KR102424692B1 - OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof - Google Patents
OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof Download PDFInfo
- Publication number
- KR102424692B1 KR102424692B1 KR1020200058641A KR20200058641A KR102424692B1 KR 102424692 B1 KR102424692 B1 KR 102424692B1 KR 1020200058641 A KR1020200058641 A KR 1020200058641A KR 20200058641 A KR20200058641 A KR 20200058641A KR 102424692 B1 KR102424692 B1 KR 102424692B1
- Authority
- KR
- South Korea
- Prior art keywords
- ossp4
- gene
- plant
- leaf blight
- rice
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/06—Processes for producing mutations, e.g. treatment with chemicals or with radiation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8281—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Botany (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Physiology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 식물의 흰잎마름병 저항성을 조절하는 벼 유래 OsSP4(Oryza sativa serine protease 4) 유전자 및 이의 용도에 관한 것으로, 본 발명의 OsSP4 유전자의 발현을 조절하여 흰잎마름병에 저항성을 갖는 새로운 식물체를 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.The present invention relates to a rice-derived OsSP4 ( Oryza sativa serine protease 4) gene that regulates plant blight resistance and uses thereof, and to develop a new plant having resistance to white leaf blight by regulating the expression of the OsSP4 gene of the present invention. It is expected to be useful.
Description
본 발명은 식물의 흰잎마름병 저항성을 조절하는 벼 유래 OsSP4 유전자 및 이의 용도에 관한 것이다.The present invention relates to a rice-derived OsSP4 gene for regulating plant blight resistance and uses thereof.
흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)은 그람음성 박테리아로서 벼 흰잎마름병의 주요 병원체이며 전 세계적으로 벼의 박테리아성 질병의 주원인으로 알려져 있다. 흰잎마름병균은 기주 식물체의 상처 또는 배수조직을 통해 감염되며 피복조직을 통해 증식되고 관다발계를 통해 이동한다. 분자마커 연구를 통해 얻어진 흰잎마름병균의 다양성, 분포도, 계통 및 감염성에 대한 상관관계는 흰잎마름병균의 계통정보에 대한 보다 많은 이해를 도와주었고, 아시아에서 발생하는 흰잎마름병균들이 지역에 따라 서로 다른 양상을 나타내고 있음을 보여주었다. 한국형 흰잎마름병균의 계통은 필리핀형(64% 차이) 및 일본형(58% 차이)과 계통학적 차이를 보였고, 이러한 한국형 흰잎마름병균은 다른 나라에 비해 유전적 변이가 심화된 계통으로 감염경로가 보다 다양할 것으로 예상된다. 한국형 K1 균주는 Xa1과 Xa3 유전자를 보유하고 있는 벼 품종의 확산에 의해 감소되는 추세이이지만, K2와 K3 균주는 한국에서 계속해서 증식하고 있는 상황이다. 새로운 병원체인 K3a는 2003년에 심각한 흰잎마름병 피해를 주었던 K3와 동일한 감염 양상을 보이고 있다.White leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo) is a gram-negative bacterium that is a major pathogen of rice blight and is known as the main cause of bacterial diseases in rice worldwide. White leaf blight infects the host plant through wounds or drainage tissue, proliferates through the covering tissue, and migrates through the vascular system. The correlation between the diversity, distribution, lineage, and infectivity of white leaf blight obtained through molecular marker research helped better understanding of the phylogenetic information of white leaf blight. showed that it was in shape. The lineage of Korean white leaf blight was phylogenetically different from the Philippine type (64% difference) and Japanese type (58% difference). expected to be more diverse. The Korean-type K1 strain is on the decline due to the spread of rice cultivars carrying the Xa1 and Xa3 genes, but the K2 and K3 strains continue to proliferate in Korea. K3a, a new pathogen, shows the same infection pattern as K3, which caused severe damage from white leaf blight in 2003.
지금까지는 이러한 식물 병들을 방제하기 위해 농약을 이용한 화학적 방제법이 주로 사용되어져 왔지만 그 독성으로 인하여 병원체뿐만 아니라 주변 다른 생물에게도 해를 끼쳐 자연 생태계의 파괴를 일으키는 폐해를 가져왔다. 이러한 문제점을 해결하기 위한 방법으로 식물이 처해 있는 환경 및 생태조건을 고려하여 물리적·생물학적 방제수단을 적절히 혼용하여 농약의 사용을 줄이거나, 분자생물학적 방법 및 육종법 등을 이용하여 저항성을 가지고 있는 품종의 도입 및 개량 등을 통해 병 발생 자체를 억제하는 방법에 관한 연구가 활발히 이루어지고 있다. Until now, chemical control methods using pesticides have been mainly used to control these plant diseases, but due to their toxicity, they harm not only pathogens but also other living organisms, resulting in destruction of natural ecosystems. As a method to solve this problem, reduce the use of pesticides by appropriately mixing physical and biological control means in consideration of the environmental and ecological conditions in which plants are placed, or use molecular biological methods and breeding methods to reduce the use of resistant varieties. Research on methods of suppressing the disease itself through introduction and improvement are being actively conducted.
한편, 한국등록특허 제1636154호에는 '흰잎마름병 저항성 메틸전이효소 및 이를 이용한 형질 전환 식물체'가 개시되어 있고, 한국등록특허 제1754804호에는 '식물 병 저항성을 증가시키는 BrCP3 유전자 및 이의 용도'가 개시되어 있으나, 본 발명의 식물의 흰잎마름병 저항성을 조절하는 벼 유래 OsSP4 유전자 및 이의 용도에 대해서는 기재된 바가 없다.On the other hand, Korean Patent No. 1636154 discloses 'Methyltransferase resistant to white leaf blight and transformed plants using the same', and Korean Patent No. 1754804 discloses ' BrCP3 gene and uses thereof to increase plant disease resistance'. However, there is no description about the rice-derived OsSP4 gene and its use that regulates the plant blight resistance of the present invention.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 벼의 8번 염색체에 존재하는 OsSP4(Oryza sativa serine protease 4, LOC_08g31470) 유전자를 과발현하는 벼 형질전환체를 제조한 후 흰잎마름병원균(Xanthomonas oryzae pv. oryzae strain K3a)을 접종한 결과, OsSP4 과발현 벼 형질전환체가 대조구 식물체(야생형 동진벼, 흰잎마름병 감수성)에 비해 병변 길이가 감소된 것을 알 수 있었고, 이를 통해 OsSP4 유전자가 흰잎마름병에 대한 식물체의 저항성을 증가시킬 수 있음을 확인함으로써, 본 발명을 완성하였다.The present invention was derived by the above request, and the present inventors prepared a rice transformant overexpressing the OsSP4 ( Oryza sativa serine protease 4, LOC_ 08g31470 ) gene present on
상기 과제를 해결하기 위해, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4(Oryza sativa serine protease 4) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시켜 OsSP4 유전자의 발현을 조절하는 단계를 포함하는 식물체의 흰잎마름병(bacterial leaf blight disease) 저항성을 조절하는 방법을 제공한다.In order to solve the above problems, the present invention is to transform plant cells with a recombinant vector containing a gene encoding a rice-derived OsSP4 ( Oryza sativa serine protease 4) protein consisting of the amino acid sequence of SEQ ID NO: 2 to achieve expression of the OsSP4 gene. It provides a method for controlling bacterial leaf blight disease resistance of a plant, comprising the step of controlling it.
또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계;를 포함하는 흰잎마름병 저항성이 조절된 형질전환 식물체의 제조방법을 제공한다.In addition, the present invention comprises the steps of transforming plant cells with a recombinant vector comprising a gene encoding the rice-derived OsSP4 protein consisting of the amino acid sequence of SEQ ID NO: 2; and re-differentiating the plant from the transformed plant cells; provides a method for producing a transgenic plant with regulated white leaf blight resistance comprising a.
또한, 본 발명은 상기 제조방법에 의해 제조된 흰잎마름병 저항성이 조절된 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.In addition, the present invention provides a transgenic plant with regulated white leaf blight resistance prepared by the above manufacturing method and a transformed seed thereof.
또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4 단백질을 코딩하는 유전자를 유효성분으로 함유하는 식물체의 흰잎마름병 저항성 조절용 조성물을 제공한다.In addition, the present invention provides a composition for regulating plant blight resistance, which contains a rice-derived OsSP4 protein encoding gene consisting of the amino acid sequence of SEQ ID NO: 2 as an active ingredient.
본 발명의 OsSP4 유전자를 과발현시킨 형질전환 식물체는 흰잎마름병에 대한 저항성이 증대되므로, OsSP4 유전자의 발현 조절을 통해 흰잎마름병에 대한 저항성이 증가된 형질전환 식물체를 개발하여 농작물의 생산성을 향상시킬 수 있을 것으로 기대된다.Since the transgenic plant overexpressing the OsSP4 gene of the present invention has increased resistance to blight, it is possible to improve the productivity of crops by developing a transgenic plant with increased resistance to blight by regulating the expression of the OsSP4 gene. is expected to be
도 1은 벼 유래 OsSP4 유전자를 포함하는 재조합 벡터의 모식도이다.
도 2A는 벼의 SP(serine protease) 패밀리 단백질에 보존된 도메인(Peptidase_S64)을 나타낸 모식도이고, 도 2B는 벼 표준 유전체(Nipponbare 품종) 내 OsSP4 유전자와 본 발명의 클로닝된 OsSP4 유전자(Oryza sativa cv. Jinbaek)의 염기서열을 비교한 결과이다.
도 3A는 다양한 OsSP4 과발현 벼 형질전환체 중에서 단일 카피(single copy) 도입 형질전환체를 선발하기 위해 서던 블롯(Southern blot)을 수행한 결과이고, 도 3B는 선발된 벼 형질전환체 내 OsSP4 유전자 도입 유무를 확인하기 위해 PCR을 수행한 결과이다. HPT(hygromycin phosphotransferase): 선발 마커 유전자.
도 4는 흰잎마름병에 대해 감수성 품종인 야생형 동진벼(Donjin), 흰잎마름병 저항성 품종인 진백벼(Jinbaek) 및 본 발명의 OsSP4 과발현 벼 형질전환체(OsSP4-2, OsSP4-4 및 OsSP4-7)에 흰잎마름병원균(X. oryzae pv. oryzae strain K3a)을 접종하고 14일 후 각 식물체의 병변 길이(lesion length)를 측정한 결과이다.1 is a schematic diagram of a recombinant vector containing a rice-derived OsSP4 gene.
2A is a schematic diagram showing the domain (Peptidase_S64) conserved in the rice serine protease (SP) family protein, and FIG. 2B is the OsSP4 gene in the rice standard genome (Nipponbare variety) and the cloned OsSP4 gene ( Oryza sativa cv. Jinbaek) is the result of comparing the nucleotide sequences.
3A is a result of Southern blot to select a single copy-introduced transformant from among various OsSP4 overexpressing rice transformants, and FIG. 3B is the OsSP4 gene introduction into the selected rice transformants. It is the result of performing PCR to confirm the presence or absence. Hygromycin phosphotransferase (HPT): a selection marker gene.
4 is a wild-type Dongjinbyeo (Donjin), a variety resistant to white leaf blight, Jinbaek, a variety resistant to white leaf blight, and OsSP4 overexpressing rice transformants (OsSP4-2, OsSP4-4 and OsSP4-7) of the present invention. This is the result of measuring the lesion length of each
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4(Oryza sativa serine protease 4, LOC_08g31470) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시켜 OsSP4 유전자의 발현을 조절하는 단계를 포함하는 식물체의 흰잎마름병(bacterial leaf blight disease) 저항성을 조절하는 방법을 제공한다.In order to achieve the object of the present invention, the present invention is to transform plant cells with a recombinant vector containing a gene encoding a rice-derived OsSP4 ( Oryza sativa serine protease 4, LOC_08g31470 ) protein consisting of the amino acid sequence of SEQ ID NO: 2 It provides a method for controlling bacterial leaf blight disease resistance of a plant comprising the step of regulating the expression of the OsSP4 gene.
본 발명에 따른 식물체의 흰잎마름병 저항성을 조절하는 방법은, 상기 OsSP4 단백질 코딩 유전자를 식물세포에서 과발현시켜 식물체의 흰잎마름병에 대한 저항성을 증가시키는 것일 수 있으나, 이에 제한되지 않는다.The method of regulating plant blight resistance of a plant according to the present invention may be to increase the plant's resistance to blight by overexpressing the OsSP4 protein-coding gene in plant cells, but is not limited thereto.
본 발명에 따른 OsSP4 단백질의 범위는 벼로부터 분리된 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. 본 발명에 있어서, 용어 "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물체의 흰잎마름병 저항성을 조절하는 활성을 의미한다.The scope of the OsSP4 protein according to the present invention includes a protein having the amino acid sequence shown in SEQ ID NO: 2 isolated from rice and functional equivalents of the protein. In the present invention, the term "functional equivalent" means at least 70% or more, preferably 80% or more, more preferably 90% of the amino acid sequence represented by SEQ ID NO: 2 as a result of addition, substitution or deletion of amino acids. As described above, more preferably, it refers to a protein having a sequence homology of 95% or more and exhibiting physiological activity substantially identical to that of the protein represented by SEQ ID NO: 2. "Substantially homogenous physiological activity" refers to an activity for regulating plant blight resistance.
본 발명은 또한, 본 발명의 OsSP4 단백질을 코딩하는 유전자를 포함하며, 상기 유전자의 범위는 OsSP4 단백질을 코딩하는 게놈 DNA, cDNA 및 합성 DNA를 모두 포함한다. 바람직하게는, 본 발명의 OsSP4 단백질을 코딩하는 유전자는 서열번호 1로 표시되는 염기서열을 포함할 수 있다. 또한, 상기 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)을 포함할 수 있다.The present invention also includes a gene encoding the OsSP4 protein of the present invention, and the scope of the gene includes all of genomic DNA, cDNA and synthetic DNA encoding the OsSP4 protein. Preferably, the gene encoding the OsSP4 protein of the present invention may include the nucleotide sequence represented by SEQ ID NO: 1. In addition, homologs of the nucleotide sequence are included within the scope of the present invention. Specifically, the gene includes a nucleotide sequence having at least 70%, more preferably at least 80%, more preferably at least 90%, and most preferably at least 95% sequence homology to the nucleotide sequence of SEQ ID NO: 1, respectively. can do. The "% sequence homology" for a polynucleotide is determined by comparing two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is a reference sequence (not including additions or deletions) to the optimal alignment of the two sequences. additions or deletions (ie, gaps) compared to not).
본 명세서에서, 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term "recombinant" refers to a cell in which the cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide or a protein encoded by the heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the native form of the cell, either in sense or antisense form. Recombinant cells can also express genes found in cells in a natural state, but the genes are modified and re-introduced into cells by artificial means.
본 명세서에서, 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다.As used herein, the term “vector” is used to refer to a DNA fragment(s), a nucleic acid molecule, that is delivered into a cell. The vector replicates DNA and can be reproduced independently in a host cell. The term "carrier" is often used interchangeably with "vector."
본 발명의 벡터는 전형적으로 발현 또는 클로닝을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵세포 또는 진핵세포를 숙주로 하여 구축될 수 있다. 예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵세포를 숙주로하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예를 들면, pLλ 프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 리보솜 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주세포로서 대장균(Escherichia coli)이 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위, 그리고 파아지 λ의 좌향 프로모터(pLλ 프로모터)가 조절 부위로서 이용될 수 있다.Vectors of the invention can typically be constructed as vectors for expression or cloning. In addition, the vector of the present invention can be constructed using a prokaryotic cell or a eukaryotic cell as a host. For example, when the vector of the present invention is an expression vector and a prokaryotic cell is used as a host, a strong promoter capable of propagating transcription (eg, pLλ promoter, trp promoter, lac promoter, T7 promoter, tac promoter, etc.) ), a ribosome binding site for initiation of translation and a transcription/translation termination sequence. When Escherichia coli is used as a host cell, the promoter and operator sites of the E. coli tryptophan biosynthesis pathway, and the left-handed promoter (pLλ promoter) of phage λ may be used as regulatory regions.
본 발명의 재조합 벡터에서, 상기 프로모터는 형질전환에 적합한 프로모터들로서, 바람직하게는 CaMV 35S 프로모터, 액틴 프로모터, 유비퀴틴 프로모터, pEMU 프로모터, MAS 프로모터 또는 히스톤 프로모터일 수 있으며, 바람직하게는 CaMV 35S 프로모터일 수 있으나, 이에 제한되지 않는다.In the recombinant vector of the present invention, the promoter is a promoter suitable for transformation, preferably
본 명세서에서, 용어 "프로모터"란 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "항시성(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 항시성 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 항시성 프로모터는 선택 가능성을 제한하지 않는다.As used herein, the term “promoter” refers to a region upstream of DNA from a structural gene and refers to a DNA molecule to which RNA polymerase binds to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in a plant cell. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental states or cell differentiation. A constitutive promoter may be preferred in the present invention because the selection of transformants can be made by various tissues at various stages. Thus, constitutive promoters do not limit the selectivity.
본 발명의 재조합 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 벡터는 번역 개시 부위로서 리보솜 결합 부위 및 전사 터미네이터를 포함할 수 있다.The recombinant vector of the present invention can be constructed by methods well known to those skilled in the art. The method includes in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology. The DNA sequence can be effectively linked to a suitable promoter in an expression vector to direct mRNA synthesis. The vector may also include a ribosome binding site as a translation initiation site and a transcription terminator.
본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens)와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 제미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a part of itself, the so-called T-region, into a plant cell when present in a suitable host such as Agrobacterium tumefaciens . Another type of Ti-plasmid vector (see EP 0 116 718 B1) is currently used to transfer hybrid DNA sequences into plant cells, or protoplasts from which new plants can be produced that properly insert the hybrid DNA into the genome of the plant. have. A particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host include viral vectors such as those that can be derived from double-stranded plant viruses (eg CaMV) and single-stranded viruses, gemini viruses, etc. For example, it may be selected from incomplete plant viral vectors. The use of such vectors can be advantageous, especially when it is difficult to adequately transform a plant host.
재조합 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 상기 마커 유전자는 항생제 내성 유전자(antibiotics resistance gene)일 수 있으나, 이에 제한되지 않는다.The recombinant expression vector may preferably comprise one or more selectable markers. The marker is a nucleic acid sequence having characteristics that can be selected by conventional chemical methods, and includes all genes that can distinguish transformed cells from non-transformed cells. The marker gene may be an antibiotics resistance gene, but is not limited thereto.
본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the recombinant vector of the present invention, a conventional terminator may be used, for example, nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens ( Agrobacterium tumefaciens ) ) of octopine (Octopine) gene terminator and the like, but is not limited thereto. Regarding the need for terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of a terminator is highly desirable in the context of the present invention.
본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 원핵세포의 예로는, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스(Bacillus subtilis), 바실러스 츄린겐시스(Bacillus thuringiensis)와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움(Salmonella typhimurium), 세라티아 마르세슨스(Serratia marcescens) 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.As a host cell capable of stably and continuously cloning and expressing the vector of the present invention, any host cell known in the art may be used, and examples of prokaryotic cells include E. coli JM109, E. coli BL21, E. coli Bacillus genus strains such as RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis , Bacillus thuringiensis , and Salmonella typhimurium Enterobacteriaceae and strains such as Salmonella typhimurium , Serratia marcescens , and various Pseudomonas species.
본 발명의 벡터를 진핵세포에 형질전환시키는 경우에는 숙주세포로서, 효모(Saccharomyce cerevisiae), 곤충세포, 사람세포(예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다. 숙주세포는 바람직하게는 식물세포이다.When the vector of the present invention is transformed into eukaryotic cells, as a host cell, yeast ( Saccharomyce cerevisiae ), insect cells, human cells (eg, CHO cell line (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2) , 3T3, RIN and MDCK cell lines) and plant cells can be used. The host cell is preferably a plant cell.
본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 숙주세포가 원핵세포인 경우, CaCl2 방법, 하나한 방법(Hanahan, D., 1983 J. Mol. Biol. 166, 557-580) 및 전기천공 방법 등에 의해 실시될 수 있다. 또한, 숙주세포가 진핵세포인 경우에는, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.Methods for delivering the vector of the present invention into a host cell include the CaCl 2 method, the Hanahan method (Hanahan, D., 1983 J. Mol. Biol. 166, 557-580) and electroporation when the host cell is a prokaryotic cell. method and the like. In addition, when the host cell is a eukaryotic cell, the vector may be injected into the host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, and gene bombardment. can
본 발명은 또한, 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계;를 포함하는 흰잎마름병 저항성이 조절된 형질전환 식물체의 제조방법을 제공한다.The present invention also comprises the steps of transforming plant cells with a recombinant vector comprising a gene encoding a rice-derived OsSP4 protein consisting of the amino acid sequence of SEQ ID NO: 2; and re-differentiating the plant from the transformed plant cells; provides a method for producing a transgenic plant with regulated white leaf blight resistance comprising a.
본 발명의 흰잎마름병 저항성이 조절된 형질전환 식물체의 제조방법에 있어서, 상기 OsSP4 단백질의 범위는 전술한 것과 같다.In the method for producing a transgenic plant with regulated white leaf blight resistance of the present invention, the range of the OsSP4 protein is the same as described above.
본 발명의 일 구현 예에 따른 제조방법에 있어서, 흰잎마름병 저항성이 조절된 형질전환 식물체의 제조방법은 상기 OsSP4 단백질 코딩 유전자를 식물세포에서 과발현시켜 식물체의 흰잎마름병에 대한 저항성 또는 내성을 증가시키는 것일 수 있으나, 이에 제한되지 않는다.In the production method according to an embodiment of the present invention, the method for producing a transgenic plant with regulated white leaf blight resistance is to overexpress the OsSP4 protein-coding gene in plant cells to increase the resistance or tolerance of the plant to white leaf blight. may, but is not limited thereto.
식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직 배양기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 튜머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EP A 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다.Transformation of a plant refers to any method of transferring DNA into a plant. Such transformation methods need not necessarily have a period of regeneration and/or tissue culture. Transformation of plant species is now common for plant species including both monocots as well as dicots. In principle, any transformation method can be used to introduce the hybrid DNA according to the invention into suitable progenitor cells. Methods include the calcium/polyethylene glycol method for protoplasts (Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., 1987, Plant Mol. Biol. 8, 363-373), Electroporation (Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), microinjection with plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185) , Agrobacterium tumefaciens by particle bombardment (DNA or RNA-coated) of various plant elements (Klein T.M. et al., 1987, Nature 327, 70), infiltration of plants or transformation of mature pollen or vesicles. In mediated gene transfer, it can be appropriately selected from (incomplete) viral infection (EP 0 301 316) and the like. A preferred method according to the present invention comprises Agrobacterium mediated DNA delivery. Particular preference is given to using the so-called binary vector technique as described in EP A 120 516 and US Pat. No. 4,940,838.
또한, 상기 형질전환된 식물세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.In addition, any method known in the art may be used as a method for redifferentiating a transgenic plant from the transformed plant cells.
본 발명은 또한, 상기 제조방법에 의해 제조된 흰잎마름병 저항성이 조절된 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.The present invention also provides a transgenic plant with regulated white leaf blight resistance prepared by the above manufacturing method and a transformed seed thereof.
본 발명의 형질전환 식물체는 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4 단백질 코딩 유전자를 식물세포에서 과발현시켜 식물체의 흰잎마름병에 대한 저항성이 비형질전환체에 비해 증가된 것일 수 있으나, 이에 제한되지 않는다.The transgenic plant of the present invention overexpresses the rice-derived OsSP4 protein coding gene consisting of the amino acid sequence of SEQ ID NO: 2 in plant cells to increase the resistance of the plant to white leaf blight compared to the non-transformant, but is not limited thereto. does not
상기 식물체는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물 또는 애기장대, 감자, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 당근, 미나리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽일 수 있고, 바람직하게는 단자엽 식물일 수 있으며, 더욱 바람직하게는 벼일 수 있으나, 이에 제한되지 않는다.The plants are monocotyledonous plants such as rice, barley, wheat, rye, corn, sugar cane, oats, and onions, or Arabidopsis thaliana, potato, eggplant, tobacco, red pepper, tomato, burdock, sagebrush, lettuce, bellflower, spinach, chard, sweet potato , carrot, water parsley, cabbage, cabbage, radish, watermelon, melon, cucumber, pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, pea, etc. may be dicotyledonous, preferably monocotyledonous plants, more preferably It may be rice, but is not limited thereto.
본 발명은 또한, 서열번호 2의 아미노산 서열로 이루어진 벼 유래 OsSP4 단백질을 코딩하는 유전자를 유효성분으로 포함하는 식물체의 흰잎마름병 저항성 조절용 조성물을 제공한다. 본 발명의 조성물은 유효성분으로 식물체의 흰잎마름병에 대한 저항성을 조절할 수 있는 벼 유래 OsSP4 단백질 코딩 유전자를 포함하며, 상기 유전자의 발현이 증가되면 식물체의 흰잎마름병에 대한 저항성을 증가시킬 수 있다.The present invention also provides a composition for regulating plant blight resistance comprising a gene encoding a rice-derived OsSP4 protein consisting of the amino acid sequence of SEQ ID NO: 2 as an active ingredient. The composition of the present invention includes a rice-derived OsSP4 protein coding gene capable of controlling the resistance of plants to white leaf blight as an active ingredient, and when the expression of the gene is increased, the resistance of plants to white leaf blight can be increased.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명은 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following examples.
재료 및 방법Materials and Methods
1. 식물재료1. plant material
아그로박테리움 매개 형질전환 방법(Agrobacterium-mediated transformation)을 이용하여 흰잎마름병에 대한 저항성을 나타내는 벼 유래 OsSP4 유전자를 흰잎마름병 감수성 품종인 동진벼(Oryza sativa cv. Dongjin)에 도입하여 형질전환체를 육성하였으며, 흰잎마름병 저항성에 대한 OsSP4 유전자의 기능 검정을 위해 흰잎마름병 저항성 품종인 진백벼(Oryza sativa cv. Jinbaek)를 대조구로 이용하였다.Using Agrobacterium -mediated transformation, the rice-derived OsSP4 gene, which exhibits resistance to blight, was introduced into Oryza sativa cv. , To test the function of the OsSP4 gene for white leaf blight resistance, a white leaf blight resistant variety, Jinbaekbyeo ( Oryza sativa cv. Jinbaek) was used as a control.
2. 벼에서 세린 프로테아제 4(OsSP4)의 분리2. Isolation of Serine Protease 4 (OsSP4) from Rice
진백벼의 어린 잎을 사용하여 RNAiso Plus extraction reagent(Takara Bio Inc., 일본)로 총 RNA를 추출한 후 추출된 RNA 1㎍을 주형으로 하여 Superscript III First-Strand cDNA Synthesis 키트(Invitrogen, 미국)로 first-strand cDNA를 합성하였고, OsSP4의 PCR 증폭을 위해 표 1의 프라이머 세트를 사용하였다. PCR 과정은 전변성 95℃ 5분; 변성(denaturation) 95℃ 30초, 결합(annealing) 55℃ 30초, 신장(extension) 72℃ 2분의 과정을 총 35회 반복; 최종 신장 72℃ 10분;의 조건으로 수행하였다. PCR 산물 확인을 위해 에티듐 브로마이드(ethidium bromide)가 포함된 1%(w/v) 아가로스 겔을 이용하여 전기영동하였고 Gel purification kit(Bioneer, 한국)를 사용하여 PCR 산물을 정제하였다. 정제된 PCR 산물은 pGEMT-easy 벡터(Promega, 미국)에 서브클로닝하고 Macrogen Inc.(한국)에 의뢰하여 서열을 분석하였다. After extracting total RNA with RNAiso Plus extraction reagent (Takara Bio Inc., Japan) using young leaves of Jinbaek rice, 1㎍ of the extracted RNA as a template was first used with the Superscript III First-Strand cDNA Synthesis kit (Invitrogen, USA). -strand cDNA was synthesized, and the primer set in Table 1 was used for PCR amplification of OsSP4 . The PCR process was predenatured at 95°C for 5 minutes; A total of 35 cycles of denaturation at 95° C. for 30 seconds, annealing at 55° C. for 30 seconds, and extension at 72° C. for 2 minutes; Final elongation at 72° C. for 10 minutes; To confirm the PCR product, electrophoresis was performed using a 1% (w/v) agarose gel containing ethidium bromide, and the PCR product was purified using a Gel purification kit (Bioneer, Korea). The purified PCR product was subcloned into pGEMT-easy vector (Promega, USA) and sequenced by requesting Macrogen Inc. (Korea).
(bp)ORF
(bp)
(bp)Size
(bp)
(℃)Tm
(℃)
(%)GC
(%)
3. 재조합 벡터 구축 및 벼 형질전환체의 육성3. Recombinant vector construction and cultivation of rice transformants
OsSP4(LOC_08g31470) 유전자의 ORF cDNA를 T4 ligase 키트(Promega, 미국)를 사용하여 pCAMBIA1300 벡터(Takara, 일본)의 35S 프로모터와 Tnos 터미네이터 사이에 삽입하였고, 선발 마커 유전자로 사용된 hptII 유전자를 35S 프로모터와 CaMV 터미네이터 사이에 삽입하여 식물 형질전환용 벡터 'pCAMBIA1300::OsSP4'를 구축하였다(도 1). The ORF cDNA of the OsSP4 (LOC_ 08g31470 ) gene was inserted between the 35S promoter and the Tnos terminator of the pCAMBIA1300 vector (Takara, Japan) using a T4 ligase kit (Promega, USA), and the hptII gene used as a selection marker gene was inserted into the 35S promoter and CaMV terminator to construct a vector 'pCAMBIA1300:: OsSP4 ' for plant transformation (FIG. 1).
그 다음, 상기 pCAMBIA1300::OsSP4 벡터로 형질전환된 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens) strain EHA105는 카나마이신(kanamycin, 50㎎/L)이 포함된 AB 배지의 28℃ 암조건에서 배양하여 선발하였다. 형질전환된 아그로박테리움 튜머파시엔스는 AAM 배지에 현탁하여 최종 농도 OD600에서 0.01로 맞춘 후 실험에 사용하였다. 10일 동안 배양시킨 동진벼 종자 유래 캘러스를 아그로박테리움 튜머파시엔스 현탁액에서 3분간 감염시키고 건조시킨 후 0.4% 젤라이트(gelrite)가 포함된 2N6-AS 배지에서 배양하였고, 아그로박테리움 튜머파시엔스와 캘러스의 공동배양은 25℃의 암조건에서 진행하였다. 그리고 캘러스에서 아그로박테리움 튜머파시엔스를 제거하기 위해 카베니실린(carbenicillin, 500 ㎎/L)이 포함된 증류수를 이용하여 세척하였다. 세척이 끝난 캘러스는 하이그로마이신(hygromycin, 50 ㎎/L)과 카베니실린(400 ㎎/L)이 포함된 2N6-CP 배지에서 32℃의 광조건으로 2주간 배양하였다. 이후 증식된 캘러스를 MSR-CP 배지로 옮겨 뿌리와 줄기의 신장을 유도하고 지속적인 계대배양을 실시하였으며, 캘러스에서 재분화된 식물체는 토양으로 옮겨 온실에서 재배하였다. 조직배양과 형질전환에 사용한 배지의 조성은 표 2와 같다.Then, the pCAMBIA1300:: Agrobacterium tumefaciens strain EHA105 transformed with the OsSP4 vector was selected by culturing in AB medium containing kanamycin (kanamycin, 50 mg/L) at 28° C. under dark conditions. . The transformed Agrobacterium tumefaciens was suspended in AAM medium and adjusted to 0.01 at a final concentration of OD 600 , and then used in the experiment. Dongjinbyeo seed-derived callus cultured for 10 days was infected with Agrobacterium tumefaciens suspension for 3 minutes, dried, and cultured in 2N6-AS medium containing 0.4% gelrite, Agrobacterium tumefaciens and Co-culture of the callus was carried out in the dark condition of 25 ℃. And in order to remove Agrobacterium tumefaciens from the callus, it was washed with distilled water containing carbenicillin (carbenicillin, 500 mg/L). After washing, the callus was cultured in 2N6-CP medium containing hygromycin (50 mg/L) and carbenicillin (400 mg/L) under light conditions at 32° C. for 2 weeks. After that, the proliferated callus was transferred to the MSR-CP medium to induce root and stem elongation and continued subculture. Plants redifferentiated from the callus were transferred to soil and grown in a greenhouse. The composition of the medium used for tissue culture and transformation is shown in Table 2.
4. 게놈 DNA 추출 및 서던 블롯(Southern blot) 분석4. Genomic DNA extraction and Southern blot analysis
액체질소로 냉각시킨 0.25 g의 벼 잎을 2 ㎖의 튜브에 담아 분쇄하고 CTAB 버퍼(pH 7.8~8.0) 900 ㎕를 첨가하여 65℃에서 1시간 동안 반응시킨 후 12,000 rpm에서 5분간 원심분리하여 얻은 상층액에 페놀(phenol):클로로폼(chloroform):이소아밀알코올(isoamyl alcohol)이 25:24:1 비율로 혼합된 용액 700 ㎕을 첨가하고 볼텍스 기기를 이용하여 충분히 혼합하였다. 다시 12,000rpm에서 15분간 원심분리하여 상층액을 수득하고 이소프로판올(isopropanol) 300 ㎕을 첨가하여 20분 동안 -20℃ 냉동고에서 반응시켰다. 4℃, 12,000 rpm 조건에서 15분간 원심분리한 후 튜브 바닥의 침전물이 떨어지지 않도록 하여 상층액을 제거하고 70 % 에탄올 400 ㎕을 첨가하여 DNA 세척을 수행한 다음 4℃, 12,000 rpm에서 5분간 원심분리하고 피펫으로 에탄올을 제거하여 건조시켰다. 건조 후 TE buffer 50 ㎕에 DNA를 녹였고, RNase(RNase stock 20 ㎕, nuclease free-water 10 ㎖) 1 ㎕를 첨가하고 37℃에 10분 동안 반응시켜 게놈 DNA를 추출하였다.0.25 g of rice leaves cooled with liquid nitrogen were put in a 2 ml tube and pulverized, 900 μl of CTAB buffer (pH 7.8-8.0) was added, reacted at 65° C. for 1 hour, and centrifuged at 12,000 rpm for 5 minutes. 700 μl of a solution in which phenol:chloroform:isoamyl alcohol was mixed in a ratio of 25:24:1 was added to the supernatant and thoroughly mixed using a vortex device. Centrifuged again at 12,000 rpm for 15 minutes to obtain a supernatant, and 300 μl of isopropanol was added and reacted in a -20°C freezer for 20 minutes. After centrifugation at 4°C and 12,000 rpm for 15 minutes, the supernatant was removed by preventing the sediment at the bottom of the tube from falling, and 400 μl of 70% ethanol was added to wash DNA, followed by centrifugation at 4°C, 12,000 rpm for 5 minutes. and ethanol was removed with a pipette and dried. After drying, DNA was dissolved in 50 μl of TE buffer, and 1 μl of RNase (
또한, 서던 블롯을 수행하기 위해 10㎍의 게놈 DNA를 제한효소 EcoRⅠ으로 밤새 37℃에서 반응시켜 절단한 후 절단된 DNA를 1% 아가로스 겔에서 전기영동하고 Hybond-N+ 멤브레인(Amersham Bioscience, 미국)으로 트랜스퍼하였다. 상기 멤브레인은 DIG Easy Hyb 버퍼를 이용하여 42℃에서 1시간 동안 반응시켜 미리 혼성화시켰고, 이후 DIG-표지된 프로브(2 ㎕ probe/ 1 ㎖ buffer; HPT 유전자)를 첨가하고 42℃에서 밤새 반응시켜 혼성화시켰다. 그 다음, 멤브레인을 세척용액(2×SSC, 0.1% SDS)을 이용하여 25℃에서 5분 동안 2번 세척하였고, 다시 세척용액(01×SSC, 0.5% SDS)을 이용하여 68℃에서 15분 동안 2번 세척하였다. DIG-표지된 DNA는 DIG Nucleic Acid Detection 키트(Roche Molecular Biochemicals, 미국)를 사용하여 검출하였다. In addition, in order to perform Southern blotting, 10 μg of genomic DNA was reacted with restriction enzyme EcoR I overnight at 37° C. to cut it, and then the cut DNA was electrophoresed on a 1% agarose gel and a Hybond-N+ membrane (Amersham Bioscience, USA). ) was transferred. The membrane was pre-hybridized by reacting at 42° C. for 1 hour using DIG Easy Hyb buffer, and then hybridized by adding a DIG-labeled probe (2 μl probe/1 ml buffer; HPT gene) and reacting at 42° C. overnight. made it Then, the membrane was washed twice at 25° C. for 5 minutes using a washing solution (2×SSC, 0.1% SDS), and again using a washing solution (01×SSC, 0.5% SDS) at 68° C. for 15 minutes. washed twice during the DIG-labeled DNA was detected using the DIG Nucleic Acid Detection kit (Roche Molecular Biochemicals, USA).
5. 벼 형질전환체의 흰잎마름병에 대한 저항성 분석5. Analysis of resistance to white leaf blight of rice transformants
7주령의 OsSP4 과발현 벼 형질전환체, 야생형 동진벼(흰잎마름병 감수성) 및 진백벼(흰잎마름병 저항성)에 흰잎마름병원균(X. oryzae pv. oryzae strain K3a, 108 CFU/㎖)을 접종하고 14일간 배양한 후 식물체 당 2개의 잎에서 평균 병변 길이를 측정하였다. Inoculated with white leaf blight pathogen ( X. oryzae pv. oryzae strain K3a, 10 8 CFU/ml) to 7-week-old OsSP4 overexpressing rice transformants, wild-type Dongjinbyeo (susceptibility to white leaf blight) and Jinbaekbyeo (resistance to white leaf blight), and inoculated for 14 days. After incubation, the average lesion length was measured in two leaves per plant.
6. 표현형 분석6. Phenotypic Analysis
OsSP4 과발현 벼 형질전환체 및 야생형 동진벼를 50% 피트(peat)와 50% 토양(farm soil)의 혼합물로 채워진 트레이에서 3주간 배양하고 30×15 cm의 실험 농장에 이식한 후 N-P2O5-K2O 비료를 90-45-47 kg/ha로 처리하고, 충북대학교에서 수행되고 있는 쌀 재배 표준법에 따라 재배관리를 수행하였다. 그리고 초장(height), 이삭 길이(panicle length), 줄기 길이(culm length), 유효분얼(productive tillers)의 수, 낟알 길이(grain length) 및 낟알 너비(grain width)와 같은 형태적 특징을 관찰하였다. OsSP4 overexpressing rice transformants and wild-type Dongjinbyeo were cultured for 3 weeks in a tray filled with a mixture of 50% peat and 50% farm soil, and transplanted to a 30×15 cm experimental farm, followed by N-P2O5-K2O Fertilizer was treated at 90-45-47 kg/ha, and cultivation management was performed according to the rice cultivation standard method performed at Chungbuk National University. And morphological characteristics such as height, panel length, culm length, number of productive tillers, grain length and grain width were observed. .
7. 통계분석7. Statistical analysis
데이터는 ANOVA(analysis of variance)를 통해 분석되었고, 표현형 관련 데이터의 경우 대조군인 야생형 동진벼와 비교하여 SAS 9.4M5(SAS Institute Inc, https://www.sas.com)를 사용하여 분석하였으며, 저항성 관련 데이터는 DMRT(Duncan's Multiple Range test)를 통해 분석하였다.Data were analyzed through ANOVA (analysis of variance), and in the case of phenotype-related data, SAS 9.4M5 (SAS Institute Inc, https://www.sas.com) was used to analyze resistance compared to the control, wild-type Dongjinbyeo. Relevant data were analyzed through Duncan's Multiple Range test (DMRT).
실시예 1. Example 1. OsSP4OSSP4 유전자의 특성 분석 Characterization of genes
벼의 8번 염색체에 존재하는 OsSP4(Oryza sativa serine protease 4, LOC_08g31470) 유전자는 트립신-유사 세린 프로테아제(trypsin-like serine protease)의 하나로서(도 2A), 1,773 bp의 ORF로 구성되어 있었고, 상기 1,773 bp의 ORF가 590개의 아미노산을 코딩하고 있음을 확인하였다. 분자량과 등전점은 각각 63.4672 kDa, 4.7534로 예측되었다. 또한 OsSP4 유전자는 표준 유전체(Nipponbare 품종)와 비교하여 약 99.9%의 상동성을 보였다(도 2B). OsSP4 ( Oryza
실시예 2. 벼 형질전환체의 특성 확인Example 2. Characterization of rice transformants
OsSP4 유전자 과발현 형질전환체로부터 단일 카피(single copy) 도입 개체를 선발고자 벼 형질전환체 T0로부터 추출된 게놈 DNA를 사용하여 서던 블롯을 수행한 결과, 총 10개의 벼 형질전환체 중 단일 카피가 존재하는 개체가 총 8개임을 확인하였고, 이 중에서 OsSP4-2, OsSP4-4, OsSP4-7 및 OsSP4-8을 선발하여 실험에 사용하였다(도 3A). 또한, 상기 OsSP4-2, OsSP4-4, OsSP4-7 및 OsSP4-8을 대상으로 PCR을 수행한 결과, 선발마커 HPT 유전자와 OsSP4 유전자의 밴드가 증폭된 것을 통해 OsSP4 유전자가 성공적으로 도입되었음을 확인하였다(도 3B).In order to select individuals introduced with a single copy from the OsSP4 gene overexpression transformant, Southern blot was performed using genomic DNA extracted from the rice transformant T 0. As a result, a single copy was obtained from a total of 10 rice transformants. It was confirmed that there were a total of 8 individuals, and among them, OsSP4-2, OsSP4-4, OsSP4-7 and OsSP4-8 were selected and used for the experiment (FIG. 3A). In addition, as a result of performing PCR on the OsSP4-2, OsSP4-4, OsSP4-7 and OsSP4-8, it was confirmed that the OsSP4 gene was successfully introduced through the amplification of the bands of the selection marker HPT gene and the OsSP4 gene. (Fig. 3B).
또한, 벼 형질전환체를 대상으로 형태적·농업적 분석을 수행한 결과, 대부분 벼 형질전환체의 초장(height), 이삭 길이(panicle length), 줄기 길이(culm length), 유효분얼(productive tillers)의 수, 낟알 길이(grain length) 또는 낟알 너비(grain width)가 야생형 동진벼과 유사하거나 더 우수한 표현형을 나타내는 것을 확인하였다(표 3).In addition, as a result of performing morphological and agricultural analysis on the rice transformants, most of the rice transformants were found to have height, panel length, culm length, and productive tillers. ), it was confirmed that the number of grain length (grain length) or grain width (grain width) was similar to or superior to that of wild-type Dongjinbyeo (Table 3).
실시예 3. 벼 형질전환체의 흰잎마름병균에 대한 저항성 평가Example 3. Evaluation of resistance to white leaf blight of rice transformants
OsSP4 과발현 벼 형질전환체(OsSP4-2, OsSP4-4 및 OsSP4-7)에 흰잎마름병원균을 접종하고 14일간 배양한 후 야생형 동진벼와 벼 형질전환체의 병변 길이(lesion length)를 측정하여 식물체 내 OsSP4 유전자 과발현이 흰잎마름병원균 저항성에 미치는 영향을 확인하였다. OsSP4 overexpressing rice transformants (OsSP4-2, OsSP4-4 and OsSP4-7) were inoculated with white leaf blight pathogen and cultured for 14 days. The effect of overexpression of OsSP4 gene on resistance to white leaf blight pathogen was confirmed.
그 결과, 야생형 동진벼의 병변 길이는 약 16.1 cm이고 벼 형질전환체의 병변 길이는 약 4.5~6.1 cm로, 야생형 동진벼가 OsSP4 과발현 벼 형질전환체에 비해 흰잎마름병에 대한 손상 정도가 매우 심각한 수준임을 확인하였다. 그리고, 흰잎마름병 저항성 품종인 진백벼는 다른 실험군과 비교하여 병변 길이가 가장 짧았다(도 4).As a result, the lesion length of wild-type Dongjinbyeo was about 16.1 cm and the lesion length of the rice transformant was about 4.5-6.1 cm. Confirmed. And, the white leaf blight resistant variety, Jinbaekbyeo, had the shortest lesion length compared to the other experimental groups (FIG. 4).
상기 결과를 통해, OsSP4 유전자가 식물체에서 과발현되면 흰잎마름병에 대한 저항성이 증가되는 것을 알 수 있었고, OsSP4 유전자의 발현 조절을 통해 식물체의 흰잎마름병에 대한 저항성을 조절할 수 있을 것으로 사료되었다.From the above results, it was found that when the OsSP4 gene was overexpressed in plants, resistance to white leaf blight was increased, and it was thought that the resistance to white leaf blight of plants could be controlled by regulating the expression of the OsSP4 gene.
<110> Chungbuk National University Industry-Academic Cooperation Foundation <120> OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof <130> PN20104 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 1773 <212> DNA <213> Oryza sativa <400> 1 atgtggccct cagatatttg gaaggcgcat gcagggtcat cacagtcaga gggatcagca 60 ctggatatgg agagaaacgg atgcaaccat aactgttgcc catctcctct ccaaccaatt 120 gcatcaggtg gtcagcactc tgaaagcagc gctgcatatt tttcttggcc aacatctact 180 ctaatgcacg ggtctgccga aggccgcgct aattactttg ggaacctaca gaagggtgtg 240 ttacctggac atcttggccg cttgccaaca gggcaaaggg ccaccacctt gcttgatttg 300 atgattataa gagcattcca cagcaagatc ctacgtcgct ttagtcttgg tacagcaata 360 ggctttcgaa tcaagaaggg tacattgact gatactcctg ccatccttgt ttttgttgct 420 cggaaggtgc acaggaagtg gctcagcact acacagtgcc ttccggctca ccttgaggga 480 ccggggggag tgtggtgtga tgtcgatgtt gttgaattct cttactatgg ggcaccagca 540 ccaactccaa aggaacaatt gtatgacgag cttgttgatg gtctgcgtgg tagtgatcca 600 tctatcggct ctggttcaca ggtagctagc cttgaaacat atggtacatt gggtgccatt 660 gtgaagagtc gaactggtaa taagcaagta ggcttcctga caaacaggca tgttgcggtt 720 gacctggatt accctaacca gaagatgttc catcccttgc ccccgaatct tgggcctggt 780 gtatacctag gtgctgttga gcgagcaaca tcatttatca cagatgatgt ttggtatggt 840 atctatgcgg gaacaaatcc agagacattt gtcagagctg atggtgcatt tataccgttt 900 gctgatgatt atgacataac tagtgttaat acctcagtca aaggagttgg agtcataggt 960 gatgtaaagg caatcgatct acaatcccca attagcagtc tcatcggaag acaggttgtc 1020 aaagttggaa gaagctctgg tttgacgaca gggaccgttg tggcatacgc tcttgaatac 1080 aatgatgaga agggcatatg cttcttcaca gactttcttg ttgttgggga gaaccaacaa 1140 acatttgatc ttgaagggga tagtggaagc cttataatct taacaggaaa agatggcgaa 1200 aagccacagc ccatagggat tatatggggt ggcacagcca atcgggggag gttgaagctc 1260 aaaagtggcc agggtcctga gaactggaca agtggggttg atctcggacg gcttctggat 1320 ctattggagc ttgatctaat cactacaagt gaaggactac aagaggccct agaggaacaa 1380 cgaattattc tagctgctgc tgcagcagca gctaattcaa ctgctgggga atcgtcacct 1440 gttgctggtc ctcaagaaaa tgagaaagtt gacaagattt acgagcctct tggaatcaac 1500 atccaacagc ttccaagaga caattcagcc acctccacag gacccgatga gttccatgtc 1560 gacacggtgg aaggcgtcac caacgtcgag gagcgccaat tcctcattgg catgtctcca 1620 gcacgcgaag gccaagaagc caatggcgac ctgaacaacc ttgcggagct agagaattca 1680 cctgaagaca tttgcttctc cctgcatctg ggcgagaggg agcccaagcg actccgctcc 1740 gattcgtcgc tggacataga cttgcagaaa tga 1773 <210> 2 <211> 590 <212> PRT <213> Oryza sativa <400> 2 Met Trp Pro Ser Asp Ile Trp Lys Ala His Ala Gly Ser Ser Gln Ser 1 5 10 15 Glu Gly Ser Ala Leu Asp Met Glu Arg Asn Gly Cys Asn His Asn Cys 20 25 30 Cys Pro Ser Pro Leu Gln Pro Ile Ala Ser Gly Gly Gln His Ser Glu 35 40 45 Ser Ser Ala Ala Tyr Phe Ser Trp Pro Thr Ser Thr Leu Met His Gly 50 55 60 Ser Ala Glu Gly Arg Ala Asn Tyr Phe Gly Asn Leu Gln Lys Gly Val 65 70 75 80 Leu Pro Gly His Leu Gly Arg Leu Pro Thr Gly Gln Arg Ala Thr Thr 85 90 95 Leu Leu Asp Leu Met Ile Ile Arg Ala Phe His Ser Lys Ile Leu Arg 100 105 110 Arg Phe Ser Leu Gly Thr Ala Ile Gly Phe Arg Ile Lys Lys Gly Thr 115 120 125 Leu Thr Asp Thr Pro Ala Ile Leu Val Phe Val Ala Arg Lys Val His 130 135 140 Arg Lys Trp Leu Ser Thr Thr Gln Cys Leu Pro Ala His Leu Glu Gly 145 150 155 160 Pro Gly Gly Val Trp Cys Asp Val Asp Val Val Glu Phe Ser Tyr Tyr 165 170 175 Gly Ala Pro Ala Pro Thr Pro Lys Glu Gln Leu Tyr Asp Glu Leu Val 180 185 190 Asp Gly Leu Arg Gly Ser Asp Pro Ser Ile Gly Ser Gly Ser Gln Val 195 200 205 Ala Ser Leu Glu Thr Tyr Gly Thr Leu Gly Ala Ile Val Lys Ser Arg 210 215 220 Thr Gly Asn Lys Gln Val Gly Phe Leu Thr Asn Arg His Val Ala Val 225 230 235 240 Asp Leu Asp Tyr Pro Asn Gln Lys Met Phe His Pro Leu Pro Pro Asn 245 250 255 Leu Gly Pro Gly Val Tyr Leu Gly Ala Val Glu Arg Ala Thr Ser Phe 260 265 270 Ile Thr Asp Asp Val Trp Tyr Gly Ile Tyr Ala Gly Thr Asn Pro Glu 275 280 285 Thr Phe Val Arg Ala Asp Gly Ala Phe Ile Pro Phe Ala Asp Asp Tyr 290 295 300 Asp Ile Thr Ser Val Asn Thr Ser Val Lys Gly Val Gly Val Ile Gly 305 310 315 320 Asp Val Lys Ala Ile Asp Leu Gln Ser Pro Ile Ser Ser Leu Ile Gly 325 330 335 Arg Gln Val Val Lys Val Gly Arg Ser Ser Gly Leu Thr Thr Gly Thr 340 345 350 Val Val Ala Tyr Ala Leu Glu Tyr Asn Asp Glu Lys Gly Ile Cys Phe 355 360 365 Phe Thr Asp Phe Leu Val Val Gly Glu Asn Gln Gln Thr Phe Asp Leu 370 375 380 Glu Gly Asp Ser Gly Ser Leu Ile Ile Leu Thr Gly Lys Asp Gly Glu 385 390 395 400 Lys Pro Gln Pro Ile Gly Ile Ile Trp Gly Gly Thr Ala Asn Arg Gly 405 410 415 Arg Leu Lys Leu Lys Ser Gly Gln Gly Pro Glu Asn Trp Thr Ser Gly 420 425 430 Val Asp Leu Gly Arg Leu Leu Asp Leu Leu Glu Leu Asp Leu Ile Thr 435 440 445 Thr Ser Glu Gly Leu Gln Glu Ala Leu Glu Glu Gln Arg Ile Ile Leu 450 455 460 Ala Ala Ala Ala Ala Ala Ala Asn Ser Thr Ala Gly Glu Ser Ser Pro 465 470 475 480 Val Ala Gly Pro Gln Glu Asn Glu Lys Val Asp Lys Ile Tyr Glu Pro 485 490 495 Leu Gly Ile Asn Ile Gln Gln Leu Pro Arg Asp Asn Ser Ala Thr Ser 500 505 510 Thr Gly Pro Asp Glu Phe His Val Asp Thr Val Glu Gly Val Thr Asn 515 520 525 Val Glu Glu Arg Gln Phe Leu Ile Gly Met Ser Pro Ala Arg Glu Gly 530 535 540 Gln Glu Ala Asn Gly Asp Leu Asn Asn Leu Ala Glu Leu Glu Asn Ser 545 550 555 560 Pro Glu Asp Ile Cys Phe Ser Leu His Leu Gly Glu Arg Glu Pro Lys 565 570 575 Arg Leu Arg Ser Asp Ser Ser Leu Asp Ile Asp Leu Gln Lys 580 585 590 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ggggtaccct tgcataatgt ggccctcag 29 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gctctagaca gcacacagct tcatttca 28 <110> Chungbuk National University Industry-Academic Cooperation Foundation <120> OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof <130> PN20104 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 1773 <212> DNA <213> Oryza sativa <400> 1 atgtggccct cagatatttg gaaggcgcat gcagggtcat cacagtcaga gggatcagca 60 ctggatatgg agagaaacgg atgcaaccat aactgttgcc catctcctct ccaaccaatt 120 gcatcaggtg gtcagcactc tgaaagcagc gctgcatatt tttcttggcc aacatctact 180 ctaatgcacg ggtctgccga aggccgcgct aattactttg ggaacctaca gaagggtgtg 240 ttacctggac atcttggccg cttgccaaca gggcaaaggg ccaccacctt gcttgatttg 300 atgattataa gagcattcca cagcaagatc ctacgtcgct ttagtcttgg tacagcaata 360 ggctttcgaa tcaagaaggg tacattgact gatactcctg ccatccttgt ttttgttgct 420 cggaaggtgc acaggaagtg gctcagcact acacagtgcc ttccggctca ccttgaggga 480 ccggggggag tgtggtgtga tgtcgatgtt gttgaattct cttactatgg ggcaccagca 540 ccaactccaa aggaacaatt gtatgacgag cttgttgatg gtctgcgtgg tagtgatcca 600 tctatcggct ctggttcaca ggtagctagc cttgaaacat atggtacatt gggtgccatt 660 gtgaagagtc gaactggtaa taagcaagta ggcttcctga caaacaggca tgttgcggtt 720 gacctggatt accctaacca gaagatgttc catcccttgc ccccgaatct tgggcctggt 780 gtatacctag gtgctgttga gcgagcaaca tcatttatca cagatgatgt ttggtatggt 840 atctatgcgg gaacaaatcc agagacattt gtcagagctg atggtgcatt tataccgttt 900 gctgatgatt atgacataac tagtgttaat acctcagtca aaggagttgg agtcataggt 960 gatgtaaagg caatcgatct acaatcccca attagcagtc tcatcggaag acaggttgtc 1020 aaagttggaa gaagctctgg tttgacgaca gggaccgttg tggcatacgc tcttgaatac 1080 aatgatgaga agggcatatg cttcttcaca gactttcttg ttgttgggga gaaccaacaa 1140 acatttgatc ttgaagggga tagtggaagc cttataatct taacaggaaa agatggcgaa 1200 aagccacagc ccatagggat tatatggggt ggcacagcca atcgggggag gttgaagctc 1260 aaaagtggcc agggtcctga gaactggaca agtggggttg atctcggacg gcttctggat 1320 ctattggagc ttgatctaat cactacaagt gaaggactac aagaggccct agaggaacaa 1380 cgaattattc tagctgctgc tgcagcagca gctaattcaa ctgctgggga atcgtcacct 1440 gttgctggtc ctcaagaaaa tgagaaagtt gacaagattt acgagcctct tggaatcaac 1500 atccaacagc ttccaagaga caattcagcc acctccacag gacccgatga gttccatgtc 1560 gacacggtgg aaggcgtcac caacgtcgag gagcgccaat tcctcattgg catgtctcca 1620 gcacgcgaag gccaagaagc caatggcgac ctgaacaacc ttgcggagct agagaattca 1680 cctgaagaca tttgcttctc cctgcatctg ggcgagaggg agcccaagcg actccgctcc 1740 gattcgtcgc tggacataga cttgcagaaa tga 1773 <210> 2 <211> 590 <212> PRT <213> Oryza sativa <400> 2 Met Trp Pro Ser Asp Ile Trp Lys Ala His Ala Gly Ser Ser Gln Ser 1 5 10 15 Glu Gly Ser Ala Leu Asp Met Glu Arg Asn Gly Cys Asn His Asn Cys 20 25 30 Cys Pro Ser Pro Leu Gln Pro Ile Ala Ser Gly Gly Gln His Ser Glu 35 40 45 Ser Ser Ala Ala Tyr Phe Ser Trp Pro Thr Ser Thr Leu Met His Gly 50 55 60 Ser Ala Glu Gly Arg Ala Asn Tyr Phe Gly Asn Leu Gln Lys Gly Val 65 70 75 80 Leu Pro Gly His Leu Gly Arg Leu Pro Thr Gly Gln Arg Ala Thr Thr 85 90 95 Leu Leu Asp Leu Met Ile Ile Arg Ala Phe His Ser Lys Ile Leu Arg 100 105 110 Arg Phe Ser Leu Gly Thr Ala Ile Gly Phe Arg Ile Lys Lys Gly Thr 115 120 125 Leu Thr Asp Thr Pro Ala Ile Leu Val Phe Val Ala Arg Lys Val His 130 135 140 Arg Lys Trp Leu Ser Thr Thr Gln Cys Leu Pro Ala His Leu Glu Gly 145 150 155 160 Pro Gly Gly Val Trp Cys Asp Val Asp Val Val Glu Phe Ser Tyr Tyr 165 170 175 Gly Ala Pro Ala Pro Thr Pro Lys Glu Gln Leu Tyr Asp Glu Leu Val 180 185 190 Asp Gly Leu Arg Gly Ser Asp Pro Ser Ile Gly Ser Gly Ser Gln Val 195 200 205 Ala Ser Leu Glu Thr Tyr Gly Thr Leu Gly Ala Ile Val Lys Ser Arg 210 215 220 Thr Gly Asn Lys Gln Val Gly Phe Leu Thr Asn Arg His Val Ala Val 225 230 235 240 Asp Leu Asp Tyr Pro Asn Gln Lys Met Phe His Pro Leu Pro Pro Asn 245 250 255 Leu Gly Pro Gly Val Tyr Leu Gly Ala Val Glu Arg Ala Thr Ser Phe 260 265 270 Ile Thr Asp Asp Val Trp Tyr Gly Ile Tyr Ala Gly Thr Asn Pro Glu 275 280 285 Thr Phe Val Arg Ala Asp Gly Ala Phe Ile Pro Phe Ala Asp Asp Tyr 290 295 300 Asp Ile Thr Ser Val Asn Thr Ser Val Lys Gly Val Gly Val Ile Gly 305 310 315 320 Asp Val Lys Ala Ile Asp Leu Gln Ser Pro Ile Ser Ser Leu Ile Gly 325 330 335 Arg Gln Val Val Lys Val Gly Arg Ser Ser Gly Leu Thr Thr Gly Thr 340 345 350 Val Val Ala Tyr Ala Leu Glu Tyr Asn Asp Glu Lys Gly Ile Cys Phe 355 360 365 Phe Thr Asp Phe Leu Val Val Gly Glu Asn Gln Gln Thr Phe Asp Leu 370 375 380 Glu Gly Asp Ser Gly Ser Leu Ile Ile Leu Thr Gly Lys Asp Gly Glu 385 390 395 400 Lys Pro Gln Pro Ile Gly Ile Ile Trp Gly Gly Thr Ala Asn Arg Gly 405 410 415 Arg Leu Lys Leu Lys Ser Gly Gly Gly Pro Glu Asn Trp Thr Ser Gly 420 425 430 Val Asp Leu Gly Arg Leu Leu Asp Leu Leu Glu Leu Asp Leu Ile Thr 435 440 445 Thr Ser Glu Gly Leu Gln Glu Ala Leu Glu Glu Gln Arg Ile Ile Leu 450 455 460 Ala Ala Ala Ala Ala Ala Ala Asn Ser Thr Ala Gly Glu Ser Ser Pro 465 470 475 480 Val Ala Gly Pro Gln Glu Asn Glu Lys Val Asp Lys Ile Tyr Glu Pro 485 490 495 Leu Gly Ile Asn Ile Gln Gln Leu Pro Arg Asp Asn Ser Ala Thr Ser 500 505 510 Thr Gly Pro Asp Glu Phe His Val Asp Thr Val Glu Gly Val Thr Asn 515 520 525 Val Glu Glu Arg Gln Phe Leu Ile Gly Met Ser Pro Ala Arg Glu Gly 530 535 540 Gln Glu Ala Asn Gly Asp Leu Asn Asn Leu Ala Glu Leu Glu Asn Ser 545 550 555 560 Pro Glu Asp Ile Cys Phe Ser Leu His Leu Gly Glu Arg Glu Pro Lys 565 570 575 Arg Leu Arg Ser Asp Ser Ser Leu Asp Ile Asp Leu Gln Lys 580 585 590 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ggggtaccct tgcataatgt ggccctcag 29 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gctctagaca gcacacagct tcatttca 28
Claims (7)
상기 형질전환된 식물세포로부터 식물을 재분화하는 단계;를 포함하는 야생형에 비해 흰잎마름병 저항성이 증가된 형질전환 식물체의 제조방법.Transforming plant cells with a recombinant vector containing a gene encoding a rice-derived OsSP4 protein consisting of the amino acid sequence of SEQ ID NO: 2 to overexpress the OsSP4 gene in the transformed plant cells; and
Re-differentiation of plants from the transformed plant cells; Method for producing a transgenic plant with increased resistance to white leaf blight compared to the wild-type comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200058641A KR102424692B1 (en) | 2020-05-15 | 2020-05-15 | OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200058641A KR102424692B1 (en) | 2020-05-15 | 2020-05-15 | OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210141237A KR20210141237A (en) | 2021-11-23 |
KR102424692B1 true KR102424692B1 (en) | 2022-07-25 |
Family
ID=78695216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200058641A KR102424692B1 (en) | 2020-05-15 | 2020-05-15 | OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102424692B1 (en) |
-
2020
- 2020-05-15 KR KR1020200058641A patent/KR102424692B1/en active IP Right Grant
Non-Patent Citations (2)
Title |
---|
Emma L. Thomas 등. International Journal of Molecular Sciences. Vol. 19, No. 2, 페이지 1-12 (2018.02.24.) |
Ganbank Accession number BAH00188 (2008.12.04.) |
Also Published As
Publication number | Publication date |
---|---|
KR20210141237A (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102542508B1 (en) | α1-COP gene controlling abiotic stress of plant and uses thereof | |
KR101812409B1 (en) | Mutation of LeBZR1 or LeBZR2 gene inducing biomass increase of plant and uses thereof | |
KR100990118B1 (en) | Use of OsHXK5 gene as glucose sensor | |
KR102424692B1 (en) | OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof | |
KR102424687B1 (en) | OsCP2 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof | |
CN103172716A (en) | Heat-resistant plant gene and application thereof | |
KR102231138B1 (en) | OsXCP2-5 gene from Oryza sativa for controlling salt stress tolerance of plant and uses thereof | |
KR20150061840A (en) | Method for producing transgenic plant with increased content of 20-hydroxyecdysone using CYP85 gene from Spinacia oleracea and the plant thereof | |
KR101754804B1 (en) | BrCP3 gene with improved resistance to plant disease and uses thereof | |
KR101104905B1 (en) | Salt-tolerance gene as selectable marker for plant transformation and uses thereof | |
KR102000465B1 (en) | Method of improving resistance of Bakanae disease | |
KR101028113B1 (en) | CaHB1 gene involved in growth enhancement, salt tolerance and senescence regulation of Capsicum annuum and uses thereof | |
KR102478476B1 (en) | LOC_Os09g04310 gene for controlling disease resistance of plant and uses thereof | |
KR102478475B1 (en) | LOC_Os08g26230 gene mutant for controlling disease resistance of plant and uses thereof | |
KR102231136B1 (en) | OsCP1 gene from Oryza sativa for controlling salt stress tolerance of plant and uses thereof | |
KR101955075B1 (en) | OsCYP71 Gene Enhancing Pathogen Resistance of Plant and Uses Thereof | |
KR101785101B1 (en) | OsDWD1 gene and use thereof | |
KR101874192B1 (en) | OsTat1 gene enhancing plant disease and uses thereof | |
KR102385599B1 (en) | Cytochrome P450 gene from Spinacia oleracea increasing 20-hydroxyecdysone content of plant and uses thereof | |
KR102646071B1 (en) | RsMYB1 or RsTT8 transcript with intron retention from radish and uses thereof | |
KR101825219B1 (en) | NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof | |
KR101618266B1 (en) | Rice derived OsPP2CTS gene and transformant using OsPP2CTS-overexpression vector | |
KR20160025829A (en) | AvMaSp gene increasing specific amino acid content from Araneus ventricosus and uses thereof | |
KR101261511B1 (en) | IbEF1 gene from sweet potato and uses thereof | |
KR100990119B1 (en) | Use of OsHXK6 gene as glucose sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |