KR102405337B1 - A resin for microstructure lab-on-a-chip and lab-on-a-chip using the same - Google Patents
A resin for microstructure lab-on-a-chip and lab-on-a-chip using the same Download PDFInfo
- Publication number
- KR102405337B1 KR102405337B1 KR1020200128138A KR20200128138A KR102405337B1 KR 102405337 B1 KR102405337 B1 KR 102405337B1 KR 1020200128138 A KR1020200128138 A KR 1020200128138A KR 20200128138 A KR20200128138 A KR 20200128138A KR 102405337 B1 KR102405337 B1 KR 102405337B1
- Authority
- KR
- South Korea
- Prior art keywords
- lab
- chip
- resin
- present
- manufactured
- Prior art date
Links
- 238000002032 lab-on-a-chip Methods 0.000 title claims abstract description 67
- 239000011347 resin Substances 0.000 title claims abstract description 37
- 229920005989 resin Polymers 0.000 title claims abstract description 37
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 claims description 19
- 239000003504 photosensitizing agent Substances 0.000 claims description 7
- 239000000178 monomer Substances 0.000 claims description 6
- 238000007400 DNA extraction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 238000010146 3D printing Methods 0.000 abstract description 8
- 238000002474 experimental method Methods 0.000 abstract description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 125000004386 diacrylate group Chemical group 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000936 Agarose Polymers 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005360 mashing Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000671 polyethylene glycol diacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/314—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
- C08F2/48—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
- C08F2/50—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F22/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
- C08F22/10—Esters
- C08F22/12—Esters of phenols or saturated alcohols
- C08F22/20—Esters containing oxygen in addition to the carboxy oxygen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
본 발명은 랩온어칩용 레진 및 이를 이용한 랩온어칩에 관한 것으로, 상기 랩온어칩용 레진은 3차원 프린팅에 사용할 수 있어 개별 실험에 맞춘 랩온어칩을 제작할 수 있고, 특히, 미세 구조체 및 미세 채널을 가진 랩온어칩을 제작할 수 있으며 상기 랩온어칩은 3차원 프린팅으로 제작할 수 있으며, 미세 채널을 가질 수 있다. The present invention relates to a lab-on-a-chip resin and a lab-on-a-chip using the same, and the lab-on-a-chip resin can be used for 3D printing, so that a lab-on-a-chip tailored to individual experiments can be manufactured, and in particular, microstructures and microchannels A lab-on-a-chip can be manufactured, and the lab-on-a-chip can be manufactured by 3D printing and can have microchannels.
Description
본 발명은 미세구조 3D 프린팅용 레진 및 이를 이용한 랩온어칩에 관한 것이다. 구체적으로 DNA를 추출/농축할 수 있는 랩온어칩에 관한 것이다.The present invention relates to a resin for microstructure 3D printing and a lab-on-a-chip using the same. Specifically, it relates to a lab-on-a-chip capable of extracting/concentrating DNA.
미세유체 제어기술을 이용한 랩온어칩 시스템은 실험실에서 주로 사용하는 부피가 크고 값비싼 장비들의 기능을 손가락 크기만 한 칩 위에 구현함으로써, 실험실에서 필요로 하는 다양한 전처리 및 분석을 단시간 내에 효율적으로 수행할 수 있도록 한다(Curtis et al., Lab Chip. Vol. 7, pp. 41-57, 2007). 하지만, 일반적인 랩온어칩 시스템을 구동하기 위해서는 사용방법이 복잡하며 값비싼 유체구동펌프를 필요로 한다. 이로 인해, 수많은 장점을 가지는 랩온어칩 시스템이 널리 사용되지 못하고 있다.The lab-on-a-chip system using microfluidic control technology implements the functions of bulky and expensive equipment mainly used in laboratories on a chip the size of a finger, so that various pre-processing and analysis required in the laboratory can be efficiently performed within a short time. (Curtis et al., Lab Chip. Vol. 7, pp. 41-57, 2007). However, in order to drive a general lab-on-a-chip system, it is complicated to use and requires an expensive fluid driven pump. For this reason, a lab-on-a-chip system having numerous advantages is not widely used.
이러한 랩온어칩 시스템의 문제점들을 해결하기 위해서, 종이섬유 및 미세구조의 모세관 현상을 이용하거나, 다공성 물질인 PDMS(polydimethylsiloxane)의 가스제거 과정을 이용한 미세유체의 구동을 통해 랩온어칩 시스템을 구현하기도 하였다. 그러나, 느린 미세유체의 구동속도로 인해 랩온어칩 시스템을 이용한 분석시간이 길어진다는 한계점이 있다. 또한, 종이섬유 및 미세구조로 인해 큰 크기의 세포들을 이용한 분석이 제한되기도 하며, 소재의 한계로 인해 작은 크기의 물질의 분석에도 제한되기도 한다.In order to solve the problems of the lab-on-a-chip system, the lab-on-a-chip system is implemented by using the capillary phenomenon of paper fibers and microstructures, or by driving a microfluid using the degassing process of polydimethylsiloxane (PDMS), a porous material. did However, there is a limitation in that the analysis time using the lab-on-a-chip system becomes long due to the slow driving speed of the microfluid. In addition, the analysis using large-sized cells is limited due to paper fibers and microstructures, and the analysis of small-sized materials is also limited due to the limitations of materials.
또한, 종래 랩온어칩의 경우 특정 목적에 따라 대량생산되는 것이 일반적이기 때문에, 실험실 수준에서 개별 실험 목적에 맞춘 랩온어칩을 수급하는데 어려운 점이 있었다. In addition, since the conventional lab-on-a-chip is generally mass-produced for a specific purpose, there was a difficulty in supplying and supplying a lab-on-a-chip tailored to individual experimental purposes at the laboratory level.
이에 본 발명자들은 상기한 문제들을 해결하기 위해 연구한 끝에, 종래에 비해 더욱 미세한 채널을 제작할 수 있으면서도 3차원 프린터에 사용할 수 있는 소재를 개발하였고, 이를 통해 개별 실험 목적에 맞는 랩온어칩을 생산할 수 있음을 확인하여 본 발명을 완성하였다. Accordingly, the present inventors have researched to solve the above problems, and have developed a material that can be used in a 3D printer while being able to produce a finer channel than in the prior art, and through this, a lab-on-a-chip suitable for individual experimental purposes can be produced. By confirming that there is, the present invention was completed.
본 발명의 일 양상은 모노머로서 아크릴레이트기를 2이상 함유하는 폴리에틸렌글리콜계 단량체, 광개시제로서 IRG (IRGACURE 819) 및 감광제로서 2-이소프로필 티오크산톤 (2-isopropyl thioxanthone, ITX)를 포함하는 랩온어칩용 레진을 제공하는 것을 목적으로 한다.One aspect of the present invention is a polyethylene glycol-based monomer containing two or more acrylate groups as a monomer, IRG (IRGACURE 819) as a photoinitiator, and 2-isopropyl thioxanthone (ITX) as a photosensitizer An object of the present invention is to provide a resin for chips.
본 발명의 다른 일 양상은 상기 레진을 이용하여 제조된 랩온어칩을 제공하는 것을 목적으로 한다. Another aspect of the present invention aims to provide a lab-on-a-chip manufactured using the resin.
본 발명의 일 양상은 모노머로서 아크릴레이트기를 2이상 함유하는 폴리에틸렌글리콜계 단량체, 광개시제로서 IRG (IRGACURE 819) 및 감광제로서 2-이소프로필 티오크산톤 (2-isopropyl thioxanthone, ITX)를 포함하는 랩온어칩용 레진을 제공한다.One aspect of the present invention is a polyethylene glycol-based monomer containing two or more acrylate groups as a monomer, IRG (IRGACURE 819) as a photoinitiator, and 2-isopropyl thioxanthone (ITX) as a photosensitizer Provides resin for chips.
본 발명에서 사용되는 용어, "랩온어칩"이라 함은 실험실에서 행해지는 혼합, 반응, 분리, 분석 등의 여러 가지 조작이 구현되도록 제작된 칩을 의미한다. As used herein, the term "lab-on-a-chip" refers to a chip manufactured to implement various operations such as mixing, reaction, separation, and analysis performed in a laboratory.
본 발명의 일 구체예로, 상기 폴리에틸렌글리콜계 단량체는 상기 아크릴레이트기를 2 내지 6 함유하는 것일 수 있고, 적어도 폴리에틸렌글리콜 디아크릴레이트 (PEG-DA)를 포함하는 것일 수 있다. 또한, 상기 폴리에틸렌글리콜 디아크릴레이트는 단위 분자량이 258 내지 1000일 수 있고, 구체적으로, 258, 575, 700 또는 1000일 수 있다. 또한, 상기 폴리에틸렌글리콜 디아크릴레이트는 PEG-DA-258, PEG-DA-575 및 PEG-DA-700 중 어느 하나일 수 있으며, 구체적으로는 아래 화학식 I의 PEG-DA-258일 수 있다. 상기 PEG-DA-258은 분자량 258인 폴리에틸렌글리콜 디아크릴레이트를 의미하고, PEG-DA-575는 분자량 575인 폴리에틸렌글리콜 디아크릴레이트를 의미하며, PEG-DA-700는 분자량 700인 폴리에틸렌글리콜 디아크릴레이트를 의미한다. In one embodiment of the present invention, the polyethylene glycol-based monomer may contain 2 to 6 of the acrylate groups, and may include at least polyethylene glycol diacrylate (PEG-DA). In addition, the polyethylene glycol diacrylate may have a unit molecular weight of 258 to 1000, specifically, 258, 575, 700 or 1000. In addition, the polyethylene glycol diacrylate may be any one of PEG-DA-258, PEG-DA-575 and PEG-DA-700, and specifically, PEG-DA-258 of Formula I below. The PEG-DA-258 means polyethylene glycol diacrylate having a molecular weight of 258, PEG-DA-575 means polyethylene glycol diacrylate having a molecular weight of 575, and PEG-DA-700 is polyethylene glycol diacrylate having a molecular weight of 700 means rate.
[화학식 I][Formula I]
본 발명에서 사용되는 용어 "광개시제"는 감광 폴리머 조성물, 본 발명에서는 폴리에틸렌글리콜 디아크릴레이트의 중합반응, 경화를 유도하는 물질을 말한다. The term "photoinitiator" used in the present invention refers to a material that induces polymerization and curing of a photosensitive polymer composition, and in the present invention, polyethylene glycol diacrylate.
본 발명에서 사용되는 용어 "감광제"는 일반적으로 광활성 화합물, PAC(Photo Active Compound) 또는 감광성 산발생제 등으로 불려지며, 광 조사에 의하여 활성화되거나 산을 발생시킬 수 있는 화합물을 의미한다.The term "photosensitizer" used in the present invention is generally referred to as a photoactive compound, PAC (Photo Active Compound), or photosensitive acid generator, and refers to a compound that can be activated by light irradiation or can generate an acid.
본 발명의 일 구체예로서 상기 광개시제는 아래 화학식 II의 IRGACURE 819일 수 있고, 감광제는 아래 화학식 III의 2-이소프로필 티오크산톤 (2-isopropyl thioxanthone, ITX)일 수 있다. As an embodiment of the present invention, the photoinitiator may be IRGACURE 819 of Formula II below, and the photosensitizer may be 2-isopropyl thioxanthone (ITX) of Formula III below.
[화학식 II][Formula II]
[화학식 III][Formula III]
구체적으로, 상기 IRG (IRGACURE 819)는 레진 전체 중량대비 0.2 내지 0.6 %(W/W), 구체적으로는, 0.4 내지 0.6%(W/W), 상기 2-이소프로필 티오크산톤 (2-isopropyl thioxanthone, ITX)은 0.1 내지 0.6%(W/W) 포함되는 것일 수 있으며, 더욱 구체적으로 상기 IRG (IRGACURE 819)는 레진 전체 중량대비 0.6%(W/W), 상기 2-이소프로필 티오크산톤 (2-isopropyl thioxanthone, ITX)은 0.6%(W/W) 포함될 수 있다. Specifically, the IRG (IRGACURE 819) is 0.2 to 0.6% (W / W), specifically, 0.4 to 0.6% (W / W), the 2-isopropyl thioxanthone (2-isopropyl) based on the total weight of the resin thioxanthone, ITX) may be included in 0.1 to 0.6% (W / W), more specifically, the IRG (IRGACURE 819) is 0.6% (W / W) based on the total weight of the resin, the 2-isopropyl thioxanthone (2-isopropyl thioxanthone, ITX) may be included in 0.6% (W/W).
본 발명의 레진은 상기와 같은 조성물 및 함량으로 사용됨으로써, 미세한 채널을 형성할 수 있다. By using the resin of the present invention in the composition and content as described above, it is possible to form a fine channel.
본 발명의 일 구체예로서 상기 랩온어칩용 레진은 3차원 프린터용이다. 전술한 바와 같이 종래 랩온어칩은 제조사에서 설계한 특정 목적에 따라 대량생산된 것을 구입하여 사용되었고, 그로인해 개별 실험 목적에 맞는 랩온어칩을 제작, 사용하기 어려운 문제점이 있었다. 본 발명의 조성물은 3차원 프린터에 활용할 수 있고, 특정 파장에서 광흡수능이 높고 빠르게 경화되어 미세한 구조체 및 미세 채널을 가진 랩온어칩을 생산할 수 있도록 하기 때문에, 개별 실험 목적에 맞는 랩온어칩을 생산할 수 있게 한다. As an embodiment of the present invention, the resin for the lab-on-a-chip is for a 3D printer. As described above, the conventional lab-on-a-chip was purchased and used mass-produced for a specific purpose designed by the manufacturer, and as a result, there was a problem in that it was difficult to manufacture and use a lab-on-a-chip suitable for individual experimental purposes. The composition of the present invention can be used in a 3D printer, has high light absorption at a specific wavelength and is rapidly cured to produce a lab-on-a-chip with a fine structure and micro-channels, so it is possible to produce a lab-on-a-chip suitable for individual experimental purposes. make it possible
본 발명의 다른 일 양상은 상기 레진을 이용하여 제조된 랩온어칩을 제공한다. Another aspect of the present invention provides a lab-on-a-chip manufactured using the resin.
본 발명의 일 구체예에서, 상기 랩온어칩은 시료(용액)이 sink나 source 챔버로 빠져나가지 않는 수준의 채널을 포함할 수 있고, 이는 수십 내지 수백μm 크기의 채널일 수 있으며, 구체적으로는, 27 내지 150μm, 더욱 구체적으로는 66 내지 75μm의 채널을 포함한다. 상기 '채널'은 랩온어칩에서 유체가 흐를 수 있는 미세한 공극을 의미하고, 구체적으로는 전류와 같은 유체의 흐름을 유도하는 외력에 의해 목적하는 또는 목적하지 않는 물질을 시료에서 추출, 분리되게하는 구조를 의미한다.In one embodiment of the present invention, the lab-on-a-chip may include a channel at a level through which the sample (solution) does not escape into the sink or source chamber, which may be a channel with a size of several tens to hundreds of μm, specifically , 27 to 150 μm, more specifically 66 to 75 μm. The 'channel' refers to a fine void through which a fluid can flow in the lab-on-a-chip, and specifically, a target or undesired substance is extracted and separated from the sample by an external force that induces the flow of the fluid, such as an electric current. means structure.
종래 랩온어칩은 소재의 한계로 인해 미세한 채널을 제조하는데 문제가 있었으나, 본 발명의 전술한 레진의 성분 및 함량을 통해 66 내지 75μm의 채널을 랩온어칩에 형성할 수 있으나, 이에 한정되는 것은 아니다. Conventional lab-on-a-chip has a problem in manufacturing fine channels due to limitations in materials, but channels of 66 to 75 μm can be formed in the lab-on-a-chip through the composition and content of the above-described resin of the present invention. not.
본 발명의 일 구체예에서 상기 랩온어칩은 3차원 프린터로 제조된다. 전술한 바와 같이, 본 발명은 상기한 랩온어칩용 레진을 사용함으로써 3차원 프린팅으로 랩온어칩, 구체적으로 미세 채널을 가진 랩온어칩을 제작할 수 있다. 그리고, 상기 랩온어칩은 DNA 추출용으로 사용될 수 있다. In one embodiment of the present invention, the lab-on-a-chip is manufactured by a 3D printer. As described above, according to the present invention, a lab-on-a-chip, specifically, a lab-on-a-chip having a microchannel can be manufactured by 3D printing by using the above-described resin for lab-on-a-chip. And, the lab-on-a-chip may be used for DNA extraction.
본 발명의 랩온어칩용 레진은 3차원 프린팅에 사용할 수 있어 개별 실험에 맞춘 랩온어칩을 제작할 수 있고, 특히, 미세 구조체 및 미세 채널을 가진 랩온어칩을 제작할 수 있다.Since the resin for lab-on-a-chip of the present invention can be used for 3D printing, a lab-on-a-chip tailored to individual experiments can be manufactured, and in particular, a lab-on-a-chip having a microstructure and microchannels can be manufactured.
또한, 본 발명의 랩온어칩은 3차원 프린팅으로 제작할 수 있으며, 미세 채널을 가질 수 있어, 시료의 DNA를 추출/농축할 수 있다. In addition, the lab-on-a-chip of the present invention can be manufactured by 3D printing and can have microchannels, so that the DNA of the sample can be extracted/concentrated.
도 1은 실험예 1-1에 따른 결과를 나타내는 것으로 레진의 성분 별 파장에 따른 흡광 정도를 나타내는 그래프이다.
도 2는 실험예 1-2에 따른 결과를 나타내는 것으로 미세 채널 형성 가능성을 확인한 사진이다.
도 3은 실시예 2에 따라 제조된 본 발명의 랩온어 칩의 사진이다.
도 4는 실힘예 2에 따라 제조된 본 발명의 랩온어 칩의 미세채널을 확인한 사진이다.
도 5는 실험예 2-1의 결과를 나타내는 것으로, 미세유체 흐름을 확인한 사진이다.
도 6 및 도 7은 실험예 2-2의 실험과정 및 결과를 나타내는 것이다. 1 is a graph showing the results according to Experimental Example 1-1 and shows the degree of absorption according to the wavelength of each component of the resin.
2 is a photograph showing the result according to Experimental Example 1-2 and confirming the possibility of forming a microchannel.
3 is a photograph of a lab-on-a chip of the present invention manufactured according to Example 2.
4 is a photograph confirming the microchannels of the lab-on-a chip of the present invention manufactured according to Silhim Example 2;
5 shows the results of Experimental Example 2-1, and is a photograph confirming the microfluid flow.
6 and 7 show the experimental process and results of Experimental Example 2-2.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.
실시예 1: 랩온어칩용 레진의 제조Example 1: Preparation of resin for lab-on-a-chip
본 발명의 랩온어칩용 레진을 제조하였다. A resin for a lab-on-a-chip of the present invention was prepared.
구체적으로, 아크릴레이트 마크로머로서 광경화 수지인 PEG-DA-258 (Sigma Aldrich)를 사용하였고, 광개시제로 Irgacure 819 (IRG) (BASF Corporation)를 0.6%(w/w), 감광제로 2-isopropyl thioxanthone (ITX)를 0.6%(w/w)를 사용하였다. 빛에 의한 광중합을 방지하기 위해 상기 물질들을 알루미늄 호일로 감싼 폴리프로필렌 튜브에 넣었다. 이들을 혼합한 뒤 ITX 및 IRG를 완벽히 용해시키기 위해 70℃ 오븐에 넣고 30분간 가열하였다. Specifically, as the acrylate macromer, PEG-DA-258 (Sigma Aldrich), a photocurable resin, was used, and Irgacure 819 (IRG) (BASF Corporation) was used as a photoinitiator at 0.6% (w/w), and as a photosensitizer, 2-isopropyl 0.6% (w/w) of thioxanthone (ITX) was used. To prevent photopolymerization by light, the materials were placed in a polypropylene tube wrapped in aluminum foil. After mixing them, it was placed in an oven at 70° C. and heated for 30 minutes to completely dissolve ITX and IRG.
그 결과, 랩온어칩용 레진을 제조하였다. As a result, a resin for a lab-on-a-chip was manufactured.
실험예 1: 미세 채널 형성 가능성 확인Experimental Example 1: Confirmation of the possibility of forming microchannels
상기 실시예 1의 레진을 통해 매세 채널을 가진 랩온어칩을 제조할 수 있는지를 확인하기 위하여 아래와 같은 실험을 수행하였다. The following experiment was performed to confirm that a lab-on-a-chip having a mashing channel could be manufactured using the resin of Example 1 above.
실험예 1-1. 광 흡수능의 확인Experimental Example 1-1. Confirmation of light absorption capacity
실시예 1의 레진을 이용할 때, 미세유체를 만들 수 있을 정도로 미세한 크기의 구조체를 형성할 수 있는지를 확인하기 위해 경화와 관련된 레진의 광흡수능을 확인하였다. When the resin of Example 1 was used, the light absorption ability of the resin related to curing was checked in order to check whether a structure having a size fine enough to make a microfluid could be formed.
구체적으로, 0.6% IRG, 0.6% ITX 및 0.6% IRG와 0.6% ITX를 각 각 아세톤에 녹인 후 이를 Nanodrop을 이용하여 자외선 흡광도를 측정하였다. Specifically, 0.6% IRG, 0.6% ITX and 0.6% IRG and 0.6% ITX were dissolved in acetone, respectively, and then UV absorbance was measured using Nanodrop.
그 결과, 도 1에서 확인된 바와 같이 IRG 또는 ITX 단독 혼합된 레진에 비하여 본 발명의 조성물은 전반적으로 높은 광 흡수도를 보여주었고 (약 3배 증가), 특히 385nm 부근에서 흡수되는 에너지가 가장 높은 것을 확인하였다. 이는 광 개시재인 IRG가 385nm의 광원에 적합한 것과 감광제인 ITX가 높은 광 흡수 용량 (light absoption capacity)를 가지는 것에 기인한 것으로 판단된다.As a result, as confirmed in FIG. 1, the composition of the present invention showed overall high light absorption (about 3-fold increase) compared to the resin mixed with IRG or ITX alone, and in particular, the energy absorbed near 385 nm was the highest confirmed that. This is considered to be due to the fact that IRG, a photoinitiator, is suitable for a light source of 385 nm, and ITX, a photosensitizer, has a high light absorption capacity.
아울러, 이러한 본 발명 레진의 높은 광흡수능은 IRG 또는 ITX 단독 혼합된 조성물에 비해 빠른 광경화를 의미하는 것뿐만 아니라 단위 두께당 빛을 흡수할 수 있는 능력이 커 빛이 레진의 표면에서 침투할 수 있는 두께를 조절할 수 있는 특징이 있다. 이는 3차원 프린팅하였을 때 빠른 경화 및 얇은 레진 경화 두께를 구현함으로써 미세한 구조체를 만들 수 있도록 한다. In addition, the high light absorption capacity of the resin of the present invention not only means faster photocuring compared to the composition mixed with IRG or ITX alone, but also has a greater ability to absorb light per unit thickness, so that light can penetrate from the surface of the resin. There is a feature that the thickness can be adjusted. This makes it possible to make a fine structure by realizing fast curing and thin resin curing thickness when 3D printing is performed.
실험예 1-2. 미세 채널 형성 가능성의 확인Experimental Example 1-2. Confirmation of microchannel formation potential
상기 실시예 1의 레진을 이용하여 미세 채널을 형성할 수 있는지 확인하였다.It was confirmed whether microchannels could be formed using the resin of Example 1.
구체적으로, 3D 모델링 프로그램인 AutoCAD사의 Inventor를 이용하여 3D 도면을 작성 후 이를 .stl 형식으로 변환하여 프린터 입력해주고 프린터는 자체 프로그램을 통해 프린팅하고자 하는 두께로 슬라이싱하여 프린팅을 수행한다. 이때 상기에 개발한 레진을 이용하여 3D 구조체를 제작하였다. Specifically, after creating a 3D drawing using Inventor of AutoCAD, a 3D modeling program, it is converted into .stl format and input to the printer, and the printer performs printing by slicing it to the desired thickness through its own program. At this time, a 3D structure was manufactured using the resin developed above.
그 결과, 도 2에서 확인되는 바와 같이 본 발명의 랩온어칩용 레진물은 3차원 프린팅으로 제조하였음에도 130 μm 수준의 미세유체 채널을 형성할 수 있음을 확인하였다.As a result, as shown in FIG. 2 , it was confirmed that the resin material for lab-on-a-chip of the present invention could form a microfluidic channel with a level of 130 μm even though it was manufactured by 3D printing.
실시예 2: 랩온어칩의 제조Example 2: Preparation of Lab-on-a-Chip
3차원 프린터로 Inventor® (Autodesk, San Rafael, CA) and printed with the DLPSL printer Asiga Pico2 HD (Asiga, Sydney, Australia) 를 사용하고 실시예 1의 레진물을 이용하여 다음의 방법으로 랩온어칩을 제조하였다. Using Inventor® (Autodesk, San Rafael, CA) and printed with the DLPSL printer Asiga Pico2 HD (Asiga, Sydney, Australia) as a 3D printer and using the resin of Example 1, a lab-on-a-chip was printed in the following way. prepared.
(i)바닥층 (bottom layer)을 제조한 뒤 (ii) 바닥층 상에 하이드로젤을 채워 넣을 수 있는 미세채널 (porous barrier channel) 구조를 형성하는 구조층을 형성한 뒤 (iii) 구조층 상에 source chamber, sink chamber 및 하이드로젤 주입을 위한 주입구 을 형성한다. 그리고 (iv) 시료를 넣을 수 있는 주입구 (inlet)를 형성한 뒤 (v) 전극을 꽂을 수 있는 전극 홀더를 제작한다. 그 뒤에 (vi) 증류수로 세척하고, 2% 아가로스를 로딩한하여 랩온어칩을 제조하였다. (i) after preparing the bottom layer (ii) after forming a structure layer forming a porous barrier channel structure that can fill the hydrogel on the bottom layer (iii) source on the structure layer A chamber, a sink chamber, and an inlet for hydrogel injection are formed. And (iv) after forming an inlet into which a sample can be put, (v) an electrode holder into which an electrode can be inserted. After that (vi), it was washed with distilled water and loaded with 2% agarose to prepare a lab-on-a-chip.
상기 바닥층은 유리 슬라이드 (75 mm (L) Х 50 mm (W) Х 1.0 mm (T))를 사용하였다. 상기 유리 슬라이드는 에탄올, 아세톤세척, 증류수 세척 및 70℃에서 밤새 건조하여 준비하였고, 또한, 상기 유리 슬라이드는 60W, 670 mTorr 압력으로 180초 동안 산소 플라즈마 (oxygen plasma (Deiner Zepto, Thierry Corporation)) 처리된 후 85℃에서 8시간동안 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) (Sigma-Aldrich)로 유도체화 되었다.For the bottom layer, a glass slide (75 mm (L) Х 50 mm (W) Х 1.0 mm (T)) was used. The glass slides were prepared by washing with ethanol, acetone, washing with distilled water, and drying overnight at 70° C. In addition, the glass slides were treated with oxygen plasma (Deiner Zepto, Thierry Corporation) for 180 seconds at 60 W, 670 mTorr pressure. Then, it was derivatized with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) (Sigma-Aldrich) at 85°C for 8 hours.
그 결과, 도 3 및 도 4에서 확인되는 바와 같이 랩온어칩을 제조하였고, 상기 랩온어칩은 274 μm의 다공성 배리어 채널 (porous barrier channel), 66μm, 71 μm, 72 μm 및 75 μm의 채널 (capillary chanel) 및 223μm, 228μm 및 231μm 크기의 구조체(barrier)를 형성된 것을 확인하였다. As a result, a lab-on-a-chip was prepared as shown in FIGS. 3 and 4, and the lab-on-a-chip had a porous barrier channel of 274 µm, channels of 66 µm, 71 µm, 72 µm and 75 µm ( capillary chanel) and structures (barriers) having sizes of 223 μm, 228 μm and 231 μm were confirmed.
실험예 2: 랩온어칩의 작용 확인Experimental Example 2: Confirmation of the action of Lab-on-a-Chip
실험예 2-1. 미세유체 흐름의 확인Experimental Example 2-1. Confirmation of microfluidic flow
실시예 2에서 제조된 랩온어 칩에 다공성 구조체를 형성하기 위하여 하이드로겔 (2% 아가로즈)을 주입하여 제작하였다.In order to form a porous structure in the lab-on-a chip prepared in Example 2, hydrogel (2% agarose) was injected and prepared.
구체적으로, 도 5에서 보는 바와 같이 시인성을 위해 붉은색으로 염색된 아가로즈 용액이 중앙에 있는 다공성 배리어 채널을 따라 채워지는 것을 확인할 수 있으며 capillary 채널이 존재하기 때문에 주입된 아가로즈 용액이 sink/source 챔버로 빠져나가지 않고 다공성 배리어 채널 내부에만 선택적으로 주입되는 것을 확인할 수 있다. 아가로즈 용액이 주입된 후 용액의 온도가 떨어지면 고체상으로 변하면서 다공성 벽을 형성하게 된다.Specifically, as shown in FIG. 5 , it can be seen that the agarose solution dyed red for visibility is filled along the porous barrier channel in the center. It can be seen that it is selectively injected only inside the porous barrier channel without escaping into the chamber. After the agarose solution is injected, when the temperature of the solution drops, it changes to a solid phase and forms a porous wall.
그 결과, 도 5에서 확인되는 바와 같이 gel inlet으로 투입된 아가로스 용액이 다공성 배리어 채널(porous barrier channel)을 채우고 고체 형태의 다공성 벽을 source/sink 챔버 사이에 형성하는 것을 확인하였다. As a result, as shown in FIG. 5 , it was confirmed that the agarose solution injected into the gel inlet filled the porous barrier channel and formed a solid porous wall between the source/sink chamber.
실험예 2-2. DNA 추출능 확인Experimental Example 2-2. DNA extractability confirmation
제조된 랩온어 칩을 이용하여 세포 용리액으로부터 유전자를 추출할 수 있는 지 확인하였다. It was confirmed whether the gene could be extracted from the cell eluate using the prepared lab-on-a chip.
실시예 2에서 제조된 랩온어 칩의 source 챔버와 sink 챔버에 각 각 세포 용리액과 elution 버퍼를 넣은 후 백금 전극을 각 챔버에 있는 전극 holder에 장착하였다. 전원공급기에 이어져 있는 음극을 source 챔버의 전극에 양극을 sink 챔버의 전극에 물린 후 1V의 전압을 걸어 DNA가 선택적으로 source 챔버에서 sink 챔버로 이동하도록 유도하였다 (도 6).After putting each cell eluate and elution buffer into the source chamber and the sink chamber of the lab-on-a chip manufactured in Example 2, platinum electrodes were mounted on electrode holders in each chamber. After biting the negative electrode connected to the power supply to the electrode of the source chamber and the positive electrode to the electrode of the sink chamber, a voltage of 1 V was applied to induce the DNA to selectively move from the source chamber to the sink chamber (FIG. 6).
전기를 전극에 걸어준 시간에 따른 DNA의 이동을 확인하기 위해 각 챔버에 전기가 가해지는 시간을 5, 10, 15, 20분으로 다르게 하여 DNA를 추출해 내고 추출된 DNA를 이용하여 PCR을 통해 타겟 유전자를 증폭한 뒤 전기영동을 통해 타겟 유전자의 유무를 확인하였다. In order to check the movement of DNA according to the time when electricity is applied to the electrode, the time for which electricity is applied to each chamber is varied for 5, 10, 15, and 20 minutes to extract DNA, and then use the extracted DNA to target the target through PCR After the gene was amplified, the presence or absence of the target gene was confirmed through electrophoresis.
그 결과, 도 7에서 확인되는 바와 같이 전기에 의해서 DNA가 이동하는 것을 확인할 수 있었으며 5분 간 전기를 가해준 실험에서도 유전자 증폭 신호가 나오는 것으로 보아 기존의 silica membrane을 이용한 유전자 추출보다 소요되는 시간을 획기적으로 단축할 수 있음을 알 수 있다. As a result, as shown in FIG. 7 , it was confirmed that the DNA was moved by electricity, and since the gene amplification signal was generated even in the experiment in which electricity was applied for 5 minutes, the time required for gene extraction using a conventional silica membrane was reduced. It can be seen that it can be significantly shortened.
또한, 세포 용리액을 제조할 때 사용된 세포수를 106 ~ 103개까지 변화를 주어 추출 실험을 수행한 뒤 real-time PCR을 통해 유전자 검출을 한 결과 사용한 세포의 수가 많을수록 Ct값이 빠르게 나타나는 것을 확인 할 수 있었다. In addition, when the number of cells used to prepare the cell eluate was changed from 10 6 to 10 3 , the extraction experiment was performed, and as a result of gene detection through real-time PCR, the more the number of cells used, the faster the Ct value. was able to confirm
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to preferred embodiments thereof. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.
Claims (11)
상기 IRG (IRGACURE 819)는 레진 전체 중량대비 0.2내지 0.6%(W/W),
상기 2-이소프로필 티오크산톤 (2-isopropyl thioxanthone, ITX)은 0.1 내지 0.6%(W/W) 포함되는 랩온어칩용 레진.
As a lab-on-a-chip resin comprising PEG-DA-258 as a monomer, IRG (IRGACURE 819) as a photoinitiator, and 2-isopropyl thioxanthone (ITX) as a photosensitizer
The IRG (IRGACURE 819) is 0.2 to 0.6% (W / W) based on the total weight of the resin,
The 2-isopropyl thioxanthone (2-isopropyl thioxanthone, ITX) is included in 0.1 to 0.6% (W / W) of a resin for lab-on-a-chip.
상기 랩온어칩용 레진은 3차원 프린터용인 랩온어칩용 레진.
The method of claim 1,
The resin for the lab-on-a-chip is a resin for a lab-on-a-chip for a 3D printer.
A lab-on-a-chip manufactured using the resin of claim 1.
The lab-on-a-chip of claim 8 , wherein the lab-on-a-chip includes a channel of 27 to 150 μm.
The lab-on-a-chip of claim 8, wherein the lab-on-a-chip is manufactured by a 3D printer.
The lab-on-a-chip according to claim 8, wherein the lab-on-a-chip is for DNA extraction and concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200128138A KR102405337B1 (en) | 2020-10-05 | 2020-10-05 | A resin for microstructure lab-on-a-chip and lab-on-a-chip using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200128138A KR102405337B1 (en) | 2020-10-05 | 2020-10-05 | A resin for microstructure lab-on-a-chip and lab-on-a-chip using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220045425A KR20220045425A (en) | 2022-04-12 |
KR102405337B1 true KR102405337B1 (en) | 2022-06-07 |
Family
ID=81188025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200128138A KR102405337B1 (en) | 2020-10-05 | 2020-10-05 | A resin for microstructure lab-on-a-chip and lab-on-a-chip using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102405337B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102709131B1 (en) * | 2022-05-03 | 2024-09-25 | 한국공학대학교산학협력단 | Microfluidic adjusted device |
WO2024196130A1 (en) * | 2023-03-21 | 2024-09-26 | 서울대학교산학협력단 | Method for manufacturing submicron fluidic channel and submicron fluidic channel manufactured thereby |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020514111A (en) * | 2016-12-23 | 2020-05-21 | スリーエム イノベイティブ プロパティズ カンパニー | PRINTABLE COMPOSITIONS COMPRISING POLYMERS AND POLYMERIC COMPONENTS, ARTICLES, AND METHODS FOR PRODUCING ARTICLES THEREOF |
JP2020143243A (en) * | 2019-03-08 | 2020-09-10 | コニカミノルタ株式会社 | Active ray-curable ink for inkjet and image forming method |
-
2020
- 2020-10-05 KR KR1020200128138A patent/KR102405337B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020514111A (en) * | 2016-12-23 | 2020-05-21 | スリーエム イノベイティブ プロパティズ カンパニー | PRINTABLE COMPOSITIONS COMPRISING POLYMERS AND POLYMERIC COMPONENTS, ARTICLES, AND METHODS FOR PRODUCING ARTICLES THEREOF |
JP2020143243A (en) * | 2019-03-08 | 2020-09-10 | コニカミノルタ株式会社 | Active ray-curable ink for inkjet and image forming method |
Also Published As
Publication number | Publication date |
---|---|
KR20220045425A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102405337B1 (en) | A resin for microstructure lab-on-a-chip and lab-on-a-chip using the same | |
JP4595446B2 (en) | Nucleic acid amplification method | |
CN109825426A (en) | Integral type drop microfluidic chip structure and preparation method, micro-fluidic chip component | |
Vázquez et al. | Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices | |
US9440231B2 (en) | Polymer microfluidic biochip fabrication | |
JP4464393B2 (en) | Highly dispersed phase emulsion foam containing polyelectrolytes | |
JP2000508763A (en) | Acrylic microchannels and their use in electrophoretic applications | |
Gao et al. | Design of a microchannel‐nanochannel‐microchannel array based nanoelectroporation system for precise gene transfection | |
CN106902906B (en) | A method of no sheath fluid formula particle three-dimensional focuses micro-fluid chip and its focusing | |
CN110479391B (en) | Low-voltage high-performance electroosmosis micropump chip based on solid-state track etching nano hole | |
CN210030700U (en) | Integrated liquid drop micro-fluidic chip structure and micro-fluidic chip assembly | |
US20080004364A1 (en) | Laser irradiation of metal nanoparticle/polymer composite materials for chemical and physical transformations | |
US20140255270A1 (en) | Removing sacrificial layer to form liquid containment structure and methods of use thereof | |
JP2002102681A (en) | Minute chemical device having heating/deairing mechanism | |
CN203002392U (en) | Solid-phase extraction microfluidic analysis chip | |
JP5145869B2 (en) | Transportation system and transportation method | |
CN112871227A (en) | Micro-fluidic chip and method for micro-droplet control based on photo-thermal effect | |
CN102452639A (en) | Bonding method of plastic microfluidic chip and plastic microfluidic chip | |
CN101856629B (en) | Preparation method of agarose gel microfluidic device | |
Zhong et al. | Fabrication of two‐weir structure‐based packed columns for on‐chip solid‐phase extraction of DNA | |
CN112522374B (en) | Low-cost wide-adaptation centrifugal digital liquid drop generation method and device | |
JP4735119B2 (en) | Reactor and production method thereof | |
JP2000214132A (en) | Electrophoretic cell and its manufacture | |
CN114260035B (en) | Multilayer wrapped micro-fluidic chip and cell particle generator | |
JP4836167B2 (en) | Organic polymer monolith capillary column and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |