KR102455613B1 - 이차 알칼리 전지용 혼합 물질 캐소드 - Google Patents
이차 알칼리 전지용 혼합 물질 캐소드 Download PDFInfo
- Publication number
- KR102455613B1 KR102455613B1 KR1020177012748A KR20177012748A KR102455613B1 KR 102455613 B1 KR102455613 B1 KR 102455613B1 KR 1020177012748 A KR1020177012748 A KR 1020177012748A KR 20177012748 A KR20177012748 A KR 20177012748A KR 102455613 B1 KR102455613 B1 KR 102455613B1
- Authority
- KR
- South Korea
- Prior art keywords
- bismuth
- copper
- cathode
- salt
- mno
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 81
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 73
- 239000010949 copper Substances 0.000 claims abstract description 59
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910052802 copper Inorganic materials 0.000 claims abstract description 53
- 239000011230 binding agent Substances 0.000 claims abstract description 45
- 239000010406 cathode material Substances 0.000 claims abstract description 34
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 30
- 150000001622 bismuth compounds Chemical class 0.000 claims abstract description 19
- 239000005749 Copper compound Substances 0.000 claims abstract description 17
- 150000001880 copper compounds Chemical class 0.000 claims abstract description 17
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 150000001879 copper Chemical class 0.000 claims abstract description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 48
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 48
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 39
- 229910052797 bismuth Inorganic materials 0.000 claims description 36
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000000654 additive Substances 0.000 claims description 24
- 230000000996 additive effect Effects 0.000 claims description 19
- 239000010439 graphite Substances 0.000 claims description 18
- 229910002804 graphite Inorganic materials 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 17
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- -1 manganese oxide compound Chemical class 0.000 claims description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 8
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 8
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 claims description 7
- 150000002696 manganese Chemical class 0.000 claims description 7
- 239000002086 nanomaterial Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 5
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 239000011565 manganese chloride Substances 0.000 claims description 5
- 235000002867 manganese chloride Nutrition 0.000 claims description 5
- 229940099607 manganese chloride Drugs 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- 239000005751 Copper oxide Substances 0.000 claims description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 4
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 claims description 4
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 4
- 229910000431 copper oxide Inorganic materials 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 4
- 239000000017 hydrogel Substances 0.000 claims description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 4
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 4
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 235000010981 methylcellulose Nutrition 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- 229910000906 Bronze Inorganic materials 0.000 claims description 2
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 239000010974 bronze Substances 0.000 claims description 2
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 239000002048 multi walled nanotube Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229920006254 polymer film Polymers 0.000 claims description 2
- 229920000128 polypyrrole Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000011118 polyvinyl acetate Substances 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 239000002109 single walled nanotube Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims 5
- 150000001621 bismuth Chemical class 0.000 claims 3
- 238000003825 pressing Methods 0.000 claims 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims 1
- 150000001868 cobalt Chemical class 0.000 claims 1
- 229920001577 copolymer Polymers 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 150000002505 iron Chemical class 0.000 claims 1
- 150000002815 nickel Chemical class 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 150000003057 platinum Chemical class 0.000 claims 1
- SDKPSXWGRWWLKR-UHFFFAOYSA-M sodium;9,10-dioxoanthracene-1-sulfonate Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)[O-] SDKPSXWGRWWLKR-UHFFFAOYSA-M 0.000 claims 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 230000001351 cycling effect Effects 0.000 description 32
- 239000002041 carbon nanotube Substances 0.000 description 29
- 238000011068 loading method Methods 0.000 description 28
- 239000011572 manganese Substances 0.000 description 28
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 27
- 229920006362 Teflon® Polymers 0.000 description 26
- 229910021393 carbon nanotube Inorganic materials 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000012071 phase Substances 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 11
- 229910002640 NiOOH Inorganic materials 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 9
- 238000002484 cyclic voltammetry Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 6
- 229940101209 mercuric oxide Drugs 0.000 description 6
- 229910000474 mercury oxide Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003232 water-soluble binding agent Substances 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 229940099596 manganese sulfate Drugs 0.000 description 3
- 239000011702 manganese sulphate Substances 0.000 description 3
- 235000007079 manganese sulphate Nutrition 0.000 description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- PEEDYJQEMCKDDX-UHFFFAOYSA-N antimony bismuth Chemical compound [Sb].[Bi] PEEDYJQEMCKDDX-UHFFFAOYSA-N 0.000 description 2
- KYAZRUPZRJALEP-UHFFFAOYSA-N bismuth manganese Chemical compound [Mn].[Bi] KYAZRUPZRJALEP-UHFFFAOYSA-N 0.000 description 2
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005520 electrodynamics Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- PMQJYWORJJEMQC-UHFFFAOYSA-N manganese;dihydrate Chemical compound O.O.[Mn] PMQJYWORJJEMQC-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- QYIGOGBGVKONDY-UHFFFAOYSA-N 1-(2-bromo-5-chlorophenyl)-3-methylpyrazole Chemical compound N1=C(C)C=CN1C1=CC(Cl)=CC=C1Br QYIGOGBGVKONDY-UHFFFAOYSA-N 0.000 description 1
- SIWNEELMSUHJGO-UHFFFAOYSA-N 2-(4-bromophenyl)-4,5,6,7-tetrahydro-[1,3]oxazolo[4,5-c]pyridine Chemical compound C1=CC(Br)=CC=C1C(O1)=NC2=C1CCNC2 SIWNEELMSUHJGO-UHFFFAOYSA-N 0.000 description 1
- KKMOSYLWYLMHAL-UHFFFAOYSA-N 2-bromo-6-nitroaniline Chemical compound NC1=C(Br)C=CC=C1[N+]([O-])=O KKMOSYLWYLMHAL-UHFFFAOYSA-N 0.000 description 1
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 1
- YPIFGDQKSSMYHQ-UHFFFAOYSA-M 7,7-dimethyloctanoate Chemical compound CC(C)(C)CCCCCC([O-])=O YPIFGDQKSSMYHQ-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVHVXUAGFBAOST-UHFFFAOYSA-N Cc1ccccc1[Bi] Chemical compound Cc1ccccc1[Bi] BVHVXUAGFBAOST-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VNFGGCVWOIDZKK-UHFFFAOYSA-M O=[Bi]Cl.O Chemical compound O=[Bi]Cl.O VNFGGCVWOIDZKK-UHFFFAOYSA-M 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- GOPYZMJAIPBUGX-UHFFFAOYSA-N [O-2].[O-2].[Mn+4] Chemical compound [O-2].[O-2].[Mn+4] GOPYZMJAIPBUGX-UHFFFAOYSA-N 0.000 description 1
- JLAOXQAYJPYKFM-UHFFFAOYSA-N [O-2].[Zn+2].[Co+2].[Bi+3] Chemical compound [O-2].[Zn+2].[Co+2].[Bi+3] JLAOXQAYJPYKFM-UHFFFAOYSA-N 0.000 description 1
- OSOKRZIXBNTTJX-UHFFFAOYSA-N [O].[Ca].[Cu].[Sr].[Bi] Chemical compound [O].[Ca].[Cu].[Sr].[Bi] OSOKRZIXBNTTJX-UHFFFAOYSA-N 0.000 description 1
- UNRNJMFGIMDYKL-UHFFFAOYSA-N aluminum copper oxygen(2-) Chemical class [O-2].[Al+3].[Cu+2] UNRNJMFGIMDYKL-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UDRRLPGVCZOTQW-UHFFFAOYSA-N bismuth lead Chemical compound [Pb].[Bi] UDRRLPGVCZOTQW-UHFFFAOYSA-N 0.000 description 1
- WROZREOMSFLFTH-UHFFFAOYSA-N bismuth manganese(2+) oxygen(2-) Chemical compound [O-2].[O-2].[Mn+2].[Bi+3] WROZREOMSFLFTH-UHFFFAOYSA-N 0.000 description 1
- 229940073609 bismuth oxychloride Drugs 0.000 description 1
- JAONZGLTYYUPCT-UHFFFAOYSA-K bismuth subgallate Chemical compound OC(=O)C1=CC(O)=C2O[Bi](O)OC2=C1 JAONZGLTYYUPCT-UHFFFAOYSA-K 0.000 description 1
- 229960000199 bismuth subgallate Drugs 0.000 description 1
- 229910000380 bismuth sulfate Inorganic materials 0.000 description 1
- 239000001977 bismuth sulfite agar Substances 0.000 description 1
- TXKAQZRUJUNDHI-UHFFFAOYSA-K bismuth tribromide Chemical compound Br[Bi](Br)Br TXKAQZRUJUNDHI-UHFFFAOYSA-K 0.000 description 1
- HIYUMYXSGIKHHE-UHFFFAOYSA-M bismuth trifluoromethanesulfonate Chemical compound [Bi+3].[O-]S(=O)(=O)C(F)(F)F HIYUMYXSGIKHHE-UHFFFAOYSA-M 0.000 description 1
- REKWPXFKNZERAA-UHFFFAOYSA-K bismuth;2-carboxyphenolate Chemical compound [Bi+3].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O REKWPXFKNZERAA-UHFFFAOYSA-K 0.000 description 1
- QSBNOZODKXUXSP-UHFFFAOYSA-K bismuth;azane;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound N.[Bi+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QSBNOZODKXUXSP-UHFFFAOYSA-K 0.000 description 1
- CTVLSMNVTBTBMK-UHFFFAOYSA-N bismuth;naphthalen-2-ol Chemical compound [Bi].C1=CC=CC2=CC(O)=CC=C21 CTVLSMNVTBTBMK-UHFFFAOYSA-N 0.000 description 1
- XOBGMVXXJIHFNI-UHFFFAOYSA-N bismuth;oxotungsten Chemical compound [Bi].[W]=O XOBGMVXXJIHFNI-UHFFFAOYSA-N 0.000 description 1
- SFOQXWSZZPWNCL-UHFFFAOYSA-K bismuth;phosphate Chemical compound [Bi+3].[O-]P([O-])([O-])=O SFOQXWSZZPWNCL-UHFFFAOYSA-K 0.000 description 1
- BRCWHGIUHLWZBK-UHFFFAOYSA-K bismuth;trifluoride Chemical compound F[Bi](F)F BRCWHGIUHLWZBK-UHFFFAOYSA-K 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000052 cadmium hydride Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- CVRDXBKFTJIBID-UHFFFAOYSA-N dibismuth dicalcium dicopper distrontium lead(2+) oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Ca++].[Ca++].[Cu++].[Cu++].[Sr++].[Sr++].[Pb++].[Pb++].[Bi+3].[Bi+3] CVRDXBKFTJIBID-UHFFFAOYSA-N 0.000 description 1
- BEQZMQXCOWIHRY-UHFFFAOYSA-H dibismuth;trisulfate Chemical compound [Bi+3].[Bi+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BEQZMQXCOWIHRY-UHFFFAOYSA-H 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012073 inactive phase Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910000049 iron hydride Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- OMEPJWROJCQMMU-UHFFFAOYSA-N selanylidenebismuth;selenium Chemical compound [Se].[Bi]=[Se].[Bi]=[Se] OMEPJWROJCQMMU-UHFFFAOYSA-N 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- KOECRLKKXSXCPB-UHFFFAOYSA-K triiodobismuthane Chemical compound I[Bi](I)I KOECRLKKXSXCPB-UHFFFAOYSA-K 0.000 description 1
- ZHXAZZQXWJJBHA-UHFFFAOYSA-N triphenylbismuthane Chemical compound C1=CC=CC=C1[Bi](C=1C=CC=CC=1)C1=CC=CC=C1 ZHXAZZQXWJJBHA-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- SZKTYYIADWRVSA-UHFFFAOYSA-N zinc manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Zn++] SZKTYYIADWRVSA-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
- H01M4/30—Pressing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Complex oxides containing manganese and at least one other metal element
- C01G45/1221—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
- C01G45/1228—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof of the type (MnO2)-, e.g. LiMnO2 or Li(MxMn1-x)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
이산화망간을 사용하는 이차 알칼리 전지가 설명된다. 배터리는 버네사이트-상 이산화 망간 또는 전해질의 이산화 망간(EMD)을 갖는 혼합 캐소드 물질, 비스무트 화합물 및 원소 구리 및 구리염으로 이루어진 군으로부터 선택되는 구리 화합물을 포함한다. 일부 구현예에서, 전도성 탄소 및/또는 바인더 또한 포함될 수 있다.
Description
관련 출원에 대한 상호 참조
본 출원은 미국 특허 출원 제62/062,983호(2014년 10월 13일 출원) 및 미국 특허 출원 제62/067,215호(2014년 10월 22일 출원)의 정규 출원이고 이에 대한 우선권을 주장하며, 그 전체 내용을 본원에 참조로 통합한다.
연방 정부 지원 연구 또는 개발에 관한 진술
본 발명은 미국 에너지부가 부여한 승인 번호 DEAR0000150 하에서 미국 정부의 지원으로 이루어졌다. 미국 정부는 본 발명에 대해 일정한 권리를 갖는다.
본 개시는 전기화학 셀을 포함하는 전지에 관한 것이다. 알칼리 이산화망간 셀은 주로 일차 전지로 사용되어 왔다. 그러나, 일차 전지의 일회성 사용으로 재료의 낭비가 커질 뿐만 아니라 바람직하지 못한 환경적 결과가 초래된다. 또한, 이러한 셀을 제조하는데 필요한 에너지 및 이와 대비되는 실제로 저장될 수 있는 에너지 사이의 심각한 불균형에 의해 잠재적 경제적 손실이 발생될 수 있다. 이에 따라, 일차 전지를 충전식 또는 이차 전지로 전환하는 데 있어서 분명한 이점이 있다.
이산화망간은, 충전-방전 사이클링을 따르지 않는 생성물의 결과를 초래하는 그 결정 구조와 부반응에 대한 근본적인 문제 때문에, 이 필요한 전환에 순응하려 하지 않는 것으로 밝혀졌다. 아연-이산화망간 전지 시스템을 개발하기 위한 노력은 40년 전으로 거슬러 올라가지만, 이를 상용화하기 위한 많은 시도가 성공적이지 못하였다. 이차(충전식) 알칼리 전지는 미국 특허 제4,957,827호에 개시된 기술을 사용하여 최근 시판되고 있다. 이러한 충전식 알칼리 전지는 수명특성(cycleability)을 향상시키는 독자적인 충전기를 필요로 한다(미국 특허 제7,718,305호). 그러나, 많은 상업적 응용에서 관심을 갖는, 높은 방전 심도(depth of discharge)에서의 용량 저하 때문에 그 수명이 제한적이다. 이러한 제약 때문에, 충전식 알칼리 전지가 폭넓게 적용되는 것을 아직 목격하지 못하였다.
이산화망간 결정이 방전할 수 있는 이론적 용량은 617 mAh/g이고, 이는 산화 환원 반응에서 두 개의 전자를 결합하는 것에 기반한다. 방전 과정 중 이러한 용량에 접근하기 위해, 이산화망간 결정은 재충전 물질의 최종적인 분해 및 손실을 일으킬 수 있는, 많은 스트레스를 유발하는 상변환 및 화학반응 단계를 거쳐야 한다. 이러한 격자 팽창 및 화학 변환을 조절하기 위해서, 사이클 용량은 주로 전체 용량의 5 내지 10%로 제한되었다. Wroblowa 등은 이산화망간의 버네사이트-상을 합성하고 물리적 또는 화학적 수단을 통해 비스무트 및 납을 결정구조에 결합시키는 것이 이산화망간 물질에 재충전 특성을 부여한다는 것을 발견했다(유럽 특허 제EP0138316A1호 및 미국 특허 제4,451,543호). 일부 경우에서, 이차 전자 용량의 80~90%까지 확보할 수 있었다. Yao(미국 특허 제4,520,005호) 는 단일 단계 반응으로 비스무트 및 납을 이산화망간의 버네사이트-상에 결합하는 방법을 발견하였다. Yao의 방법은 Wadsley의 최초 합성 방법(JACS, 72권, 1781, 1950)의 변형이었다. Rechargeable Battery Corporation은 이산화망간에 코팅된 비스무트의 산화물 및 수산화물을 합성하고 비스무트 및 망간의 질산염을 가열하여 비스무트-이산화망간 상을 생성하는 방법을 개발했다(미국 특허 제5,952,124호 및 미국 특허 제5,156,934호). 종래 기술은 사이클링 중 비스무트가 격자를 안정화시키고 하우스먼나이트(Mn3O4)의 전기화학적 비활성화 상을 회피하는 역할을 한다는 것을 보여준다. 그러나, 어떠한 종래 기술도 양호한 신뢰성 및 재현성을 갖는 높은 사이클 수명을 발전시키지 못하였다. 광범위한 시험으로부터, 수 회의 충전-방전 사이클 내에서 획득할 수 있는 방전 심도가 용량의 큰 손실과 함께 급감한다는 것을 알게 되었다. 또한, 공보에서 확인된 높은 사이클 수명은, 현실 세계의 응용에서 전지를 사이클링 하기 위해 선호되는 프로토콜인 정전류적(galvanostatically)이라기 보다는, 현실 세계의 응용에서 사용될 수 없는 사이클링 프로토콜인, 물질을 전위동적으로(potentiodynamically) 사이클링하는데 의존한다는 것이 밝혀졌다. 전위동적 사이클링은 전극에서 발생하는 화학 반응을 시험하기 위한 전기화학에서의 실험적 방법이며, 실제 전지가 작동하는 방식은 아니다. 종래 기술 및 문헌 공보는 높은 사이클 수명을 나타내기 위하여 이러한 타입의 사이클링 프로토콜에 의존해 왔으나, 정전류적 사이클링에는 전지의 즉각적인 고장을 일으키는 용량의 급격한 손실이 있다. 또한, 종래 기술은 높은 사이클 수명을 나타내기 위하여, 과도한 탄소(MnO2 로딩의 약 10배 이상)로 전극을 제조하는데 의존하였다. 그러나, 10배가 초과된 탄소를 갖는 전극을 함유하는 전지는 경제적으로 실행 가능하지 않으며 임의의 실제 응용에서 비실용적일 수 있는 매우 빈약한 에너지 밀도를 갖는다. 광범위한 시험으로, 비스무트 결합으로 45 중량 퍼센트 이상의 MnO2 로딩을 함유하는 전극은 5사이클 이내에서 전지의 고장을 일으킨다는 것이 밝혀졌다.
이산화망간을 사용하는 이차 알칼리 전지가 설명된다. 이러한 전지는 버네사이트-상 이산화망간 또는 전해질의 이산화망간(EMD)를 갖는 혼합 캐소드 물질, 비스무트 화합물 및 원소 구리와 구리염으로 이루어진 군으로부터 선택되는 구리 화합물을 포함한다. 일부 구현예에서, 전도성 탄소 및/또는 바인더 또한 포함될 수 있다. 전지에 대해 개시된 일부 구현예의 실시로부터 실현될 수 있는 이점은 MnO2 알칼리 전지가 재충전되도록 만들어졌다는 것이다.
본 발명의 간단한 설명은 하나 이상의 예시적인 구현예에 따라 본원에 개시된 요지의 간략한 개요를 단지 제공하도록 한 것이고, 청구범위를 해석하거나 본 발명의 범위를 정의 또는 제한하도록 안내하는 역할을 하지 않으며, 본 발명의 범위는 첨부된 청구범위에 의해서만 정의된다. 이러한 간단한 설명은 아래의 상세한 설명에서 추가로 설명되는 단순한 형태에서 개념의 예시적인 선택을 소개하기 위해 제공되는 것이다. 이러한 간단한 설명은 청구된 요지의 주요 특징 또는 필수적 특징을 확인하려는 것이 아니며, 청구된 요지의 범위를 결정하는데 도움이 되려고 하는 것도 아니다. 청구된 요지는 배경에 언급된 임의의 또는 모든 단점을 해결하는 구현에만 한정되지 않는다.
본 발명의 특징이 이해될 수 있는 방식으로, 본 발명의 상세한 설명은 특정 구현예의 참조로 포함될 수 있고, 그 일부는 첨부된 도면에 도시된다. 그러나, 본 발명의 범위는 다른 동등한 효과의 구현예를 포함하기 때문에, 도면은 본 발명의 특정 구현예를 단지 도시하는 것이고 따라서 그 범위를 제한하는 것으로 간주되어서는 안 된다. 도면은 반드시 일정한 비율로 된 것은 아니고, 일반적으로 본 발명의 특정 구현예의 특징을 도시할 때 강조된다. 도면에서, 동일한 부호는 다양한 도면들에 걸쳐 동일한 요소를 지칭하는데 사용된다. 따라서, 본 발명을 더 이해하기 위해서, 도면과 관련하여 다음의 상세한 설명을 참조할 수 있다.
도 1은 각형 배열의 전지의 구현예의 횡단면도이다.
도 2는 각형 배열의 전지의 양극 또는 캐소드의 구현예의 횡단면도이다.
도 3a는 NiOOH 상대전극을 사용하여 C/3 속도로 정전류적으로 충전되고 방전되는 MnO2 + Bi + Cu 캐소드의 충전 및 방전 곡선을 예시한 그래프이며, 도 3b는 (a)와 유사하지만 혼합된 물질에 Cu 성분이 없는 전지의 충전 및 방전 곡선을 예시한 그래프이다.
도 4a는 NiOOH 상대전극을 사용하여 1C 속도로 정전류적으로 충전되고 방전되는 5% 및 45%의 이산화망간(MD) 로딩에서 3700회를 초과한 사이클 동안 MnO2 + Bi + Cu 캐소드의 안정적인 방전 용량 곡선을 예시한 그래프이며, 도 4b는 도 4a의 전지의 쿨롱 효율을 예시한 그래프이며, 도 4c는 5% MD 및 도전성 탄소로서의 KS44를 갖는 도 4a의 전지의 충전 및 방전 곡선을 예시한 그래프이며, 도 4d는 45% MD 및 도전성 탄소로서의 탄소 나노튜브를 갖는 도 4a의 전지의 충전 및 방전 곡선을 예시한 그래프이다.
도 5는 페이스트된(pasted) 아연 애노드, 미세다공성 멤브레인 세퍼레이터, MnO2 + Bi + Cu 캐소드, 알칼리 전해질 및 전지 하우징을 포함하는 전지의 충전 및 방전 곡선을 예시한 그래프이다. 이 전지는 C/3 속도로 정전류적으로 충전 및 방전된다.
도 6a는 0.3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA 바인더와 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리(voltammetry) 스캔을 보여주며, 도 6b는 0.3 V와 -1 V 사이의 1 mV/sec에서 TEFLON® 상표의 폴리테트라플루오로에틸렌 바인더와 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리 스캔을 묘사하고, 도 1c는 사이클링 횟수가 증가함에 따라 더 낮은 과전위 및 임피던스를 보이는 0.3 V와 -1 V 사이의 1 mV/sec 에서 CMC-PVA와 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 보여주며, 도 6d는 사이클링 횟수가 증가함에 따라 과전위 및 임피던스의 증가를 보이는 0.3 V와 -1 V 사이의 1 mV/sec에서 TEFLON®과 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 묘사한다. 도식 상의 숫자는 사이클링 횟수를 나타나며, 전위는 120 사이클 후 0.4 V로 증가되었다.
도 7a는 0.3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA와 혼합된 버네사이트-상 비스무트-MnO2의 사이클 횟수 대 비충전용량과 비방전용량 및 쿨롱 효율의 플롯을 묘사하며, 도 7b는 0.3 V 와 -1 V 사이의 1 mV/sec에서 TEFLON®과 혼합된 버네사이트-상 비스무트-MnO2의 사이클 횟수 대 충전 및 방전 용량과 쿨롱 효율의 플롯을 보여준다(120 사이클 후 대전전위는 0.4 V까지 증가).
도 8a는 0.3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA 바인더 및 Ni 첨가물과 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리 스캔을 보여주며, 도 8b는 0. 3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA 바인더와 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리 스캔을 묘사하고, 도 8c는 사이클링 횟수가 증가함에 따라 주요 제1 및 제2 전자 반응에 대해 과전위를 보이지 않는 0.3 V와 -1 V 사이의 1 mV/sec 에서 CMC-PVA 및 Ni와 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 보여주며, 도 8d는 사이클링 횟수가 증가함에 따라 과전위 및 임피던스의 미세한 증가를 보이는 0.3 V 와 -1 V 사이의 1 mV/sec에서 CMC-PVA와만 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 묘사한다.
도 9a는 1C에서 45 wt%의 탄소 나노튜브와 혼합된 45 wt%의 버네사이트-타입 MnO2의 정전류적 사이클링을 묘사하고, 반면에 도 9b는 C/3에서 40 wt%의 흑연 및 5 wt%의 탄소 나노튜브와 혼합된 45 wt%의 버네사이트-타입 MnO2의 정전류적 사이클링을 보여준다.
도 9c는 1C에서 탄소 나노튜브와 혼합된 EMD-타입 MnO2의 다른 로딩의 정전류적 사이클링을 묘사하고, 반면에 도 9d는 서로 다른 속도에서 10 wt%의 탄소 나노튜브와 혼합된 75 wt%의 EMD-타입 MnO2의 정전류적 사이클링을 보여준다.
도 1은 각형 배열의 전지의 구현예의 횡단면도이다.
도 2는 각형 배열의 전지의 양극 또는 캐소드의 구현예의 횡단면도이다.
도 3a는 NiOOH 상대전극을 사용하여 C/3 속도로 정전류적으로 충전되고 방전되는 MnO2 + Bi + Cu 캐소드의 충전 및 방전 곡선을 예시한 그래프이며, 도 3b는 (a)와 유사하지만 혼합된 물질에 Cu 성분이 없는 전지의 충전 및 방전 곡선을 예시한 그래프이다.
도 4a는 NiOOH 상대전극을 사용하여 1C 속도로 정전류적으로 충전되고 방전되는 5% 및 45%의 이산화망간(MD) 로딩에서 3700회를 초과한 사이클 동안 MnO2 + Bi + Cu 캐소드의 안정적인 방전 용량 곡선을 예시한 그래프이며, 도 4b는 도 4a의 전지의 쿨롱 효율을 예시한 그래프이며, 도 4c는 5% MD 및 도전성 탄소로서의 KS44를 갖는 도 4a의 전지의 충전 및 방전 곡선을 예시한 그래프이며, 도 4d는 45% MD 및 도전성 탄소로서의 탄소 나노튜브를 갖는 도 4a의 전지의 충전 및 방전 곡선을 예시한 그래프이다.
도 5는 페이스트된(pasted) 아연 애노드, 미세다공성 멤브레인 세퍼레이터, MnO2 + Bi + Cu 캐소드, 알칼리 전해질 및 전지 하우징을 포함하는 전지의 충전 및 방전 곡선을 예시한 그래프이다. 이 전지는 C/3 속도로 정전류적으로 충전 및 방전된다.
도 6a는 0.3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA 바인더와 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리(voltammetry) 스캔을 보여주며, 도 6b는 0.3 V와 -1 V 사이의 1 mV/sec에서 TEFLON® 상표의 폴리테트라플루오로에틸렌 바인더와 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리 스캔을 묘사하고, 도 1c는 사이클링 횟수가 증가함에 따라 더 낮은 과전위 및 임피던스를 보이는 0.3 V와 -1 V 사이의 1 mV/sec 에서 CMC-PVA와 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 보여주며, 도 6d는 사이클링 횟수가 증가함에 따라 과전위 및 임피던스의 증가를 보이는 0.3 V와 -1 V 사이의 1 mV/sec에서 TEFLON®과 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 묘사한다. 도식 상의 숫자는 사이클링 횟수를 나타나며, 전위는 120 사이클 후 0.4 V로 증가되었다.
도 7a는 0.3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA와 혼합된 버네사이트-상 비스무트-MnO2의 사이클 횟수 대 비충전용량과 비방전용량 및 쿨롱 효율의 플롯을 묘사하며, 도 7b는 0.3 V 와 -1 V 사이의 1 mV/sec에서 TEFLON®과 혼합된 버네사이트-상 비스무트-MnO2의 사이클 횟수 대 충전 및 방전 용량과 쿨롱 효율의 플롯을 보여준다(120 사이클 후 대전전위는 0.4 V까지 증가).
도 8a는 0.3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA 바인더 및 Ni 첨가물과 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리 스캔을 보여주며, 도 8b는 0. 3 V와 -1 V 사이의 1 mV/sec에서 CMC-PVA 바인더와 혼합된 버네사이트-상 비스무트-MnO2의 처음 10 사이클의 사이클릭 볼타메트리 스캔을 묘사하고, 도 8c는 사이클링 횟수가 증가함에 따라 주요 제1 및 제2 전자 반응에 대해 과전위를 보이지 않는 0.3 V와 -1 V 사이의 1 mV/sec 에서 CMC-PVA 및 Ni와 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 보여주며, 도 8d는 사이클링 횟수가 증가함에 따라 과전위 및 임피던스의 미세한 증가를 보이는 0.3 V 와 -1 V 사이의 1 mV/sec에서 CMC-PVA와만 혼합된 버네사이트-상 비스무트-MnO2의 다양한 사이클의 사이클릭 볼타메트리 스캔을 묘사한다.
도 9a는 1C에서 45 wt%의 탄소 나노튜브와 혼합된 45 wt%의 버네사이트-타입 MnO2의 정전류적 사이클링을 묘사하고, 반면에 도 9b는 C/3에서 40 wt%의 흑연 및 5 wt%의 탄소 나노튜브와 혼합된 45 wt%의 버네사이트-타입 MnO2의 정전류적 사이클링을 보여준다.
도 9c는 1C에서 탄소 나노튜브와 혼합된 EMD-타입 MnO2의 다른 로딩의 정전류적 사이클링을 묘사하고, 반면에 도 9d는 서로 다른 속도에서 10 wt%의 탄소 나노튜브와 혼합된 75 wt%의 EMD-타입 MnO2의 정전류적 사이클링을 보여준다.
도 1을 참조하면, 전지(10)는 하우징(6), 캐소드 전류 콜렉터(1), 캐소드 물질(2), 세퍼레이터(3), 애노드 전류 콜렉터(4) 및 애노드 물질(5)을 포함한다. 도 1은 각형 전지 배열을 보여준다. 다른 구현예에서, 전지는 원통형 전지이다. 전해질은 전지(10)에 걸쳐 개방 공간에 분산된다. 도 2를 참조하면, 캐소드 전류 콜렉터(1) 및 캐소드 물질(2)이 합쳐서 캐소드(12) 또는 양극(12)이라 불린다.
본 개시에서 설명되는 기술은 캐소드(12)에 혼합 물질을 채용한 충전식 알칼리 셀의 개발과 관련된 것이다. 이러한 혼합 물질은 이산화망간(MnO2, 또는 MD로 불림), 비스무트 및 구리의 조합이다. 일 구현예에서, 전도성 탄소 또한 캐소드(12)에 존재한다. 캐소드(12)는 이차 전지일 수 있는 전지(10)에 결합된다. 혼합 물질은 전해질(EMD), α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2 또는λ-MnO2을 포함하는 하나 또는 다수의 MnO2 동소체(polymorphs)를 기반으로 한다. 일반적으로, 캐소드에서 이산화망간의 사이클링된 형태는 δ-MnO2이며, 버네사이트로 상호교환적으로 불린다. 이산화망간의 비버네사이트(non-birnessite) 다형성 형태가 사용된다면, 이들은 하나 이상의 컨디셔닝 사이클에 의해 버네사이트 인-시츄로 변환된다. 예를 들면, MnO2의 제2 전자 단계의 마지막까지 완전 방전이 수행될 수 있고, 이어서 그의 Mn4+ 상태까지 도로 재충전이 수행되어 버네사이트-상 이산화망간이 수득될 수 있다.
일 구현예에서, 캐소드 물질은 2~30 %wt의 전도성 탄소, 0~30%의 전도성 금속 첨가제, 1~70 %wt의 구리 화합물, 1~20 %wt의 비스무트 화합물, 0~10 %wt의 바인더 및 버네사이트 또는 EMD를 포함한다. 다른 구현예에서, 캐소드 물질은 2~30 %wt의 전도성 탄소, 0~30%의 전도성 금속 첨가제, 1~20 %wt의 비스무트 화합물, 0~10 %wt의 바인더 및 버네사이트 또는 EMD를 포함한다. 일 구현예에서, 이러한 캐소드 물질은 2~30 %wt의 전도성 탄소, 0~30%의 전도성 금속 첨가제, 1~70 %wt의 구리 화합물, 1~20 %wt의 비스무트 화합물, 0~10 %wt의 바인더 및 잔부 버네사이트 또는 EMD로 필수적으로 이루어진다. 다른 구현예에서, 이러한 캐소드 물질은 2~30 %wt의 전도성 탄소, 0~30%의 전도성 금속 첨가제, 1~20 %wt의 비스무트 화합물, 0~10 %wt의 바인더 및 잔부 버네사이트 또는 EMD로 필수적으로 이루어진다.
성분 | 범위 (%wt) |
전도성 탄소 | 2-30% |
전도성 금속 첨가제 | 0-30% |
구리 화합물 | 1-70% |
비스무트 화합물 | 1-20% |
바인더 | 0-10% |
MnO2 화합물 | 잔부 |
혼합 물질은 비스무트 화합물 및 구리를 포함하며, 이들은 함께 캐소드의 정전류적 전지 사이클링을 허용한다. 비스무트 화합물은 비스무트의 무기 또는 유기 염(산화 상태 5,4,3,2 또는 1), 산화 비스무트, 또는 비스무트 금속(즉, 원소 비스무트)으로서 캐소드(12) 내에 결합된다. 비스무트 화합물은 1~20 wt%의 농도로 캐소드 물질에 존재한다. 무기 비스무트 화합물의 예는 염화비스무트, 브롬화비스무트, 플루오르화비스무트, 요오드화비스무트, 황산비스무트, 질산비스무트, 삼염화비스무트, 시트르산비스무트, 텔루르화비스무트, 셀렌화비스무트, 차살리실산비스무트, 네오데카노에이트비스무트, 탄산비스무트, 차갈산비스무트, 비스무트 스트론튬 칼슘 구리 산화물, 아세트산비스무트, 비스무트 트리플루오로메탄술폰산염, 비스무트 질산 산화물, 비스무트 갈레이트 수화물, 인산비스무트, 비스무트 코발트 아연 산화물, 비스무트 아황산 한천, 옥시염화비스무트, 비스무트 알루미늄 수화물, 비스무트 텅스텐 산화물, 비스무트 납 스트론튬 칼슘 구리 산화물, 안티몬화비스무트, 비스무트 안티모니 텔루르화물, 이트리아 안정화 비스무트 산화물, 비스무트-납 합금, 암모늄 비스무트 시트르산염, 2-나프톨 비스무트염, 듀클로리트리(o-톨릴)비스무트, 디클로디페닐(p-톨릴)비스무트, 트리페닐비스무트를 포함한다.
구리 화합물은 구리의 유기 또는 무기 염(산화 상태 1, 2, 3 또는 4), 산화 구리, 또는 구리 금속(즉, 원소 구리)으로서 캐소드(12) 내에 결합된다. 구리 화합물은 1~70 wt%의 농도로 존재한다. 일 구현예에서, 구리 화합물은 5~50 wt%의 농도로 존재한다. 다른 구현예에서, 구리 화합물은 10~50 wt%의 농도로 존재한다. 또 다른 구현예에서, 구리 화합물은 5~20 wt%의 농도로 존재한다. 구리 화합물의 예는 구리 및 구리 알루미늄 산화물, 산화구리(I), 산화구리(II)와 같은 구리염 및/또는 질산구리, 황산구리, 염화구리 등을 비제한적으로 포함하는 +1, +2, +3, 또는 +4 산화 상태의 구리염을 포함한다. 구리의 효과는 비스무트의 산화 및 환원 전압을 변화시키는 것이다. 정전류적 사이클링을 견뎌내지 못하는 비스무트-개질 MnO2와 비교할 때, 이는 정전류적 사이클링 동안 캐소드가 완전 가역성을 갖는 결과를 낳는다. 이는 도 3a 및 도 3b의 논의에서 도시된다.
전도성 탄소의 첨가로 혼합된 물질에서 MnO2의 높은 로딩이 가능해지고, 부피 및 중력 에너지 밀도를 높이는 결과를 낳는다. 전도성 탄소는 2~30 wt%의 농도로 존재한다. 이러한 전도성 탄소는 단층벽 탄소 나노튜브, 다층벽 탄소 나노튜브, 그래핀(graphene), 다양한 표면적의 카본 블랙 및 특히 매우 큰 면적 및 전도성을 갖는 다른 것들을 포함한다. 혼합 물질 전극에 MnO2의 로딩을 높이는 것이, 일부 구현예에서는, 에너지 밀도를 증가시키는데 바람직하다. 전도성 탄소의 다른 예는 TIMREX 1차 합성 흑연(모든 타입), TIMREX 인상흑연(모든 타입), TIMREX MB, MK, MX, KC, B, LB 등급(예, KS15, KS44, KC44, MB15, MB25, MK15, MK25, MK44, MX15, MX25, BNB90, LB 패밀리) TIMREX 분산; ENASCO 150G, 210G, 250G, 260G, 350G, 150P, 250P; SUPER P, SUPER P Li, 카본 블랙(예를 들면 Ketjenblack EC-300J, Ketjenblack EC-600JD, Ketjenblack EC-600JD 파우더를 포함), 아세틸렌 블랙, 탄소 나노튜브(단층 또는 다층벽), 그래핀(graphene), 그래파인(graphyne), 산화 그래핀 및 이들의 조합을 포함한다.
전도성 금속 첨가제의 혼합된 물질 캐소드로의 첨가는 니켈 파우더를 MnO2 + Bi + Cu 혼합물에 첨가함으로써 달성될 수 있다. 전도성 금속 첨가제는 0~30 wt%의 농도로 존재한다. 전도성 금속 첨가제는, 예를 들면, 니켈, 구리, 은, 금, 주석, 코발트, 안티모니, 황동, 청동, 알루미늄, 칼슘, 철 또는 백금을 포함할 수 있다. 일부 구현예에서, 전도성 금속 첨가제는 파우더이다. 일 구현예에서, 제2 전도성 금속 첨가제가 제1 및 제2 전자 반응을 발생시키기 위한 지지용 도전성 골격의 역할을 하기 위해 첨가된다. 제2 전자 반응은 용해-침전 반응을 갖는데, 여기서 Mn3+ 이온은 전해질에 용해되고 흑연 상에 침전되어 전기화학 반응 및 비전도성인 수산화 망간[Mn(OH)2]이 형성되는 결과를 낳는다. 이는 궁극적으로 후속 사이클에서 용량이 감쇠되는 결과를 낳는다. 적절한 제2 첨가제는 Ni, Co, Fe, Ti과 같은 전이금속 및 Ag, Au, Al, Ca과 같은 금속을 포함한다. 염 또는 이러한 금속도 적절하다. Co와 같은 전이금속도 Mn3+ 이온의 용해성을 줄이는데 도움이 된다. 이러한 전도성 금속 첨가제는 화학적 수단 또는 물리적 수단(예를 들면, 볼 밀링, 절구(mortar/pestle), 스펙스 혼합(spex mixture))에 의해 전극에 결합된다. 이러한 전극의 예는 5~95%의 버네사이트, 5~95%의 전도성 탄소, 0~50%의 제2 전도성 금속 첨가제 및 1~10%의 바인더를 포함한다.
일부 구현예에서, 바인더가 사용된다. 바인더는 0~10 wt%의 농도로 존재한다. 일 구현예에서, 바인더는 수용성 셀룰로오스계 하이드로겔을 포함하는데, 이는 증점제(thickeners) 및 강 바인더로 사용되었고 우수한 기계적 강도를 가지며 전도성 중합체와 가교결합되었다. 바인더는 셀로판으로 판매되는 셀룰로오스 필름일 수도 있다. 바인더는 반복되는 냉각 및 해동 사이클을 통해 수용성 셀룰로오스계 하이드로겔을 중합체와 물리적으로 가교결합함으로써 제조되었다. 일 구현예에서, 0~10 wt%의 카르복시메틸 셀룰로오스(CMC) 용액은 동일한 부피 기준으로 0~10 wt%의 폴리비닐 알코올(PVA)과 가교결합되었다. 이러한 바인더는, 전형적으로 사용되는 TEFLON®에 비해, 우수한 성능을 나타낸다. TEFLON®은 저항성이 강한 물질이지만, 롤링이 가능하다는 우수한 특성 때문에 산업에서 광범위하게 사용되어 왔다. 그러나, 이는 바인더로서 TEFLON®의 사용을 배제하지 않는다. 수용성 바인더 및 일부 전도성 탄소와의 TEFLON® 혼합물은 롤링이 가능한 바인더를 생성하는데 사용되었다. 이러한 수용성계 바인더는 350회를 초과하는 사이클에서 용량 손실을 최소화하면서 2개의 전자 용량의 상당 부분을 달성하는데 도움이 된다. 일 구현예에서, 바인더는 수계이고, 우수한 수분 보유 성능 및 접착 성질을 가지며, TEFLON® 바인더를 대신 사용하는 동일한 캐소드에 대한 전도성을 유지하도록 돕는다. 하이드로겔의 예는 메틸 셀룰로오스(MC), 카르복시메틸 셀룰로오스(CMC), 하이드록시프로필 셀룰로오스(HPC), 하이드록시프로필메틸 셀룰로오스(HPMC), 하이드록시에틸메틸 셀룰로오스(HEMC), 카르복시메틸하이드록시에틸 셀룰로오스 및 하이드록시에틸 셀룰로오스(HEC)를 포함한다. 가교결합 중합체의 예는 폴리비닐알코올, 폴리비닐아세테이트, 폴리아닐린, 폴리비닐피롤리돈, 폴리비닐리덴플루오라이드 및 폴리피롤을 포함한다. 이러한 일 구현예에서, 0~10 wt%의 수계 셀룰로오스 수소 용액은 0~10 wt%의 가교결합 중합체 용액과, 예를 들면 반복된 냉동/해동 사이클, 방사선 처리 또는 화학 약품(예를 들면, 에피클로로히드린)에 의해 가교결합된다. 수용성 바인더는 제조성을 향상시키기 위해 0~5% TEFLON®과 혼합될 수 있다. 버네사이트 방전 반응은 용해-침전 반응을 포함하는데, 여기서 Mn3+ 이온은 용해되고 Mn2+로서 도전성 탄소 상에 침전된다. 이러한 제2 전자 과정은 도전성 흑연 상에 비도전성 수산화 망간[Mn(OH)2]를 형성하는 것을 포함한다.
캐소드(12)는 대규모 제조에서 구현될 수 있는 방법을 사용하여 생산될 수 있다. 캐소드(12)는 MnO2의 617 mAh/g의 완전한 제2 전자 용량을 전달할 수 있다. 도 3a를 참조하면, 혼합 물질 MnO2 + Bi + Cu 캐소드의 사이클링 성능이 617 mAh/g-MnO2까지 완전한 정전류적 재충전성을 갖는 것으로 나타나 있다. 구리 또는 구리염은 화학적/전기화학적 합성을 통하거나 물리적 수단(예를 들면, 버네사이트/비스무트, 전도성 탄소 페이스트를 고체 구리 지지체에 대해 기계적으로 가압함)을 통해 첨가된다. 이전의 문헌은 MnO2 + Bi 혼합 물질에 집중되었는데, 이 혼합 물질은 양호한 정전류적 재충전성을 나타내지 못하고 도 3b에 나타난 바와 같이 다섯 번째 사이클에서 실패된다.
혼합 물질 내 MnO2의 낮고 높은 로딩 모두에 대해 탁월한 재충전 성능이 달성될 수 있고, 이는 셀/전지가 매우 높은 실용적인 에너지 밀도를 달성하도록 한다. 도 4a, 도 4b, 도 4c 및 도 4d는 두 가지의 혼합 물질 캐소드에 대한 방전 용량을 나타내며, 두 경우 모두 3700을 초과하는 사이클을 달성한다. 한 캐소드는 전도성 탄소 KS44 흑연을 이용하여 캐소드 물질(2)의 총 5% 질량 로딩으로 MnO2를 함유하였다. 다른 하나의 캐소드는 탄소 나노튜브(CNTs)를 전도성 탄소로 사용하여 캐소드 물질의 총 45% 질량 로딩으로 MnO2를 함유하였다. 두 가지 모두 쿨롱 효율은 거의 100%였다. 이러한 캐소드의 충전 및 방전 곡선은 각각 도 4c 및 도 4d에 보여진다. 혼합 물질의 성능은, 필요하다면, 새로운 수용성계 바인더, 추가적인 전도성 금속 첨가제 및 전도성이 높은 탄소를 사용함으로써 유지되거나 향상될 수 있다.
수득된 캐소드는 수은 침투 공극 측정(mercury infiltration porosimetry)에 의해 결정되는 20%~85% 범위의 공극률을 가질 수 있다. 일 구현예에서, 공극률은 ASTM D4284-12 "수은 압입 공극 측정에 의한 촉매 및 촉매 운반체의 공극 부피 분포를 결정하기 위한 표준 시험 방법(Standard Test Method for Determining Pore Volume Distribution of Catalysts and Catalyst Carriers by Mercury Intrusion Porosimetry)"에 따라 측정된다.
일부 구현예에서, 버네사이트-상 MnO2는 혼합 물질에서 전해질의 이산화망간(EMD)으로 시작하여 MnO2 제2 전자 단계(617 mAh/g-MnO2 또는 Mn2+ 상태)의 마지막까지 완전히 방전하고 다시 Mn4+ 상태로 재충전함으로써 형성 단계를 실시하는 것에 의하여 인-시츄로 합성되어, 버네사이트-상 이산화망간(δ-MnO2)이 수득된다.
일부 구현예에서, 버네사이트-상 이산화망간을 합성하는 방법이 개발되었다. 황산망간에 대한 과망간산염들 간에 4~10 몰비가 사용되었다. 각각의 전구체의 용액이 제조되어 수열 반응기(hydrothermal reactor)의 내부에 맞는 TEFLON®-라인드 용기에 충진되었다. 비스무트는 이 시점 또는 이온-교환 반응이 발생되는 후-공정 단계에서 사용될 수 있다. 비스무트 결합의 시점과 무관하게, 질산 비스무트의 적절한 양이, 최종 생성물에 요구되는 비스무트에 대한 망간의 분자비에 따라, 약 10 mL의 질산과 함께 용액에 첨가되었다. 일 구현예에서, 수열 반응기는 비스무트가 도핑된 이산화망간의 원하는 버네사이트-상을 얻기 위하여 130-170℃ 사이에서 10~16시간 동안 유지된다. 유사하게, 이온-교환 과정에서, 더 양호한 교환을 용이하게 하기 위해, 보다 긴 시간의 기간 동안 용액을 교반하는 것이 바람직하다. X-선 회절 스펙트럼은 순수한 버네사이트-상의 형성을 입증하고, 주사 전자 이미지는 원형 라멜라(lamellar)와 유사한 나노구조를 보여준다.
일부 구현예에서, Wadsley (JACS, 72권, 1781, 1950)에 개시된 방법 또는 미국 특허 제4,520,005호에 언급된 Yao의 방법과 유사한 제2 방법을 버네사이트-상 MnO2를 합성하기 위해 사용하였다. 그러나, 이러한 방법은 질산염 대신 염화망간 같은 저렴하고 안전한 전구체를 사용한다. 비스무트의 공급원은, 예를 들면 염화비스무트를 포함하는 임의의 비스무트-함유 염이 될 수 있다. 망간 및 염화비스무트의 용액은 최종 생성물에서 원하는 비스무트에 대한 망간의 비율에 따라 생성되었다. 약 10 mL의 질산이 망간-비스무트 용액에 첨가되었다. 강 알칼리 수산화물 용액(예를 들면, 수산화나트륨)을 생성하여 0℃까지 냉각하였다. 냉각된 수산화나트륨을 망간-비스무트 용액에 첨가하였다. 이 용액을 산소 기포를 일게 하거나 또는 과산화수소 용액(예를 들면, 0.1~50 % w/w)을 첨가함으로써 산화시켰다. 생성물의 최종 상의 결정성은 산화 시간에 의존되었다. 반응이 완료된 후, 최종 생성물을 탈이온수 및 약산으로 완전히 세척하였다.
캐소드(12)를, 하우징(6), 하우징(6)에 지지되는 캐소드(12), 하우징(6)에 지지되는 다양한 음극(애노드 전류 콜렉터(4) 및 애노드 물질(5)을 포함), 캐소드(12) 및 음극 사이에 배치된 세퍼레이터(3) 및 하우징(6) 내부에 함유된 알칼리 전해질(예를 들면, NaOH, KOH, LiOH 및 이들의 혼합물과 같은 알칼리 수산화물)을 포함하는 전지(10)에 결합하는 동안 시험 하였다. 전해질은 5% 및 50% w/w 사이의 농도를 가질 수 있다. 캐소드 전류 콜렉터(1) 및 애노드 전류 콜렉터(4)는 전도성 물질일 수 있는데, 예를 들면, 니켈, 니켈-코팅 강, 주석-코팅 강, 은 코팅 구리, 구리 도금 니켈, 니켈 도금 구리 또는 유사한 물질일 수 있다. 캐소드 전류 콜렉터(1) 및/또는 애노드 전류 콜렉터(4)는 확장 메시(expanded mesh), 타공 메시(perforated mesh), 포일 또는 랩핑된 어셈블리로 형성될 수 있다. 일 구현예에서, 캐소드 전류 콜렉터는 부식을 방지하거나 최소화하기 위해서 구리를 함유하지 않는다.
일부 예에서, 캐소드 물질(2)은, 예를 들면, 1,000 psi 및 20,000 psi 사이의(6.9×106 및 1.4×108 파스칼 사이) 압력에서 가압함으로써 캐소드 전류 콜렉터(1)에 부착된다. 캐소드 물질(2)은 페이스트로서의 캐소드 전류 콜렉터(1)에 부착될 수 있다. 각각의 전류 콜렉터의 탭은 장치의 외부로 연장되어 전극 면적의 0.2% 미만을 덮는다. 세퍼레이터(3)는 음극으로부터 캐소드(12)를 명확히 구분시킨다. 세퍼레이터(3)는 중합체 세퍼레이터일 수 있다(예를 들면, 셀로폰(cellophone), 소결 중합체 필름, 또는 친수성으로 개질된 폴리올레핀). 본 명세서에 사용된 바와 같이, 문구 "친수성으로 개질된 폴리올레핀"은 물에 대한 접촉각이 45° 미만인 폴리올레핀을 의미한다. 다른 구현예에서, 물에 대한 접촉각은 30°미만이다. 또 다른 구현예에서, 물에 대한 접촉각은 20°미만이다. 폴리올레핀은, 예를 들면, TRITON X-100TM의 첨가 또는 산소 플라즈마 처리에 의해 개질될 수 있다. 전지(10)는, 구리를 함유하지 않는 간단한 MnO2 + Bi 캐소드 물질로 달성 가능한 것보다 많은 사이클 동안 약 617 mAh/g-MnO2의 높은 방전 심도를 제공하는 것으로 입증되었다.
전기화학 셀을 아연, 니켈 옥시수산화물(NiOOH), 철, 카드뮴 및 금속 수소화물(MH)을 포함하는 다양한 음극으로 시험하였다. NiOOH는 혼합 물질 전극에 영향을 미치지 않은 것으로 알려져 있으므로, NiOOH 음극을 갖는 전기화학 셀은 일반적으로 개념 증명용으로 사용되었다. 이는 도 3a, 도 3b, 도 4a, 도 4b, 도 4c 및 도 4d의 경우이다. 아연 음극을 갖는 전지는 이차 전지로서의 사용을 가능하게 하는 중요하고 유용한 셀 전압을 생성한다. 이러한 타입의 화학전기 셀은 도 5에서와 같이 사이클링 된다. 이러한 경우, 아연 전극이 알칼리 전해질로 아연산염을 방출함에 따라 아연산염 이온이 혼합 물질 캐소드에 미칠 수 있는 유해한 영향을 회피하기 위한 추가적인 조치가 사용되었다. 사용된 하나의 방법은 캐소드의 랩핑된 전극 디자인이었다. 사용된 두 번째 방법은 세퍼레이터(3)로 CELGARD® 브랜드의 미세공극 세퍼레이터를 사용하는 것이었다. 이러한 두 방법 모두 양호한 결과를 제공하였고 수천 사이클의 결과를 낳았다. 따라서, 이들은 (혼합 물질 캐소드) MnO2-Zn 전지를 입증했다. 이러한 전지의 충전 및 방전 곡선은 도 5에 나타나있다.
일부 구현예에서, 개시된 전지는, 높은 방전 심도(제2 전자 용량의 50%를 초과, 즉 318 mAh/g-MnO2 초과) 및 높은 C-속도(예를 들면, 1C 초과)에서, 높은 에너지 밀도(예를 들면, 50 Wh/L 초과)를 전달한다. 일 구현예에서, 방전 심도는 10 사이클 후 제2 전자 용량의 90%를 초과한다.
일 구현예에서, 버네사이트는 수열 반응기에서 강산화제를 망간염(예를 들면, 황산망간)과 혼합하는 단계를 포함하는 수열 반응을 이용하여 형성된다. 적절한 강산화제의 예는 산소, 과산화수소(예를 들면, 50% w/w), 과산화아세트산, 방향족 과산화물, 과망간산칼륨, 과망간산나트륨, 과망간산암모늄, 과망간산칼슘, 과황산칼륨, 나트륨, 과황산염 및 과황산암모늄을 포함한다. 이러한 일 구현예에서, 강산화제 대 망간염의 몰비는 약 1:1이다. 수열 반응은 또한 질산을 갖는 질산 비스무트를 산화된 망간염에 혼합하는 단계를 포함한다. 예를 들면, 1~30 mmol의 황산망간을 0~30 mmol의 질산비스무트 및 0~20 mmol의 질산과 함께 1~30 mmol의 강산화제와 혼합할 수 있다. 수열 반응은 80℃ 및 250℃ 사이의 온도에서 1~72시간 동안 유지될 수 있다. 비스무트 및/또는 구리는 후-공정 이온-교환 반응을 통해 층상 버네사이트 조성물에 선택적으로 결합될 수 있다. 예를 들면, 0~30 mmole의 질산비스무트 및/또는 질산구리는 0~20 mL의 질산과 혼합하여 층상 버네사이트를 형성할 수 있다.
다른 구현예에서, MnO2는 염화망간(예를 들면, 0~5M)을 염화비스무트 및/또는 염화구리(예를 들면, 0~30 mmol) 및 0~20 mL의 질산과 알칼리 수산화물(NaOH, KOH, CsOH, LiOH 등)의 냉각된 1~10M 용액에서 혼합함으로써 형성된다. 일 구현예에서, 냉각된 용액은 0~10℃ 사이이다. 이러한 용액은 0.5~24 사이의 시간 동안 산화될 수 있다. 형성 후, 수득된 캐소드는 탈이온수 및 희산(예를 들어, 황산)으로 완전히 세척한다.
실시예 1: 혼합 물질 캐소드에 구리 금속 또는 그 유도체를 첨가하는 효과를 시험하기 위해, 두 개의 전극, 즉 혼합물에 구리가 존재하지 않은 대조 전극 및 구리가 존재하는 전극을 제조하였다. 두 전극 모두에 첨가제로서 전해질의 이산화망간(EMD) 및 산화비스무트를 함유시켰다. 1.3 g의 MnO2(Tronox), 0.26 g의 Bi2O3, 1.04 g의 탄소 나노튜브(CNTs) 및 바인더로서의 0.29 g의 CMC-PVA를 혼합하여 구리를 갖는 캐소드를 제조하였다. 수득된 페이스트에 2.82 g의 구리 금속을 첨가하였다. 따라서, 캐소드 물질의 최종 조성은 (질량으로) 22.8%의 MnO2, 4.6%의 Bi2O3, 18.2%의 CNTs, 5.1%의 바인더 및 49.3%의 구리였다. 수득된 캐소드 물질을 캐소드 전류 콜렉터인 6 in2 의 니켈 메시 상에서 가압하였다. 전극을 건조시켰다. 구리 첨가제를 갖는 전극을 혼합 물질 캐소드로 지칭한다. 구리가 없는 대조 전극을, 구리를 제외한 물질의 동일한 질량으로, 동일하게 제조하였다.
혼합 물질 캐소드 및 대조 캐소드를 각형 박스에서 NiOOH 애노드로 압축하였다. 캐소드 및 애노드를 구분하기 위해 셀룰로오스의 세퍼레이터를 사용하였다. 캐소드의 전위를 모니터링하기 위하여 수은/산화수은 기준 전극을 사용하였다. 9M의 수산화칼륨으로 셀을 충진하였다. C/3에서 기준 대비 0.3 V 및 -1 V 사이에서 캐소드를 사이클링 하였다.
캐소드의 처음 5 사이클 동안의 충전 및 방전 곡선의 비교가 도 3a에 나타난다. 대조 캐소드의 성능은 도 3b에 나타난다. 초기에는 약 500 mAh/g의 용량을 방전하지만, 다섯 번째 사이클에서 약 50 mAh/g로 급격하게 저하된다. 비스무트 첨가제 자체는 전극을 정전류적으로 재충전 가능하게 하기 위한 효과적인 첨가제가 아니고, 이는 제5사이클 기간 내에서 전극의 치명적인 고장을 일으킨다. 혼합 물질 캐소드에 대한 구리 첨가제의 유리한 효과가 도 3a에 나타난다. 혼합 물질 캐소드의 버전에 대한 순환 전압전류곡선(Cyclic voltammogram) 실험은 구리가 전극의 평방피트당 약 2 mg 정도의 구리까지 전기화학적으로 활성임을 입증하였다. 따라서, 다량으로 존재하면서, 구리는 첨가제로서 작용하며, 사이클된 캐소드 용량의 대부분은(>90%)은 MnO2에 의한 것이다. 혼합 물질 캐소드는 어떠한 저하 없이 제2 전자 용량까지 완전히 재충전될 수 있다. 사이클링 곡선의 안정성은 또한 그것이 매우 안정적이고 신뢰성 있는 전극임을 보여준다. 제1 방전 사이클은 전형적인 EMD 방전 곡선을 보여주는데, 이로부터 제1 충전 후 버네사이트-상 MnO2가 형성된다. 전형적인 버네사이트 방전 곡선으로부터 제2 방전 사이클이 나타난다. 문헌에서 처음으로, 캐소드를 함유하는 MnO2의 완전한 제2 전자 용량으로의 높은-로딩에 대한 재충전이 가능한 정전류적 사이클링이 나타난다.
실시예 2: 본 실시예는 혼합 물질 캐소드가 다양한 전도성 탄소를 이용하여 제조될 수 있음을 입증하려고 하였다. 19.2 mg의 비스무트-개질된 MnO2, 161.3 mg의 KS44 흑연 및 바인더로서의 88.2 mg의 CMC-PVA를 혼합하여 흑연-함유 혼합 물질 캐소드를 제조하였다. 수득된 페이스트에 470 mg의 구리 금속을 첨가하였다. 따라서, 캐소드 물질의 최종 조성은 (질량으로) 2.6%의 Bi-MnO2, 21.8%의 흑연, 11.9% 바인더 및 63.6%의 구리였다. 버네사이트-상 비스무트-MnO2를 제조하기 위한 반응에서 사용된 염화 Mn 대 염화 Bi의 몰비는 8:1이었다. CMC-PVA는 10 wt%의 전극 혼합물을 포함하였다. 이 캐소드 물질을 1 평방 in의 니켈 메시 상에서 가압하고 전극을 건조시켰다. 비교를 위해, 135.9 mg의 MnO2, 27.2 mg의 Bi2O3, 108.7 mg의 CNTs 및 바인더로서의 30.2 mg의 CMC-PVA를 혼합하여 CNT-함유 혼합 물질 캐소드를 제조하였다. 수득된 페이스트에 470 mg의 구리 금속을 첨가하였다. 따라서, 캐소드 물질의 최종 조성은 (질량으로) 17.6%의 MnO2, 3.5%의 Bi2O3, 14.1%의 CNTs, 3.9%의 바인더 및 60.9%의 구리였다. 흑연의 경우와 마찬가지로, 이 캐소드 물질을 1 평방 in의 니켈 메시 상에서 가압하고 전극을 건조시켰다.
이러한 혼합 물질 캐소드는 흑연 또는 CNTs에서 양호한 결과가 관측되었지만, 전도성 탄소로서의 CNTs로 보다 높은 MnO2 질량 로딩이 달성될 수 있음이 입증되었다. 따라서, 흑연-함유 캐소드는 "낮은-로딩"으로 명명되고 CNT-함유 캐소드는 "높은-로딩"으로 명명된다. 혼합 물질 캐소드를 각형 박스에서 NiOOH 애노드로 압축하였다. 캐소드의 전위를 모니터링하기 위하여 수은/산화수은 참조 전극을 사용하였다. 9M의 수산화칼륨으로 셀을 충진하였다. 1C에서 기준 대비 0.3 V 및 -1 V 사이에서 캐소드를 사이클링 하였다.
혼합 물질 캐소드의 성능이 도 4a, 도 4b, 도 4c 및 도 4d에 나타난다. 이러한 캐소드의 로딩 사이클 수명이 도 4a에 나타나며, 여기에서 낮은-로딩을 위한 4000 사이클 후 및 높은-로딩을 위한 3700 사이클 후 각각에 대해서도 용량의 손실이 없다. 쿨롱 효율은 이러한 셀에 대해서도 약 100%이다. 도 4c 및 도 4d는 낮은-로딩 및 높은-로딩 전극에 대한 충전 및 방전 곡선을 각각 나타낸다. 곡선이 보여주는 중요한 특징은 동일한 전위와 완전한 제2 전자 용량에서 용량 곡선을 유지한다는 것이다. 이는 질량 로딩율과 관계없이 캐소드를 포함하는 MnO2에 대한 문헌에 보고된 바가 없었다.
실시예 3: 혼합 물질 캐소드의 성능을 전지의 아연 전극에 대해 시험하였다. 0.55 g의 MnO2(Tronox), 0.11 g 의 Bi2O3 및 0.44 g의 탄소 나노튜브(CNTs)를 바인더 없이 혼합하여 혼합 물질 캐소드를 제조하였다. 바인더 대신, 초기 페이스트를 형성하기 위하여 몇 방울의 물을 사용하였다. 이 페이스트에 0.47 g의 구리 금속을 첨가하였다. 따라서, 캐소드 물질의 최종 조성은 (질량으로) 35%의 MnO2, 7%의 Bi2O3, 28%의 CNTs 및 30%의 구리였다. 수득된 캐소드 물질을 6 in2의 니켈 메시 상에서 가압하고 캐소드 물질 주변에서 랩핑하였다. 아연 전극은 13.6 g의 아연 파우더, 1.6 g의 산화아연 및 0.8 g의 TEFLON®으로 구성된다. 아연 애노드를 구리 메시 상에서 페이스트하고 가압하였다. 두 전극을 모두 건조시켰다.
혼합 물질 캐소드를 각형 박스에서 아연 애노드로 압축하였다. 6M의 수산화칼륨으로 셀을 충진하였다. C/3에서 아연 대비 0.4 및 1.75 V 사이에서 캐소드를 사이클링 하였다.
도 5는 (혼합 물질 캐소드) MnO2-Zn 전지에 대한 충전 및 방전 용량을 나타낸다. 이러한 전지의 재충전 성능 특성이 101번째 사이클에서 분명히 보여진다. 이는 혼합 물질 캐소드 MnO2-Zn 전지가 수천 사이클에 대해서 심각한 감쇠 없이 재충전 될 수 있음을 보여준다.
실시예 4: 구리의 질량 로딩을 감소시키고 MnO2의 질량 로딩을 증가시키기 위해, 높은-로딩의 혼합 물질 캐소드를 생산하였다. 7.84 g의 MnO2(Tronox), 0.9 g의 Bi2O3 및 2.82 g의 탄소 나노튜브(CNTs)를 혼합하여 캐소드를 제조하였다. 수득된 페이스트에 2.82 g의 구리 금속을 첨가하였다. 따라서, 캐소드 물질의 최종 조성은 (질량으로) 55.9%의 MnO2, 6.4%의 Bi2O3, 17.6%의 CNTs 및 20.1%의 구리였다. 수득된 캐소드 물질을 캐소드 전류 콜렉터인 6 in2의 니켈 메시 상에서 가압하였다. 전극을 건조시켰다.
혼합 물질 캐소드를 각형 박스에서 NiOOH 애노드로 압축하였다. 캐소드 및 애노드를 구분하기 위해 셀룰로오스의 세퍼레이터를 사용하였다. 캐소드의 전위를 모니터링하기 위하여 수은/산화수은 참조 전극을 사용하였다. 9M의 수산화칼륨으로 셀을 충진하였다. C/3에서 기준 대비 0.3 V 및 -1 V 사이에서 캐소드를 사이클링 하였다.
실시예 5: 바인더의 효과를 시험하기 위해, 서로 다른 두 개의 혼합물을 제조하였는데, 하나는 바인더로 CMC-PVA를 포함하고 다른 하나는 TEFLON®을 함유하였다. 본 실시예는 CMC-PVA 바인더의 효과를 입증하려고 한 것이므로, 이 전극에 구리를 사용하지 않았다. 64.5 mg의 버네사이트-상 비스무트-MnO2, 1.097 g의 KS-44 흑연 및 130 mg 의 각각의 바인더를 혼합하여 전극을 제조하였다. 이 혼합물을 니켈 메시 상에서 페이스트하고 가압하였다. 전극을 건조시켰다.
버네사이트-상 비스무트 MnO2 전극을 각형 박스에서 NiOOH 애노드로 압축하였다. 버네사이트 전극의 전위를 모니터링하기 위하여 수은/산화수은 참조 전극을 사용하였다. 9M의 수산화칼륨으로 셀을 충진하였다. 1 mV/sec 에서 기준 대비 0.3 V 및 -1 V 사이에서 버네사이트 전극을 사이클링 하였다.
도 6a 및 도 6b는 CMC-PVA 및 TEFLON®로 제조된 전극에 대한 초기 10 사이클 동안의 전위동적 스캔을 각각 보여준다. 각 스캔은 사이클 횟수가 증가함에 따라 피크 높이 및 너비가 증가함을 나타낸다. 바인더의 성능에서 주요한 차이점은 피크의 전류 밀도에서 보여질 수 있다. CMC-PVA를 함유하는 전극은 TEFLON®을 함유하는 전극과 비교하여 보다 높은 전류 밀도를 명확히 보여준다. 네 개의 피크가 스캔의 하부 절반(음전류 밀도)에서 보여진다. -0.2 V 주변의 제1 피크는 Mn4+ 이온의 Mn3+ 이온으로의 낮은 변환을 나타낸다. 두 스캔에 대한 -0.4 V 및 -0.7 V 사이의 제2 피크는 Mn4+ 대부분이 Mn2+로 변환되는 제1 및 제2 전자 반응을 나타낸다. 마지막 피크는 산화 비스무트의 환원을 나타낸다. 사이클 횟수의 증가에 따른 피크의 위치는 CMC-PVA 전극에서 안정적으로 보이나, TEFLON®을 함유하는 전극에서는 보다 음전위로 이동하는 것으로 보인다. TEFLON®을 포함하는 전극에 대한 제2 전자 반응의 마지막은 CMC-PVA보다 훨씬 낮은 음전위에 있다. 피크 위치의 안정성은 사이클 증가와 함께 동일 전위에서 에너지의 일정한 공급을 나타내는 것이므로, 피크 위치의 안정성은 방전시에 중요하다. 스캔의 상부-절반 부위에서, 두 개의 전극에 대해 세 개의 피크가 관측된다. 처음 두 개의 피크는 -0.6 V 및 -0.5 V 부근에 있고, 이는 비스무트의 산화를 나타낸다. 주요 피크는 -0.1 V 부근에 있고, 이는 Mn2+로부터 Mn4+로의 산화를 나타낸다. 그러나, 도 6b에는, TEFLON®을 함유하는 전극에 대해서, 네 번째 피크의 시작이 네 번째 사이클에서 나타난다. 이는 아마도 Mn2+에서 Mn4+로의 산화 과정이 두 단계라는 것을 나타낸다. 도 6c 및 도 6d는 CMC-PVA 및 TEFLON®을 함유하는 전극에 대한 장기 사이클링 효과를 각각 보여준다. 플롯은 TEFLON® 보다 CMC-PVA를 사용하는 것의 이점을 명확히 보여준다. 350 사이클 후, CMC-PVA을 함유하는 전극에 대해 주요 제1 및 제2 전자 반응 피크가 보여지고, 보다 중요하게도, 각각이 -0.4 V 및 -0.6 V사이의 동일한 범위에 있다. 과전위의 미세한 증가에 의해 피크 위치가 약간 이동한다. TEFLON®의 유해한 영향은 초기 50 사이클에서 보여질 수 있는데, 방전 과정에서 피크가 낮은 전위로 급격히 이동한다. 320 사이클 후, TEFLON®을 함유하는 전극 상에서 발생된 반응은 거의 완전히 쇠퇴하여, 매우 적은 용량이 전달된다. TEFLON®의 부정적인 효과가 너무 지배적이어서 이는 10배의 흑연을 함유한 전극의 전도성을 충분히 무효화할 정도라는 것을 주목하는 것이 중요하다.
도 7a 및 도 7b는 CMC-PVA 및 TEFLON®을 함유한 전극에서 비용량(specific capacity) 감쇠를 보여준다. 두 개의 전극에서, 초기 50 사이클 동안 용량의 증가가 관측된다. 그러나, TEFLON®을 함유하는 전극에 대해, 전극으로부터 끌어낼 수 있는 용량은 CMC-PVA를 함유하는 것과 비교하여 훨씬 낮다. 350 사이클 후, CMC-PVA를 함유하는 전극은 약 300 mAh/g의 용량을 갖는 반면, TEFLON®를 함유하는 전극은 약 50 mAh/g까지 급격하게 감소하였다. 도 7b는 두 전극 사이의 용량 감쇠를 잘 비교해 주며, 바인더로 TEFLON® 보다 CMC-PVA를 사용하는 것의 이점 중 하나를 보여준다.
실시예 6: 본 실시예의 목적은 전극에 첨가된 전도성 금속의 효과를 보여주기 위함이며, 이는 전도성 탄소의 일정 부분을 대체하는 역할을 하였다. 52 mg의 버네사이트-상 비스무트-MnO2, 312 mg의 KS-44 흑연 및 208 mg의 니켈 파우더를 혼합물이 균일해질 때까지 혼합하여 전극을 제조하였다. 바인더로 사용되는 470 mg의 CMC-PVA는 혼합물의 잔부였다. 이 혼합물을 니켈 메시 상에서 페이스트하고 가압하였다. 전극을 건조시켰다.
버네사이트-상 비스무트 MnO2 전극을 각형 박스에서 NiOOH 애노드로 압축하였다. 버네사이트 전극의 전위를 모니터링하기 위하여 수은/산화수은 참조 전극을 사용하였다. 9M의 수산화칼륨으로 셀을 충진하였다. 1 mV/sec 에서 기준 대비 0.3 V 및 -1 V 사이에서 버네사이트 전극을 사이클링 하였다.
도 8a 및 도 8b는 Ni을 갖는 CMC-PVA 및 CMC-PVA 만을 함유하는 전극에 대해 초기 10 사이클 동안의 전위동적 스캔을 각각 보여준다. 각 스캔은 사이클 횟수가 증가함에 따라 피크 높이 및 너비가 증가함을 보여준다. 네 개의 피크가 스캔의 하부 절반(음전류 밀도)에서 보여진다. -0.2 V 주변의 제1 피크는 Mn4+ 이온의 Mn3+ 이온으로의 낮은 변환을 나타낸다. 두 스캔에 대한 -0.4 V 및 -0.7 V 사이의 제2 피크는 Mn4+ 대부분이 Mn2+로 변환되는 제1 및 제2 전자 반응을 나타낸다. 마지막 피크는 산화비스무트의 환원을 나타낸다. 사이클 횟수의 증가에 따른 피크의 위치는 Ni 전극을 갖는 CMC-PVA에서 안정적으로 보이나, CMC-PVA만을 함유하는 전자에서는 보다 음전위로 약간 이동하는 것으로 보인다. 스캔의 상부-절반 부위에서, CMC-PVA만을 함유하는 전극에 대해 세 개의 피크가 관측되나, Ni을 갖는 CMC-PVA를 함유하는 전극에 대해서는 초기에 네 개의 피크가 관측된다. 초기 두 개의 피크는 -0.6 및 -0.5 V 부근에 있고, 이는 비스무트의 산화를 나타낸다. CMC-PVA만을 함유하는 전극에 대해, 주요 피크는 -0.1 V 부근에 있고, 이는 Mn2+로부터 Mn4+로의 산화를 나타낸다. 그러나, 도 8a에는, Ni을 갖는 CMC-PVA를 함유하는 전극에 대해, 망간의 산화 단계가 2 단계의 과정인 것으로 보이지만, -0.1 V 부근의 주요 피크 상의 숄더 피크(shoulder peak)의 형성은 전도성에 의존하는 보다 복잡한 산화 과정을 나타낸다. 도 8c 및 도 8d는 각각 Ni을 갖는 CMC-PVA 및 CMC-PVA만을 함유한 전극에 대한 장기 사이클링 효과를 보여준다. 플롯은 제2 전도성 금속 첨가제를 사용하는 것의 이점을 명확히 보여준다. 350 사이클 후, Ni를 갖는 CMC-PVA를 함유한 전극에 대해 주요 제1 및 제2 전자 반응의 피크가 동일한 전위로 유지되는 반면, CMC-PVA만을 함유하는 전극은 과전위의 증가로 인해 이동을 겪게 된다. CMC-PVA만을 함유한 전극에 대해(도 8d) 전류 밀도 피크 높이가 감소됨을 주목하는 것이 또한 중요하다. 피크 높이의 감소는 용량의 손실과 대응되고, CMC-PVA만을 함유한 전극에서 매우 빠르다.
실시예 7: 0.7 g의 버네사이트-타입 MnO2를 0.7 g의 탄소 나노튜브와 혼합물이 균일해질 때까지 혼합하여 제1 전극을 구성하였다. 0.16 g의 CMC-PVA는 혼합물의 잔부였다. 전극 혼합물을 구리 메시 상에 페이스트하며, 가압하고 건조시켰다. 이러한 전극을 1C 속도에서 정전류적으로 사이클링 하였다.
0.7 g의 EMD-타입 MnO2(Tronox)를 0.56 g의 탄소 나노튜브 및 0.14 g의 Bi2O3와 혼합물이 균일해질 때까지 혼합하여 제2 전극을 구성하였다. 0.16 g의 CMC-PVA는 혼합물의 잔부였다. 전극 혼합물을 구리 메시 상에 페이스트하며, 가압하고 건조시켰다. 이러한 전극을 1C 속도에서 정전류적으로 사이클링 하였다.
0.7 g의 버네사이트-타입 MnO2를 0.62 g의 흑연(KS44) 및 0.08 g의 탄소 나노튜브와 혼합하여 제3 전극을 구성하였다. 잔부는 0.16 g의 CMC-PVA이었다. 이 혼합물을 구리 메시 상에서 페이스트하고 가압하였다. 전극을 건조시켰다. 이러한 전극을 C/3 속도에서 정전류적으로 사이클링 하였다.
0.94 g의 EMD-타입 MnO2을 0.19 g의 Bi2O3 및 0.07 g의 탄소 나노튜브와 혼합하여 제 4 전극을 구성하였다. 잔부는 0.36 g의 CMC-PVA 바인더이었다. 전극 혼합물을 구리 메시 상에 페이스트하며, 가압하고 건조시켰다. 이러한 전극을 1C 속도에서 정전류적으로 사이클링 하였다.
1.16 g의 EMD-타입 MnO2, 0.16 g의 Bi2O3 및 0.16 g의 탄소 나노튜브를 혼합하여 제 5 전극을 구성하였다. 잔부는 0.08 g의 CMC-PVA 바인더였다. 전극 혼합물을 구리 메시 상에 페이스트하며, 가압하고 건조시켰다. 이러한 75 wt%의 전극을 C/3 및 C/5 속도 모두에서 사이클링 하였다.
전극을 각형 박스에서 니켈 애노드로 압축하였다. 전위를 모니터링하기 위하여 수은/산화수은 참조 전극을 사용하였다. 9M의 수산화칼륨으로 셀을 충진하였다. 기준 대비 0.3 V 및 -1 V 사이에서 버네사이트 전극을 정전류적으로 사이클링 하였다.
도 9a, 도 9b, 도 9c 및 도 9d는 서로 다른 전극 및 각각의 로딩과 속도에 대한 정전류적 사이클링 데이터를 보여준다. 도 9a는 버네사이트-타입 MnO2의 45 wt% 로딩 및 45 wt%의 탄소 나노튜브(제 1 전극)의 사이클링을 보여주며, 초기에는 높은 용량이 획득되고 약 20 사이클까지 꾸준히 증가하며, 그 후 완전한 제2 전자 용량이 획득되었다. 도 9b는 C/3 에서 40 wt%의 흑연 및 5 wt%의 탄소 나노섬유를 혼합한 버네사이트-타입 MnO2의 45 wt% 로딩에 대한 사이클링 결과를 보여준다(제 3 전극). 높은 용량은 또한 도 9b에 보이는 바와 같이 획득되었고, 70 사이클 후, 용량은 여전히 약 450 mAh/g 이었다. 도 9a 및 도 9b는 사이클링 중 전극의 전도성을 증가시키고 최대 용량을 달성하는 탄소 나노튜브의 중요한 역할을 입증하였다.
도 9c는 1C에서 탄소 나노튜브를 혼합한 EMD-타입 MnO2의 더 높은 로딩에 대한 사이클링 결과를 보여준다. 36 wt%의 탄소 나노튜브(제2 전극)을 갖는 45 wt%의 EMD-타입 MnO2는 첫 번째 사이클에서 완전한 용량을 달성하고 이어지는 사이클에서 일관성을 유지한다. 사이클링 동안 EMD-타입 MnO2는 버네사이트-타입MnO2로 변환된다. 이러한 거동은 도 9a에 나타난 버네사이트-타입 MnO2와 매우 유사하다. 18 wt%의 탄소 나노튜브를 혼합한 60 wt%의 EMD-타입 MnO2(제 4 전극) 또한 충전 및 방전에 대해 120 사이클 후 1C의 매우 빠른 속도에서 약 420 mAh/g의 매우 높은 용량을 나타낸다. 도 9d는 10 wt%의 탄소 나노튜브를 혼합한 EMD-타입 MnO2(제5 전극)의 75 wt% 로딩에 대한 C/3 및 C/5 속도에서의 사이클링 결과를 보여준다. C/3에서 동작하는 셀은 약 30 사이클 후 약 350mAh/g의 용량을 갖고, C/5에서 동작하는 셀은 16 사이클 후 약 400mAh/g의 용량을 갖는다. 도 9a 내지 도 9d에 나타난 결과는 전지 집합체에서 관심을 갖는 속도로 사이클링하는 동안 MnO2의 높은 로딩에 대해 높은 용량을 달성하는데 있어서 높은 전도성 탄소 공급원의 중요성을 보여준다.
이러한 기재된 설명은, 최적의 모드를 포함하는 발명을 개시하기 위한, 그리고 임의의 당업자가 임의의 장치 또는 시스템을 제조하고 임의의 통합된 방법을 수행하는 것을 포함하여 본 발명을 실시할 수 있게 하기 위한 실시예들을 사용한다. 본 발명의 특허 가능한 범위는 청구범위에 의해 정의되며, 당업자에게 안출되는 다른 실시예를 포함할 수도 있다. 이러한 다른 실시예들은, 청구범위의 문자 그대로의 언어와 다르지 않는 구조적 요소를 갖거나 또는 청구범위의 문자 그대로의 언어로부터 실체가 없는(insubstantial) 차이점을 가진 동등한 구조적 요소를 포함한다면, 청구범위의 범주 내에 있는 것으로 보아야 한다.
Claims (27)
- 하우징;
상기 하우징 내에 배치되는 전해질;
상기 하우징 내에 배치되는 애노드; 및
상기 하우징 내에 배치되는 캐소드를 포함하고, 상기 캐소드는
버네사이트-상 이산화망간(δ-MnO2)을 포함하는 망간 산화물 화합물로서, 상기 버네사이트-상 이산화망간(δ-MnO2)은 층상 나노구조를 갖는 망간 산화물 화합물;
원소 비스무트, 산화 비스무트 또는 비스무트염으로 이루어진 군으로부터 선택된 비스무트 화합물로서, 상기 비스무트 화합물은 비스무트를 포함하고, 상기 비스무트는 상기 버네사이트-상 이산화망간(δ-MnO2)의 상기 층상 나노구조 내에 결합(incorporated)되어 있는 비스무트 화합물; 및
원소 구리, 산화구리 또는 구리염으로 이루어진 군으로부터 선택되는 구리 화합물을 포함하는 캐소드 물질을 포함하는, 전지. - 제1항에 있어서, 상기 구리 화합물은 구리를 포함하고, 상기 구리는 상기 버네사이트-상 이산화망간(δ-MnO2)의 상기 층상 나노구조 내에서 상기 비스무트와 결합(incorporated)되어 있는, 전지.
- 제1항에 있어서, 상기 캐소드 물질은 니켈, 니켈염; 구리, 구리염, 은, 은염, 알루미늄, 알루미늄염, 금, 금염, 철, 철염, 주석, 주석염, 코발트, 코발트염, 백금, 백금염, 황동, 청동 및 이들의 조합으로 이루어진 군으로부터 선택되는 전도성 금속 첨가제를 더 포함하는, 전지.
- 제3항에 있어서, 상기 전도성 금속 첨가제는 0 wt% 초과 및 20 wt% 이하의 농도로 상기 캐소드 물질에 존재하는, 전지.
- 제1항에 있어서, 상기 비스무트 화합물은 산화 비스무트이고 상기 구리 화합물은 원소 구리인, 전지.
- 제1항에 있어서, 상기 구리 화합물은 산화구리인, 전지.
- 제1항에 있어서, 상기 캐소드 물질은 전도성 탄소를 더 포함하고, 상기 전도성 탄소는 흑연, 카본 블랙, 아세틸렌 블랙, 단층벽 탄소 나노튜브, 다층-벽 탄소 나노튜브, 그래핀, 그래파인(graphyne), 산화 그래핀 및 이들의 조합으로 이루어진 군으로부터 선택되는, 전지.
- 제1항에 있어서, 상기 캐소드 물질은 전도성 탄소를 더 포함하고, 상기 캐소드 물질은 0 wt% 초과 및 30 wt% 이하의 상기 전도성 탄소; 1~20 wt% 사이의 상기 비스무트 화합물; 1~70 wt% 사이의 상기 구리 화합물; 0 wt% 초과 및 10 wt% 이하의 바인더; 및 잔부의 상기 망간 산화물 화합물로 필수적으로 이루어진, 전지.
- 제1항에 있어서, 상기 캐소드는 5~95% 사이의 공극률을 갖는, 전지.
- 제1항에 있어서, 상기 캐소드 물질은 고체 구리 지지체에 부착되어 있는, 전지.
- 제1항에 있어서, 상기 애노드와 캐소드 사이에 중합체 세퍼레이터를 더 포함하는, 전지.
- 제11항에 있어서, 상기 중합체 세퍼레이터는 셀룰로오스 필름, 소결 중합체 필름, 친수성으로 개질된 폴리올레핀 또는 이들의 조합으로 이루어진 군으로부터 선택되는 중합체를 포함하는, 전지.
- 제1항에 있어서, 상기 캐소드 물질은 폴리테트라플루오로에틸렌 바인더를 더 포함하는, 전지.
- 제1항에 있어서, 상기 캐소드 물질은 셀룰로오스계 하이드로겔 바인더를 더 포함하고, 상기 바인더는 메틸 셀룰로오스(MC), 카르복시메틸 셀룰로오스(CMC), 하이드록시프로필 셀룰로오스(HPC), 하이드록시프로필메틸 셀룰로오스(HPMC), 하이드록시에틸메틸 셀룰로오스(HEMC), 및 카르복시메틸하이드록시에틸 셀룰로오스 및 하이드록시에틸 셀룰로오스(HEC)로 이루어진 군으로부터 선택되는, 전지.
- 제14항에 있어서, 상기 바인더는 폴리비닐 알코올, 폴리비닐아세테이트, 폴리아닐린, 폴리비닐피롤리돈, 폴리비닐리덴플루오라이드 및 폴리피롤로 이루어진 군으로부터 선택되는 공중합체와 가교결합되는, 전지.
- 전지용 캐소드를 생산하는 방법으로서,
여러 재료를 혼합하여 캐소드 페이스트를 형성하는 단계로서, 상기 여러 재료들은
버네사이트-상 이산화망간(δ-MnO2)을 포함하는 망간 산화물 화합물로서, 상기 버네사이트-상 이산화망간(δ-MnO2)은 층상 나노구조를 갖는 망간 산화물 화합물;
원소 비스무트, 산화 비스무트 또는 비스무트염으로 이루어진 군으로부터 선택된 비스무트 화합물로서, 상기 비스무트 화합물은 비스무트를 포함하고, 상기 비스무트는 상기 버네사이트-상 이산화망간(δ-MnO2)의 상기 층상 나노구조 내에 결합(incorporated)되어 있는 비스무트 화합물;
전도성 탄소; 및
원소 구리, 산화구리 또는 구리염으로 이루어진 군으로부터 선택되는 구리 화합물을 포함하는, 캐소드 페이스트를 형성하는 단계;
가압된 어셈블리를 형성하기 위하여 6.9×106 및 1.4×108 파스칼 사이의 압력으로 캐소드 전류 콜렉터에 캐소드 페이스트를 가압하는 단계; 및
상기 가압된 어셈블리를 건조하여 캐소드를 생산하는 단계를 포함하는, 방법. - 제16항에 있어서, 상기 여러 재료는 바인더를 더 포함하는, 방법.
- 제16항에 있어서, 상기 캐소드 페이스트를 가압하는 단계는 상기 캐소드 페이스트를 6.9×106 및 1.4×108 파스칼 사이의 압력으로 상기 캐소드 전류 콜렉터 및 원소 구리의 기재에 동시에 가압하여 가압된 어셈블리를 형성하는 단계를 더 포함하는, 방법.
- 제16항에 있어서, 상기 방법은 수열 반응을 이용하여 상기 버네사이트-상 이산화망간을 형성하는 단계를 더 포함하고, 상기 수열 반응은
산화제로 망간염을 산화시켜 산화된 망간염을 형성하는 단계;
비스무트염 및 질산을 상기 산화된 망간염에 첨가하는 단계; 및
1~72시간 동안 80℃ 내지 250℃의 온도를 유지하는 단계를 포함하는, 방법. - 제19항에 있어서, 구리염을 상기 산화된 망간염에 첨가하는 단계를 더 포함하는, 방법.
- 제16항에 있어서, 상기 방법은 알칼리 수산화물의 냉각된 1~10 M 용액에서 염화망간을 염화비스무트 및 질산과 혼합함으로써 상기 버네사이트-상 이산화 망간을 형성하는 단계를 더 포함하고, 상기 냉각된 1~10 M 용액은 0.5~24시간 동안 0~10℃인, 방법.
- 제21항에 있어서, 염화망간을 혼합하는 상기 단계는 염화구리를 혼합하는 단계를 더 포함하는, 방법.
- 제22항에 있어서, 염화망간을 상기 염화비스무트, 상기 염화구리 및 상기 질산과 혼합하는 상기 단계는 동시에 일어나는, 방법.
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462062983P | 2014-10-13 | 2014-10-13 | |
US62/062,983 | 2014-10-13 | ||
US201462067215P | 2014-10-22 | 2014-10-22 | |
US62/067,215 | 2014-10-22 | ||
PCT/US2015/055215 WO2016061030A1 (en) | 2014-10-13 | 2015-10-13 | Mixed material cathode for secondary alkaline batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170067860A KR20170067860A (ko) | 2017-06-16 |
KR102455613B1 true KR102455613B1 (ko) | 2022-10-17 |
Family
ID=55747191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177012748A KR102455613B1 (ko) | 2014-10-13 | 2015-10-13 | 이차 알칼리 전지용 혼합 물질 캐소드 |
Country Status (9)
Country | Link |
---|---|
US (2) | US10199639B2 (ko) |
EP (1) | EP3207581B1 (ko) |
JP (1) | JP6691112B2 (ko) |
KR (1) | KR102455613B1 (ko) |
CN (1) | CN107004860B (ko) |
AU (1) | AU2015333767B2 (ko) |
CA (1) | CA2964761C (ko) |
WO (1) | WO2016061030A1 (ko) |
ZA (1) | ZA201703247B (ko) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2964761C (en) | 2014-10-13 | 2023-03-14 | Research Foundation Of The City University Of New York | Mixed material cathode for secondary alkaline batteries |
US11152615B2 (en) | 2015-10-29 | 2021-10-19 | Research Foundation Of The City University Of New York | Electrode designs for high energy density, efficiency, and capacity in rechargeable alkaline batteries |
US10381645B2 (en) * | 2015-12-14 | 2019-08-13 | Bettergy Corp. | Low cost rechargeable battery and the method for making the same |
US11276877B2 (en) | 2017-03-15 | 2022-03-15 | Research Foundation Of The City University Of New York | Stabilized birnessite cathode for high power and high energy density applications |
US11888112B2 (en) | 2017-05-19 | 2024-01-30 | Apple Inc. | Rechargeable battery with anion conducting polymer |
CN112106234B (zh) * | 2017-07-28 | 2024-03-08 | 纽约城市大学研究基金会 | 用于使二氧化锰及其多晶型物可逆的方法 |
WO2019027481A1 (en) * | 2017-08-04 | 2019-02-07 | National Technology & Engineering Solutions Of Sandia, Llc | RECHARGEABLE COPPER OXIDE ELECTRODES FOR ELECTROCHEMICAL APPLICATIONS |
KR20190035547A (ko) * | 2017-09-26 | 2019-04-03 | 주식회사 엘지화학 | 리튬망간산화물계 양극활물질의 제조 방법 |
CA3082226A1 (en) * | 2017-11-09 | 2019-05-16 | Octopus Technology Inc. | Electrolytic manganese dioxide and a method of preparing thereof |
US20200358092A1 (en) * | 2017-12-29 | 2020-11-12 | Research Foundation Of The City University Of New York | Method of forming charged manganese oxides from discharged active materials |
US11296351B1 (en) | 2018-01-12 | 2022-04-05 | Apple Inc. | Rechargeable battery with pseudo-reference electrode |
US10615412B2 (en) * | 2018-01-30 | 2020-04-07 | Octopus Technologies Inc. | Manganese oxide composition and method for preparing manganese oxide composition |
CN110350152B (zh) * | 2018-04-02 | 2021-01-26 | 中国科学院化学研究所 | 石墨炔/二氧化锰纳米片阵列材料及其制备方法和应用 |
CN108511729B (zh) * | 2018-04-28 | 2020-08-11 | 北京化工大学常州先进材料研究院 | 钾离子电池电极材料钾型水钠锰矿的制备方法 |
CN109148877A (zh) * | 2018-07-30 | 2019-01-04 | 桑顿新能源科技有限公司 | 一种可充电锌锰电池及其制备方法 |
CN110911652B (zh) * | 2018-09-17 | 2021-03-02 | 浙江浙能中科储能科技有限公司 | 一种纳米球形α-MnO2/Bi2O3材料及其制备方法和应用 |
DE102018131168A1 (de) * | 2018-12-06 | 2020-06-10 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung | Reversible Mangandioxidelektrode, Verfahren zu deren Herstellung, deren Verwendung sowie diese enthaltende, wieder aufladbare alkalische Mangan-Batterie |
CN109786712B (zh) * | 2019-01-25 | 2022-09-13 | 天津理工大学 | 一种镍、铋改性二氧化锰正极材料及其制备方法和应用 |
WO2020197673A1 (en) * | 2019-03-22 | 2020-10-01 | Cabot Corporation | Cathode electrode compositions for battery applications |
CN109928713B (zh) * | 2019-04-09 | 2021-11-26 | 天津大学 | MXene水凝胶及其液相组装方法 |
US11342548B2 (en) * | 2019-06-28 | 2022-05-24 | Research Foundation Of The City University Of New York | Zinc electrodes with high capacity utilizations |
US11865036B2 (en) | 2019-09-27 | 2024-01-09 | L'oreal | Integrated heater on facial skincare mask |
WO2021087329A1 (en) * | 2019-10-31 | 2021-05-06 | Research Foundation Of The City University Of New York | Metallic ion intercalated layered structures |
CN110707315B (zh) * | 2019-11-26 | 2022-06-24 | 河北省科学院能源研究所 | 一种表面改性镍基电极材料 |
US20220020985A1 (en) * | 2020-07-17 | 2022-01-20 | Uop Llc | Mixed metal manganese oxide material |
US11870034B2 (en) | 2020-10-22 | 2024-01-09 | University Of Maryland, Baltimore County | Safe and flexible chitosan-based gel electrolyte in rechargeable zinc electrolytic manganese dioxide (EMD) alkaline batteries |
CN113753876B (zh) * | 2021-07-20 | 2023-06-27 | 中南大学 | 一种钾离子电池负极材料及其制备方法 |
CN115472803B (zh) * | 2022-10-18 | 2023-06-27 | 山东石油化工学院 | 一种基于TMDs的锌离子电池正极材料的制备方法 |
CN116903038B (zh) * | 2023-09-13 | 2023-11-28 | 河南师范大学 | 一种阴阳离子协同调控锰基氧化物隧道结构的方法及应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100272299B1 (ko) | 1991-02-11 | 2000-11-15 | 케인쓸러, 라메쉬 씨 | 재충전 가능한 변형된 이산화망간 전극 물질의 제조방법 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1475491A (en) * | 1972-10-02 | 1977-06-01 | Ca Minister Nat Defence | Manganese dioxide-coated cathode |
CA1226033A (en) | 1983-08-08 | 1987-08-25 | Yung-Fang Y. Yao | Rechargeable manganese dioxide electrode material - i |
US4451543A (en) | 1983-09-29 | 1984-05-29 | Ford Motor Company | Rechargeable zinc/manganese dioxide cell |
CA1218515A (en) * | 1983-11-02 | 1987-03-03 | Yung-Fang Y. Yao | Method of making a compound |
US4520005A (en) * | 1983-11-02 | 1985-05-28 | Ford Motor Company | Method of making a compound |
CA1295364C (en) | 1988-07-08 | 1992-02-04 | Battery Technologies Inc. | Rechargeable alkaline manganese cells with zinc anodes |
HU201438B (en) | 1988-08-31 | 1990-10-28 | Karl Kordesh | Rechargeable zinc-restricted alkali manganese dioxide-zinc cell |
US5089027A (en) * | 1990-11-26 | 1992-02-18 | Gould Inc. | Method for producing a solid electrolyte cell |
US5250374A (en) * | 1991-01-24 | 1993-10-05 | Rbc Universal | Method of preparing a rechargeable modified manganese-containing material by electrolytic deposition and related material |
US5419986A (en) * | 1993-10-15 | 1995-05-30 | Rechargeable Battery Corporation | Method of making a rechargeable manganese-oxide compound and related electrode material |
US5952124A (en) | 1997-07-22 | 1999-09-14 | Kainthla; Ramesh C. | Rechargeable electrochemical cell with modified manganese oxide positive electrode |
CA2486488A1 (en) | 2004-01-22 | 2005-07-22 | Pure Energy Visions Inc. | Rechargeable alkaline manganese cell with cathode consistency compensation |
US7351499B2 (en) | 2004-01-28 | 2008-04-01 | The Gillette Company | Cathode material for battery |
CN104795533B (zh) * | 2004-09-03 | 2018-09-14 | 芝加哥大学阿尔贡有限责任公司 | 锂电池用氧化锰复合电极 |
US20060147802A1 (en) * | 2005-01-05 | 2006-07-06 | Kiyotaka Yasuda | Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery |
JP5070675B2 (ja) * | 2005-02-17 | 2012-11-14 | 東ソー株式会社 | マンガン化合物担持物及びその合成方法 |
US8761877B2 (en) * | 2008-10-03 | 2014-06-24 | Cardiac Pacemakers, Inc. | Biosorbable battery and related methods |
JP5502707B2 (ja) * | 2009-11-20 | 2014-05-28 | 三菱樹脂株式会社 | 積層多孔フィルム、電池用セパレータおよび電池 |
US20110223477A1 (en) * | 2010-03-12 | 2011-09-15 | Nelson Jennifer A | Alkaline battery including lambda-manganese dioxide and method of making thereof |
EP2626330B1 (en) * | 2010-10-06 | 2018-12-12 | Tosoh Corporation | Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same |
CN102513122A (zh) * | 2011-11-15 | 2012-06-27 | 广东工业大学 | 一种Cu、Ce掺杂型氧化锰催化剂及其制备方法和应用 |
CN102623188B (zh) * | 2012-03-29 | 2014-06-18 | 广东工业大学 | 一种掺杂的氧化锰八面体分子筛的制备方法及其应用 |
US20150311503A1 (en) | 2012-11-09 | 2015-10-29 | Research Foundation Of The City University Of New York | Secondary Zinc-Manganese Dioxide Batteries for High Power Applications |
KR102209822B1 (ko) | 2014-01-28 | 2021-01-29 | 삼성에스디아이 주식회사 | 양극, 이를 채용한 리튬전지 및 양극제조방법 |
CA2964761C (en) | 2014-10-13 | 2023-03-14 | Research Foundation Of The City University Of New York | Mixed material cathode for secondary alkaline batteries |
US11152615B2 (en) | 2015-10-29 | 2021-10-19 | Research Foundation Of The City University Of New York | Electrode designs for high energy density, efficiency, and capacity in rechargeable alkaline batteries |
-
2015
- 2015-10-13 CA CA2964761A patent/CA2964761C/en active Active
- 2015-10-13 EP EP15851352.3A patent/EP3207581B1/en active Active
- 2015-10-13 WO PCT/US2015/055215 patent/WO2016061030A1/en active Application Filing
- 2015-10-13 CN CN201580064654.3A patent/CN107004860B/zh active Active
- 2015-10-13 JP JP2017519856A patent/JP6691112B2/ja active Active
- 2015-10-13 AU AU2015333767A patent/AU2015333767B2/en active Active
- 2015-10-13 KR KR1020177012748A patent/KR102455613B1/ko active IP Right Grant
-
2016
- 2016-12-30 US US15/394,975 patent/US10199639B2/en active Active
-
2017
- 2017-03-23 US US15/467,240 patent/US10276860B2/en active Active
- 2017-05-10 ZA ZA2017/03247A patent/ZA201703247B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100272299B1 (ko) | 1991-02-11 | 2000-11-15 | 케인쓸러, 라메쉬 씨 | 재충전 가능한 변형된 이산화망간 전극 물질의 제조방법 |
Non-Patent Citations (1)
Title |
---|
A. K. Thapa et al., "Synthesis of mesoporous birnessite-MnO2 composite as a cathode electrode for lithium battery", Electrochimica Acta 116 (2014) 188-193 |
Also Published As
Publication number | Publication date |
---|---|
US10199639B2 (en) | 2019-02-05 |
ZA201703247B (en) | 2019-07-31 |
AU2015333767A1 (en) | 2017-05-04 |
AU2015333767B2 (en) | 2020-10-01 |
CA2964761A1 (en) | 2016-04-21 |
US10276860B2 (en) | 2019-04-30 |
KR20170067860A (ko) | 2017-06-16 |
JP6691112B2 (ja) | 2020-04-28 |
CN107004860B (zh) | 2020-11-06 |
EP3207581B1 (en) | 2020-07-01 |
CA2964761C (en) | 2023-03-14 |
JP2017535037A (ja) | 2017-11-24 |
EP3207581A1 (en) | 2017-08-23 |
CN107004860A (zh) | 2017-08-01 |
US20170207447A1 (en) | 2017-07-20 |
WO2016061030A1 (en) | 2016-04-21 |
EP3207581A4 (en) | 2018-05-16 |
US20170110765A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102455613B1 (ko) | 이차 알칼리 전지용 혼합 물질 캐소드 | |
US20190044129A1 (en) | Rechargeable Alkaline Manganese Dioxide-Zinc Bipolar Batteries | |
KR101763169B1 (ko) | 알칼리 2차전지 | |
US11152615B2 (en) | Electrode designs for high energy density, efficiency, and capacity in rechargeable alkaline batteries | |
US11276877B2 (en) | Stabilized birnessite cathode for high power and high energy density applications | |
US11342548B2 (en) | Zinc electrodes with high capacity utilizations | |
US20200358092A1 (en) | Method of forming charged manganese oxides from discharged active materials | |
JP2023523555A (ja) | 中間層による亜鉛-二酸化マンガンバッテリの性能の向上 | |
US20210343995A1 (en) | Electrochemical plating of additives on metallic electrodes for energy dense batteries | |
CN114667626A (zh) | 使用聚合物凝胶电解质的水性电化学单元电池 | |
CN115702507A (zh) | 无金属高电压电池 | |
JP5557385B2 (ja) | プロトンを挿入種とする蓄電デバイス | |
KR102306925B1 (ko) | 가역적 이산화망간 전극, 이의 제조 방법, 이의 용도, 및 상기 전극을 포함하는 재충전 가능한 알칼리성 망간-전지 | |
US20220384856A1 (en) | Mitigating the zincate effect in energy dense manganese dioxide electrodes | |
JP2021082383A (ja) | 亜鉛電池用負極 | |
JP2006073292A (ja) | アルカリ蓄電池用負極板およびアルカリ蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |