapphire film-forming substrate 1, a first semiconductor layer 2, a sacrificial layer 3, and an Al x Ga 1-x N (0.5≤x≤1) piezoelectric thin film 4) and, additionally, a second semiconductor layer 5 between the sacrificial layer 3 and the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 .

도 9는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3) 그리고 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)을 포함하지만, 제1 반도체층(2)과 희생층(3)의 형성 순서가 도 7에 제시된 구조물과 바뀌어 있다.9 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; As another example, the structure includes a sapphire film-forming substrate 1, a first semiconductor layer 2, a sacrificial layer 3, and an Al x Ga 1-x N (0.5≤x≤1) piezoelectric thin film 4) However, the order of formation of the first semiconductor layer 2 and the sacrificial layer 3 is changed from that of the structure shown in FIG. 7 .

도 10은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3), AlxGa1 -xN (0.5≤x≤1) 압전 박막(4) 그리고 제2 반도체층(5)을 포함하지만, 제1 반도체층(2)과 희생층(3)의 형성 순서가 도 8에 제시된 구조물과 바뀌어 있다.10 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; As a view showing another example, the structure is a sapphire film-forming substrate 1, a first semiconductor layer 2, a sacrificial layer 3, Al x Ga 1 -x N (0.5≤x≤1) piezoelectric thin film 4 And although the second semiconductor layer 5 is included, the formation order of the first semiconductor layer 2 and the sacrificial layer 3 is changed from the structure shown in FIG. 8 .

예를 들어 C면 사파이어 성막 기판을 사용할 수 있으며, 그 위에 형성되는 3족 질화물이 성장 전처리 조건에 따라 극성(polarity; 메탈릭 또는 개스) 표면(face) 또는 반극성(semi-polarity; 메탈릭 극성과 질소 개스 극성이 혼합된) 표면을 가질 수 있다면, C면을 벗어나거나 C면이 아닌 사파이어 성막 기판의 사용을 고려할 수 있다. 평탄한 성막 기판 이외에도 나노 사이즈의 PSS(Patterned Sapphire Substrate)의 사용을 고려할 수 있다.For example, a C-plane sapphire deposition substrate may be used, and the Group III nitride formed thereon may have a polarity (metallic or gas) surface or semi-polarity (metallic polarity and nitrogen) depending on the growth pretreatment conditions. If it is possible to have a surface with mixed gas polarities), it is possible to consider the use of a sapphire deposition substrate that is not on the C-plane or is not the C-plane. In addition to the flat deposition substrate, the use of a nano-sized patterned sapphire substrate (PSS) may be considered.

도 7 및 도 8에 제시된 예에서, 제1 반도체층(2)은 저온이 아닌 고온(1000℃ 이상) 성장 성막된 AlyGa1 - yN (0.5≤y≤1)로 이루어지며, 후속하여 성장되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정 품질(결정성과 극성)을 보장하는 역할을 한다. 따라서 적정 성장온도보다 낮은 온도에서 성장 성막되는 종래의 버퍼층이라 일컫어지는 층과 구분된다. 제1 반도체층(2)은 CVD(예: MOCVD, HVPE, ALD)로 성장 성막될 수 있다. AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층(2) 두께의 상한과 하한은 특별히 한정되지 않지만, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 두께 균일도(thickness uniformity)를 유지하기 위한 스트레스 조절(stress control) 기능을 하는데 유리하도록 100nm-20㎛로 한다. 예를 들어, 1000-1400℃의 온도와, 100-200torr의 압력에서 성장 성막될 수 있으며, 다량의 수소(H2)를 포함한 암모니아(NH3)와 질소(N2)로 구성된 분위기(상대적으로 N2보다는 NH3 함량이 더 크다) 또는 암모니아(NH3)와 질소(N2)로 구성된 분위기에서, AlN의 경우, 100% Al 구성, Al-rich AlGaN의 경우, Al/(Al+Ga) 값이 50% 이상으로 하여 성장 성막할 수 있다. 바람직하게는 전처리로서, 상기 적정 성장온도에서 AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층(2) 성장 전에, 900-1000℃에서 10sec 동안 Al MOCVD 소스 개스(예: TMAl)로 챔버(chamber) 내부 전처리와 20nm 이하 두께로 AlN 버퍼층을 형성한 다음, 이어서 적정 성장조건 1000-1400℃ 및 100-200torr에서 성장 성막하는데, 고품질 결정성 확보, 전위밀도 저감(reduction in dislocation density), 크랙 생성 및 전파 억제(suppression of generation & propagation)를 위해서 의도적으로 사파이어 성막 기판(1)의 인접 영역과 AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층(2) 내부에 다수의 에어 공극(air-voids)을 형성하는 것이 유리하다.7 and 8, the first semiconductor layer 2 is made of Al y Ga 1 - y N (0.5≤y≤1) grown and deposited at a high temperature (1000° C. or higher) rather than at a low temperature, followed by It serves to ensure the crystal quality (crystallinity and polarity) of the grown Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 . Therefore, it is distinguished from a conventional layer called a buffer layer that is grown and formed at a temperature lower than an appropriate growth temperature. The first semiconductor layer 2 may be grown and deposited by CVD (eg, MOCVD, HVPE, ALD). The upper and lower limits of the thickness of the first semiconductor layer 2 of Al y Ga 1 - y N (0.5≤y≤1) are not particularly limited, but preferably Al x Ga 1 - x N (0.5≤x≤1) ) The thickness of the piezoelectric thin film 4 is set to 100 nm-20 μm to be advantageous for a stress control function to maintain the thickness uniformity. For example, at a temperature of 1000-1400 ℃ and a pressure of 100-200 torr, a growth film can be formed, and an atmosphere consisting of ammonia (NH 3 ) and nitrogen (N 2 ) containing a large amount of hydrogen (H 2 ) (relatively) NH 3 content is greater than N 2 ) or ammonia (NH 3 ) and nitrogen (N 2 ) in an atmosphere composed of 100% Al for AlN, Al/(Al+Ga) for Al-rich AlGaN When the value is set to 50% or more, a growth film can be formed. Preferably, as a pretreatment, before growth of the first semiconductor layer 2 of Al y Ga 1 - y N (0.5≤y≤1) at the appropriate growth temperature, Al MOCVD source gas (eg, at 900-1000° C. for 10 sec) : TMAl) inside the chamber, forming an AlN buffer layer with a thickness of 20 nm or less, and then growing and forming a film at appropriate growth conditions of 1000-1400° C. and 100-200 torr, ensuring high-quality crystallinity and reducing dislocation density (reduction in Dislocation density), crack generation and propagation suppression (suppression of generation & propagation) intentionally in the adjacent region of the sapphire deposition substrate 1 and the first semiconductor layer of Al y Ga 1 - y N (0.5≤y≤1) (2) It is advantageous to form a plurality of air-voids therein.

도 9 및 도 10에 제시된 예에서, 제1 반도체층(2)은 100nm 이하의 AlyGa1 - yN (0.5≤y≤1)로 이루어지는 것이 바람직하며, 후속하여 성장 성막되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정성과 극성을 보장하는 역할을 한다. 제1 반도체층(2)은 PVD(예: 스퍼터링, PLD)로 증착 성막될 수 있고, 이때 일정량(예: O2/(N2+O2) 값이 3% 이하)의 산소 공급이 중요하며, 나노 스케일의 AlN 또는 Al-rich AlGaN 씨앗(seed)으로 역할한다. 소량의 O2를 포함한 분위기에서 AlyGa1 - yN (0.5≤y≤1)의 스퍼터링 증착 성막은 상대적으로 작은 아일랜드(smaller islands) 형상의 AlyGa1 - yN (0.5≤y≤1) 결정체를 형성하여 상기 적정 성장온도에서 CVD(예: MOCVD, HVPE, ALD) 성장 성막된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 표면 평탄도 개선과 박막 내부의 전위밀도 저감를 통해 고품질의 결정성과 극성을 확보하는데 중대한 씨드(seed) 역할을 담당한다. 제1 반도체층(2) 두께는 100nm 이하인 것이 바람직하며, 더욱 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다. 예를 들어, 300-500℃의 온도와 압력은 5*10-3mbar의 압력에서 증착 성막될 수 있으며, 다량의 아르곤(Ar)을 포함한 질소(N2)와 산소(O2)로 구성된 분위기(상대적으로 O2보다는 N2 함량이 휠씬 더 크다; Ar 40sccm, N2 110sccm, O2 4sccm)가 사용될 수 있다. 성장 성막된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 품질을, 품질을 나타내는 측정 지표 중의 하나인 X-ray (0002) rocking curve를 통해 살펴 보았으며, 0.04-0.06°의 값을 보였다. 이는 현재 상용 구조(Si 성막 기판/SiO2/금속 전극/AlN)의 값인 1.2-2.5°와 비교할 때, 엄청나게 박막의 질이 향상되었음을 보여준다.In the examples shown in FIGS. 9 and 10 , the first semiconductor layer 2 is preferably made of Al y Ga 1 - y N (0.5≤y≤1) of 100 nm or less, followed by Al x Ga 1 to be grown and deposited - x N (0.5≤x≤1) It serves to ensure the crystallinity and polarity of the piezoelectric thin film (4). The first semiconductor layer 2 may be deposited by PVD (eg, sputtering, PLD), and at this time, it is important to supply a certain amount of oxygen (eg, O 2 /(N 2 +O 2 ) value of 3% or less), , serving as nanoscale AlN or Al-rich AlGaN seeds. The sputtering deposition of Al y Ga 1 - y N (0.5≤y≤1) in an atmosphere containing a small amount of O 2 is relatively small island-shaped Al y Ga 1 - y N (0.5≤y≤1). ) to form crystals and CVD (eg, MOCVD, HVPE, ALD) growth at the appropriate growth temperature to improve the surface flatness of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 and the inside of the thin film It plays an important seed role in securing high-quality crystallinity and polarity by reducing the dislocation density of The thickness of the first semiconductor layer 2 is preferably 100 nm or less, more preferably Al x Ga 1 - x N (0.5≤x≤1) 1 nm- which is more advantageous for suppressing crack generation and propagation of the piezoelectric thin film 4 30 nm. For example, the temperature and pressure of 300-500 ℃ can be deposited into a film at a pressure of 5*10 -3 mbar, nitrogen (N 2 ) containing a large amount of argon (Ar) and oxygen (O 2 ) An atmosphere composed of (Relatively higher N 2 content than O 2 ; Ar 40sccm, N2 110sccm, O2 4sccm) can be used. The quality of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film (4) formed as a growth film was examined through the X-ray (0002) rocking curve, which is one of the quality measurement indicators, and 0.04- It showed a value of 0.06°. This shows that the quality of the thin film is greatly improved compared to 1.2-2.5°, which is the value of the current commercial structure (Si film substrate/SiO 2 /metal electrode/AlN).

도 7 및 도 8에 제시된 제1 반도체층(2)과 도 9 및 도 10에 제시된 제1 반도체층(2)은 AlyGa1 - yN (0.5≤y≤1)로 이루어져서, 후속하여 성장 성막되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정성과 극성을 보장하는 역할을 한다는 점에서 공통된다.The first semiconductor layer 2 shown in FIGS. 7 and 8 and the first semiconductor layer 2 shown in FIGS. 9 and 10 are made of Al y Ga 1 - y N (0.5≤y≤1), and are subsequently grown It is common in that it serves to ensure crystallinity and polarity of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 to be formed.

희생층(3)은 레이저 리프트 오프(LLO) 시에 사파이어 성막 기판(1)의 분리가 용이하도록 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 형성하기에 앞서 사파이어 성막 기판(1) 후면을 통해 조사 입사된 레이저의 파장(wavalength)보다 충분히 큰 파장의 에너지 밴드갭을 갖는 광학적으로 투명한 반도체인 동시에, 광 에너지원을 최대한 많이 흡수할 수 있는 비정질, 다결정(amorphous or polycrystalline), 또는 다층(multi layer)의 미세구조(microstructure)를 갖는 물질 영역이 바람직하며, 예를 들어, 다층의 Alx1Ga1 - x1N/Alx2Ga1 - x2N (x2<x1≤1, 0≤x2<0.5), 단층의 Ga-rich AlGaN (Ga/(Ga+Al) 값이 50% 이상) 및 GaN으로 이루어질 수 있다. 희생층(3)은 CVD(예: MOCVD, HVPE, ALD)로 성장 성막될 수 있으며, 레이저 리프트 오프 시에 레이저의 에너지를 흡수하여 사파이어 성막 기판(1) 측과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 측을 분리하는 역할을 한다. 일반적으로 이론과 실험으로부터 도출 확인된 AlzGa1 - zN 에너지 밴드갭, E(z)=3.43+1.44z+1.33z2 (eV), 만일 50% Al 조성을 갖는 Al0 . 5Ga0 .5N 경우는 4.48eV의 에너지 밴드갭을 갖는다. 반도체(절연체 포함)의 에너지 밴드갭(eV) 값을 광학적 특성인 파장으로 변환하는 식, λ(nm) = 1240/E(z)로서, 이 식을 통해 파장 변환하면 277nm 값을 얻을 수 있다. 따라서 상대적으로 범용화되어 있는 고출력 단파장 레이저 광원(248nm 이상)을 통해서 50% 미만의 Al 조성을 갖는 AlzGa1-zN 및 GaN 물질 단층, 또는 이들로 구성된 다층 미세구조로 된 희생층(3)을 제거하는데 용이하다. 희생층(3) 두께는 예를 들어 100nm 이하일 수 있으며, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다. 50% 미만의 Al 조성을 갖는 AlzGa1 - zN 경우 900-1200℃ 및 100-200torr 조건에서 성장하는 것이 가능하고, GaN 경우 600-1100℃ 및 100-200torr 조건에서 성장하는 것이 가능하다. 사파이어 성막 기판(1)에 희생층(3) 성장 성막 후에 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 성장 성막하기에 앞서 씨앗(seed) 역할을 하는 스퍼터링 AlN 박막을 증착 성막해야 하는데, 스퍼터링 전처리로서 챔버내에서 소량의 Ar(표면 에칭을 통한 평탄화 및 클리닝), 미량의 산소(O2) 포함한 질소(N2) 개스 다량을 통해서 희생층(3) 표면을 안정화시키는 단계를 포함한다. AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)은 CVD(예: MOCVD, HVPE, ALD)로 성장 성막될 수 있으며, 단결정 박막으로 성장 성막된다. 그 두께는 최종 소자에 따라 달라질 수 있으며, 예를 들어, 도 1(b)에 제시된 FBAR에 이용되는 경우에, 양 측에 형성되는 전극(22'24')의 두께와 함께 공진 주파수에 의해 그 두께가 결정된다. AlxGa1-xN (0.5≤x≤1) 압전 박막(4)이 Ga을 포함하는 경우를 고려할 수 있으며, 이에 맞추어 제1 반도체층(2), 희생층(3) 및 제2 반도체층(5)의 Ga 조성이 달라질 수 있다.The sacrificial layer 3 is formed of Al x Ga 1 - x N (0.5≤x≤1) sapphire prior to forming the piezoelectric thin film 4 to facilitate separation of the sapphire deposition substrate 1 during laser lift-off (LLO). It is an optically transparent semiconductor having an energy bandgap of a wavelength sufficiently larger than the wavelength of the laser irradiated through the back surface of the deposition substrate 1, and at the same time, an amorphous or polycrystalline semiconductor capable of absorbing as much light energy source as possible. Polycrystalline, or regions of material with a multi-layer microstructure are preferred, for example multi-layered Al x1 Ga 1 - x1 N/Al x2 Ga 1 - x2 N (x 2 <x 1 ≤1, 0≤x 2 <0.5), single-layer Ga-rich AlGaN (Ga/(Ga+Al) value of 50% or more) and GaN. The sacrificial layer 3 may be grown and formed by CVD (eg, MOCVD, HVPE, ALD), and absorbs laser energy during laser lift-off to form a sapphire film-forming substrate 1 side and Al x Ga 1 - x N ( 0.5≤x≤1) serves to separate the piezoelectric thin film 4 side. In general, Al z Ga 1 - z N energy bandgap, E(z)=3.43+1.44z+1.33z 2 (eV), confirmed from theory and experiment, if Al 0 with 50% Al composition . 5 Ga 0.5 N has an energy bandgap of 4.48 eV . It is an equation that converts the energy bandgap (eV) value of a semiconductor (including an insulator) into a wavelength that is an optical characteristic, λ(nm) = 1240/E(z). If the wavelength is converted through this equation, a value of 277 nm can be obtained. Therefore, a single layer of Al z Ga 1-z N and GaN material having an Al composition of less than 50%, or a sacrificial layer 3 having a multi-layer microstructure composed of these, is produced through a relatively generalized high-power short-wavelength laser light source (248 nm or more). easy to remove The thickness of the sacrificial layer 3 may be, for example, 100 nm or less, preferably Al x Ga 1 - x N (0.5≤x≤1) 1 nm-30 nm which is more advantageous for suppressing crack generation and propagation of the piezoelectric thin film 4 do it with In the case of Al z Ga 1 - z N having an Al composition of less than 50%, it is possible to grow at 900-1200° C. and 100-200 torr conditions, and in the case of GaN, it is possible to grow at 600-1100° C. and 100-200 torr conditions. After growth of the sacrificial layer 3 on the sapphire deposition substrate 1, Al x Ga 1 - x N (0.5≤x≤1) sputtering AlN thin film serving as a seed before growth and deposition of the piezoelectric thin film 4 As a pre-sputtering treatment, a small amount of Ar (planarization and cleaning through surface etching), a small amount of oxygen (O 2 ) and a large amount of nitrogen (N 2 ) gas containing a small amount of oxygen (O 2 ) are used to stabilize the surface of the sacrificial layer 3 in the chamber. including the step of making Al x Ga 1 - x N (0.5≤x≤1) The piezoelectric thin film 4 may be grown and formed by CVD (eg, MOCVD, HVPE, ALD), and is formed as a single crystal thin film. The thickness may vary depending on the final device, for example, when used in the FBAR shown in FIG. thickness is determined. Al x Ga 1-x N (0.5≤x≤1) A case in which the piezoelectric thin film 4 includes Ga may be considered, and accordingly, the first semiconductor layer 2 , the sacrificial layer 3 and the second semiconductor layer The Ga composition of (5) may be different.

도 8에 제시된 제2 반도체층(5)은 예를 들어, CVD(예: MOCVD, HVPE, ALD)로 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)을 형성하기 전 단계 공정으로 성장 성막될 수 있으며, AlaGa1 - aN(0.5<a≤1)로 된 단층 또는 Alb1Ga1 - b1N/Alb2Ga1 - b2N (b1≠b2)로 다층 구조(다층 구조 전체로서 Al이 함량이 50% 이상이 바람직함)로 이루어지되, 전체적으로 희생층(3)보다 Al의 함량이 높아서 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 Ga의 함량이 높은 희생층(3) 사이의 응력(stress) 차를 해소하는 역할을 한다. 제2 반도체층(5)은 희생층(3)으로부터 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 향해 Al 함량이 증가하는 상향 그라데이션(gradation)되는 구조를 가질 수 있음은 물론이다. 도 10에 제시된 예의 경우에 제2 반도체층(5)과 희생층(3) 사이에 제1 반도체층(2)이 위치하지만, 제1 반도체층(2)의 두께가 두껍지 않으므로, 도 8에 제시된 예에서와 마찬가지로 제2 반도체층(5)을 구비함으로써, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 Ga의 함량이 높은 희생층(3) 사이의 응력(stress) 차를 해소하는 역할을 한다. 또한 제2 반도체층(5)은 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 성장 성막할 때 웨이퍼 전체 두께 균일도(thickness uniformity)를 결정짓는 중요한 역할을 수행하기 때문에 Si 또는/및 Mg 도판트를 첨가시키는 공정을 추가하여 웨이퍼 변형(Strain)을 조절하는데 사용할 수 있다. 제2 반도체층(5) 두께는 예를 들어, 100nm 이하일 수 있으며, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다.The second semiconductor layer 5 shown in FIG. 8 is, for example, before the Al x Ga 1-x N (0.5≤x≤1) piezoelectric thin film 4 is formed by CVD (eg, MOCVD, HVPE, ALD). It can be deposited as a growth film in a step process, as a single layer of Al a Ga 1 - a N (0.5<a≤1) or as Al b1 Ga 1 - b1 N/Al b2 Ga 1 - b2 N (b 1 ≠ b 2 ). It has a multi-layer structure (the content of Al is preferably 50% or more as the whole multi-layer structure), but the Al content is higher than that of the overall sacrificial layer 3, so Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film (4) and the Ga-rich sacrificial layer (3) serves to resolve the stress (stress) difference between the layer (3). The second semiconductor layer 5 may have a structure in which the Al content increases from the sacrificial layer 3 toward the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 and is gradated upward. of course there is In the case of the example shown in FIG. 10 , the first semiconductor layer 2 is positioned between the second semiconductor layer 5 and the sacrificial layer 3 , but since the thickness of the first semiconductor layer 2 is not thick, the By providing the second semiconductor layer 5 as in the example, the stress between the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 and the sacrificial layer 3 having a high Ga content ) plays a role in dissolving the car. In addition, the second semiconductor layer 5 plays an important role in determining the thickness uniformity of the entire wafer when the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 is grown and formed. A process of adding Si or/and Mg dopants may be added to control wafer strain. The thickness of the second semiconductor layer 5 may be, for example, 100 nm or less, preferably Al x Ga 1 - x N (0.5≤x≤1), which is more advantageous for suppressing crack generation and propagation of the piezoelectric thin film 4 . 1nm-30nm.

도 11 내지 도 13은 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 일예를 나타내는 도면이다. 여기서 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막이 공진기(resonator)에 적용되었지만, AlxGa1 - xN (0.5≤x≤1) 압전 박막으로부터 사파이어 성막 기판을 제거한 후 이 AlxGa1-xN (0.5≤x≤1) 압전 박막을 이용할 수 있는 소자 또는 장치라면 제한없이 확장, 적용될 수 있음은 물론이다. 도 3 및 도 4에 제시된 방법이 사용될 수 있음은 물론이며, BAW 공진기 이외에 SAW 공진기에도 적용될 수 있음도 물론이다. 이하에서, 도 7에 제시된 구조물을 가지고 설명한다. 도 11에 도시된 바와 같이, 먼저, 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)을 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 위에 제1 전극(6; 예: Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, 또는 이들의 합금)을 형성한다. 다음으로, 제1 전극(6) 위에 제1 보호막(7; 예: Mo, W, Ta, Pt, Ti, TiW, TaN, TiN, SiO2, Al2O3, SiC, SiCN, SiNx, AlN, Polyimide, BCB, SU-8, SOG 등)을 형성한다. 다음으로, 제1 보호막(7) 위에 제1 본딩 레이어(8; 예: SnIn, AuSn, AgIn, PdIn, NiSn, CuSn, Cu to Cu, Au to Au, Epoxy, SU-8, BCB)를 형성한다. 제1 본딩 레이어(8)에 임시 기판(9; 예: 사파이어, AlN, Glass)을 웨이퍼 본딩한다. 다음으로, 레이저 리프트 오프(LLO)를 통해 사파이어 성막 기판(1)을 분리한다. 이 과정에서 메탈 드랍릿(metallic droplet) 제거 공정, 정확한 두께 조정을 위한 트리밍(trimming) 공정 등이 수반될 수 있다. 사파이어 성막 기판(1) 분리, 메탈 드랍릿 제거, 트리밍 공정 등을 마친 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 표면은 질소 개스 극성(N-polarity)을 갖는 표면(face)이다. 이어서, 도 12에 도시된 바와 같이, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)에 제2 전극(14; 예: Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, 이들 합금)과 다층 구조의 브래그 리플렉터(10; 예: SiO2/W) 반사기를 형성한다. 바람직하게는 제2 전극(14)과 브래그 리플렉터(10) 반사기 증착 공정 후, 이어서 브래그 리플렉터(10) 반사기 위에 제2 보호막(11; 예: Mo, W, Ta, Pt, Ti, TiW, TaN, TiN, SiO2, Al2O3, SiC, SiCN, SiNx, AlN, Polyimide, BCB, SU-8, SOG 등)을 형성한다. 다음으로 제2 보호막(11) 위에 제2 본딩 레이어(12; 예: SnIn, AuSn, AgIn, PdIn, NiSn, CuSn, Cu to Cu, Au to Au, Epoxy, SU-8, BCB 등)를 형성한다. 이어서, 도 12에 도시된 바와 같이, 소자 기판(13; 예: Si, GaAs, AlN, Mo, Cu, W, MoCu, CuW, Invar, Laminate)을 제2 본딩 레이어(12)와 유테틱 본딩, 브레이징 등의 방법으로 웨이퍼 본딩한다. 도시 생략되었지만, 웨이퍼 본딩에 앞서 소자 기판(13)에 순차적으로 전기 절연체 물질층(보호층)과 웨이퍼 본딩층을 형성한다. 마지막으로, 열 가공, 레이저 조사, 화학적 및 물리적 에너지원 공급을 통해 임시 기판(9)을 분리 제거하고, 이어서 제1 본딩 레이어(8)와 제1 보호막(7)을 제거한다. 도 8 내지 도 10에 제시된 예에도 마찬가지로 적용될 수 있다. 이때, 제2 반도체층(5) 또한 제거된다. 두 번의 웨이퍼 본딩 공정을 이용함으로써, AlxGa1 -xN (0.5≤x≤1) 압전 박막(4)의 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)을 소자의 상면으로 이용할 수 있으며, 이를 통해 내부식성 등의 표면 화학적 및 구조적 안정한 표면을 가짐으로써 후공정 및 최종 소자의 품질관점에서 이점을 가진다.11 to 13 are diagrams illustrating an example of a method of manufacturing a resonator using the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure. Here, the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure was applied to the resonator, but the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film was formed from the sapphire film substrate After removing Al x Ga 1-x N (0.5≤x≤1), any device or device that can use the piezoelectric thin film can be expanded and applied without limitation. Of course, the method shown in FIGS. 3 and 4 can be used, and of course, it can also be applied to a SAW resonator in addition to the BAW resonator. Hereinafter, the structure shown in FIG. 7 will be described. 11, first, Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 having a metallic polarity (Al-polarity or Al-polarity & Ga-polarity mixed) face ) on the first electrode (6; for example, Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, or an alloy thereof) is formed. Next, on the first electrode 6 , the first passivation layer 7 (eg, Mo, W, Ta, Pt, Ti, TiW, TaN, TiN, SiO 2 , Al 2 O 3 , SiC, SiCN, SiN x , AlN) , Polyimide, BCB, SU-8, SOG, etc.). Next, a first bonding layer 8 (eg, SnIn, AuSn, AgIn, PdIn, NiSn, CuSn, Cu to Cu, Au to Au, Epoxy, SU-8, BCB) is formed on the first passivation layer 7 . . A temporary substrate 9 (eg, sapphire, AlN, glass) is wafer-bonded to the first bonding layer 8 . Next, the sapphire film-forming substrate 1 is separated through laser lift-off (LLO). In this process, a metal droplet removal process, a trimming process for accurate thickness adjustment, etc. may be accompanied. The surface of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 after separation of the sapphire film-forming substrate 1, metal droplet removal, trimming process, etc. is a surface with nitrogen gas polarity (N-polarity) (face). Then, as shown in FIG. 12 , the second electrode 14 (eg, Mo , W, Ta, Pt, Ir , Ru, Rh, Re, Au, Cu, Al, Invar, and their alloys) and a Bragg reflector (10; for example, SiO 2 /W) having a multilayer structure are formed. Preferably, after the deposition process of the second electrode 14 and the Bragg reflector 10 reflector, a second protective film 11 (eg, Mo, W, Ta, Pt, Ti, TiW, TaN, etc.) on the Bragg reflector 10 reflector is formed. TiN, SiO 2 , Al 2 O 3 , SiC, SiCN, SiN x , AlN, Polyimide, BCB, SU-8, SOG, etc.). Next, a second bonding layer 12 (eg, SnIn, AuSn, AgIn, PdIn, NiSn, CuSn, Cu to Cu, Au to Au, Epoxy, SU-8, BCB, etc.) is formed on the second passivation layer 11 . . Then, as shown in FIG. 12 , the device substrate 13 (eg, Si, GaAs, AlN, Mo, Cu, W, MoCu, CuW, Invar, Laminate) is bonded to the second bonding layer 12 and eutectic bonding; The wafer is bonded by a method such as brazing. Although not shown, an electrical insulator material layer (protective layer) and a wafer bonding layer are sequentially formed on the device substrate 13 prior to wafer bonding. Finally, the temporary substrate 9 is separated and removed through thermal processing, laser irradiation, and chemical and physical energy source supply, and then the first bonding layer 8 and the first protective film 7 are removed. The examples shown in Figs. 8 to 10 may be similarly applied. At this time, the second semiconductor layer 5 is also removed. By using two wafer bonding processes, the metallic polarity (Al-polarity or Al-polarity & Ga-polarity mixed) face of the Al x Ga 1 -x N (0.5≤x≤1) piezoelectric thin film 4 is formed. It can be used as the upper surface of the device, and through this, it has a surface chemically and structurally stable such as corrosion resistance, and thus has an advantage in terms of post-processing and quality of the final device.

도 14 및 도 15는 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 도 11 내지 도 13에 제시된 방법과 달리, 임시 기판(9)을 이용하지 않는다. 먼저, 도 14에 도시된 바와 같이, 제2 전극(14; 예: Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, 또는 이들의 합금)과 다층 구조의 브래그 리플렉터(10) 반사기, 제2 보호막(11), 제2 본딩 레이어(12)를 형성한 다음, 소자 기판(13)을 웨이퍼 본딩하고, 이어서 사파이어 성막 기판(1)을 제거한다. 마지막으로, 도 15에 도시된 바와 같이, 제1 전극(6)을 형성한다.14 and 15 are views showing another example of a method of manufacturing a resonator using the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure, and FIGS. Unlike the method presented in 13, a temporary substrate 9 is not used. First, as shown in FIG. 14 , a second electrode 14 (eg, Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, or an alloy thereof) and a multilayer structure After forming the Bragg reflector 10 reflector, the second protective film 11 , and the second bonding layer 12 of the device substrate 13 , wafer bonding is performed, and then the sapphire film formation substrate 1 is removed. Finally, as shown in FIG. 15 , the first electrode 6 is formed.

도 11 내지 도 13에 제시된 방법과 도 14 및 도 15에 제시된 방법으로 제작된 공진기 소자의 차이는 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 형성되어 놓이는 위치와 웨이퍼 본딩 횟수에 따라 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 표면 극성이 결정된다는 것이다. 도 11 내지 도 13에 제시된 방법은 두 번의 웨이퍼 본딩 공정을 통해 제작되는 것으로서, 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 질소 개스 극성 표면(N-polarity face)에 놓인 반면, 한 번의 웨이퍼 본딩 공정을 거치는 도 14 내지 도 15에 제시된 방법 경우는 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)의 메탈릭 극성 표면(Al-polarity 또는 Al-polarity & Ga-polarity mixed face)에 위치한다. 참고로 종래의 Si 성막 기판 위에 스퍼터링을 통해 형성된 다결정(polycrystalline) AlN 압전 박막으로 제작된 공진기 소자의 경우는 표면 극성과 극성 비율(ratio)을 조절하는데 한계가 있기에 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)의 극성 위치를 정의할 수 없다.The difference between the method shown in FIGS. 11 to 13 and the resonator element manufactured by the method shown in FIGS. 14 and 15 depends on the position where the second electrode 14 including the Bragg reflector 10 is formed and the number of wafer bonding times. Al x Ga 1 - x N (0.5≤x≤1) The surface polarity of the piezoelectric thin film 4 is determined. The method shown in FIGS. 11 to 13 is manufactured through two wafer bonding processes, and the second electrode 14 including the Bragg reflector 10 reflector is Al x Ga 1 - x N (0.5≤x≤1) piezoelectric A second electrode 14 including a Bragg reflector 10 reflector in the case of the method presented in FIGS. 14 to 15, which is placed on the nitrogen gas polarity face of the thin film 4, while undergoing one wafer bonding process. This Al x Ga 1-x N (0.5≤x≤1) is located on the metallic polarity surface (Al-polarity or Al-polarity & Ga-polarity mixed face) of the piezoelectric thin film 4 . For reference, in the case of a resonator device made of a polycrystalline AlN piezoelectric thin film formed through sputtering on a conventional Si film-forming substrate, there is a limit to adjusting the surface polarity and polarity ratio. The polarity position of the two electrodes 14 cannot be defined.

도 16은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 희생층(23a), 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함한다. 희생층(23a)은 CVD(MOCVD, ALD, MBE 등)로 성장 성막시킨 단층의 AlcGa1 - cN (0≤c≤0.5) 또는 다층의 Alc1Ga1 - c1N/Alc2Ga1 - c2N (c2<c1≤1, 0≤c2<0.5)로 된 3족 질화물로 이루어질 수 있다. AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)은 희생층(23a) 위에 PVD(예: sputtering, PLD)로 0.3Tm(압전 박막 물질의 녹는점) 이상의 온도에서 증착 성막되어 고품질이 확보된다.16 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; As another example, the structure includes a sapphire deposition substrate 1 , a sacrificial layer 23a , and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 . The sacrificial layer 23a is a single layer Al c Ga 1 - c N (0≤c≤0.5) or a multilayer Al c1 Ga 1 - c1 N/Al c2 Ga 1 grown and deposited by CVD (MOCVD, ALD, MBE, etc.) - It may consist of a group III nitride of c2 N (c 2 < c 1 ≤ 1, 0 ≤ c 2 < 0.5). Al x Ga 1 - x N (0.5≤x≤1) The piezoelectric thin film 4 is deposited by PVD (eg sputtering, PLD) on the sacrificial layer 23a at a temperature of 0.3Tm (melting point of the piezoelectric thin film material) or higher. and high quality is ensured.

도 17은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1) 위에 순차적으로 희생층(23a), 제2 반도체층(5), 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함한다. 제2 반도체층(5)이 추가된다는 점에서 도 17에 제시된 구조물과 구분되며, 제2 반도체층(5)은 도 8에 제시된 제2 반도체층(5)과 마찬가지로 기능을 하며, 희생층(23a)과 마찬가지로 CVD로 성장 성막되나 다른 조성(AlaGa1 - aN (0.5<a≤1))을 갖는 3족 질화물로 이루어져서, 스트레스를 조절하여 균일한 두께를 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 확보할 수 있도록 촉진하는 역할을 한다.17 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; As another example, the structure is sequentially on the sapphire deposition substrate 1, the sacrificial layer 23a, the second semiconductor layer 5, and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film (4) is included. It is distinguished from the structure shown in FIG. 17 in that the second semiconductor layer 5 is added, and the second semiconductor layer 5 functions like the second semiconductor layer 5 shown in FIG. 8 , and the sacrificial layer 23a ), it is formed by CVD, but it is made of Group III nitride having a different composition (Al a Ga 1 - a N (0.5<a≤1)), so Al x Ga 1 - x N having a uniform thickness by controlling the stress (0.5≤x≤1) It serves to promote the piezoelectric thin film 4 to be secured.

도 18는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 희생층(23b), 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함한다. 희생층(23b)이 PVD(예: L sputtering, PLD)로 증착 성막시킨 단층의 ZnO, ITO, 또는 이들 중 적어도 하나를 포함한 다층의 산화물 구조(ZnO/ITO, ZnO/SiO2, ITO/SiO2)로 된 산화물로 이루진다는 점에서 도 16에 제시된 구조물과 구분된다. AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)은 희생층(23b) 위에 PVD(예: sputtering, PLD등)로 0.3Tm(압전 박막 물질의 녹는점) 이상의 온도에서 증착 성막되어 고품질이 확보된다.18 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure. As another example, the structure includes a sapphire deposition substrate 1 , a sacrificial layer 23b , and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 . A single layer of ZnO, ITO, or a multilayer oxide structure (ZnO/ITO, ZnO/SiO 2 , ITO/SiO 2 ) including at least one of which the sacrificial layer 23b is deposited with PVD (eg, L sputtering, PLD) ), it is distinguished from the structure shown in FIG. 16 in that it is made of an oxide. Al x Ga 1 - x N (0.5≤x≤1) The piezoelectric thin film 4 is deposited on the sacrificial layer 23b with PVD (eg, sputtering, PLD, etc.) at a temperature of 0.3Tm (melting point of the piezoelectric thin film material) or higher The film is formed to ensure high quality.

도 19는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1) 위에 순차적으로 희생층(23b), 산소(O2) 유입 방지층(O), 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함한다. 산소(O2) 유입 방지층(O)이 추가된다는 점에서 도 18에 제시된 구조물과 구분되며, 산소(O2) 유입 방지층(O)은 AlN 또는 미소 산소량을 포함한 AlNO 물질로 희생층(23b) 위에 증착 성막되어, 후속하여 증착 성막하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 동일한 PVD(예L sputtering, PLD)로 형성하여 희생층(23b)으로부터 산소 유입을 방지하여 고순도 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 확보할 수 있도록 촉진하는 역할을 한다.19 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; As a view showing another example, the structure is sequentially on the sapphire deposition substrate 1 on the sacrificial layer 23b, oxygen (O 2 ) inflow prevention layer (O), and Al x Ga 1 - x N (0.5≤x≤1) ) a piezoelectric thin film 4 . It is distinguished from the structure shown in FIG. 18 in that an oxygen (O 2 ) inflow prevention layer (O) is added, and the oxygen (O 2 ) inflow prevention layer (O) is an AlN or AlNO material containing a small amount of oxygen on the sacrificial layer 23b. By deposition and forming the same PVD (eg L sputtering, PLD) as the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 that is deposited and subsequently deposited, oxygen inflow from the sacrificial layer 23b is prevented. It serves to promote the high-purity Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 by preventing it.

도 16 및 도 17에 제시된 예에서, 희생층(23a)은 저온이 아닌 고온(900℃ 이상)에서 CVD(MOCVD, HVPE, ALD, MBE)로 단결정 성장 성막시킨 단층의 AlcGa1 - cN (0≤c≤0.5) 또는 다층의 Alc1Ga1 - c1N/Alc2Ga1 - c2N (c2<c1≤1, 0≤c2<0.5)로 된 3족 질화물로 이루어질 수 있으며, 후속하여 0.3Tm(660℃) 온도 이상에서 PVD(예: sputtering, PLD)로 증착 성막되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정 품질(결정성과 극성)을 보장하는 역할을 한다. 따라서 희생층(23a)은 적정 성장온도보다 낮은 온도에서 성장되는 종래의 버퍼층이라 일컫어지는 층과 구분되며, 도 7 내지 도 10에 제시된 제1 반도체층(2)과 희생층(3)의 역할을 동시에 수행한다는 점에서 차이를 가진다. 희생층(23a) 두께의 상한과 하한은 특별히 한정되지 않지만, 바람직하게는 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)의 두께 균일도(thickness uniformity)를 유지하기 위한 스트레스 조절(stress control) 기능을 하는데 유리하도록 50nm-3㎛로 한다. 예를 들어, 900-1100℃의 온도와, 100-600torr의 압력에서 성장될 수 있다. 더 바람직하게는 도 17에 제시된 예에서처럼, 희생층(23a)과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 사이에 위치하며, 후속하여 증착 성막되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정성과 두께 균일도를 개선하기 위해 제2 반도체층(5)을 구비한다. 제2 반도체층(5)은 희생층(23a)과 동일한 CVD(MOCVD, HVPE, ALD, MBE 등)로 단결정 성장 성막되며, 이때 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 동일 또는 유사한 조성을 갖는 3족 질화물로 구성하는 것이 바람직하다. 또한 희생층(23a)과 제2 반도체층(5)은 AlyGa1 - yN (0.5≤y≤1) 압전 박막(4)을 증착 성막 시에 고품질(결정성과 극성)과 균일한 두께를 갖도록 성막 기판 휨(curvature)을 가능한 제로(zero, 평평함) 상태를 유지토록 제어하는 것이 바람직하다.In the examples shown in FIGS. 16 and 17 , the sacrificial layer 23a is a monolayer Al c Ga 1 - c N formed by single crystal growth deposition by CVD (MOCVD, HVPE, ALD, MBE) at a high temperature (900° C. or higher) rather than a low temperature. (0≤c≤0.5) or multi-layered Al c1 Ga 1 - c1 N/Al c2 Ga 1 - c2 N (c 2 <c 1 ≤ 1, 0≤c 2 <0.5) group 3 nitride, , followed by Al x Ga 1 - x N (0.5≤x≤1) crystal quality (crystallinity and polarity) ) to ensure Therefore, the sacrificial layer 23a is distinguished from the conventional buffer layer grown at a temperature lower than the appropriate growth temperature, and serves as the first semiconductor layer 2 and the sacrificial layer 3 shown in FIGS. 7 to 10 . The difference is that they are performed at the same time. The upper and lower limits of the thickness of the sacrificial layer 23a are not particularly limited, but preferably Al x Ga 1-x N (0.5≤x≤1) stress for maintaining the thickness uniformity of the piezoelectric thin film 4 . It is set to 50nm-3㎛ to be advantageous for the stress control function. For example, it may be grown at a temperature of 900-1100° C. and a pressure of 100-600 torr. More preferably, as in the example shown in FIG. 17, the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 positioned between the sacrificial layer 23a and the Al x Ga 1 followed by deposition. - x N (0.5≤x≤1) A second semiconductor layer 5 is provided to improve crystallinity and thickness uniformity of the piezoelectric thin film 4 . The second semiconductor layer 5 is formed as a single crystal growth film by the same CVD (MOCVD, HVPE, ALD, MBE, etc.) as the sacrificial layer 23a, wherein Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film ( It is preferable to consist of a group III nitride having the same or similar composition to 4). In addition, the sacrificial layer 23a and the second semiconductor layer 5 are of high quality (crystallinity and polarity) and uniform thickness when the Al y Ga 1 - y N (0.5 ≤ y ≤ 1) piezoelectric thin film 4 is deposited. It is preferable to control the film-forming substrate to maintain a curvature as possible as possible in a zero (flatness) state.

도 18 및 도 19에 제시된 예에서, 희생층(23b)은 저온이 아닌 고온(400℃ 이상)에서 PVD(예:sputtering, PLD)로 결정성(다결정 또는 단결정)을 갖는 증착 성막시킨 단층의 ZnO와 ITO, 또는 이들 중 적어도 하나를 포함한 다층의 산화물 구조(ZnO/ITO, ZnO/SiO2, ITO/SiO2)로 이루어질 수 있다. 단층의 희생층(23b) 두께의 상한과 하한은 특별히 한정되지 않지만, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 두께 균일도(thickness uniformity)를 유지하기 위한 스트레스 조절(stress control) 기능을 하는데 유리하도록 50nm-3㎛로 한다. 희생층(23b)은 PVD(예: 스퍼터링, PLD)로 증착될 수 있고, 성막 시에 성막 기판 온도는 750℃, 아르곤(Ar)과 산소(O2) 개스로 구성된 공정 압력은 10-20mTorr 이고, 아르곤 대비 산소량이 상대적으로 적고 최소 50% 이내로 구성하는 것이 바람직하다. 더 바람직하게는 도 18에 제시된 예에서처럼, 희생층(23b)과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 사이에 위치하며, 후속하여 증착 성막되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정성과 두께 균일도를 개선하기 위해 산소(O2) 유입 방지층(O)을 구비한다. 산소(O2) 유입 방지층(O)은 AlN 또는 미소 산소량을 포함한 AlNO 물질로 희생층(23b) 위에 증착 성막되어, 후속하여 증착 성막하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 동일한 PVD(예: sputtering, PLD)로 증착 성막하여 희생층(23b)으로부터 산소 유입을 방지하여 고순도 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 확보할 수 있도록 촉진하는 역할을 한다. 특히 산소(O2) 유입 방지층(O)으로 AlNO(소량의 O2를 포함한 분위기에서 AlyGa1 - yN (0.5≤y≤1) 스퍼터링 증착) 적용할 경우, 일정량(예: O2/(N2+O2) 값이 3% 이하)의 산소 공급이 중요하며, 고순도 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 확보하는데 씨앗(seed)으로 역할한다. 소량의 O2를 포함한 분위기에서 AlyGa1-yN (0.5≤y≤1)의 스퍼터링 증착은 상대적으로 작은 아일랜드(smaller islands) 형상의 AlyGa1 - yN (0.5≤y≤1) 결정체를 형성하여 상기 적정 증착 성막 온도에서 PVD(예: sputtering, PLD)로 증착 성막된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 표면 평탄도 개선과 박막 내부의 전위밀도 저감를 통해 고품질의 결정성과 극성을 확보하는데 중대한 씨드(seed) 역할을 담당한다. AlN 또는 AlNO 구성된 산소 유입 방지층(O)의 두께는 100nm 이하인 것이 바람직하며, 더욱 바람직하게는 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다. 예를 들어, 300-500℃의 온도와 압력은 5*10- 3mbar의 압력에서 증착될 수 있다.In the examples shown in FIGS. 18 and 19 , the sacrificial layer 23b is a single layer of ZnO formed by deposition having crystallinity (polycrystalline or single crystal) with PVD (eg, sputtering, PLD) at high temperature (400° C. or higher) rather than low temperature. and ITO, or a multilayer oxide structure including at least one of them (ZnO/ITO, ZnO/SiO 2 , ITO/SiO 2 ). The upper and lower limits of the thickness of the single sacrificial layer 23b are not particularly limited, but preferably Al x Ga 1 - x N (0.5≤x≤1) to maintain the thickness uniformity of the piezoelectric thin film 4 . It is set to 50nm-3㎛ to be advantageous for the stress control function. The sacrificial layer 23b may be deposited by PVD (eg, sputtering, PLD), and the deposition substrate temperature during film formation is 750° C., and the process pressure consisting of argon (Ar) and oxygen (O 2 ) gas is 10-20 mTorr, and , the amount of oxygen compared to argon is relatively small, and it is preferable to configure it within at least 50%. More preferably, as in the example shown in FIG. 18 , the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 is positioned between the sacrificial layer 23b and the Al x Ga 1 subsequently deposited. - x N (0.5≤x≤1) To improve the crystallinity and thickness uniformity of the piezoelectric thin film 4, an oxygen (O 2 ) inflow prevention layer (O) is provided. The oxygen (O 2 ) inflow prevention layer (O) is deposited on the sacrificial layer 23b with AlN or an AlNO material containing a small amount of oxygen, followed by deposition Al x Ga 1 - x N (0.5≤x≤1) piezoelectric A high-purity Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 is formed by depositing the same PVD (eg, sputtering, PLD) as the thin film 4 to prevent oxygen inflow from the sacrificial layer 23b. It serves as a facilitator to obtain In particular, when AlNO (Al y Ga 1 - y N (0.5≤y≤1) sputtering deposition in an atmosphere containing a small amount of O 2 ) is applied as an oxygen (O 2 ) inflow prevention layer (O), a certain amount (eg, O 2 / (N 2 +O 2 ) value of 3% or less) oxygen supply is important, and serves as a seed to secure high-purity Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 . The sputtering deposition of Al y Ga 1-y N (0.5 ≤ y ≤ 1) in an atmosphere containing a small amount of O 2 is relatively small island-shaped Al y Ga 1 - y N (0.5 ≤ y ≤ 1). Improvement of the surface flatness of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 and It plays a crucial role in securing high-quality crystallinity and polarity by reducing dislocation density. The thickness of the oxygen inflow prevention layer (O) composed of AlN or AlNO is preferably 100 nm or less, and more preferably Al x Ga 1-x N (0.5 ≤ x ≤ 1) to suppress crack generation and propagation of the piezoelectric thin film 4 It is set as 1 nm-30 nm which is more advantageous. For example, a temperature and pressure of 300-500 °C can be deposited at a pressure of 5*10 - 3 mbar.

도 16 내지 도 19에서 제시된 방법에 따라 제조된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 구조물의 결정성 품질(crystalline quality)은 공통적으로 X-ray rocking curve의 반치폭이 작은 값을 갖는 것을 목표로 하며(목표값: 0.1° 이하), 극성 품질(polar quality)과 관련해서는 도 16과 도 17의 경우에서는 희생층(23a)과 제2 반도체층(5), 도 18와 도 19 경우에서는 희생층(23b)과 산소 유입 방지층(O)의 표면 상태에 따라서 자유롭게 조절할 수 있는 이점이 있다.The crystalline quality of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 structure manufactured according to the method shown in FIGS. 16 to 19 is in common the half width at half maximum of the X-ray rocking curve. It aims to have this small value (target value: 0.1° or less), and with respect to polar quality, in the case of FIGS. 16 and 17, the sacrificial layer 23a and the second semiconductor layer 5, FIG. 18 and 19, there is an advantage that can be freely adjusted according to the surface state of the sacrificial layer 23b and the oxygen inflow prevention layer (O).

도 11 내지 도 15에 제시된 공진기를 제조하는 방법이 도 16 내지 도 19에 제시된 구조물에 그대로 적용될 수 있음은 물론이다.It goes without saying that the method of manufacturing the resonator shown in FIGS. 11 to 15 can be directly applied to the structure shown in FIGS. 16 to 19 .

도 16 내지 도 19에 있어서, 희생층(23a,23b)은 ① Laser Lift-Off(LLO) 공정을 통해 광학적으로 투명한 성막 기판(1) 위에 형성된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 분리할 수 있도록 성막 기판(1)과 고순도 압전 박막(4) 사이에 위치하며, ② 레이저에 대해 희생층으로 기능하도록 에너지 밴드갭(일반적으로 200nm 이상)을 가지고, ③ CVD로 형성된 3족 질화물, PVD로 형성된 2족 또는 3족 산화물(예: ZnO, In2O3, Ga2O3, ITO)로 구성될 수 있으며, ④ AlxGa1 - xN (0.5≤x≤1) 압전 박막의 고온 성막이 가능할 수 있게끔, 0.3Tm(660℃) 이상에서 열적 안정성을 보유한 물질이어야 하고, ⑤ 육방정계(HCP) 결정구조를 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 동일 또는 유사한 결정구조를 갖는 물질이며, ⑥ AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 성막이 가능토록 표면 거칠기(surface roughness)가 10nm 이하가 가능한 세라믹(질화물, 산화물) 물질이고, ⑦ AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 성막이 가능토록 다양한 오염원(contaminants)이 제거된 표면 상태의 물질인 것이 바람직하다.16 to 19 , the sacrificial layers 23a and 23b are formed on the optically transparent film-forming substrate 1 through the ① Laser Lift-Off (LLO) process. Al x Ga 1 - x N (0.5≤x≤1) ) located between the film-forming substrate 1 and the high-purity piezoelectric thin film 4 to separate the piezoelectric thin film 4, ② having an energy bandgap (generally 200 nm or more) to function as a sacrificial layer for the laser, ③ It may be composed of a Group III nitride formed by CVD, a Group II or III oxide (eg, ZnO, In 2 O 3 , Ga 2 O 3 , ITO) formed by PVD, ④ Al x Ga 1 - x N (0.5≤ x≤1) To enable high-temperature film formation of the piezoelectric thin film, it must be a material with thermal stability above 0.3Tm (660℃), ⑤ Al x Ga 1 - x N (0.5≤) having a hexagonal crystal structure (HCP) x≤1) a material having the same or similar crystal structure as the piezoelectric thin film 4, and ⑥ Al x Ga 1 - x N (0.5≤x≤1) surface roughness to enable the formation of the piezoelectric thin film 4 ) is a ceramic (nitride, oxide) material capable of 10 nm or less, and ⑦ Al x Ga 1 - x N (0.5≤x≤1) Surface condition from which various contaminants are removed so that the piezoelectric thin film 4 can be formed It is preferably a material of

희생층(23a)은 종래의 저온에서 성장 성막된 버퍼층을 포함한 구조의 고온 단결정 층(단층 또는 다층 구조)로 성장될 수 있다.The sacrificial layer 23a may be grown as a high-temperature single-crystal layer (single-layer or multi-layer structure) having a conventional structure including a buffer layer formed by growth at a low temperature.

필요시, AlxGa1 - xN (0.5≤x≤1) 압접 박막(4) 성막 전에 경사진 c축(tilted c-axis) 결정면을 갖는 단결정 압전 박막 확보하기 위해 희생층(23a,23b)의 표면에 광 리쏘그래픽 & 식각 패터닝(photo-lithographic etch patterning) 가공을 하는 것도 가능하다.If necessary, Al x Ga 1 - x N (0.5≤x≤1) sacrificial layers 23a and 23b to secure a single crystal piezoelectric thin film having a tilted c-axis crystal plane before the pressure welding thin film 4 is formed It is also possible to perform photo-lithographic etch patterning processing on the surface of

AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 증착 성막 후에, 추가적인 온 후속 열처리 공정인 포스트 어닐링(Post-annealing)을 통해 결정성 및 극성을 개선할 수도 있다.After deposition of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 , crystallinity and polarity may be improved through an additional on-post annealing process, post-annealing.

전술한 바와 같이, 균일한 두께를 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)이 특히 요구되는 경우에, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 아래에 놓이는 도 16에 제시된 구조물(사파이어 성막 기판(1)-희생층(23a)), 도 17에 제시된 구조물(사파이어 성막 기판(1)-희생층(23a)-제2 반도체층(5)), 도 18에 제시된 구조물(사파이어 성막 기판(1)-희생층(23b)) 및 도 19에 제시된 구조물(사파이어 성막 기판(1)-희생층(23b)-산소(O2) 유입 방지층(O))이 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 증착 성막 온도에서 가능한 평탄함(flatness)을 유지하도록 하는 것이 중요하며, 본 개시는 이러한 평탄함을 유지할 수 있는 기반을 제공하는 것이다. 예를 들어, CVD로 성장 성막된 희생층(23a)을 구비하는 사파이어 성막 기판(1)은 상온에서 위로 볼록한(Convex) 형태를 가지나, 이를 다시 PVD 증착 성막을 위해 승온시키면, 온도 상승과 함께 평탄한 상태를 거쳐 아래로 볼록한(concave) 형태를 가지게 된다. 이러한 거동은 사파이어 성막 기판(1)과 희생층(23a)의 열팽창계수의 차이에 영향을 받게 되며, 따라서 적절한 희생층(23a)의 설계를 통해 균일한 두께를 갖는 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)의 증착 성막이 가능해진다. 이러한 원리는 제2 반도체층(5)의 설계, 희생층(23b)의 설계 및 산소(O2) 유입 방지층(O))의 설계에도 그대로 적용될 수 있다.As described above, when an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 having a uniform thickness is particularly required, Al x Ga 1 - x N (0.5≤x≤1) The structure shown in Fig. 16 (sapphire deposition substrate 1 - sacrificial layer 23a) laid under the piezoelectric thin film 4, the structure shown in Fig. 17 (sapphire deposition substrate 1 - sacrificial layer 23a - second semiconductor) layer 5), the structure shown in FIG. 18 (sapphire deposition substrate 1 - sacrificial layer 23b) and the structure shown in FIG. 19 (sapphire deposition substrate 1 - sacrificial layer 23b - oxygen (O 2 ) It is important for the inflow prevention layer (O) to maintain as flatness as possible at the deposition temperature of the Al x Ga 1 - x N (0.5 ≤ x ≤ 1) piezoelectric thin film 4, and the present disclosure provides such a flatness. It provides a foundation to sustain. For example, the sapphire deposition substrate 1 having the sacrificial layer 23a grown by CVD has a convex shape at room temperature. It has a concave shape downward through the state. This behavior is affected by the difference in the coefficient of thermal expansion between the sapphire deposition substrate 1 and the sacrificial layer 23a, and therefore Al x Ga 1-x N ( 0.5≤x≤1) The vapor deposition of the piezoelectric thin film 4 becomes possible. This principle may be directly applied to the design of the second semiconductor layer 5 , the design of the sacrificial layer 23b , and the design of the oxygen (O 2 ) inflow prevention layer (O).

도 20은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 실리콘 성막 기판(1), 스트레스 제어층(23c), 그리고 AlxGa1 -xN (0.5≤x≤1) 압전 박막(4)을 포함한다.20 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film according to the present disclosure, and an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure. As another example, the structure includes a silicon deposition substrate 1 , a stress control layer 23c , and an Al x Ga 1 -x N (0.5≤x≤1) piezoelectric thin film 4 .

도 16에 제시된 구조물과 비교할 때, 스트레스 제어층(23c)이 희생층(23a)과 마찬가지로 CVD로 성장 성막되고, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)이 PVD로 증착 성막된다는 점에서 동일하지만, 성막 기판(1)으로 사파이어가 아니라 실리콘이 사용된다는 점, 스트레스 제어층(23c)이 레이저 리프트 오프(Laser Lift Off; LLO)에 의해서가 아니라 실리콘 성막 기판(1)이 에칭을 통해 제거되는 공정에서 함께 제거된다는 점에서 차이를 가진다. 실리콘 성막 기판(1)은 사파이어 성막 기판(1)과 다른 격자 상수 및 열팽창계수를 가지므로, 그 위에 형성되는 스트레스 제어층(23c)과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 성막 조건을, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)에 크랙이 발생하지 않도록 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)이 균일한 두께로 형성되도록 조절하는 것이 중요하다 하겠다. 실리콘 성막 기판(1)으로 예를 들어 8 inch Si(111) 기판이 사용될 수 있다. 따라서 스트레스 제어층(23c)은 희생층(23a)이 레이저 리프트 오프(Laser Lift Off; LLO)되기 위해서 가져야 하는 제약을 가지지 않고, 양질의 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 형성에만 집중할 수 있다.Compared with the structure shown in Fig. 16, the stress control layer 23c is grown and deposited by CVD like the sacrificial layer 23a, and the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 is PVD It is the same in that it is deposited by deposition, but that silicon, not sapphire, is used as the deposition substrate 1, and the stress control layer 23c is formed on the silicon deposition substrate 1 rather than by Laser Lift Off (LLO). ) is different in that it is removed together in a process that is removed through etching. Since the silicon deposition substrate 1 has a lattice constant and a coefficient of thermal expansion different from those of the sapphire deposition substrate 1, the stress control layer 23c formed thereon and the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric The film formation conditions of the thin film 4 were set so that cracks do not occur in the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric It is important to control so that the thin film 4 is formed with a uniform thickness. As the silicon deposition substrate 1, for example, an 8 inch Si(111) substrate may be used. Therefore, the stress control layer 23c does not have a restriction that the sacrificial layer 23a must have in order to be laser lift off (LLO), and high quality Al x Ga 1 - x N (0.5≤x≤1) piezoelectric It is possible to concentrate only on the formation of the thin film 4 .

스트레스 제어층(23c)은 CVD(예: MOCVD, HVPE, ALD, MBE)로 성장 성막시킨 단층의 AlgGa1 - gN (0≤g≤1) 또는 다층의 Alh1Ga1 - h1N/Alh2Ga1 - h2N (h2<h1≤1, 0≤h2≤1)로 된 3족 질화물로 이루어질 수 있다. 스트레스 제어층(23c)은 실리콘 성막 기판(1)과의 성장 온도에서의 물리적 물성(격자상수 및 열팽창계수) 차이로 인해서 발생되는 웨이퍼 휨(curvature)과 크랙(crack) 등을 방지 및 완화하는 등의 스트레스 조절(stress control) 기능이 주된 역할이다. 무엇보다도 스트레스 제어층(23c)을 성막하는 초기 단계에서 실리콘 성막 기판(1)의 실리콘(Si) 물질 표면에서 실리콘(Si)과 3족(Al, Ga), 5족(N) 원소들과 화학적 반응을 통한 금속간 화합물(intermetallic compound; Si-Al-(Ga)) 및/또는 실리콘 질화물(Si(Al,Ga)Nx) 형성을 최소로 억제하는 것이 중요하다. AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)은 희생층(23c) 위에 PVD(예: 스퍼터링, PLD)로 0.3Tm(압전 박막 물질의 녹는점) 이상의 온도에서 증착 성막되어 고품질을 확보할 수 있다.The stress control layer 23c is a monolayer Al g Ga 1 - g N (0≤g≤1) or a multilayer Al h1 Ga 1 - h1 N/ Al h2 Ga 1 - h2 N (h 2 < h 1 ≤ 1, 0 ≤ h 2 ≤ 1) may be formed of a group III nitride. The stress control layer 23c prevents and alleviates wafer curvature and cracks caused by a difference in physical properties (lattice constant and thermal expansion coefficient) at a growth temperature with the silicon film-forming substrate 1, etc. Its main role is the stress control function. Above all, in the initial stage of forming the stress control layer 23c, on the surface of the silicon (Si) material of the silicon deposition substrate 1, silicon (Si), group 3 (Al, Ga), group 5 (N) elements and chemical It is important to minimize the formation of intermetallic compounds (Si-Al-(Ga)) and/or silicon nitride (Si(Al,Ga)Nx) through the reaction. Al x Ga 1 - x N (0.5≤x≤1) The piezoelectric thin film 4 is deposited on the sacrificial layer 23c by PVD (eg, sputtering, PLD) at a temperature of 0.3Tm (melting point of the piezoelectric thin film material) or higher. and high quality can be ensured.

스트레스 제어층(23c)은 500℃ 이상의 온도에서 형성될 수 있으며, 두께의 상한과 하한은 특별히 한정되지 않지만, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 두께 균일도(thickness uniformity)를 유지하기 위한 스트레스 조절(stress control) 기능을 하는데 유리하도록 50nm-3㎛로 한다. 예를 들어, 500-1100℃의 온도와, 100-600torr의 압력에서 성장 성막될 수 있다.The stress control layer 23c may be formed at a temperature of 500° C. or higher, and the upper and lower limits of the thickness are not particularly limited, but preferably Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 It is set to 50nm-3㎛ to be advantageous for the stress control function to maintain the thickness uniformity. For example, the growth film may be formed at a temperature of 500-1100° C. and a pressure of 100-600 torr.

도 21은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 실리콘 성막 기판(1) 위에 순차적으로 스트레스 제어층(23c), 표면극성 제어층(C), 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함한다. 표면극성 제어층(C)이 추가된다는 점에서 도 20에 제시된 구조물과 구분되며, 표면극성 제어층(C)은 스트레스 제어층(23c)과 마찬가지로 CVD(예: MOCVD, HVPE, ALD, MBE)로 성장 성막되나 동일 또는 다른 조성(AlkGa1 - kN (0≤k≤1))을 갖는 단층 또는 다층의 Alm1Ga1 - m1N/Alm2Ga1 - m2N (m2<m1≤1, 0≤m2≤1)로 된 3족 질화물로 이루어질 수 있으며, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 표면이 단일 극성(메탈릭 극성 또는 질소 개스 극성)을 갖도록 하는 주된 기능 이외에 결정 결함 최소화 및 스트레스를 조절하여 균일한 두께를 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 확보할 수 있도록 촉진하는 역할을 한다. AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)은 스트레스 제어층(23c) 위에 PVD(예: 스퍼터링, PLD)로 0.3Tm(압전 박막 물질의 녹는점) 이상의 온도에서 증착 성막되어 고품질을 확보할 수 있다. 표면극성 제어층(C)을 통해 메탈릭 극성 표면을 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막 제작 방법은 PVD(예: 스퍼터링, PLD)로 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 증착 성막하기에 앞서 표면극성 제어층(C)을 CVD(예: MOCVD, HVPE, ALD, MBE)로 성장 성막한 다음에 소정의 산소량(비율)으로 표면극성 제어층(C) 표면을 플라즈마 처리(plasma treatment)하여 얻을 수 있다. 반면에 표면극성 제어층(C)을 통해 질소 개스 극성 표면을 갖는 AlxGa1 -xN (0.5≤x≤1) 압전 박막 제작 방법으로는 PVD(예: 스퍼터링, PLD)로 압전 박막(4)을 증착 성막하기에 앞서 표면극성 제어층(C)을 CVD(MOCVD, HVPE, ALD, MBE)로 성장 성막시에 마크네슘(Mg)을 과다하게 첨가(도핑)해서 질소 개스 극성 표면을 갖는 AlxGa1-xN (0.5≤x≤1) 압전 박막을 얻을 수 있다(SCIENTIFIC REPORT, Intentional polarity conversion of AlN epitaxial layers by oxygen, published online: 20 September 2018). 스트레스 제어층(23c) 표면을 플라즈마 처리(plasma treatment)하거나 성장 성막의 과정에서 마크네슘(Mg)을 과다하게 첨가(도핑)해서 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 극성을 조절하는 것도 가능하다.21 is a method for manufacturing an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film structure according to the present disclosure; As another example, the structure is sequentially on the silicon deposition substrate 1, the stress control layer 23c, the surface polarity control layer (C), and Al x Ga 1 - x N (0.5≤x≤1) piezoelectric It includes a thin film (4). It is distinguished from the structure shown in FIG. 20 in that a surface polarity control layer (C) is added, and the surface polarity control layer (C) is formed by CVD (eg, MOCVD, HVPE, ALD, MBE) like the stress control layer 23c. Single or multilayer Al m1 Ga 1 - m1 N/Al m2 Ga 1 - m2 N ( m 2 < m 1 ) ≤1, 0≤m 2 ≤1) may be made of a group 3 nitride, Al x Ga 1 - x N (0.5≤x≤1) The surface of the piezoelectric thin film 4 has a single polarity (metallic polarity or nitrogen gas) In addition to the main function of having a polarity), it serves to promote the minimization of crystal defects and control of stress to secure the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 having a uniform thickness. . Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 is deposited on the stress control layer 23c by PVD (eg sputtering, PLD) at a temperature of 0.3Tm (melting point of the piezoelectric thin film material) or higher It is formed into a film to ensure high quality. Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film having a metallic polarity surface through the surface polarity control layer (C) is PVD (eg sputtering, PLD) Al x Ga 1 - x N ( 0.5≤x≤1) Before depositing the piezoelectric thin film 4, the surface polarity control layer (C) is grown and formed by CVD (eg, MOCVD, HVPE, ALD, MBE), and then with a predetermined amount of oxygen (ratio). It can be obtained by plasma treatment (plasma treatment) of the surface of the surface polarity control layer (C). On the other hand, as a method for manufacturing an Al x Ga 1 -x N (0.5≤x≤1) piezoelectric thin film having a nitrogen gas polarity surface through the surface polarity control layer (C), PVD (eg sputtering, PLD) is used as a piezoelectric thin film (4 ), the surface polarity control layer (C) is grown by CVD (MOCVD, HVPE, ALD, MBE) prior to deposition, and magnesium (Mg) is excessively added (doped) to form an Al having a nitrogen gas polarity surface. x Ga 1-x N (0.5≤x≤1) piezoelectric thin films can be obtained (SCIENTIFIC REPORT, Intentional polarity conversion of AlN epitaxial layers by oxygen, published online: 20 September 2018). Plasma treatment on the surface of the stress control layer 23c or excessive addition (doping) of magnesium (Mg) in the process of growth film formation of Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film ( It is also possible to adjust the polarity of 4).

표면극성 제어층(C)은 스트레스 제어층(23c)과 동일한 일정 온도(500℃ 이상)에서 성장 성막될 수 있으며, 0.5㎛ 이하의 두께로, 100-600torr의 압력에서 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)과 동일 또는 유사한 조성을 갖는 3족 질화물로 구성하는 것이 바람직하다. 또한 스트레스 제어층(23c)과 표면극성 제어층(C)은 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)을 증착 성막시에 고품질(결정성과 극성)과 균일한 두께를 갖도록 성막 기판 휨(curvature)을 가능한 제로(zero, 평평함) 상태를 유지토록 제어하는 것이 바람직하다.The surface polarity control layer (C) may be grown and formed at the same constant temperature (500° C. or higher) as the stress control layer 23c, and has a thickness of 0.5 μm or less, Al x Ga 1-x N at a pressure of 100-600 torr. (0.5≤x≤1) It is preferable to form a group III nitride having the same or similar composition to that of the piezoelectric thin film 4 . In addition, the stress control layer 23c and the surface polarity control layer C are of high quality (crystallinity and polarity) and uniform thickness when the Al x Ga 1-x N (0.5≤x≤1) piezoelectric thin film 4 is deposited. It is desirable to control the film-forming substrate curvature to maintain a zero (flatness) state as much as possible.

성막 기판(1) 휨 상태는 그 위에 성막(증착, 성장)되는 박막(23c,C,4)의 성막 조건(온도, 압력) 및 실리콘 성막 기막(1)과 성막되는 막(23c,C,4)의 열팽창계수(열창팽계수는 온도의 함수)와 격자상수에 영향을 받으며, 바람직하게는 제로상태를 유지하되 적어도 위로 볼록한(convex) 상태가 되도록 하는 것이 좋으며, 성막의 완료 후에 아래로 볼록한(concave) 상태가 되지 않도록 하는 것이 중요하고, 실리콘 성막 기판(1)의 휨 정도는 성막되는 동안에 측정이 가능하므로, 성막 동안에 성막 조건(온도, 압력)과 성막되는 AlGaN의 조성을 실리콘 성막 기판(1)의 휨이 제로(zero) 또는 볼록한(convex) 상태 그리고 최종 성막 후에도 이러한 상태가 되도록 조절하는 것이 중요하다 하겠다. 실리콘 성막 기판(1)의 열팽창계수와 AlGaN의 열팽창계수를 고려할 때 CVD만으로 이러한 조절을 행하기가 쉽지 않으며, PVD만으로는 양질의 스트레스 제어층(23c)을 형성하고, 그 위에 고온(0.3Tm(660℃))에서 AlxGa1-xN (0.5≤y≤1) 압전 박막(4)을 형성하는 것이 쉽지 않다. 본 개시는 CVD로 스트레스 제어층(23c)과 표면극성 제어층(C)을 성장 성막하고, PVD로 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 증착 성막함으로써, 결정성과 극성이 모두 우수한 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 격자상수와 열팽창계수가 큰 차이를 가지는 실리콘으로 된 성막 기판(1)을 이용함에도 불구하고 제공할 수 있게 된다.The bending state of the film-forming substrate 1 is the film-forming conditions (temperature, pressure) of the thin films 23c, C, 4 to be formed (deposition, growth) thereon, and the silicon-forming base film 1 and the films 23c, C, 4 to be formed. ) is affected by the thermal expansion coefficient (coefficient of thermal expansion is a function of temperature) and the lattice constant, and it is preferable to maintain a zero state, but at least make it an upward convex state, and a downward convex state ( It is important not to be in a concave state, and Since the degree of warpage can be measured during film formation, the film formation conditions (temperature, pressure) and the composition of AlGaN to be formed during film formation can be determined in a state where the warpage of the silicon film substrate 1 is zero or convex, and even after the final film formation. It is important to control it so that it is in a state of being. Considering the thermal expansion coefficient of the silicon film-forming substrate 1 and the thermal expansion coefficient of AlGaN, it is not easy to perform such adjustment only by CVD, and PVD alone forms a high-quality stress control layer 23c, and a high temperature (0.3Tm (660) ℃)), it is not easy to form the Al x Ga 1-x N (0.5≤y≤1) piezoelectric thin film 4 . According to the present disclosure, the stress control layer 23c and the surface polarity control layer C are grown and formed by CVD, and the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 is deposited and formed by PVD, Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 with excellent crystallinity and polarity is provided despite the use of a silicon film-forming substrate 1 with a large difference in lattice constant and thermal expansion coefficient be able to do

예를 들어, 1) AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)이 PVD(예: 스퍼터링, PLD)로 800℃의 온도에서 AlN로 증착 성막될 때, 스트레스 제어층(23c)은 CVD(예: MOCVD)로 500-900℃의 온도, 100-600Torr의 압력에서, 500nm 두께의 Al0 . 9Ga0 .1N으로 형성될 수 있다. 2) 또한 표면극성 제어층(C)이 CVD(예: MOCVD)로 500-1100℃의 온도, 100-600Torr의 압력에서, 100nm 두께의 Al0 . 9Ga0 .1N으로 형성될 때, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)이 PVD(예: 스퍼터링, PLD)로 800℃의 온도에서, AlN로 형성되고, 스트레스 제어층(23c)은 CVD(예: MOCVD)로 500-900℃의 온도, 100-600Torr의 압력에서, 500nm 두께의 Al0 . 8Ga0 .2N으로 형성될 수 있다. 이때, 실리콘 성막 기판(1) 위에 CVD(예: MOCVD)로 스트레스 제어층(23c) 및/또는 표면극성 제어층(C)을 성장 성막하는 공정 조건(온도,압력)에서 최소(제로)의 성막 기판(1) 휨을 유지하는 것이 무엇보다도 중요한 동시에, CVD(예: MOCVD)로 스트레스 제어층(23c) 및/또는 표면극성 제어층(C) 성장 성막 완료 후에 상온(25℃)에서의 실리콘 성막 기판(1) 휨이 제로 또는 볼록한(Convex) 상태를 유지토록 조절하는 것이 중요하다. 스트레스 제어층(23c) 및/또는 표면극성 제어층(C) 위에 후속하여 PVD(예: 스퍼터링)로 증착 성막되는 AlN 압전 박막(4)의 결정 품질과 균일한 두께를 갖도록 하기 위해서는 앞서 서술한 성막 조건들과 이에 따른 실리콘 성막 기판(1) 휨에 대한 거동(Behavior)을 인식한 상태에서 조절함으로써 가능할 수 있다.For example, 1) Al x Ga 1 - x N (0.5≤x≤1) When the piezoelectric thin film 4 is deposited with AlN at a temperature of 800°C by PVD (eg, sputtering, PLD), the stress control layer (23c) is 500 nm thick Al 0 , at a temperature of 500-900° C. and a pressure of 100-600 Torr by CVD (eg, MOCVD) . 9 Ga 0.1 N may be formed. 2) In addition, the surface polarity control layer (C) is CVD (eg, MOCVD) at a temperature of 500-1100 ℃, a pressure of 100-600 Torr, 100nm thick Al 0 . When formed of 9 Ga 0.1 N, Al x Ga 1 - x N ( 0.5≤x≤1 ) piezoelectric thin film 4 is formed of AlN at a temperature of 800°C by PVD (eg sputtering, PLD) and , the stress control layer 23c is formed by CVD (eg, MOCVD) at a temperature of 500-900° C. and a pressure of 100-600 Torr, 500 nm thick Al 0 . 8 Ga 0.2 N may be formed. At this time, the minimum (zero) film formation under the process conditions (temperature and pressure) of growing and forming the stress control layer 23c and/or the surface polarity control layer C by CVD (eg, MOCVD) on the silicon deposition substrate 1 . At the same time, maintaining the warpage of the substrate 1 is of paramount importance, and at the same time, silicon deposition substrate at room temperature (25° C.) after completion of growth of the stress control layer 23c and/or the surface polarity control layer C by CVD (eg MOCVD). (1) It is important to control the warpage to maintain a zero or convex state. In order to have the crystal quality and uniform thickness of the AlN piezoelectric thin film 4 that is subsequently deposited by PVD (eg, sputtering) on the stress control layer 23c and/or the surface polarity control layer C, the above-described film formation It may be possible by controlling the conditions and the behavior of the silicon deposition substrate 1 according to the warpage in a recognized state.

도 20 내지 도 21에서 제시된 방법에 따라 제조된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 구조물의 결정성 품질(crystalline quality)은 공통적으로 X-ray Rocking Curve(XRC)의 반치폭 값이 0.1° 이하를 갖고, 극성 품질(polar quality)은 스트레스 제어층(23c) 및/또는 표면극성 제어층(C) 표면 상태에 따라서 자유롭게 조절할 수 있는 이점을 갖는다.The crystalline quality of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 structure manufactured according to the method shown in FIGS. 20 to 21 is commonly X-ray Rocking Curve (XRC) ) has the advantage of having a full width at half maximum of 0.1° or less, and the polar quality can be freely adjusted according to the surface state of the stress control layer 23c and/or the surface polarity control layer C.

스트레스 제어층(23c)과 표면극성 제어층(C)은 ① CVD(MOCVD, HVPE, ALD, MBE)로 형성된 3족 질화물로 구성되며, ② AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 고온 증착 성막이 가능할 수 있게끔, 0.3Tm(660℃) 이상에서 열적 안정성을 보유한 물질이어야 하고, ③ 육방정계(HCP) 결정구조를 갖는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 동일 또는 유사한 결정구조를 갖는 물질이며, ④ AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 증착 성막이 가능토록 표면 거칠기(surface roughness)가 10nm 이하가 가능한 세라믹(질화물) 물질이고, ⑤ AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 증착 성막이 가능토록 다양한 오염원(contaminants)이 제거된 표면 상태의 물질인 것이 바람직하다.The stress control layer 23c and the surface polarity control layer C are composed of a group III nitride formed by ① CVD (MOCVD, HVPE, ALD, MBE), ② Al x Ga 1 - x N (0.5≤x≤1) To enable high-temperature deposition of the piezoelectric thin film 4, it must be a material having thermal stability at 0.3Tm (660°C) or higher, and ③ Al x Ga 1 - x N (0.5≤ x≤1) a material having the same or similar crystal structure as the piezoelectric thin film 4, and ④ Al x Ga 1 - x N (0.5≤x≤1) surface roughness to enable deposition of the piezoelectric thin film 4 roughness) is a ceramic (nitride) material capable of 10 nm or less, and ⑤ Al x Ga 1 - x N (0.5≤x≤1) Surface state from which various contaminants are removed to enable deposition of the piezoelectric thin film 4 It is preferably a material of

필요시, AlxGa1 - xN (0.5≤x≤1) 압접 박막(4) 증착 성막 전에 경사진 c축(tilted c-axis) 결정면을 갖는 단결정 압전 박막 확보하기 위해 스트레스 제어층(23c) 및/또는 표면극성 제어층(C)의 표면에 광 리쏘그래픽 & 식각 패터닝(photo-lithographic etch patterning) 가공을 하는 것도 가능하다.If necessary, a stress control layer 23c to secure a single crystal piezoelectric thin film having a tilted c-axis crystal plane before deposition of Al x Ga 1 - x N (0.5≤x≤1) pressure welding thin film 4 And/or it is also possible to perform a photo-lithographic etch patterning process on the surface of the surface polarity control layer (C).

실리콘 성막 기판(1) 위에 스트레스 제어층(23c) 및/또는 표면극성 제어층(C) 상부에 후속하여 증착 성막된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 경우는 종래의 저온(400℃ 전후))에서 PVD(예: 스퍼터링, PLD)로 증착 성막된 압전 박막과는 달리, 0.3Tm(660℃) 이상에서 증착 성막된 고온 단결정 결정구조로 한층 더 고품질을 갖는다.Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 deposited on the silicon film substrate 1 by deposition subsequent to the stress control layer 23c and/or the surface polarity control layer C Unlike the conventional piezoelectric thin film deposited by PVD (eg sputtering, PLD) at low temperature (around 400℃)), higher quality is achieved with a high-temperature single-crystal crystal structure deposited at 0.3Tm (660℃) or higher. have

AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 증착 성막 후에, 추가적인 고온 후속 열처리 공정인 포스트 어닐링(Post-annealing)을 통해 결정성 및 극성을 추가적으로 개선하는 것도 가능하다.After deposition of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4, it is also possible to further improve crystallinity and polarity through post-annealing, which is an additional high-temperature subsequent heat treatment process. .

스트레스 제어층(23c)을 500℃ 이상의 온도에서 저온/중온/고온으로 온도 조절과 함께 갈륨(Ga) 성분을 최소화시킨 AlGaN 박막을 우선적으로 성장 성막하는 것이 바람직하며, 이는 성막 기판(1) 물질인 실리콘(Si)과 비교적 용이하게 금속간 화합물을 형성하는 갈륨(Ga)과의 반응을 억제하여 멜트 백(melt-back) 현상을 방지하기 위함이다.It is preferable to preferentially grow and form an AlGaN thin film in which the gallium (Ga) component is minimized along with temperature control of the stress control layer 23c from a temperature of 500° C. or higher to a low/medium/high temperature, which is a material of the deposition substrate 1 This is to prevent a melt-back phenomenon by suppressing a reaction between silicon (Si) and gallium (Ga), which relatively easily forms an intermetallic compound.

스트레스 제어층(23c)과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 사이에 초격자구조의 중간층을 도입할 수 있으며, 이는 결정 결함을 억제하기 위함이다.An intermediate layer having a superlattice structure may be introduced between the stress control layer 23c and the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 to suppress crystal defects.

AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 증착 성막 시에 Al의 함량을 높이면서, PVD의 증착 성막 온도도 높일 수 있으며, 이는 인장 스트레스(tensile stress)를 억제하여 압전 박막(4)의 미세 크랙을 방지하기 위함이다.Al x Ga 1 - x N (0.5≤x≤1) While increasing the Al content during deposition of the piezoelectric thin film 4, the deposition temperature of PVD can be increased, which suppresses tensile stress This is to prevent microcracks in the piezoelectric thin film 4 .

실리콘 성막 기판(1)을 이용하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 구조물의 제조방법은 도 11 내지 도 15에 제시된 방법이 그대로 사용할 수 있다. 다만, 실리콘(Si) 성막 기판(1), 스트레스 제어층(23c), 그리고 표면극성 제어층(C)이 레이저 리프트 오프(Laser Lift Off; LLO)가 아니라, 공지된 습식 에칭(wet etch)과 건식 에칭(dry etch)의 병행을 통하여 제거된다는 점에서 차이를 가진다. 이 과정에서 정확한 두께 조정을 위한 트리밍(trimming) 공정 등이 수반될 수 있다.The method for manufacturing the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 structure using the silicon film-forming substrate 1 may be used as it is in the methods shown in FIGS. 11 to 15 . However, the silicon (Si) deposition substrate 1, the stress control layer 23c, and the surface polarity control layer C are not laser lift off (LLO), but wet etch and well-known. It is different in that it is removed through a parallel dry etch. In this process, a trimming process for accurate thickness adjustment may be accompanied.

도 22 및 도 23은 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 실리콘 성막 기판(1), 스트레스 제어층(23c) 및 표면극성 제어층(3)을 구비하되, 표면극성 제어층(3)에 마크네슘(Mg)을 첨가(도핑)하여, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)이 질소 개스 극성 표면을 갖도록 성막한 후, 제2 전극(14), 브래그 리플렉터(10) 반사기, 제2 보호막(11), 제2 본딩 레이어(12) 및 소자 기판(13)을 형성하고, 실리콘 성막 기판(1), 스트레스 제어층(23c) 및 표면극성 제어층(3)을 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)으로부터 제거한 후, 제1 전극(6)을 형성한 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 구조물이 제시되어 있다. 이를 통해, 도 11 내지 도 13에서와 같이 두 번의 웨이퍼 본딩 공정을 이용하지 않고도 즉, 한 번의 웨이퍼 본딩 공정을 통해 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)을 소자의 상면으로 이용하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 구조물을 제공할 수 있게 된다.22 and 23 are views showing another example of a method of manufacturing a resonator using an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film presented in the present disclosure, a silicon film-forming substrate ( 1), a stress control layer 23c and a surface polarity control layer 3 are provided, but by adding (doping) magnesium (Mg) to the surface polarity control layer 3, Al x Ga 1 - x N (0.5 ≤x≤1) After the piezoelectric thin film 4 is formed to have a nitrogen gas polarity surface, the second electrode 14, the Bragg reflector 10 reflector, the second protective film 11, the second bonding layer 12 and A device substrate 13 is formed, and the silicon film-forming substrate 1, the stress control layer 23c, and the surface polarity control layer 3 are combined with an Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 . After removal from the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 structure forming the first electrode 6 is presented. Through this, as in FIGS. 11 to 13, the metallic polarity (Al-polarity or Al-polarity & Ga-polarity mixed) surface is formed without using two wafer bonding processes, that is, through one wafer bonding process. It is possible to provide a structure of the Al x Ga 1 - x N (0.5≤x≤1) piezoelectric thin film 4 used as the upper surface of the device.

본 개시에 따라 제작된 공진기 기반 소자(resonator-based device)는 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 형성되어 놓이는 위치를 실리콘(Si) 성막 기판(1) 위에 성막된 AlxGa1 - xN (0.5≤x≤1) 압전 박막의 극성 제어(polarity control)와 후속한 소자 공정을 진행하는 과정에서 웨이퍼 본딩 횟수에 따라 AlxGa1 -xN (0.5≤x≤1) 압전 박막(4) 위에서 표면 극성을 자유롭게 선택할 수 있다. 도 11 내지 도 13에 제시된 방법은 두 번의 웨이퍼 본딩 공정을 통해 제작되는 것으로서, 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 질소 개스 극성 표면(N-polarity face)에 놓이게 되며, 또한 한 번의 웨이퍼 본딩 공정을 거치는 도 22 및 도 23에 제시된 방법 경우에도 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 질소 개스 극성 표면(N-polarity face)에 동일하게 위치한다. 참고로 종래의 Si 성막 기판 위에 저온에서 직접적으로 PVD(예: 스퍼터링, PLD)를 통해 형성된 다결정(polycrystalline) AlN 압전 박막으로 제작된 공진기 소자의 경우는 표면 극성과 극성 비율(ratio)을 조절하는데 한계가 있기에 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)의 극성 위치를 정의할 수 없다. 이로 인해서 결정성 양/부와 무관하게 극성 혼재(mixed polarity) 및 극성 조절된 소자 제작에 어려움으로 인해서 AlxGa1-xN (0.5≤x≤1) 압전 박막(4) 공진기의 성능 개선에 한계점을 갖고 있다.In the resonator-based device manufactured according to the present disclosure, the position at which the second electrode 14 including the Bragg reflector 10 is formed is formed on the silicon (Si) deposition substrate 1 Al x Ga 1 - x N (0.5≤x≤1) Al x Ga 1 -x N (0.5≤x≤1) depending on the number of wafer bonding in the process of polarity control of the piezoelectric thin film and subsequent device processing The surface polarity can be freely selected on the piezoelectric thin film 4 . The method shown in FIGS. 11 to 13 is manufactured through two wafer bonding processes, and the second electrode 14 including the Bragg reflector 10 reflector is Al x Ga 1 - x N (0.5≤x≤1) piezoelectric The second electrode 14 including the Bragg reflector 10 reflector is placed on the nitrogen gas polarity face of the thin film 4 and also in the case of the method shown in FIGS. 22 and 23 that undergoes a single wafer bonding process. ) Al x Ga 1 - x N (0.5≤x≤1) is equally positioned on the nitrogen gas polarity face of the piezoelectric thin film 4 (N-polarity face). For reference, in the case of a resonator device made of a polycrystalline AlN piezoelectric thin film formed through PVD (eg, sputtering, PLD) directly at low temperature on a conventional Si film-forming substrate, there is a limit to controlling the surface polarity and polarity ratio Since there is a Bragg reflector 10, the polarity position of the second electrode 14 including the reflector cannot be defined. Due to this, irrespective of the positive/negative crystallinity, the Al x Ga 1-x N (0.5≤x≤1) piezoelectric thin film (4) resonator performance improvement is due to the difficulty in manufacturing a mixed polarity and polarity-controlled device. It has limitations.

도 24는 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), GaN 희생층(3) 그리고 ScxAl1 - xN 압전 박막(4)을 포함한다. 도 5와 관련하여, 사파이어 성막 기판(200), 사파이어 성막 기판(200), GaN 버퍼층(210) 및 AlN 압전 박막(220)을 포함하는 압전 박막 구조물에 대해 언급한 바 있으며, GaN 버퍼층(210)은 희생층(sacrificial layer)으로 역할을 충분히 할 수 있어 광학적으로 투명한 사파이어 성막 기판(200)과 AlN 압전 박막(220)의 분리를 용이하게 하는 이점을 가지지만, GaN 버퍼층(210)과 AlN 압전 박막(220) 간에는 상당한 격자상수 및 열팽창계수의 물성 차이가 존재하므로, 공진기 등의 기능성 압전 박막으로 사용할 수 있는 일정한 임계 두께(critical thickness, 대략 100nm) 이상으로 MOCVD 성장된 고순도 단결정 AlN 압전 박막(220)을 확보하는데 현재까지 공지된 공정 및 기술로는 결코 쉽지 않다고 지적한 바 있다.24 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure, wherein the structure is a sapphire film-forming substrate 1, a GaN sacrificial layer 3, and Sc x Al 1 - x N piezoelectric thin film (4). Referring to FIG. 5 , a piezoelectric thin film structure including a sapphire deposition substrate 200 , a sapphire deposition substrate 200 , a GaN buffer layer 210 and an AlN piezoelectric thin film 220 has been mentioned, and a GaN buffer layer 210 . Silver has the advantage of facilitating separation of the optically transparent sapphire deposition substrate 200 and the AlN piezoelectric thin film 220 because it can sufficiently serve as a sacrificial layer, but the GaN buffer layer 210 and the AlN piezoelectric thin film Since there is a significant difference in physical properties of lattice constant and thermal expansion coefficient between 220, a high-purity single crystal AlN piezoelectric thin film 220 grown by MOCVD to a certain critical thickness (approximately 100 nm) that can be used as a functional piezoelectric thin film such as a resonator. It has been pointed out that it is by no means easy with known processes and technologies to secure

도 25(a)에 제시된 바와 같이, 압전 박막(4)으로 AlxGa1 - xN (0.5≤x≤1) 대신에 ScxAl1 - xN를 이용함으로써, GaN 희생층(3)과의 격자상수 격차를 줄일 수 있게 된다(출처: ScGaN and ScAlN: emerging nitride materials; Journal of Materials Chemistry A, Issue 17, 2014). 또한, 동일한 격자상수 값에서 AlxGa1 - xN의 밴드갭 에너지보다 ScxAl1 - xN의 밴드갭 에너지가 큰 것을 알 수 있으며, 따라서 LLO 공정에서 GaN 희생층(3)의 분리를 확실히 할 수 있게 되며, GaN 희생층(3) 대신에 AlxGa1 - xN 희생층(3)을 사용할 수 있는 기반을 제공하고, AlxGa1 - xN 희생층(3)을 이용함으로써 희생층(3)과 압전 박막(4) 간의 격자상수 및 열팽창계수 차이를 줄일 수 있게 된다. 박막의 품질의 관점에서는 AlxGa1-xN 희생층(3) 보다 GaN 희생층(3)을 사용하는 것이 바람직하다. ScxAl1 - xN의 Sc의 x 값이 0.18 전후일 때, GaN과 동일한 격자상수 값을 가진다.As shown in Fig. 25 (a), by using Sc x Al 1 - x N instead of Al x Ga 1 - x N (0.5≤x≤1) as the piezoelectric thin film 4, the GaN sacrificial layer 3 and (Source: ScGaN and ScAlN: emerging nitride materials; Journal of Materials Chemistry A, Issue 17, 2014). In addition, it can be seen that the bandgap energy of Sc x Al 1 - x N is larger than that of Al x Ga 1 - x N at the same lattice constant value, and thus the separation of the GaN sacrificial layer 3 in the LLO process is reduced. By providing a basis for using the Al x Ga 1 - x N sacrificial layer 3 instead of the GaN sacrificial layer 3 and using the Al x Ga 1 - x N sacrificial layer 3 , It is possible to reduce the difference between the lattice constant and the thermal expansion coefficient between the sacrificial layer 3 and the piezoelectric thin film 4 . From the viewpoint of the quality of the thin film, it is preferable to use the GaN sacrificial layer 3 rather than the Al x Ga 1-x N sacrificial layer 3 . When the x value of Sc of Sc x Al 1 - x N is around 0.18, it has the same lattice constant value as that of GaN.

또한, 도 25(b)에 제시된 바와 같이, 스트레인 완화를 위한 임계 두께(Critical thicknesses for strain relaxation by dislocation glide)의 이론 값이 ScxAl1 - xN (x=0.18)/GaN의 경우에 제한이 없는 것을 알 수 있으며, 따라서, GaN 희생층(3) 위에서 ScxAl1 - xN 압전 박막(4)을 공진기 등에 사용될 때 압전 박막(4)의 임계 두께인 100nm 이상의 두께로 형성할 수 있음을 알 수 있다(출처: ScGaN and ScAlN: emerging nitride materials; Journal of Materials Chemistry A, Issue 17, 2014).In addition, as shown in Fig. 25(b), the theoretical value of Critical thicknesses for strain relaxation by dislocation glide is limited in the case of Sc x Al 1 - x N (x=0.18)/GaN It can be seen that there is no, and therefore, the Sc x Al 1 - x N piezoelectric thin film 4 on the GaN sacrificial layer 3 can be formed to a thickness of 100 nm or more, which is the critical thickness of the piezoelectric thin film 4 when used in a resonator, etc. (Source: ScGaN and ScAlN: emerging nitride materials; Journal of Materials Chemistry A, Issue 17, 2014).

한편, ScxAl1 - xN의 경우에 AlN에 비해 더 우수한 piezoelectric modulus d33 및 spontaneous polarization coefficient를 가지는 것으로 알려져 있으며, 예를 들어, Sc0 . 43Al0 . 57N의 경우에 5배의 piezoelectric modulus d33 및 spontaneous polarization coefficient에서 a factor of three enhancement를 가지는 것으로 알려져 있다(출처: Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates; APPLIED PHYSICS LETTERS 110, 162104 (2017)).On the other hand, in the case of Sc x Al 1 - x N, it is known to have a better piezoelectric modulus d33 and spontaneous polarization coefficient compared to AlN, for example, Sc 0 . 43 Al 0 . In the case of 57 N, it is known to have a factor of three enhancement in piezoelectric modulus d33 and spontaneous polarization coefficient 5 times (Source: Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates; APPLIED PHYSICS LETTERS 110, 162104 (2017) )).

본 개시에 있어서, ScxAl1 - xN 압전 박막(4)의 x 값의 상한은 ScxAl1 - xN가 AlxG1 -xN와 마찬가지로 동일한 격자 구조(wurzite structure)를 가지는 값까지이며, 통상 x = 0.56로 알려져 있다.In the present disclosure, the upper limit of the x value of the Sc x Al 1 -x N piezoelectric thin film 4 is a value in which Sc x Al 1 - x N has the same lattice structure as Al x G 1 -x N. , which is usually known as x = 0.56.

사파이어 성막 기판(1)을 대신하여, 실리콘 성막 기판(1)이 사용될 수 있으며, 이때 희생층(3)은 도 20과 관련하여 제시된 바와 같이, 스트레스 제어층(23c)의 역할도 수행한다.Instead of the sapphire deposition substrate 1, a silicon deposition substrate 1 may be used, wherein the sacrificial layer 3 also serves as a stress control layer 23c, as shown with reference to FIG.

희생층(3)은 도 16에서와 같이, CVD(MOCVD, ALD, MBE 등)로 성장 성막시킨 단층의 AlcGa1 - cN (0≤c≤0.5) 또는 다층의 Alc1Ga1 - c1N/Alc2Ga1 - c2N (c2<c1≤1, 0≤c2<0.5)로 된 3족 질화물로 이루어질 수 있다. 예를 들어, 500-1100℃의 온도와, 100-600torr의 압력에서 성장 성막될 수 있다. 실리콘 성막 기판(1)이 이용될 때, 희생층(3)은 도 20에서와 마찬가지로 CVD(예: MOCVD, HVPE, ALD, MBE)로 성장 성막시킨 단층의 AlgGa1 - gN (0≤g≤1) 또는 다층의 Alh1Ga1 - h1N/Alh2Ga1 - h2N (h2<h1≤1, 0≤h2≤1)로 된 3족 질화물로 이루어질 수 있다. 희생층(3)은 실리콘 성막 기판(1)과의 성장 온도에서의 물리적 물성(격자상수 및 열팽창계수) 차이로 인해서 발생되는 웨이퍼 휨(curvature)과 크랙(crack) 등을 방지 및 완화하는 등의 스트레스 조절(stress control) 기능이 주된 역할이다. 무엇보다도 희생층(3)을 성막하는 초기 단계에서 실리콘 성막 기판(1)의 실리콘(Si) 물질 표면에서 실리콘(Si)과 3족(Al, Ga), 5족(N) 원소들과 화학적 반응을 통한 금속간 화합물(intermetallic compound; Si-Al-(Ga)) 및/또는 실리콘 질화물(Si(Al,Ga)Nx) 형성을 최소로 억제하는 것이 중요하다.As shown in FIG. 16 , the sacrificial layer 3 is a single layer of Al c Ga 1 - c N (0≤c≤0.5) or a multi-layered Al c1 Ga 1 - c1 formed by growth and deposition by CVD (MOCVD, ALD, MBE, etc.). N/Al c2 Ga 1 - c2 N (c 2 <c 1 ≤1, 0≤c 2 <0.5) may be formed of a group III nitride. For example, the growth film may be formed at a temperature of 500-1100° C. and a pressure of 100-600 torr. When the silicon deposition substrate 1 is used, the sacrificial layer 3 is a single layer Al g Ga 1 - g N (0≤ g≤1) or multi-layered Group III nitride of Al h1 Ga 1 - h1 N/Al h2 Ga 1 - h2 N (h 2 < h 1 ≤ 1, 0≤ h 2 ≤ 1). The sacrificial layer 3 prevents and alleviates wafer curvature and cracks caused by the difference in physical properties (lattice constant and coefficient of thermal expansion) at the growth temperature with the silicon deposition substrate 1 . Stress control function is the main role. Above all, in the initial stage of forming the sacrificial layer 3, a chemical reaction with silicon (Si) and group 3 (Al, Ga) and 5 group (N) elements on the surface of the silicon (Si) material of the silicon deposition substrate 1 It is important to minimize the formation of intermetallic compounds (Si-Al-(Ga)) and/or silicon nitride (Si(Al,Ga)Nx).

희생층(3)에 MOCVD 성장 방법을 이용해서 ScxAl1 - xN 압전 박막(4)을 성막하기 위해서는 MOCVD 챔버(Chamber) 내부로 스칸디움(Sc; Scandium) 소스(Source)를 충분히 주입함과 동시에 화학적 반응을 활발하게 해야 하는데, 이를 위해서는 높은 증기 압력(High Vapor Pressure)을 갖도록 하는 촉진 장치가 필요하다. 동시에 이를 위해서는 금속 유기(Metallic-organic Source) 보다는 주입효율이 좋은 고체 소스(Solid-state Source)를 사용하는 동시에 소스 주입 통로(Source Injection Path)를 100-200℃ 범위 내에서 고온 가열하는 것이 바람직하다. 특히 스칸디움 고체 소스는 Cp3Sc 또는 MeCp3Sc 프리커서(Precursor)를 사용한다. 예를 들어, MOCVD의 경우, 희생층(3) 상부에 MOCVD 성장 방법을 이용해서 ScxAl1 - xN 압전 박막(4)을 성막하기 위해서는 성장 온도 900-1200℃, 성장 압력 10-100mbar, 5/3 족 원소 소스 주입 비율(V/III Ratio) 1000-5000, 그리고 수소(H2) 또는 질소(N2) 등의 캐리어 캐스(Carrier Gas)는 10-40slm 수준으로 유지해서 50-500nm 성장 속도(Growth Rate)도 수행하는 것이 바람직하다. MBE의 경우, 성장 온도 600-1000℃, 5/3 족 원소 주입 비율(V/III Ratio) 0.7-1.5 조건 하에서 150-300nm/h 성장 속도로 희생층(3) 위에 고품위 ScxAl1 - xN 압전 박막(4)을 성장 성막하는 것이 바람직하다. 또 다른 예로서, Sputter의 경우, 성장 기판(1) 상부에 MOCVD 또는 MBE 성장 방법으로 성막된 희생층(3) 상부에 Pulsed DC 또는 RF Sputtering 통해서 고품위 ScxAl1 - xN 압전 박막(4)을 성장 성막하는 것이 바람직하다. 특히, Pulsed DC Sputtering 경우에 99.99% 이상의 순도를 갖는 알루미늄(Al) 및 스칸디움(Sc) 금속 타킷(Target)을 준비하고, 아르곤(Ar)과 질소(N2) 혼합개스 및 60-90% 질소 분압(N2 Partial Pressure) 분위기에서 고품위 ScxAl1-xN 압전 박막(4)을 성장 성막한다. 고품위 ScxAl1-xN 압전 박막(4) 내의 스칸디움 조성(x) 조절은 Al & Sc 타킷에 인가한 DC 파워 비율(Power Ratio) 조절을 통해서 한다. 통상적으로 성막된 압전 박막 내부 잔류 응력(Internal Residual Stress), 결정성(Crystalline Quality), 결정학적 방향(Crystallographic Orientation) 및 미세조직(Microstructure), 표면 극성(Polarity) 등 품질에 영향을 미치는 인자(Factor)인 공정 챔버 압력(Processing Pressure), 타깃에서 성장 기판까지 거리(Target-to-substrate distance ), 질소분압(N2 Partial Pressure), 및 성장 기판 온도(Processing Temperature)을 적정하게 고려해서 고품위 ScxAl1-xN 압전 박막(4)을 성장 성막하는 것이 바람직하다.In order to form a Sc x Al 1 - x N piezoelectric thin film 4 on the sacrificial layer 3 using the MOCVD growth method, a scandium (Sc) source is sufficiently injected into the MOCVD chamber. At the same time, a chemical reaction must be actively performed, and for this purpose, an accelerating device having high vapor pressure is required. At the same time, it is preferable to use a solid-state source with better injection efficiency than a metal-organic source for this purpose and to heat the source injection path at a high temperature within the range of 100-200°C. . In particular, the scandium solid source uses a Cp 3 Sc or MeCp 3 Sc precursor. For example, in the case of MOCVD, in order to form a Sc x Al 1 - x N piezoelectric thin film 4 on the sacrificial layer 3 using the MOCVD growth method, a growth temperature of 900-1200° C., a growth pressure of 10-100 mbar, Group 5/3 element source injection ratio (V/III Ratio) 1000-5000, and carrier gas such as hydrogen (H 2 ) or nitrogen (N 2 ) are maintained at 10-40 slm level to grow 50-500 nm It is also desirable to perform Growth Rate. In the case of MBE, high-quality Sc x Al 1 - x on the sacrificial layer 3 at a growth rate of 150-300 nm/h under the growth temperature of 600-1000 ° C and the group 5/3 element injection ratio (V/III Ratio) 0.7-1.5 conditions. It is preferable to grow and form the N piezoelectric thin film 4 . As another example, in the case of sputter, a high-quality Sc x Al 1 - x N piezoelectric thin film (4) through pulsed DC or RF sputtering on the sacrificial layer (3) formed by MOCVD or MBE growth method on the growth substrate (1) It is preferable to grow and form a film. In particular, in the case of pulsed DC sputtering, aluminum (Al) and scandium (Sc) metal targets having a purity of 99.99% or more are prepared, argon (Ar) and nitrogen (N2) mixed gas and 60-90% nitrogen partial pressure A high-quality Sc x Al 1-x N piezoelectric thin film 4 is grown and formed in an atmosphere of (N2 Partial Pressure). The scandium composition (x) in the high-quality Sc x Al 1-x N piezoelectric thin film 4 is controlled by adjusting the DC power ratio applied to the Al & Sc target. Factors affecting quality, such as internal residual stress, crystalline quality, crystallographic orientation, microstructure, and surface polarity of a conventionally formed piezoelectric thin film ), the target-to - substrate distance, N2 Partial Pressure, and the growth substrate temperature (Processing Temperature), It is preferable to grow and form the 1-x N piezoelectric thin film 4 .

도 26은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 도 24에 제시된 예와 달리, 도 17에 도시된 바와 같은 제2 반도체층(5)이 추가되어 있다. 제2 반도체층(5)은 도 17에 제시된 예와 달리, AlGaN으로 이루어지는 것이 아니라, ScyAl1 - yN로 이루어지며, GaN 희생층(3)과 ScxAl1 - xN 압전 박막(4) 사이의 스트레스를 완충하는 역할을 한다. 기본적으로 GaN 희생층(3)과 ScxAl1 - xN 압전 박막(4)의 격자상수 값이 동일하거나 유사하게 설계되므로, ScyAl1 - yN로 된 제2 반도체층(5)의 y 값도 이를 감안하여 설정(예: 0.18±0.8)될 수 있다. 제2 반도체층(5)의 두께는 얇게(예: 100nm 이하) 형성되며, Sc 조성인 y 값에 따라서 격자상수(Lattice Constant)와 밴드갭 에너지(Bandgap Energy)가 결정되고, 이로 인해서 하부 층인 희생층(3), 상부 층인 ScxAl1-xN 압전 박막(4)과의 열적-기계적 변형과 밀접하게 연계된다.26 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure, wherein the structure is different from the example shown in FIG. 24 , the second semiconductor as shown in FIG. 17 . A layer (5) is added. Unlike the example shown in FIG. 17 , the second semiconductor layer 5 is not made of AlGaN, but is made of Sc y Al 1 - y N, and the GaN sacrificial layer 3 and the Sc x Al 1 - x N piezoelectric thin film ( 4) It plays a role in buffering the stress between Basically, since the lattice constant values of the GaN sacrificial layer 3 and the Sc x Al 1 - x N piezoelectric thin film 4 are designed to be the same or similar, the second semiconductor layer 5 made of Sc y Al 1 - y N The y value can also be set (eg 0.18±0.8) in consideration of this. The thickness of the second semiconductor layer 5 is formed thin (eg, 100 nm or less), and the lattice constant and the bandgap energy are determined according to the y value of the Sc composition, and thus the lower layer sacrificial The layer (3) is closely related to the thermo-mechanical deformation with the upper layer Sc x Al 1-x N piezoelectric thin film (4).

한편, 도 24 및 도 26에 제시된 예들에서, GaN 희생층(3)을 대신하여, 단층의 Alx3Ga1 - x3N 희생층(3)을 사용할 수 있으며, 도 25(a)에 제시된 바와 같이, 성막 기판(1)과 ScxAl1 - xN 압전 박막(4)의 격자상수를 고려하면, 0.5 미만의 x3 값이 사용된다. 또한 다층의 Alx4Ga1 - x4N/Alx5Ga1 - x5N (x4<x5≤1, 0≤x4<0.5) 희생층(3)이 사용될 수 있으며, 다층의 Alx4Ga1 - x4N/Alx5Ga1 - x5N (x4<x5≤1, 0≤x4<0.5) 희생층(3) 전체의 Al 함유량은 0.5 미만으로 유지되어야 한다. 이를 통해, 희생층(3)의 격자상수를 GaN에 비해 큰 값으로 조정할 수 있으며, 따라서 이에 맞추어 ScxAl1 - xN 압전 박막(4)의 격자상수 및 밴드갭 에너지를 변경할 수 있는 이점을 가진다. 제2 반도체층(5)의 조성도 이들에 맞추어 조정될 수 있다. 단층의 Alx3Ga1 - x3N 또는 다층의 Alx4Ga1 -x4N/Alx5Ga1-x5N (x4<x5≤1, 0≤x4<0.5) 희생층(3)을 이용함으로써, ScxAl1 - xN 압전 박막(4)의 Sc 조성을 늘릴 수 있어, 압전능을 향상시킬 수 있게 된다.On the other hand, in the examples shown in FIGS. 24 and 26 , instead of the GaN sacrificial layer 3 , a single-layer Al x3 Ga 1 - x3 N sacrificial layer 3 may be used, and as shown in FIG. 25( a ) , taking into account the lattice constants of the deposition substrate 1 and the Sc x Al 1 - x N piezoelectric thin film 4, x 3 values less than 0.5 are used. In addition, a multi-layered Al x4 Ga 1 - x4 N/Al x5 Ga 1 - x5 N (x 4 <x 5 ≤1, 0≤x 4 <0.5) sacrificial layer 3 may be used, and the multi-layered Al x4 Ga 1 - x4 N/Al x5 Ga 1 - x5 N (x 4 <x 5 ≤ 1, 0≤x 4 <0.5) The Al content of the entire sacrificial layer 3 should be maintained at less than 0.5. Through this, the lattice constant of the sacrificial layer 3 can be adjusted to a larger value than that of GaN, and thus the lattice constant and bandgap energy of the Sc x Al 1 - x N piezoelectric thin film 4 can be changed accordingly. have The composition of the second semiconductor layer 5 may also be adjusted accordingly. Single layer Al x3 Ga 1 - x3 N or multilayer Al x4 Ga 1 -x4 N/Al x5 Ga 1-x5 N (x 4 <x 5 ≤1, 0≤x 4 <0.5) Using the sacrificial layer (3) By doing so, the Sc composition of the Sc x Al 1 - x N piezoelectric thin film 4 can be increased, and the piezoelectric performance can be improved.

도 27은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 도 24에 제시된 구조물에 더하여 희생층(3) 위에 씨앗층(3a; Seed layer)이 구비되어 있다.27 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure, and a seed layer (3a) on the sacrificial layer 3 in addition to the structure shown in FIG. 24; ) is provided.

도 28은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 도 26에 제시된 구조물에 더하여 희생층(3) 위에 씨앗층(3a; Seed layer)이 구비되어 있다.28 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure, and a seed layer (3a) on the sacrificial layer 3 in addition to the structure shown in FIG. 26; ) is provided.

씨앗층(3a)은 GaN계 질화물로 된 희생층(3) 위에서, ScxAl1 - xN 압전 박막(4) 및 ScyAl1 - yN로 된 제2 반도체층(5)의 성막을 돕는 역할을 한다. 씨앗층(3a)은 Alx6Ga1 - x6N (0.5≤x6)로 이루어질 수 있으며, 그 두께는 5nm이하인 것이 바람직하다. 씨앗층(3a)이 도입되는 경우에, 희생층(3a)은 GaN, AlGaN 이외에도 (Al)GaInN이 이용될 수 있으며, 격자상수가 Alx3Ga1 - x3N (x3 = 0.5)일 때의 값보다 작게 유지되도록 형성된다. Alx6Ga1 - x6N (0.5≤x6) 씨앗층(3a)을 통해 ScxAl1 - xN 압전 박막(4)을 고품위화하는 한편, 희생층(3)의 Al 조성 값을 0.5 이하로 함으로써 레이저 리프트 오프(LLO)를 용이하게 할 수 있다.The seed layer (3a) is on the sacrificial layer (3) made of a GaN-based nitride, the Sc x Al 1 - x N piezoelectric thin film 4 and Sc y Al 1 - y N of the second semiconductor layer 5 of the film formation serves to help The seed layer (3a) may be made of Al x6 Ga 1 - x6 N (0.5≤x 6 ), and the thickness is preferably 5 nm or less. When the seed layer (3a) is introduced, the sacrificial layer (3a) can be used in addition to GaN and AlGaN (Al)GaInN, the lattice constant is Al x3 Ga 1 - x3 N (x 3 = 0.5) when is formed to remain less than the value. Al x6 Ga 1 - x6 N (0.5≤x 6 ) While the Sc x Al 1 - x N piezoelectric thin film 4 is refined through the seed layer 3a, the Al composition value of the sacrificial layer 3 is set to 0.5 or less. It is possible to facilitate laser lift-off (LLO).

도 29는 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 도 24에 제시된 GaN계 질화물 희생층(3) 대신에, SczAl1 - zN 희생층(3)이 도입되어 있다. SczAl1 - zN 희생층(3)의 Sc 조성(z)은 ScxAl1 - xN 압전 박막(4)의 Sc 조성(x)을 고려하여 설계되되, 성막 기판(1)의 제거를 위해 조성(x) 보다 작은 값을 가지도록 설계될 수 있다. 희생층(3)에 Sc이 추가함으로써, 도 25(a)에 도시된 바와 같이, 희생층(3)의 격자상수를 GaN에 비해 큰 쪽으로 이동시킬 수 있어, 그 위에 격자상수가 큰 제2 반도체층(5) 또는 ScxAl1-xN 압전 박막(4)을 성막하는 기반을 제공할 수 있게 된다.29 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure, and instead of the GaN-based nitride sacrificial layer 3 shown in FIG. 24, Sc z Al 1 - A z N sacrificial layer 3 is introduced. Sc z Al 1 -z N Sc composition ( z ) of the sacrificial layer 3 is designed in consideration of the Sc composition (x) of the Sc x Al 1 - x N piezoelectric thin film 4, the removal of the deposition substrate (1) For , it may be designed to have a value smaller than the composition (x). By adding Sc to the sacrificial layer 3, as shown in Fig. 25(a), the lattice constant of the sacrificial layer 3 can be moved to a larger side than that of GaN, and the second semiconductor having a large lattice constant thereon It becomes possible to provide a basis for forming the layer 5 or the Sc x Al 1-x N piezoelectric thin film 4 .

도 30은 본 개시에 따른 압전 박막을 제조하는 방법 및, 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 도 26에 제시된 GaN계 질화물 희생층(3) 대신에, SczAl1 - zN 희생층(3)이 도입되어 있으며, 제2 반도체층(5)은 스트레스 완화층 및/또는 씨앗층(도 28 참조)의 역할을 할 수 있고, 따라서 ScyAl1 - yN 또는 Alx6Ga1 - x6N (0.5≤x6)로 이루어질 수 있다. 다만, 도 28에 제시된 예에서와 달리 두께에 특별한 제한을 갖지 않는다.30 is a view showing another example of a method for manufacturing a piezoelectric thin film and a piezoelectric thin film structure according to the present disclosure. Instead of the GaN-based nitride sacrificial layer 3 shown in FIG. 26, Sc z Al 1 - A z N sacrificial layer 3 is introduced, the second semiconductor layer 5 can serve as a stress relief layer and/or a seed layer (see FIG. 28 ), and thus Sc y Al 1 - y N or Al x6 Ga 1 - x6 N (0.5≤x 6 ). However, unlike the example shown in FIG. 28 , there is no particular limitation on the thickness.

한편, SczAl1 - zN 희생층(3)을 이용하는 때에, ScxAl1 - xN 압전 박막(4)의 Sc 조성(x)이 0인 경우, 즉 AlN 압전 박막(4)을 성막할 수 있음은 물론이다. 따라서 본 개시에 따른 ScxAl1 - xN 압전 박막(4)의 Sc 조성(x)은 x = 0인 경우부터 wurzite 구조를 가지는 값(이론적으로 x = 0.56)까지를 가질 수 있다.On the other hand, when the Sc z Al 1 -z N sacrificial layer 3 is used, when the Sc composition ( x ) of the Sc x Al 1 - x N piezoelectric thin film 4 is 0, that is, the AlN piezoelectric thin film 4 is formed into a film. Of course you can. Therefore, the Sc composition (x) of the Sc x Al 1 - x N piezoelectric thin film 4 according to the present disclosure may have a value from x = 0 to a value having a wurzite structure (theoretically x = 0.56).

이하 본 개시의 다양한 실시 형태에 대하여 설명한다. Hereinafter, various embodiments of the present disclosure will be described.

(1) ScxAl1 - xN로 된 압전 박막을 제조하는 방법에 있어서, 성막 기판 위에 성막 기판 제거를 위한 희생층을 형성하는 단계; 그리고, 희생층 위에 wurzite 구조의 ScxAl1 - xN 압전 박막을 성막하는 단계;를 포함하는 압전 박막을 제조하는 방법.(1) A method of manufacturing a piezoelectric thin film made of Sc x Al 1 - x N, the method comprising: forming a sacrificial layer for removing the deposition substrate on the deposition substrate; And, forming a Sc x Al 1 - x N piezoelectric thin film of a wurzite structure on the sacrificial layer; Method of manufacturing a piezoelectric thin film comprising a.

(2) 희생층과 ScxAl1 - xN 압전 박막 사이에 스트레스 완화층을 성막하는 단계;를 더 포함하는 압전 박막을 제조하는 방법.(2) forming a stress relief layer between the sacrificial layer and the Sc x Al 1 - x N piezoelectric thin film; Method of manufacturing a piezoelectric thin film further comprising a.

(3) 희생층 위에 Alx6Ga1 - x6N (0.5≤x6)로 된 씨앗층을 성막하는 단계;를 더 포함하는 압전 박막을 제조하는 방법.(3) forming a seed layer of Al x6 Ga 1 - x6 N (0.5≤x 6 ) on the sacrificial layer; Method of manufacturing a piezoelectric thin film further comprising a.

(4) 희생층은 Alx3Ga1 - x3N (0≤x3<0.5) 또는 SczAl1 - zN (z≤0.56)로 이루어진 압전 박막을 제조하는 방법.(4) The sacrificial layer is a method of manufacturing a piezoelectric thin film composed of Al x3 Ga 1 - x3 N (0≤x 3 <0.5) or Sc z Al 1 -z N ( z≤0.56 ).

(5) 희생층은 GaN로 이루어진 압전 박막을 제조하는 방법.(5) A method of manufacturing a piezoelectric thin film in which the sacrificial layer is made of GaN.

(6) 스트레스 완화층은 ScyAl1 - yN (y≤0.56)로 이루어진 압전 박막을 제조하는 방법.(6) The stress relief layer is Sc y Al 1 - y N (y≤0.56) method of manufacturing a piezoelectric thin film.

(7) ScxAl1 - xN 압전 박막으로부터 성막 기판을 분리하는 단계;를 더 포함하는 압전 박막을 제조하는 방법.(7) separating the film-forming substrate from the Sc x Al 1 - x N piezoelectric thin film; Method of manufacturing a piezoelectric thin film further comprising.

본 개시에 의하면, 희생층과 압전 박막 간의 격자상수의 차를 줄인, 압전 박막을 제조하는 방법 및 이 박막을 막을 이용하는 소자를 제공한다.According to the present disclosure, there is provided a method for manufacturing a piezoelectric thin film in which a difference in lattice constant between a sacrificial layer and a piezoelectric thin film is reduced, and a device using the thin film.

성막 기판(1), 희생층(3), 압전 박막(4), 제2 반도체층(5)Film formation substrate (1), sacrificial layer (3), piezoelectric thin film (4), second semiconductor layer (5)

Claims (8)

ScxAl1-xN(0≤x≤0.56)로 된 압전 박막을 제조하는 방법에 있어서,
성막 기판 위에 성막 기판 제거를 위한 희생층을 형성하는 단계; 그리고,
희생층 위에 wurzite 구조의 ScxAl1-xN(0≤x≤0.56) 압전 박막을 성막하는 단계;를 포함하며,
희생층과 ScxAl1-xN(0≤x≤0.56) 압전 박막 사이에 스트레스 완화층을 성막하는 단계;를 더 포함하고,
ScxAl1-xN(0≤x≤0.56) 압전 박막으로부터 성막 기판을 LLO 공정을 통해 분리하는 단계;를 더 포함하며,
스트레스 완화층은 ScyAl1-yN으로 이루어지며, Sc의 y값은 0.56 이하의 값으로 희생층과 ScxAl1-xN(0≤x≤0.56) 압전 박막의 격자상수 값을 감안하되 희생층보다 큰 밴드갭 에너지를 가지도록 설정되는, 압전 박막을 제조하는 방법.
In the method of manufacturing a piezoelectric thin film of Sc x Al 1-x N (0≤x≤0.56),
forming a sacrificial layer for removing the deposition substrate on the deposition substrate; and,
Including; forming a Sc x Al 1-x N (0≤x≤0.56) piezoelectric thin film of wurzite structure on the sacrificial layer;
Forming a stress relief layer between the sacrificial layer and the Sc x Al 1-x N (0≤x≤0.56) piezoelectric thin film; further comprising,
Separating the deposition substrate from the Sc x Al 1-x N (0≤x≤0.56) piezoelectric thin film through the LLO process; further comprising,
The stress relief layer is made of Sc y Al 1-y N, and the y value of Sc is 0.56 or less in consideration of the lattice constant value of the sacrificial layer and Sc x Al 1-x N (0≤x≤0.56) piezoelectric thin film. However, the method of manufacturing a piezoelectric thin film, which is set to have a bandgap energy greater than that of the sacrificial layer.
삭제delete 삭제delete 청구항 1에 있어서,
희생층 위에 Alx6Ga1-x6N (0.5≤x6)로 된 씨앗층을 성막하는 단계;를 더 포함하는 압전 박막을 제조하는 방법.
The method according to claim 1,
Forming a seed layer of Al x6 Ga 1-x6 N (0.5≤x 6 ) on the sacrificial layer; Method of manufacturing a piezoelectric thin film further comprising a.
청구항 1에 있어서,
희생층은 Alx3Ga1-x3N (0≤x3<0.5) 또는 SczAl1-zN (z≤0.56)로 이루어진 압전 박막을 제조하는 방법.
The method according to claim 1,
The sacrificial layer is a method of manufacturing a piezoelectric thin film made of Al x3 Ga 1-x3 N (0≤x 3 <0.5) or Sc z Al 1-z N (z≤0.56).
삭제delete 삭제delete 삭제delete
KR1020200055234A 2020-05-08 2020-05-08 Method of manufactruring piezoelectric thin film and device using the same KR102457270B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200055234A KR102457270B1 (en) 2020-05-08 2020-05-08 Method of manufactruring piezoelectric thin film and device using the same
PCT/KR2021/005805 WO2021225426A1 (en) 2020-05-08 2021-05-10 Method for manufacturing piezoelectric thin film and device using same thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200055234A KR102457270B1 (en) 2020-05-08 2020-05-08 Method of manufactruring piezoelectric thin film and device using the same

Publications (2)

Publication Number Publication Date
KR20210136669A KR20210136669A (en) 2021-11-17
KR102457270B1 true KR102457270B1 (en) 2022-10-21

Family

ID=78702480

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200055234A KR102457270B1 (en) 2020-05-08 2020-05-08 Method of manufactruring piezoelectric thin film and device using the same

Country Status (1)

Country Link
KR (1) KR102457270B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102712440B1 (en) * 2022-05-20 2024-10-02 웨이브로드 주식회사 Method of manufactruring piezoelectric thin film and device using the same
KR102688499B1 (en) * 2022-05-31 2024-07-25 웨이브로드 주식회사 Method of manufactruring piezoelectric thin film and device using the same
KR102615809B1 (en) * 2022-07-22 2023-12-20 웨이브로드 주식회사 Gruop 3 nitride semiconductor template for power semiconductor device
KR102607671B1 (en) * 2022-10-06 2023-11-29 웨이브로드 주식회사 Method for manufacturing group 3 nitride semiconductor template and group 3 nitride semiconductor template manufactured by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180130883A1 (en) * 2016-11-10 2018-05-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Scandium-Containing III-N Etch-Stop Layers for Selective Etching of III-Nitrides and Related Materials
US20180275485A1 (en) * 2017-03-24 2018-09-27 Dror Hurwitz Method of fabrication for single crystal piezoelectric rf resonators and filters
US20190259934A1 (en) * 2018-02-20 2019-08-22 Akoustis, Inc. Method and structure of single crystal electronic devices with enhanced strain interface regions by impurity introduction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205872B1 (en) * 2011-05-09 2012-11-28 삼성전자주식회사 GaN based semiconductor device and method of manufacturing the same
DE102015116068A1 (en) * 2015-09-23 2017-03-23 Forschungsverbund Berlin E.V. (Sc, Y): AIN single crystals for lattice-matched AlGaN systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180130883A1 (en) * 2016-11-10 2018-05-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Scandium-Containing III-N Etch-Stop Layers for Selective Etching of III-Nitrides and Related Materials
US20180275485A1 (en) * 2017-03-24 2018-09-27 Dror Hurwitz Method of fabrication for single crystal piezoelectric rf resonators and filters
US20190259934A1 (en) * 2018-02-20 2019-08-22 Akoustis, Inc. Method and structure of single crystal electronic devices with enhanced strain interface regions by impurity introduction

Also Published As

Publication number Publication date
KR20210136669A (en) 2021-11-17

Similar Documents

Publication Publication Date Title
KR102457270B1 (en) Method of manufactruring piezoelectric thin film and device using the same
KR100976268B1 (en) Method for growth of GaN single crystal, method for preparation of GaN substrate, process for producing GaN-based element, and GaN-based element
JP3813740B2 (en) Substrates for electronic devices
US9650723B1 (en) Large area seed crystal for ammonothermal crystal growth and method of making
JP5390063B2 (en) Single crystal nitride semiconductor substrate and high quality nitride light emitting device manufacturing method using the same
JP2009527913A5 (en)
JPH111399A (en) Production of gallium nitride semiconductor single crystal substrate and gallium nitride diode produced by using the substrate
JP2004095843A (en) Electronic device and substrate for the same
US12063023B2 (en) Method of manufacturing a piezoelectric thin film
KR102480141B1 (en) Method of manufactruring piezoelectric thin film and device using the same
JPH11162852A (en) Substrate for electronic device and manufacture thereof
JP2005056940A (en) Electronic device, substrate therefor, and method for manufacturing them
KR102556712B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
KR102403424B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high crystallinity and their apparatus using the thin film
KR102227213B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
KR102315908B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
WO2021225426A1 (en) Method for manufacturing piezoelectric thin film and device using same thin film
JPH10303510A (en) Iii-group nitride semiconductor device and its manufacture
KR102688499B1 (en) Method of manufactruring piezoelectric thin film and device using the same
KR102712440B1 (en) Method of manufactruring piezoelectric thin film and device using the same
JP2014157979A (en) Group iii nitride composite substrate, method for manufacturing the same, lamination group iii nitride composite substrate, group iii nitride semiconductor device and method for manufacturing the same
EP4391021A1 (en) Method for manufacturing an electronic device
KR20070068530A (en) Growth of high-quality substrate and epitaxial layer for high-performance electronic and optical devices related to gan
JP6146041B2 (en) Group III nitride composite substrate, laminated group III nitride composite substrate, group III nitride semiconductor device, and manufacturing method thereof
Bandarenka et al. Eugene Chubenko, Sergey Redko, Alexey Dolgiy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant