[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102417431B1 - Substrate processing device and method with inhibiting void or seam - Google Patents

Substrate processing device and method with inhibiting void or seam Download PDF

Info

Publication number
KR102417431B1
KR102417431B1 KR1020210084094A KR20210084094A KR102417431B1 KR 102417431 B1 KR102417431 B1 KR 102417431B1 KR 1020210084094 A KR1020210084094 A KR 1020210084094A KR 20210084094 A KR20210084094 A KR 20210084094A KR 102417431 B1 KR102417431 B1 KR 102417431B1
Authority
KR
South Korea
Prior art keywords
inhibitor
film
deposition
region
substrate
Prior art date
Application number
KR1020210084094A
Other languages
Korean (ko)
Inventor
이백주
황재순
서동원
Original Assignee
주식회사 한화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화 filed Critical 주식회사 한화
Priority to KR1020210084094A priority Critical patent/KR102417431B1/en
Priority to CN202110888229.3A priority patent/CN115595556B/en
Application granted granted Critical
Publication of KR102417431B1 publication Critical patent/KR102417431B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

According to the present invention, a device for processing a substrate can comprise: a substrate having steps; and a chamber processing the substrate therein. The steps can be filled by deposition of a film, and an inhibitor controlling growing speed of the film can be supplied to the device. According to the present invention, the method for processing a substrate comprises: a steps step of enabling the steps having an inner curve to be generated on the substrate; a deposition step of enabling the film to be deposited on the steps through an atomic layer deposition (ALD) or a plasma enhanced atomic layer deposition (PEALD) method; and an inhibitor step of enabling the inhibitor controlling the growing speed of the film to be supplied.

Description

보이드 또는 심의 발생을 억제하는 기판 처리 장치 및 방법{Substrate processing device and method with inhibiting void or seam}Substrate processing device and method with inhibiting void or seam

본 발명은 기판 처리 공정에서 생성되는 보이드 또는 심의 발생을 억제하는 기판 처리 장치 및 방법에 관한 것이다.The present invention relates to a substrate processing apparatus and method for suppressing generation of voids or seams generated in a substrate processing process.

최근들어 반도체 공정에서 박막 증착에 ALD(Atomic Layer Deposition) 방식이 많이 이용되고 있다. 특히 플라즈마를 이용한 PEALD(Plasma Enhanced Atomic Layer Deposition) 방식은 비교적 낮은 온도에서도 이용 가능하기에 더욱 주목받고 있다.In recent years, an Atomic Layer Deposition (ALD) method has been widely used for thin film deposition in a semiconductor process. In particular, the PEALD (Plasma Enhanced Atomic Layer Deposition) method using plasma is receiving more attention because it can be used even at a relatively low temperature.

ALD 또는 PEALD를 포함하는 기판 처리 공정에서 반도체 기판에는 단차가 발생할 수 있고, 반도체 소자의 선폭과 간격이 점차 미세해짐에 따라 갭의 내부의 보이드(void) 또는 심(seam)이 발생할 수 있다. In a substrate processing process including ALD or PEALD, a step may occur in a semiconductor substrate, and as the line width and spacing of semiconductor devices gradually become finer, voids or seams may be generated in the gap.

따라서, 본 발명은 보이드 또는 심의 발생을 억제하는 기판 처리 장치 및 방법에 관한 것이다.Accordingly, the present invention relates to a substrate processing apparatus and method for suppressing the occurrence of voids or seams.

본 발명의 기판 처리 장치는 단차가 형성된 기판, 내부에서 기판을 처리하는 챔버를 포함할 수 있고, 단차는 막이 증착되어 채워질 수 있으며, 막의 성장 속도를 조절하는 인히비터가 공급될 수 있다. The substrate processing apparatus of the present invention may include a substrate having a step formed therein, a chamber for processing the substrate therein, the step may be filled by depositing a film, and an inhibitor for controlling the growth rate of the film may be supplied.

본 발명의 기판 처리 방법은 내부에 굴곡이 형성되는 단차가 기판에 생성되는 단차 단계, 단차에 ALD(Atomic Layer Deposition) 또는 PEALD(Plasma Enhanced Atomic Layer Deposition) 방식으로 막이 증착되는 증착 단계, 막의 성장 속도를 조절하는 인히비터가 공급되는 인히비터 단계를 포함할 수 있다. In the substrate processing method of the present invention, a step step in which a step in which a curve is formed is generated on the substrate, a deposition step in which a film is deposited by ALD (Atomic Layer Deposition) or PEALD (Plasma Enhanced Atomic Layer Deposition) method on the step, the growth rate of the film It may include an inhibitor step in which an inhibitor for controlling the .

인히비터 막 성장 억제 성능은 복수의 혼합 인히비터 처리로 인해 강화될 수 있다. 인히비터는 제1 인히비터와 제2 인히비터를 포함할 수 있고, 인히비터는 제1 인히비터와 제2 인히비터의 혼합물로 구성될 수 있으며, 제1 인히비터와 제2 인히비터의 혼합 비율에 따라 인히비터의 성능이 달라질 수 있다. The inhibitor film growth inhibition performance can be enhanced due to a plurality of mixed inhibitor treatments. The inhibitor may include a first inhibitor and a second inhibitor, and the inhibitor may be composed of a mixture of the first inhibitor and the second inhibitor, and a mixing ratio of the first inhibitor and the second inhibitor. Depending on this, the performance of the inhibitor may vary.

즉, 제1 인히비터에 대한 제2 인히비터의 비율을 혼합비(제2 인히비터의 양/제1 인히비터의 양)라 할 수 있고, 혼합비가 증가할수록 막 성장 속도가 저하되는 경향을 가질 수 있다. That is, the ratio of the second inhibitor to the first inhibitor can be referred to as the mixing ratio (the amount of the second inhibitor/the amount of the first inhibitor), and as the mixing ratio increases, the film growth rate tends to decrease. have.

단차의 상부의 열린 영역을 제1 영역, 단차의 측부에 굴곡이 형성된 영역을 제2 영역, 단차의 하부의 막힌 영역을 제4 영역이라 할 수 있다. 단차의 측부 중 굴곡이 형성되지 않은 영역을 제3 영역이라 할 수 있다. 단차의 구조상 제1 영역, 제2 영역, 제3 영역, 제4 영역의 순서대로 형성될 수 있다. An open area above the step may be referred to as a first area, an area in which a curve is formed on the side of the step may be referred to as a second area, and a closed area under the step may be referred to as a fourth area. A region in which no curvature is formed among the sides of the step may be referred to as a third region. Due to the stepped structure, the first region, the second region, the third region, and the fourth region may be sequentially formed.

인히비터의 공급원으로부터의 거리는 제1 영역, 제2 영역, 제3 영역, 제4 영역의 순서이지만, 제2 영역의 굴곡 구조에 의해서, 제2 영역의 막에 대한 인히비터의 증착은 제3 영역 및 제4 영역보다 낮을 수 있다. The distance from the source of the inhibitor is in the order of the first region, the second region, the third region, and the fourth region, but due to the curved structure of the second region, the deposition of the inhibitor on the film of the second region is the third region. and lower than the fourth region.

인히비터의 증착은 높은 것부터 제1 영역, 제3 영역, 제4 영역, 제2 영역의 순서일 수 있고, 증착막의 성장 속도는 빠른 것부터 제2 영역, 제4 영역, 제3 영역, 제1 영역일 수 있다.Deposition of the inhibitor may be in the order of the first region, the third region, the fourth region, and the second region from the highest, and the growth rate of the deposition film is from the highest to the second region, the fourth region, the third region, and the first region. can be

도 1은 본 발명의 포켓부 및 디스크부를 개략적으로 도시한 평면도이다.
도 2는 본 발명의 증착 단계 및 인히비터 단계를 개략적으로 도시한 설명도이다.
도 3은 본 발명의 단차를 도시한 설명도이고, 도 3의 (a)는 본 발명의 단차 내 굴곡이 형성되지 않은 경우이고, (b)는 본 발명의 단차 내 굴곡이 형성된 경우이며, (c)는 제2 인히비터에 대한 제1 인히비터의 혼합비가 0.83인 경우이고, (d)는 제2 인히비터에 대한 제1 인히비터의 혼합비가 0.67인 경우이다.
도 4는 본 발명의 막에 질화 반응을 도시한 것이다.
도 5는 본 발명의 인히비터의 혼합비에 따른 증착률을 나타낸 그래프이다.
1 is a plan view schematically showing a pocket portion and a disk portion of the present invention.
2 is an explanatory diagram schematically illustrating a deposition step and an inhibitor step of the present invention.
Figure 3 is an explanatory view showing the step difference of the present invention, Figure 3 (a) is a case where the curvature within the step of the present invention is not formed, (b) is a case where the curvature within the step difference of the present invention is formed, ( In c), the mixing ratio of the first inhibitor to the second inhibitor is 0.83, and in (d), the mixing ratio of the first inhibitor to the second inhibitor is 0.67.
Figure 4 shows the nitridation reaction of the membrane of the present invention.
5 is a graph showing the deposition rate according to the mixing ratio of the inhibitor of the present invention.

기판(W)에 회로 패턴을 새기는 것은 필연적으로 기판에 단차를 생성할 수 있고, 단차가 형성된 기판에 박막을 증착하는 경우, 단차(300) 내부에 보이드 또는 심의 불량이 발생할 수 있다.Engraving a circuit pattern on the substrate W may inevitably create a step difference on the substrate, and when a thin film is deposited on a substrate having a step difference, a void or defective seam may occur inside the step 300 .

반도체의 발전과 함께 더욱 반도체 소자는 고집적화되고 이로 인해 선폭과 간격이 점차 미세화되며, 단차(300)는 더욱 고종횡비(high aspect ratio) 패턴을 형성할 수 있다. 단차(300)가 점차 고종횡비 패턴으로 갈수록 단차(300) 내부의 보이드 또는 심의 발생은 더욱 큰 문제가 될 수 있다.With the development of semiconductors, semiconductor devices become more highly integrated, thereby gradually reducing line width and spacing, and the step 300 may form a higher aspect ratio pattern. As the step 300 gradually becomes a high aspect ratio pattern, the occurrence of voids or seams inside the step 300 may become a bigger problem.

본 발명의, 단차(300)가 형성된 기판에 박막을 형성하는 방법으로 ALD(Atomic Layer Deposition) 또는 PEALD(Plasma Enhanced Atomic Layer Deposition)가 이용될 수 있다. Atomic Layer Deposition (ALD) or Plasma Enhanced Atomic Layer Deposition (PEALD) may be used as a method of forming a thin film on the substrate having the step 300 of the present invention.

일 실시 예로, 단차(300) 형성후 박막으로 채우는 대상은 기판에 형성되는 소자간의 절연을 위해 마련되는 소자 분리막일 수 있다. 소자간의 절연을 위한 벽 생성을 위해 단차(300)를 형성한 후, 절연막으로 단차(300)를 채울 수 있고, 본 발명은 절연막 형성시 보이드 또는 심없이 단차(300)를 채우는 것이 목적일 수 있다. 따라서, 본 발명의 ALD 또는 PEALD에 의한 증착막은 SiO2와 절연막일 수 있고, 단차(300)는 트렌치(trench)일 수 있다. For example, after the step 300 is formed, the object to be filled with the thin film may be a device isolation layer provided to insulate devices formed on the substrate. After the step 300 is formed to create a wall for insulation between devices, the step 300 can be filled with an insulating film, and the present invention can fill the step 300 without a void or a seam when the insulating film is formed. . Accordingly, the deposited film by ALD or PEALD of the present invention may be an insulating film with SiO2, and the step 300 may be a trench.

본 발명은 단차(300)에 막을 증착하기 위해 공간 분할 방식을 이용할 수 있다. 본 발명의 기판 처리 장치는 디스크부(100), 포켓부(200)를 포함할 수 있고, 포켓부(200)에는 하나의 기판이 안착될 수 있으며, 디스크부(100)에는 복수의 포켓부(200)가 마련될 수 있다. In the present invention, a space division method may be used to deposit a film on the step 300 . The substrate processing apparatus of the present invention may include a disk portion 100 and a pocket portion 200, one substrate may be seated in the pocket portion 200, and a plurality of pocket portions ( 200) may be provided.

디스크부(100)와 포켓부(200) 구조의 일 실시 예로, 디스크부(100)가 원형인 경우 디스크부(100) 원주상에 중심을 둔 복수의 기판이 디스크부(100) 원주를 따라 일정 간격으로 배치될 수 있다. ALD 방식으로 증착막을 형성하는 경우, 디스크부(100)의 회전에 따라 기판은 회전될 수 있고, 정해진 순서에 따라 기판은 이동될 수 있다. 따라서, 기판은 ALD 공정 순서에 따라 소스 가스, 퍼지 가스, 또는 반응 가스의 순차적으로 노출될 수 있다. As an example of the structure of the disk part 100 and the pocket part 200 , when the disk part 100 is circular, a plurality of substrates centered on the circumference of the disk part 100 are constant along the circumference of the disk part 100 . may be spaced apart. When the deposition film is formed by the ALD method, the substrate may be rotated according to the rotation of the disk unit 100 , and the substrate may be moved according to a predetermined order. Accordingly, the substrate may be sequentially exposed to the source gas, the purge gas, or the reactant gas according to the ALD process sequence.

공간 분할 방식의 막 증착은 디스크 회전 등의 이유로 인해 공정 가스의 흐름이 챔버 측벽쪽으로 형성될 수 있고, 이로 인해 증착막이 고르게 형성되지 않을 수 있다. In the space division type film deposition, the flow of the process gas may be formed toward the sidewall of the chamber due to disk rotation or the like, and thus the deposition film may not be formed evenly.

따라서, 본 발명의 공간 분할 방식은 디스크부(100) 중심의 회전에 더해 포켓부(200)가 포켓부(200) 중심으로 자전하는 회전이 더해질 수 있다. 즉, 기판 공정중 포켓부(200)와 디스크부(100)는 각각의 중심으로 기준으로 회전할 수 있고, 각 기판은 자신이 안착된 포켓부(200)를 중심을 기준으로 자전할 수 있으며, 디스크부(100)의 중심을 기준으로 공전할 수 있다. 디스크부(100)와 포켓부(200)는 서로 독립적으로 회전 속도가 조절될 수 있고, 각각의 포켓부(200)는 이웃한 포켓부(200)와는 다른 공정을 기판에 수행할 수 있다. Therefore, in the space division method of the present invention, in addition to the rotation of the center of the disk unit 100 , the rotation of the pocket unit 200 around the pocket unit 200 may be added. That is, during the substrate process, the pocket part 200 and the disk part 100 can rotate with respect to their respective centers, and each substrate can rotate with respect to the center of the pocket part 200 on which it is seated, It may revolve around the center of the disk unit 100 . The rotation speed of the disk unit 100 and the pocket unit 200 may be adjusted independently of each other, and each pocket unit 200 may perform a process different from that of the adjacent pocket unit 200 on the substrate.

따라서, 디스크부(100) 및 포켓부(200)의 이중 회전으로 인해 기판에 증착되는 막의 균일도는 향상될 수 있다.Accordingly, the uniformity of the film deposited on the substrate may be improved due to the double rotation of the disk unit 100 and the pocket unit 200 .

단차(300)에 막을 증착하는 경우, 단차(300) 내부에는 굴곡이 형성될 수 있고, 고종횡비 패턴일수록 굴곡 형성으로 인한 영향이 더 커질 수 있다. 단차(300) 내부를 증착막으로 채우는 경우, 굴곡으로 인해 단차(300)의 내부에 보이드(void) 또는 심(seam)이 형성될 수 있다. In the case of depositing a film on the step 300 , a curve may be formed inside the step 300 , and the higher the aspect ratio pattern, the greater the effect of the curve formation may be. When the inside of the step 300 is filled with the deposition film, a void or a seam may be formed in the inside of the step 300 due to the curvature.

본 발명은 단차(300) 내부의 보이드 또는 심의 형성을 억제하기 위한 인히비터(inhibitor) 처리 공정이 추가될 수 있다. 인히비터 공정은 복수의 ALD 증착막 각 사이클의 중간에 행해질 수 있다. 예를 들어, 제1 증착막 형성, 인히비터 처리,및 제2 증착막 형성의 순서로 기판 처리가 이루어질 수 있다. In the present invention, an inhibitor treatment process for suppressing the formation of voids or seams inside the step 300 may be added. The inhibitor process may be performed in the middle of each cycle of the plurality of ALD deposition layers. For example, the substrate processing may be performed in the order of forming the first deposition layer, the inhibitor processing, and the second deposition layer.

인히비터 처리 정도에 따라 증착막의 막 성장 속도가 달라질 수 있고, 인히비터 처리가 많은 영역은 막 성장 속도가 느릴 수 있다. 인히비터는 단차(300)에 증착하고자하는 막의 표면에 형성되어 다음 증착되는 막의 성장 속도를 조절할 수 있다. The film growth rate of the deposited film may vary depending on the degree of inhibitor treatment, and the film growth rate may be slow in a region having a lot of inhibitor treatment. The inhibitor is formed on the surface of the film to be deposited on the step 300 to control the growth rate of the next deposited film.

단차(300)의 수직 방향을 기준으로 단차의 상부(310), 측부(320), 하부(330)로 단차를 분별할 수 있고, 단차(300)의 단면은 'ㄷ'자와 유사한 형상일 수 있으다. 단차 상부(310)는 단차(300)의 입구 또는 출구일 수 있고, 단차 하부(330)는 단차가 막힌 기저부일 수 있다. Based on the vertical direction of the step 300, the step can be divided into the upper part 310, the side part 320, and the lower part 330 of the step difference, and the cross section of the step 300 may have a shape similar to a 'C' shape. All. The stepped upper portion 310 may be an inlet or an outlet of the stepped 300 , and the stepped lower portion 330 may be a blocked base.

단차(300)에 증착막이 형성되는 경우, 단차의 상부(310), 측부(320), 또는 하부(330)는 동시에 막이 형성될 수 있고, 단차의 상부(310)가 측부(320) 또는 하부(330)보다 먼저 막으로 채워지는 오버행(overhamg) 현상 등이 발생하는 경우, 단차 측부(320) 내부의 공간에 보이드 또는 심이 발생할 수 있다. When the deposition film is formed on the step 300, a film may be formed on the upper part 310, the side part 320, or the lower part 330 of the step, and the upper part 310 of the step is the side part 320 or the lower part ( If an overhamg phenomenon, etc., which is filled with a film before 330 , occurs, voids or seams may occur in the space inside the stepped side portion 320 .

단차 상부(310)는 단차 측부(320) 또는 하부(330)보다 느리게 막이 성장할 필요가 있다. 따라서, 각 증착막 형성후, 다음 증착막 형성전에 단차에 인히비터 처리를 함으로써 막의 성장 속도를 조절한다면 단차에 보이드 또는 심없이 단차를 채울 수 있다. The stepped upper portion 310 needs to grow more slowly than the stepped side portion 320 or the lower portion 330 . Therefore, if the growth rate of the film is controlled by applying an inhibitor treatment to the step after each deposition layer is formed and before forming the next deposition layer, the step can be filled without voids or seams.

ALD 막 증착시, 기판에 전구체(소스 가스), 반응 가스를 순서대로 공급하여 소스 가스와 반응 가스의 화학 반응으로 목표로하는 증착막이 형성될 수 있고, 소스 가스 또는 반응 가스의 공급후 다음 가스 공급을 위한 퍼지의 역할로 퍼지 가스가 공급될 수 있다. 퍼지 가스는 소스 가스 와 반응 가스의 공급 사이에 간헐적으로 공급되거나, 공정 내내 연속적으로 공급될 수 있다. When depositing an ALD film, a precursor (source gas) and a reactive gas are sequentially supplied to the substrate to form a target deposition film through a chemical reaction between the source gas and the reactive gas, and the next gas is supplied after supplying the source gas or the reactive gas A purge gas may be supplied as a purge for the . The purge gas may be supplied intermittently between the supply of the source gas and the reactant gas, or may be supplied continuously throughout the process.

즉, ALD 하나의 막 층은 소스 가스, 퍼지 가스, 반응 가스, 퍼지 가스의 공급으로 형성될 수 있고, 인히비터는 각 증차막 형성 공정 사이에 단차(300)에 공급될 수 있다. That is, one layer of ALD may be formed by supplying a source gas, a purge gas, a reaction gas, and a purge gas, and an inhibitor may be supplied to the step 300 between each incremental layer forming process.

단차(300)에 증착되는 ALD 막의 일 실시 예는, SiO2 산화막일 수 있고, 전구체(precursor)는 아미노 실란 전구체(diisoprophylaminosilane, DIPAS), 반응 가스는 O2, 퍼지 가스는 N2일 수 있다. 반응 가스는 He이 혼합되는 경우, O2/He의 가스 유량이 2:3 비율로 공급될 수 있다. An embodiment of the ALD film deposited on the step 300 may be a SiO2 oxide film, the precursor may be an amino silane precursor (diisoprophylaminosilane, DIPAS), the reactive gas may be O2, and the purge gas may be N2. When the reaction gas is mixed with He, a gas flow rate of O2/He may be supplied in a 2:3 ratio.

인히비터는 증착막의 표면에 처리되어 이어지는 증착막의 성장 속도를 느리게하는 것이면 충분할 수 있다. 일 실시 예는, 증착막이 SiO2인 경우, 인히비터는 N2일 수 있고, Si-O에 N이 처리되는 경우, 증착막에 질소가 표면 처리되어 Si-O-N 구조가 형성될 수 있다. The inhibitor may be sufficient as long as the surface of the deposited film is treated to slow the growth rate of the subsequent deposited film. In one embodiment, when the deposited film is SiO2, the inhibitor may be N2, and when N is treated with Si-O, nitrogen is surface-treated on the deposited film to form a Si-O-N structure.

증착막에 처리된 표면 질소의 양에 따라 이어지는 막 성장 속도가 달라질 수 있다. 이는 ALD 형성시 막의 형성에 필요한 핵 생성(nucleation)이 질소에 의해 저하된 것일 수 있다. The subsequent film growth rate may vary depending on the amount of surface nitrogen treated in the deposition film. This may indicate that nucleation required for film formation during ALD formation is lowered by nitrogen.

인히비터 막 성장 억제 성능은 복수의 혼합 인히비터 처리로 인해 강화될 수 있다. 인히비터는 제1 인히비터와 제2 인히비터를 포함할 수 있고, 인히비터는 제1 인히비터와 제2 인히비터의 혼합물로 구성될 수 있으며, 제1 인히비터와 제2 인히비터의 혼합 비율에 따라 인히비터의 성능이 달라질 수 있다. The inhibitor film growth inhibition performance can be enhanced due to a plurality of mixed inhibitor treatments. The inhibitor may include a first inhibitor and a second inhibitor, and the inhibitor may be composed of a mixture of the first inhibitor and the second inhibitor, and a mixing ratio of the first inhibitor and the second inhibitor. Depending on this, the performance of the inhibitor may vary.

제1 인히비터에 대한 제2 인히비터의 비율을 혼합비(제2 인히비터의 양/제1 인히비터의 양)라 할 수 있고, 혼합비가 증가할수록 막 성장 속도가 저하되는 경향을 가질 수 있다. The ratio of the second inhibitor to the first inhibitor may be referred to as a mixing ratio (the amount of the second inhibitor/the amount of the first inhibitor), and as the mixing ratio increases, the film growth rate may tend to decrease.

즉, 제1 인히비터는 증착막의 표면과 반응하여 다음 증착막의 성장 속도를 느리게할 수 있고, 제2 인히비터는 제1 인히비터의 막 성장 억제 효과를 더욱 활성화할 수 있다. 이러한 효과는 제1 인히비터의 양을 고정한채로 제2 인히비터의 양을 조절하여 혼합비를 다르게한 상태에서 증착되는 막의 성장을 확인함으로써 확인될 수 있다.That is, the first inhibitor may react with the surface of the deposited film to slow the growth rate of the next deposited film, and the second inhibitor may further activate the film growth inhibitory effect of the first inhibitor. This effect can be confirmed by checking the growth of the deposited film in a state where the mixing ratio is varied by adjusting the amount of the second inhibitor while the amount of the first inhibitor is fixed.

제1 인히비터는 제1 인히비터의 활성도를 높일 수 있고, 이는 제2 인히비터에 포함된 제2 화학종이 제1 인히비터에 포함된 제1 화학종을 더욱 활성화시킨 결과일 수 있다. The first inhibitor may increase the activity of the first inhibitor, which may be a result of the second chemical species included in the second inhibitor further activating the first chemical species included in the first inhibitor.

제1 인히비터 및 제2 인히비터는 단일 원소로 구성될 수 있고, 예를 들어, 제1 인히비터는 질소(N2), 제2 인히비터는 헬륨(He) 또는 네온(Ne)일 수 있다. 이 경우에는 제1 인히비터와 제1 화학종은 동일한 의미일 수 있고, 제2 인히비터는 제2 화학종과 동일한 의미일 수 있다. 그러나, 제1 인히비터와 제2 인히비터는 원소에 한정되지 않을 수 있다. The first inhibitor and the second inhibitor may be formed of a single element, for example, the first inhibitor may be nitrogen (N2), and the second inhibitor may be helium (He) or neon (Ne). In this case, the first inhibitor and the first chemical species may have the same meaning, and the second inhibitor may have the same meaning as the second chemical species. However, the first inhibitor and the second inhibitor may not be limited to elements.

제2 인히비터의 첨가는 제1 인히비터의 여기를 통해 증착막에 대한 제1 인히비터의 활성도를 높일 수 있고, 제2 인히비터의 첨가로 인해 증착막에 대한 제1 인히비터에 의한 막 성장 억제 효과가 더욱 상승할 수 있다. The addition of the second inhibitor may increase the activity of the first inhibitor with respect to the deposited film through excitation of the first inhibitor, and the addition of the second inhibitor may inhibit the film growth of the first inhibitor on the deposited film. may rise further.

따라서, 제2 인히비터의 첨가는 반응성 높은 제1 인히비터의 원자 또는 라디컬의 증가를 초래할 수 있다. 각 공정 가스의 공급이 플라즈마에 의해서 강화(plasma enhanced)되는 경우, 통상적인 PEALD 공정에 의한 것보다 반응성 높은 화학종의 밀도가 높아져 챔버 내의 압력이 더욱 증가할 수 있다. Accordingly, the addition of the second inhibitor may result in an increase in atoms or radicals of the highly reactive first inhibitor. When the supply of each process gas is plasma enhanced, the density of highly reactive species is higher than that by the conventional PEALD process, which can further increase the pressure in the chamber.

따라서 반응성 높은 화학종의 집단 밀도 증가는, SiO2박막 표면 N의 성장 속도를 증가시킬 수 있고, 핵 생성(nucleation) 사이클 효과가 증가할 수 있다. Therefore, increasing the population density of highly reactive species may increase the growth rate of the SiO 2 thin film surface N, and may increase the nucleation cycle effect.

제1 인히비터의 막 성장 억제 효과로 인해 제1 인히비터만 공급되는 경우에도 단차(300)에 보이드 또는 심의 형성이 억제될 수 있다. 그러나, 고종횡비의 단차(300) 또는 회로 패턴일수록 단차(300) 또는 회로 패턴 내부에 굴곡이 형성될 수 있고, 굴곡에 의해 증착막으로 단차(300)를 채우는 경우 보이드 또는 심이 발생할 가능성이 높아질 수 있다. 따라서, 고종횡비로 갈수록 제1 인히비터에 제2 인히비터를 혼합한 인히비터 공급이 더욱 필요할 수 있다. Due to the film growth inhibitory effect of the first inhibitor, even when only the first inhibitor is supplied, the formation of voids or seams in the step 300 may be suppressed. However, as the step 300 or circuit pattern having a high aspect ratio, a curve may be formed inside the step 300 or the circuit pattern. . Accordingly, as the aspect ratio increases, it may be more necessary to supply an inhibitor in which the first inhibitor is mixed with the second inhibitor.

제1 인히비터의 양을 고정한 상태에서 제2 인히비터의 양을 증가시키며 증착막의 성장을 살펴보면, 단차(300) 또는 회로 패턴이 형성되지 않은 평평한 기판(bare wafer)의 경우, 제2 인히비터의 양이 증가할수록 증착막의 성장이 더욱 억제될 수 있다. Looking at the growth of the deposited film while increasing the amount of the second inhibitor while the amount of the first inhibitor is fixed, in the case of a flat substrate (bare wafer) on which the step 300 or circuit pattern is not formed, the second inhibitor As the amount increases, the growth of the deposited film may be further suppressed.

단차(300)가 형성된 경우, 인히비터의 혼합비가 채움 혼합비 이상인 경우, 단차 내부에 보이드 또는 심이 생성되지 않을 수 있다. 채움 혼합비는 공급되는 가스의 양과 종류, 공정 조건 등에 따라 달라질 수 있다. When the step 300 is formed, when the mixing ratio of the inhibitor is equal to or greater than the filling mixing ratio, voids or seams may not be generated inside the step. The filling mixing ratio may vary depending on the amount and type of gas supplied, process conditions, and the like.

예를 들어, 공급되는 가스는 소스 가스, 반응 가스, 퍼지 가스, 인히비터를 포함할 수 있다. 공정 조건에는 챔버내의 압력, 온도, 샤워헤드와 디스크간의 간격, PEALD의 경우 플라즈마 활성을 위한 인가 전압이 포함될 수 있다. 또한, 공간 분할 방식의 경우, 공정 조건에는 디스크부(100) 또는 포켓부(200)의 회전 속도가 포함될 수 있다. For example, the supplied gas may include a source gas, a reaction gas, a purge gas, and an inhibitor. The process conditions may include a pressure in the chamber, a temperature, a distance between the showerhead and a disk, and an applied voltage for plasma activation in the case of PEALD. In addition, in the case of the space division method, the process conditions may include the rotation speed of the disk unit 100 or the pocket unit 200 .

따라서, 보이드 또는 심이 발생하지 않는 채움 혼합비는 기판 공정 인프라에 따라 다르게 설정될 수 있다. Accordingly, the filling mixing ratio at which voids or seams do not occur may be set differently depending on the substrate processing infrastructure.

일 실시 예로, 종횡비 50:1이고, 제1 인히비터가 N2, 제2 인히비터가 He인 경우, 채움 혼합비는 1/0.67일 수 있다. As an embodiment, when the aspect ratio is 50:1, the first inhibitor is N2, and the second inhibitor is He, the filling mixing ratio may be 1/0.67.

도면을 참조하면, 제1 인히비터만 막에 공급되는 경우, 내부에 보이드가 발생할 수 있다. 제2 인히비터의 양을 제1 인히비터의 양으로 나눈 것인 혼합비가 1/0.83(제2 인히비터의 양/제1 인히비터의 양) 인 경우, 제1 인히비터만 공급된 경우에 비해서는 보이드가 작아졌지만 단차(300) 내부가 완전히 채워지진 않은 것을 알 수 있다. 혼합비가 1/0.67(제2 인히비터의 양/제1 인히비터의 양) 인 경우, 단차(300) 내부에 보이드가 없는 상태로 증착막으로 단차(300)가 채워진 것을 알 수 있다. 즉, 이 경우, 채움 혼합비는 1/0.67일 수 있다. Referring to the drawings, when only the first inhibitor is supplied to the film, voids may occur therein. When the mixing ratio obtained by dividing the amount of the second inhibitor by the amount of the first inhibitor is 1/0.83 (the amount of the second inhibitor/the amount of the first inhibitor), compared to the case where only the first inhibitor is supplied It can be seen that the void is small, but the inside of the step 300 is not completely filled. When the mixing ratio is 1/0.67 (the amount of the second inhibitor/the amount of the first inhibitor), it can be seen that the step 300 is filled with the deposition film in a state where there is no void inside the step 300 . That is, in this case, the filling mixing ratio may be 1/0.67.

단차(300) 내부를 막으로 채우는 과정을 자세히 살펴보면, 단차 상부(310)의 열린 영역을 제1 영역, 단차 측부(320)에 굴곡이 형성된 영역을 제2 영역, 단차 하부(330)의 막힌 영역을 제4 영역이라 할 수 있다. 단차 측부(320) 중 굴곡이 형성되지 않은 영역을 제3 영역이라 할 수 있다. 단차의 구조상 제1 영역, 제2 영역, 제3 영역, 제4 영역의 순서대로 형성될 수 있다. Looking at the process of filling the inside of the step 300 with a film in detail, the open area of the step upper 310 is a first area, the area in which the curvature is formed in the step side 320 is a second area, and the closed area of the lower step 330 is may be referred to as the fourth region. A region in which no curvature is formed among the stepped side portions 320 may be referred to as a third region. Due to the stepped structure, the first region, the second region, the third region, and the fourth region may be sequentially formed.

인히비터 공급 단계가 없다면, 제2 영역에 보이드 또는 심이 발생할 가능성이 높다. 인히비터가 공급되는 경우, 단차의 구조상 제1 영역이 나머지 영역보다 플라즈마 인히비터에 더 노출될 수 있고, 인히비터와의 결합에너지가 더 높아질 수 있다. If there is no inhibitor supply step, there is a high possibility that voids or seams will occur in the second region. When the inhibitor is supplied, the first region may be more exposed to the plasma inhibitor than the remaining regions due to the stepped structure, and the binding energy with the inhibitor may be higher.

따라서, 제3 영역과 제4 영역은 제1 영역에 비해서 인히비터의 막에 대한 증착이 줄어들 수 있고, 이로 인해 제3 영역과 제4 영역은 제1 영역에 비해 막의 성장 속도가 더 빨라질 수 있다. Accordingly, in the third region and the fourth region, deposition of the inhibitor on the film may be reduced compared to that of the first region, and thus, the growth rate of the film in the third region and the fourth region may be higher than that of the first region. .

인히비터의 공급원으로부터의 거리는 제1 영역, 제2 영역, 제3 영역, 제4 영역의 순서이지만, 제2 영역의 굴곡 구조에 의해서, 제2 영역의 막에 대한 인히비터의 증착은 제3 영역 및 제4 영역보다 낮을 수 있다. The distance from the source of the inhibitor is in the order of the first region, the second region, the third region, and the fourth region, but due to the curved structure of the second region, the deposition of the inhibitor on the film of the second region is the third region. and lower than the fourth region.

인히비터의 증착은 높은 것부터 제1 영역, 제3 영역, 제4 영역, 제2 영역의 순서일 수 있고, 증착막의 성장 속도는 빠른 것부터 제2 영역, 제4 영역, 제3 영역, 제1 영역일 수 있다.Deposition of the inhibitor may be in the order of the first region, the third region, the fourth region, and the second region from the highest, and the growth rate of the deposition film is from the highest to the second region, the fourth region, the third region, and the first region. can be

따라서, ALD 또는 PEALD에 의한 사이클이 진행됨에 따라 단차 하부(330)가 채워지는 동안 단차(300)의 굴곡의 더 빠른 속도로 채워질 수 있고, 단차 상부(310)가 가장 늦게 채워짐으로써 단차 내부에 보이드 또는 심없는 증착막 채움이 이루어질 수 있다. Therefore, as the cycle by ALD or PEALD proceeds, the step lower 330 can be filled at a faster rate of the curvature of the step 300 while the lower section 330 is filled, and the step upper section 310 is filled the latest to fill the void inside the step. Alternatively, seamless deposition film filling may be performed.

본 발명의 기판 처리 방법은 내부에 굴곡이 형성되는 단차(300)가 기판에 생성되는 단차 단계, 단차에 ALD(Atomic Layer Deposition) 방식으로 막이 증착되는 증착 단계(S100), 막의 성장 속도를 조절하는 인히비터가 공급되는 인히비터 단계(S200)를 포함할 수 있다. The substrate processing method of the present invention includes a step step in which a step 300 in which a curvature is formed is generated on the substrate, a deposition step in which a film is deposited in an ALD (Atomic Layer Deposition) method on the step (S100), and to control the growth rate of the film It may include an inhibitor step (S200) in which the inhibitor is supplied.

증착 단계(S100)는 복수 사이클(cycle)일 수 있고, 증착 단계(S100)는 제1 막을 형성하는 제1 증착 단계(S100) 및 제2 막을 형성하는 제2 증착 단계(S100)를 포함할 수 있으며, 제1 증착 단계(S100)와 제2 증착 단계(S100) 사이에 인히비터 단계(S200)가 수행될 수 있다. The deposition step S100 may be a plurality of cycles, and the deposition step S100 may include a first deposition step S100 of forming a first layer and a second deposition step S100 of forming a second layer. In addition, the inhibitor step S200 may be performed between the first deposition step S100 and the second deposition step S100 .

인히비터는 제1 인히비터와 제2 인히비터를 포함할 수 있고, 제1 인히비터에 대한 제2 인히비터의 비율이 증가할수록 상기 막에 대한 상기 제1 인히비터의 증착률이 증가할 수 있다. The inhibitor may include a first inhibitor and a second inhibitor, and as the ratio of the first inhibitor to the second inhibitor increases, the deposition rate of the first inhibitor on the film may increase. .

증착 단계(S100)는 기판에 소스 가스를 공급하는 소스 단계(S10)와 기판에 반응 가스를 공급하는 반응 단계(S20)를 포함할 수 있고, 소스 단계(S10)와 반응 단계(S20)에 의해서 막이 형성될 수 있다. 소스 단계(S10), 반응 단계(S20), 및 인히비터 단계(S200) 후, 퍼지(purge) 가스를 공급하는 퍼지 단계(S30)가 추가될 수 있다.The deposition step ( S100 ) may include a source step ( S10 ) of supplying a source gas to the substrate and a reaction step ( S20 ) of supplying a reaction gas to the substrate. A film may be formed. After the source step ( S10 ), the reaction step ( S20 ), and the inhibitor step ( S200 ), a purge step ( S30 ) of supplying a purge gas may be added.

100... 디스크부 200... 포켓부
300... 단차 310... 단차 상부
320... 단차 측부 330... 단차 하부
W... 기판 S10... 소스 단계
S20... 반응 단계 S30... 퍼지 단계
S100... 증착 단계 S200... 인히비터 단계
100... Disc part 200... Pocket part
300... Step 310... Step Upper
320... Stepped side 330... Stepped bottom
W... substrate S10... source stage
S20... Reaction step S30... Purge step
S100... Deposition step S200... Inhibitor step

Claims (13)

단차가 형성되는 기판;
상기 기판을 내부에서 처리하는 챔버; 를 포함하고,
상기 단차는 막이 증착되어 채워지며,
상기 막의 성장 속도를 조절하는 인히비터가 공급되고,
상기 인히비터는 제1 인히비터, 및 제2 인히비터를 포함하고,
상기 제1 인히비터에 대한 제2 인히비터의 비율(제2 인히비터의 양/제1 인히비터의 양)이 증가할수록 상기 막에 대한 상기 제1 인히비터의 증착이 더 증가하여 상기 막의 증착률이 감소하고,
상기 단차에 공급되는 제2 인히비터의 양을 제1 인히비터의 양으로 나눈 것을 혼합비라하면, 상기 혼합비가 채움 혼합비(제2 인히비터의 양/제1 인히비터의 양) 이상인 경우, 상기 단차는 상기 막으로 채워지며,
상기 채움 혼합비는 1/0.67이고,
상기 막은 ALD(Atomic Layer Deposition) 또는 PEALD(Plasma Enhanced Atomic Layer Deposition) 방식으로 증착되고,
상기 기판 하나가 안착되는 포켓부가 마련되며,
복수의 상기 포켓부가 중심을 기준으로 등각도로 배열되는 디스크부가 구비되고,
상기 막 증착시 상기 포켓부는 포켓부의 중심을 기준으로 자전하고, 상기 디스크부의 중심을 기준으로 공전하며,
상기 포켓부의 자전 또는 공전에 따라 상기 포켓부에 안착되는 상기 기판은 상기 ALD 공정 또는 PEALD 공정 중 어느 하나가 수행되는 기판 처리 장치.
a substrate on which a step is formed;
a chamber for internally processing the substrate; including,
The step is filled by depositing a film,
An inhibitor for controlling the growth rate of the film is supplied,
The inhibitor includes a first inhibitor and a second inhibitor,
As the ratio of the second inhibitor to the first inhibitor (the amount of the second inhibitor/the amount of the first inhibitor) increases, the deposition of the first inhibitor on the film further increases, so that the deposition rate of the film this decreases,
If the mixing ratio is the amount of the second inhibitor supplied to the level difference divided by the amount of the first inhibitor, if the mixing ratio is equal to or greater than the filling mixing ratio (the amount of the second inhibitor/the amount of the first inhibitor) is filled with the membrane,
The filling mixing ratio is 1/0.67,
The film is deposited by ALD (Atomic Layer Deposition) or PEALD (Plasma Enhanced Atomic Layer Deposition) method,
A pocket portion on which one of the substrates is seated is provided,
A disk portion is provided in which the plurality of pocket portions are arranged at an equal angle with respect to the center,
When the film is deposited, the pocket portion rotates with respect to the center of the pocket portion and revolves around the center of the disk portion,
A substrate processing apparatus in which any one of the ALD process and the PEALD process is performed on the substrate seated on the pocket part according to the rotation or revolution of the pocket part.
제1 항에 있어서,
상기 기판은 ALD 공정 순서 또는 PEALD 공정 순에 따라 소스 가스, 퍼지 가스, 또는 반응 가스에 순차적으로 노출되고,
상기 증착되는 막은 SiO2 산화막이고, 상기 소스 가스인 전구체는 아미노 실란 전구체(diisoprophylaminosilane, DIPAS)이며, 상기 반응 가스는 O2이고, 상기 퍼지 가스는 N2이며,
상기 반응 가스에 He이 혼합되는 경우, 상기 반응 가스의 O2/He의 가스 유량이 2:3 비율로 공급되는 기판 처리 장치.
According to claim 1,
The substrate is sequentially exposed to a source gas, a purge gas, or a reaction gas according to an ALD process sequence or a PEALD process sequence,
The deposited film is a SiO2 oxide film, the source gas precursor is diisoprophylaminosilane (DIPAS), the reactive gas is O2, the purge gas is N2,
When He is mixed with the reaction gas, a gas flow rate of O2/He of the reaction gas is supplied in a 2:3 ratio.
제1 항에 있어서,
상기 단차의 영역에 따라 상기 인히비터에 노출되는 정도가 달라지고,
상기 단차의 영역중 상기 인히비터에 노출이 많은 영역일수록 상기 막의 성장 속도가 억제되며,
상기 단차는 열린 상부, 닫힌 하부, 상기 상부와 하부 사이에 형성되는 단차의 측부를 포함하고,
상기 단차의 상부는 상기 단차의 측부 또는 하부에 비해 상기 인히비터에 더 많이 노출되는 기판 처리 장치.
According to claim 1,
The degree of exposure to the inhibitor varies according to the area of the step,
The growth rate of the film is suppressed in a region with more exposure to the inhibitor among the regions of the step difference,
The step includes an open upper part, a closed lower part, and a side of the step formed between the upper part and the lower part,
The upper portion of the step is more exposed to the inhibitor than the side or lower portion of the step.
삭제delete 제1 항에 있어서,
상기 단차는 단차의 열린 상부, 단차의 측부, 단차의 닫힌 하부를 포함하고,
상기 단차의 측부에는 굴곡이 발생하며,
상기 인히비터의 상기 막에 대한 증착이 높은 순서는 상기 단차의 상부, 단차의 하부, 굴곡인 기판 처리 장치.
According to claim 1,
The step includes an open upper part of the step, a side of the step, and a closed lower part of the step,
A bend occurs on the side of the step,
The order in which the inhibitor is deposited on the layer in the highest order is an upper portion of the step, a lower portion of the step, and a curvature.
제1 항에 있어서,
상기 단차는 단차의 열린 상부, 단차의 측부, 단차의 닫힌 하부를 포함하고,
상기 단차의 측부에는 굴곡이 발생하며,
상기 단차의 상부를 제1 영역, 상기 단차의 측부 중 굴곡이 형성된 영역을 제2 영역, 상기 단차의 측부중 굴곡이 형성되지 않은 영역을 제3 영역, 상기 단차의 하부를 제4 영역이라 하면,
상기 인히비터에 노출되는 정도는 높은 순서대로 상기 제1 영역, 제3 영역, 제4 영역, 제2 영역인 기판 처리 장치.
According to claim 1,
The step includes an open upper part of the step, a side of the step, and a closed lower part of the step,
A bend occurs on the side of the step,
Assuming that the upper part of the step is the first region, the curved region among the side of the step is the second region, the third region is the non-curved region of the side of the step, and the lower part of the step is the fourth region,
The degree of exposure to the inhibitor is the first region, the third region, the fourth region, and the second region in the order of increasing.
삭제delete 제1 항에 있어서,
상기 제1 인히비터는 질소(N2)이고, 상기 제2 인히비터는 헬륨(He)이며,
상기 단차의 깊이 대 폭의 비율인 종횡비(aspect ratio)가 50 대 1인 기판 처리 장치.
According to claim 1,
The first inhibitor is nitrogen (N2), the second inhibitor is helium (He),
An aspect ratio, which is a ratio of the depth to the width of the step, is 50 to 1.
삭제delete 내부에 굴곡이 형성되는 단차가 기판에 생성되는 단차 단계;
상기 단차에 ALD(Atomic Layer Deposition) 또는 PEALD(Plasma Enhanced Atomic Layer Deposition) 방식으로 막이 증착되는 증착 단계;
상기 막의 성장 속도를 조절하는 인히비터가 공급되는 인히비터 단계; 를 포함하고,
상기 인히비터는 제1 인히비터와 제2 인히비터를 포함하고,
상기 제1 인히비터에 대한 제2 인히비터의 비율(제2 인히비터의 양/제1 인히비터의 양)이 증가할수록 상기 막에 대한 상기 제1 인히비터의 증착률이 증가하여 상기 막의 증착률이 감소하며,
상기 단차에 공급되는 제2 인히비터의 양을 제1 인히비터의 양으로 나눈 것을 혼합비라하면, 상기 혼합비가 채움 혼합비(제2 인히비터의 양/제1 인히비터의 양) 이상인 경우, 상기 단차는 상기 막으로 채워지며,
상기 채움 혼합비는 1/0.67이고,
상기 기판 하나가 안착되는 포켓부가 마련되며,
복수의 상기 포켓부가 중심을 기준으로 등각도로 배열되는 디스크부가 구비되고,
상기 막 증착시 상기 포켓부는 포켓부의 중심을 기준으로 자전하고, 상기 디스크부의 중심을 기준으로 공전하며,
상기 포켓부의 자전 또는 공전에 따라 상기 포켓부에 안착되는 상기 기판은 상기 ALD 공정 또는 PEALD 공정 중 어느 하나가 수행되는 기판 처리 방법.
a step step in which a step in which a curvature is formed is generated in the substrate;
a deposition step of depositing a layer on the step by an Atomic Layer Deposition (ALD) or Plasma Enhanced Atomic Layer Deposition (PEALD) method;
an inhibitor step in which an inhibitor for controlling the growth rate of the film is supplied; including,
The inhibitor includes a first inhibitor and a second inhibitor,
As the ratio of the second inhibitor to the first inhibitor (the amount of the second inhibitor/the amount of the first inhibitor) increases, the deposition rate of the first inhibitor with respect to the film increases, so that the deposition rate of the film decreases,
If the mixing ratio is the amount of the second inhibitor supplied to the level difference divided by the amount of the first inhibitor, if the mixing ratio is equal to or greater than the filling mixing ratio (the amount of the second inhibitor/the amount of the first inhibitor) is filled with the membrane,
The filling mixing ratio is 1/0.67,
A pocket portion on which one of the substrates is seated is provided,
A disk portion is provided in which the plurality of pocket portions are arranged at an equal angle with respect to the center,
When the film is deposited, the pocket portion rotates with respect to the center of the pocket portion and revolves around the center of the disk portion,
A substrate processing method in which any one of the ALD process and the PEALD process is performed on the substrate seated on the pocket part according to the rotation or revolution of the pocket part.
제10 항에 있어서,
상기 증착 단계는 복수 사이클(cycle)이고 상기 증착 단계는 제1 막을 형성하는 제1 증착 단계 및 제2 막을 형성하는 제2 증착 단계를 포함하고,
상기 제1 증착 단계와 제2 증착 단계 사이에 상기 인히비터 단계가 수행되는 기판 처리 방법.
11. The method of claim 10,
wherein the deposition step is a plurality of cycles and the deposition step includes a first deposition step of forming a first film and a second deposition step of forming a second film,
and wherein the inhibitor step is performed between the first deposition step and the second deposition step.
제10 항에 있어서,
상기 제1 인히비터는 질소(N2)이고, 상기 제2 인히비터는 헬륨(He)이며,
상기 단차의 깊이 대 폭의 비율인 종횡비(aspect ratio)가 50 대 1 인 기판 처리 방법.
11. The method of claim 10,
The first inhibitor is nitrogen (N2), the second inhibitor is helium (He),
A method of processing a substrate wherein an aspect ratio, which is a ratio of the depth to the width of the step, is 50 to 1.
제10 항에 있어서,
상기 증착 단계는 상기 기판에 소스 가스를 공급하는 소스 단계와 상기 기판에 반응 가스를 공급하는 반응 단계를 포함하고,
상기 소스 단계와 반응 단계에 의해서 상기 막이 형성되며,
상기 소스 단계, 반응 단계, 및 인히비터 단계 후, 퍼지(purge) 가스를 공급하는 퍼지 단계가 추가되는 기판 처리 방법.
11. The method of claim 10,
The deposition step includes a source step of supplying a source gas to the substrate and a reaction step of supplying a reaction gas to the substrate,
The film is formed by the source step and the reaction step,
After the source step, the reaction step, and the inhibitor step, a purge step of supplying a purge gas is added.
KR1020210084094A 2021-06-28 2021-06-28 Substrate processing device and method with inhibiting void or seam KR102417431B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210084094A KR102417431B1 (en) 2021-06-28 2021-06-28 Substrate processing device and method with inhibiting void or seam
CN202110888229.3A CN115595556B (en) 2021-06-28 2021-08-03 Substrate processing apparatus and method for suppressing occurrence of void or seam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210084094A KR102417431B1 (en) 2021-06-28 2021-06-28 Substrate processing device and method with inhibiting void or seam

Publications (1)

Publication Number Publication Date
KR102417431B1 true KR102417431B1 (en) 2022-07-06

Family

ID=82400397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210084094A KR102417431B1 (en) 2021-06-28 2021-06-28 Substrate processing device and method with inhibiting void or seam

Country Status (2)

Country Link
KR (1) KR102417431B1 (en)
CN (1) CN115595556B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024102763A1 (en) * 2022-11-08 2024-05-16 Lam Research Corporation A robust icefill method to provide void free trench fill for logic and memory applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021100A (en) * 2018-07-11 2021-02-24 램 리써치 코포레이션 Dielectric gap filling using ALD (ATOMIC LAYER DEPOSITION), inhibitor plasma and etching
KR20210072383A (en) * 2019-12-09 2021-06-17 주식회사 원익아이피에스 Apparatus for processing substrate and method of processing substrate

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989337B2 (en) * 2003-10-02 2006-01-24 United Microelectric Corp. Silicon oxide gap-filling process
US7476618B2 (en) * 2004-10-26 2009-01-13 Asm Japan K.K. Selective formation of metal layers in an integrated circuit
US7211525B1 (en) * 2005-03-16 2007-05-01 Novellus Systems, Inc. Hydrogen treatment enhanced gap fill
KR100688547B1 (en) * 2005-05-18 2007-03-02 삼성전자주식회사 Semiconductor device having shallow trench isolation structure and method of manufacturing the same
US7592254B2 (en) * 2005-11-01 2009-09-22 The Board Of Trustees Of The University Of Illinois Methods for coating and filling high aspect ratio recessed features
KR100722843B1 (en) * 2005-11-30 2007-05-30 주식회사 아이피에스 Method of depositing thin film
US8535972B2 (en) * 2007-07-13 2013-09-17 Intermolecular, Inc. Methods for coating a substrate with an amphiphilic compound
KR20100067870A (en) * 2008-12-12 2010-06-22 주식회사 동부하이텍 Mosfet and method for manufacturing the same
CN103065951B (en) * 2011-10-21 2015-12-09 上海华虹宏力半导体制造有限公司 A kind of formation method of trench gate
US9425078B2 (en) * 2014-02-26 2016-08-23 Lam Research Corporation Inhibitor plasma mediated atomic layer deposition for seamless feature fill
CN104952783A (en) * 2014-03-31 2015-09-30 中芯国际集成电路制造(上海)有限公司 Shallow trench isolation structure, production method thereof and semiconductor device with shallow trench isolation structure
US9978610B2 (en) * 2015-08-21 2018-05-22 Lam Research Corporation Pulsing RF power in etch process to enhance tungsten gapfill performance
JP7125343B2 (en) * 2015-10-23 2022-08-24 アプライド マテリアルズ インコーポレイテッド Bottom-up gap filling with surface poisoning
US10566211B2 (en) * 2016-08-30 2020-02-18 Lam Research Corporation Continuous and pulsed RF plasma for etching metals
US10283353B2 (en) * 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US20190027556A1 (en) * 2017-07-21 2019-01-24 Globalfoundries Inc. Shallow trench isolation (sti) gap fill
CN108766913A (en) * 2018-06-07 2018-11-06 长江存储科技有限责任公司 Improve the method for the warpage of semiconductor structure
US10510878B1 (en) * 2018-06-13 2019-12-17 Vanguard International Semiconductor Corporation Semiconductor devices and methods for forming the same
US10727046B2 (en) * 2018-07-06 2020-07-28 Lam Research Corporation Surface modified depth controlled deposition for plasma based deposition
CN111933570B (en) * 2020-10-09 2021-02-09 晶芯成(北京)科技有限公司 Manufacturing method of shallow trench isolation structure and shallow trench isolation structure formed by same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021100A (en) * 2018-07-11 2021-02-24 램 리써치 코포레이션 Dielectric gap filling using ALD (ATOMIC LAYER DEPOSITION), inhibitor plasma and etching
KR20210072383A (en) * 2019-12-09 2021-06-17 주식회사 원익아이피에스 Apparatus for processing substrate and method of processing substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024102763A1 (en) * 2022-11-08 2024-05-16 Lam Research Corporation A robust icefill method to provide void free trench fill for logic and memory applications

Also Published As

Publication number Publication date
CN115595556A (en) 2023-01-13
CN115595556B (en) 2024-09-03

Similar Documents

Publication Publication Date Title
KR102609125B1 (en) Chamber conditioning for remote plasma process
US11075074B2 (en) Method for depositing a silicon nitride film and film deposition apparatus
US9865499B2 (en) Method and apparatus for gap fill using deposition and etch processes
JP6548586B2 (en) Deposition method
US10026606B2 (en) Method for depositing a silicon nitride film
TW201719756A (en) Pulsing RF power in etch process to enhance tungsten gapfill performance
US9711370B2 (en) Substrate processing apparatus and method of processing a substrate
JP6968011B2 (en) Film formation method and film formation equipment
JP6388553B2 (en) Substrate processing apparatus and substrate processing method
US11131023B2 (en) Film deposition apparatus and film deposition method
JP6388552B2 (en) Substrate processing apparatus and substrate processing method
KR20180136894A (en) Film forming method, film forming apparatus, and storage medium
JP2016225521A (en) Substrate processing device and substrate processing method
WO2022020533A1 (en) Molecular layer deposition method and system
KR102417431B1 (en) Substrate processing device and method with inhibiting void or seam
JP2017092093A (en) Substrate processing apparatus, substrate processing method, and substrate holding member
KR20190016896A (en) Method for forming a silicon nitride film and film forming apparatus
US7223707B1 (en) Dynamic rapid vapor deposition process for conformal silica laminates
CN112391607B (en) Film forming method and film forming apparatus
KR20190065934A (en) Method for forming a silicon nitride film and film forming apparatus
JP2019192793A (en) Film deposition device and film deposition method
US11952661B2 (en) Deposition method
KR102324965B1 (en) Film forming apparatus
KR20210027127A (en) Film forming apparatus and film forming method
KR20180096516A (en) Film forming apparatus

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant