[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102288729B1 - Smart window and preparing method thereof - Google Patents

Smart window and preparing method thereof Download PDF

Info

Publication number
KR102288729B1
KR102288729B1 KR1020150158181A KR20150158181A KR102288729B1 KR 102288729 B1 KR102288729 B1 KR 102288729B1 KR 1020150158181 A KR1020150158181 A KR 1020150158181A KR 20150158181 A KR20150158181 A KR 20150158181A KR 102288729 B1 KR102288729 B1 KR 102288729B1
Authority
KR
South Korea
Prior art keywords
nano
smart window
conductive
tin oxide
zinc oxide
Prior art date
Application number
KR1020150158181A
Other languages
Korean (ko)
Other versions
KR20170055245A (en
Inventor
금동기
금중한
손영섭
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to KR1020150158181A priority Critical patent/KR102288729B1/en
Priority to PCT/KR2016/013015 priority patent/WO2017082681A1/en
Publication of KR20170055245A publication Critical patent/KR20170055245A/en
Application granted granted Critical
Publication of KR102288729B1 publication Critical patent/KR102288729B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133334Electromagnetic shields
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)

Abstract

본 발명은 스마트 윈도우 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 기판; 상기 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽; 상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및 상기 나노 격벽에 전압을 인가하는 전극;을 포함함으로써, 투과율을 현저히 개선하여 우수한 시인성을 구현할 수 있는 스마트 윈도우 및 이의 제조 방법에 관한 것이다.The present invention relates to a smart window and a method for manufacturing the same, and more particularly, to a substrate; conductive nano barrier ribs formed on the substrate at predetermined intervals; conductive light-shielding particles filled in at least a portion between the nano-barriers; and an electrode for applying a voltage to the nano-barrier, by including, to a smart window capable of implementing excellent visibility by remarkably improving transmittance and a method of manufacturing the same.

Description

스마트 윈도우 및 이의 제조 방법{SMART WINDOW AND PREPARING METHOD THEREOF}Smart window and manufacturing method thereof

본 발명은 스마트 윈도우 및 이의 제조 방법에 관한 것이다.The present invention relates to a smart window and a method for manufacturing the same.

일반적으로 스마트 윈도우(smart window)는 켜고 끌 수 있도록 형성되어 전압이 걸리면 빛의 투과성을 변화시켜서 통과하는 빛 또는 열의 양이 제어되는 창을 뜻한다. 즉, 스마트 윈도우는 전압에 의해서 투명, 불투명 또는 반투명 상태로 변화될 수 있게 구비되며 투과도 가변유리, 조광유리 또는 스마트 글래스(smart glass)로도 불리운다.In general, a smart window refers to a window in which the amount of light or heat passing through is controlled by changing the transmittance of light when a voltage is applied, which is formed to be turned on and off. That is, the smart window is provided to be changed to a transparent, opaque, or translucent state by a voltage, and is also called variable transmittance glass, dimming glass, or smart glass.

또한, 스마트 윈도우는 실내 공간의 칸막이로 활용되거나 건축물의 개구부에 배치된 채광창으로 활용될 수 있고, 고속도로 표지판, 게시판, 점수판, 시계 또는 광고스크린으로도 활용될 수 있으며, 자동차, 버스, 항공기, 선박 또는 기차의 창(windows) 또는 선루프로도 활용이 가능하다.In addition, the smart window can be used as a partition of an indoor space or can be used as a skylight placed in an opening of a building, and can be used as a highway sign, bulletin board, scoreboard, clock or advertisement screen. It can also be used as windows or sunroofs of ships or trains.

스마트 윈도우는 기능성을 나타내는 재료의 종류에 따라 액정(LCD: Liquid Crystal Display), 분극입자분산(SPD: Suspended Particle Display), 일렉트로크로믹(EC: Electrochromic glass), 포토크롬(PC: Photochromic glass) 및 써모크롬(LTC: Thermo-chromic glass) 등으로 구분되고 있다. 스마트 윈도우가 차세대의 고기능성 및 고부가가치의 제품으로 각광을 받게 되면서 선진기업과 관련 연구 기관에서는 막대한 예산을 투입하여 개발을 추진하고 있다.Smart windows are liquid crystal (LCD), polarized particle dispersion (SPD: Suspended Particle Display), electrochromic (EC), photochromic (PC: photochromic glass) and Thermochromic (LTC: Thermo-chromic glass) is classified. As smart windows come into the spotlight as the next-generation high-functionality and high-value-added product, advanced companies and related research institutes are investing huge budgets to promote development.

종래의 스마트 윈도우는 대개 고분자 분산 액정(polymer dispersed liquid crystal, PDLC)를 이용하여 제조되고 있는데, 한 쌍의 유리 기판의 사이에 고분자 분산 액정을 주입하여 고분자 매트릭스 내의 미세한 액정(liquid crystal, LC)이 분산되어 있는 구조를 갖는다. 하지만, 액정을 사용한 스마트 윈도우의 경우 장기간 구동시키는 경우에는 전력의 소모가 크게 발생하는 문제점이 있다.The conventional smart window is usually manufactured using a polymer dispersed liquid crystal (PDLC), and by injecting a polymer dispersed liquid crystal between a pair of glass substrates, a fine liquid crystal (LC) in a polymer matrix is formed. It has a distributed structure. However, in the case of a smart window using a liquid crystal, there is a problem in that power consumption is large when driven for a long period of time.

또한, 종래의 분극 입자 분산형 스마트 윈도우 기술의 경우 다층 구조의 투명전극을 이용하여 두께가 두꺼워지거나 투과효율이 낮다는 문제점이 있다.In addition, in the case of the conventional polarized particle dispersed smart window technology, there is a problem in that the thickness is increased or the transmission efficiency is low by using a transparent electrode having a multilayer structure.

한국공개특허 제2013-0037600호에는 고분자 분산형 액정 소자를 포함하는 스마트 윈도우 기술이 개시되어 있으나, 전술한 문제점에 대한 대안을 제시하지 못하였다. Korean Patent Application Laid-Open No. 2013-0037600 discloses a smart window technology including a polymer dispersed liquid crystal device, but does not provide an alternative to the above-mentioned problems.

한국공개특허 제2013-0037600호Korean Patent Publication No. 2013-0037600

본 발명은 스마트 윈도우의 투과율을 개선할 수 있는 스마트 윈도우를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a smart window capable of improving the transmittance of the smart window.

본 발명은 상기 스마트 윈도우의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for manufacturing the smart window.

1. 기판;1. Substrate;

상기 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽;conductive nano barrier ribs formed on the substrate at predetermined intervals;

상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및conductive light-shielding particles filled in at least a portion between the nano-barriers; and

상기 나노 격벽에 전압을 인가하는 전극;을 포함하는 스마트 윈도우.A smart window comprising a; electrode for applying a voltage to the nano-barrier.

2. 위 1에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우.2. The smart window according to the above 1, wherein the nano barrier rib has a thickness of 5 to 200 nm.

3. 위 1에 있어서, 상기 나노 격벽은 소정의 패턴을 이루는, 스마트 윈도우.3. The smart window according to the above 1, wherein the nano barrier ribs form a predetermined pattern.

4. 위 3에 있어서, 상기 패턴은 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 이들이 혼합된 도형 형상을 갖는 개구 패턴인, 스마트 윈도우.4. The smart window according to the above 3, wherein the opening is an opening pattern having a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a mixed figure shape thereof.

5. 위 1에 있어서, 상기 나노 격벽의 높이는 100 내지 8,000nm인, 스마트 윈도우.5. The smart window according to the above 1, wherein the nano-barrier has a height of 100 to 8,000 nm.

6. 위 1에 있어서, 상기 나노 격벽은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우.6. The above 1, wherein the nano barrier ribs are In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo , at least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-Aluminum Zinc Oxide (AZO-Ag-AZO), a smart window comprising one or more metal oxides selected from the group consisting of.

7. 위 1에 있어서, 상기 도전성 광 차폐 입자는 카본 블랙, C.I. 피그먼트 블랙 7 및 극성나노염료로 이루어진 군에서 선택되는 적어도 하나인, 스마트 윈도우.7. The method of 1 above, wherein the conductive light-shielding particles include carbon black, C.I. At least one selected from the group consisting of pigment black 7 and polar nano-dye, a smart window.

8. 위 1에 있어서, 상기 전극이 도전성 나노 격벽에 전압을 인가하면, 도전성 광 차폐 입자가 도전성 나노 격벽의 측면에 부착되는, 스마트 윈도우.8. The smart window according to the above 1, wherein when the electrode applies a voltage to the conductive nano-barrier, the conductive light-shielding particles are attached to the side of the conductive nano-barrier.

9. 위 1에 있어서, 상기 도전성 나노 격벽 사이 중 적어도 일부에 고분자 패턴을 더 포함하는, 스마트 윈도우.9. The smart window of 1 above, further comprising a polymer pattern in at least a portion between the conductive nano-barriers.

10. 위 1 내지 9의 스마트 윈도우를 포함하는 화상 표시 장치.10. An image display device including the smart window of 1 to 9 above.

11. 기판 상에 고분자 패턴을 형성하는 단계;11. forming a polymer pattern on the substrate;

상기 고분자 패턴이 형성된 기판 상에 도전층을 형성하는 단계;forming a conductive layer on the substrate on which the polymer pattern is formed;

상기 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;etching the conductive layer by ion milling, and forming a nano-thick coating layer on a side surface of the polymer pattern to form nano partition walls;

상기 나노 격벽이 형성된 기판 상에 도전성 광 차폐 입자액을 코팅하는 단계; 및coating a conductive light-shielding particle solution on the substrate on which the nano barrier ribs are formed; and

상기 도전성 나노 격벽에 전극을 연결하는 단계;를 포함하는, 스마트 윈도우의 제조 방법.Connecting an electrode to the conductive nano barrier rib; Containing, a method of manufacturing a smart window.

12. 위 11에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우의 제조 방법.12. The method of manufacturing a smart window according to 11 above, wherein the nano barrier rib has a thickness of 5 to 200 nm.

13. 위 11에 있어서, 상기 고분자 패턴은 나노 임프린팅법으로 형성하는, 스마트 윈도우의 제조 방법.13. The method of manufacturing a smart window according to 11 above, wherein the polymer pattern is formed by a nano-imprinting method.

14. 위 11에 있어서, 상기 코팅층은 이온 밀링으로 뜯겨져 나간 도전성 입자가 고분자 패턴의 측면에 부착되어 형성되는, 스마트 윈도우의 제조 방법.14. The method of manufacturing a smart window according to the above 11, wherein the coating layer is formed by attaching conductive particles torn out by ion milling to the side surface of the polymer pattern.

15. 위 11에 있어서, 상기 도전층은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우의 제조 방법.15. In the above 11, the conductive layer is In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo , at least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-Aluminum zinc oxide (AZO-Ag-AZO) will include one or more metal oxides selected from the group consisting of, a method of manufacturing a smart window.

16. 위 11에 있어서, 상기 이온 밀링은 10- 5Torr 내지 10- 3Torr의 압력 하에서 플라즈마를 100ev 내지 1500eV로 가속화하여 수행되는 것인, 스마트 윈도우의 제조 방법.16. The method of manufacturing a smart window according to the above 11, wherein the ion milling is performed by accelerating the plasma to 100ev to 1500eV under a pressure of 10 - 5 Torr to 10 - 3 Torr.

17. 위 11에 있어서, 상기 고분자 패턴을 제거하는 단계를 더 포함하는, 스마트 윈도우의 제조 방법.17. The method of manufacturing a smart window according to the above 11, further comprising the step of removing the polymer pattern.

본 발명의 스마트 윈도우는 도전성 나노 격벽을 포함함으로써, 스마트 윈도우의 투과율을 현저히 개선할 수 있다.The smart window of the present invention can significantly improve the transmittance of the smart window by including the conductive nano barrier ribs.

도 1은 본 발명의 일 구현예에 따른 스마트 윈도우에서 전압이 인가되지 않은 경우의 개략적인 단면도이다.
도 2는 본 발명의 일 구현예에 따른 스마트 윈도우에서 전압이 인가된 경우의 개략적인 단면도이다.
도 3 내지 4는 각각 본 발명의 일 구현예에 따른 스마트 윈도우에서 기판 상에 형성된 도전성 나노 격벽의 개략적인 사시도이다.
도 5는 본 발명의 일 구현예에 따른 스마트 윈도우의 제조 방법의 개략적인 공정도이다.
1 is a schematic cross-sectional view of a case in which no voltage is applied to a smart window according to an embodiment of the present invention.
2 is a schematic cross-sectional view of a case in which a voltage is applied to a smart window according to an embodiment of the present invention.
3 to 4 are schematic perspective views of conductive nano barrier ribs formed on a substrate in a smart window according to an embodiment of the present invention, respectively.
5 is a schematic process diagram of a method for manufacturing a smart window according to an embodiment of the present invention.

본 발명은 대향하는 기판; 상기 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽; 상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및 상기 나노 격벽에 전압을 인가하는 전극;을 포함함으로써, 투과율을 현저히 개선하여 우수한 시인성을 구현할 수 있는 스마트 윈도우 및 이의 제조 방법에 관한 것이다.The present invention provides an opposing substrate; conductive nano barrier ribs formed on the substrate at predetermined intervals; conductive light-shielding particles filled in at least a portion between the nano-barriers; and an electrode for applying a voltage to the nano-barrier, by including, to a smart window capable of implementing excellent visibility by remarkably improving transmittance and a method of manufacturing the same.

이하, 도면을 참조하여 본 발명의 구체적인 실시 형태를 설명하기로 한다. 다만, 본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 구현예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, the following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical spirit of the present invention together with the above-described contents of the present invention, so the present invention is described in such drawings It should not be construed as being limited only to the matters.

본 발명의 스마트 윈도우는 도 1에 도시된 바와 같이, 기판(100) 상기 기판(100) 상에 사이에 소정 간격을 두고 형성된 도전성 나노 격벽(200) 상기 도전성 나노 격벽(200) 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자(500) 및 상기 나노 격벽에 전압을 인가하는 전극(미도시)을 포함한다.As shown in FIG. 1 , the smart window of the present invention is formed on at least a portion of the conductive nano partition wall 200 and the conductive nano partition wall 200 formed at a predetermined distance between the substrate 100 and the substrate 100 . It includes the filled conductive light shielding particles 500 and an electrode (not shown) for applying a voltage to the nano barrier ribs.

기판(100)은 투명성 및 적정 강도를 가지는 것이라면 특별히 한정되지 않으며, 예를 들면 실리콘, 석영, 유리, 고분자, 금속, 금속 산화물, 비금속 산화물, 노르보르넨이나 다환 노르보르넨계 단량체와 같은 시클로올레핀을 포함하는 단량체의 단위를 갖는 시클로올레핀계 유도체, 디아세틸셀룰로오스, 트리아세틸셀룰로오스, 아세틸셀룰로오스부틸레이트, 이소부틸에스테르셀룰로오스, 프로피오닐셀룰로오스, 부티릴셀룰로오스 또는 아세틸프로피오닐셀룰로오스 등에서 선택되는 셀룰로오스, 에틸렌-아세트산비닐공중합체, 폴리에스테르, 폴리스티렌, 폴리아미드, 폴리에테르이미드, 폴리아크릴, 폴리이미드, 폴리에테르술폰, 폴리술폰, 폴리에틸렌, 폴리프로필렌, 폴리메틸펜텐, 폴리염화비닐, 폴리염화비닐리덴, 폴리비닐알콜, 폴리비닐아세탈, 폴리에테르케톤, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리메틸메타아크릴레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리우레탄, 에폭시 등의 소재를 포함하는 기판(100)일 수 있다. 이들 소재는 단독 또는 2종 이상 혼합하여 사용할 수 있다.The substrate 100 is not particularly limited as long as it has transparency and appropriate strength, for example, silicon, quartz, glass, polymer, metal, metal oxide, non-metal oxide, norbornene or polycyclic norbornene-based monomer such as cycloolefin. Cellulose selected from a cycloolefin derivative having a unit of a monomer containing, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl ester cellulose, propionyl cellulose, butyryl cellulose or acetyl propionyl cellulose, ethylene-acetic acid Vinyl copolymer, polyester, polystyrene, polyamide, polyetherimide, polyacrylic, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol , polyvinyl acetal, polyether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyurethane, epoxy, etc. It may be a substrate 100 that These materials can be used individually or in mixture of 2 or more types.

기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10 내지 500㎛일 수 있다.The thickness of the substrate 100 is not particularly limited, and may be, for example, 10 to 500 μm.

도 3에 도시된 바와 같이, 도전성 나노 격벽(200)은 기판(100) 상에 위치하는데, 본 발명에 따른 나노 격벽은 그 두께가 나노 수준인 격벽을 의미한다.As shown in FIG. 3 , the conductive nano barrier ribs 200 are positioned on the substrate 100 , and the nano barrier ribs according to the present invention mean a barrier rib having a nano-level thickness.

또한, 본 발명에 따른 도전성 나노 격벽은 그 두께가 나노 수준으로 전극이 시인되지 않아 광 투과율이 현저히 개선되는 장점이 있다.In addition, the conductive nano barrier rib according to the present invention has an advantage in that the light transmittance is remarkably improved because the electrode is not visually recognized as the thickness of the nano barrier rib is nano-level.

도전성 나노 격벽(200)은 도전성 재료로 제조된 것으로서, 예를 들면 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류 등을 사용할 수 있다.The conductive nano barrier rib 200 is made of a conductive material, for example, In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti. , Ag, Cr, Mo, Nb, Al, Ni, Cu, and at least one metal selected from the group consisting of WTi; or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide - At least one metal oxide selected from the group consisting of -silver-aluminum zinc oxide (AZO-Ag-AZO), etc. may be used.

나노 격벽의 두께는 투과율을 개선할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 두께가 5 내지 200nm일 수 잇고, 바람직하게는 5 내지 100nm, 보다 바람직하게는 5 내지 50nm, 가장 바람직하게는 10 내지 30nm일 수 있다. 두께가 5nm 미만이면 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.The thickness of the nano-barrier is not particularly limited as long as it is within a range capable of improving transmittance, and for example, the thickness may be 5 to 200 nm, preferably 5 to 100 nm, more preferably 5 to 50 nm, most preferably It may be 10 to 30 nm. If the thickness is less than 5 nm, there may be a problem in durability, and if it exceeds 200 nm, the transmittance may be reduced.

나노 격벽의 높이는 특별히 한정되지 않으며, 예를 들면 100nm 내지 8,000nm일 수 있다. 높이가 100nm 미만이면 도전성 광 차폐 입자가 충분히 부착되기 어려울 수 있고, 8,000nm 초과이면 과다한 갭의 존재로 스마트 윈도우의 내구성 저하 등의 문제가 발생할 수 있다.The height of the nano barrier ribs is not particularly limited, and may be, for example, 100 nm to 8,000 nm. If the height is less than 100 nm, it may be difficult to sufficiently attach the conductive light shielding particles, and if it exceeds 8,000 nm, problems such as deterioration of durability of the smart window may occur due to the existence of an excessive gap.

나노 격벽(200)은 단독으로 또는 복수개의 벽으로서 위치할 수 있다.The nano partition walls 200 may be positioned alone or as a plurality of walls.

복수개의 벽이 병렬하여 위치하는 경우, 나노 격벽(200)간 간격은 특별히 한정되지 않으며, 예를 들면 10nm 내지 3㎛일 수 있고, 광 추출 효율 개선의 측면에서 바람직하게는 10 내지 200nm일 수 있다.When a plurality of walls are positioned in parallel, the spacing between the nano-barriers 200 is not particularly limited, and may be, for example, 10 nm to 3 μm, and preferably 10 to 200 nm in terms of improving light extraction efficiency. .

복수개의 벽은 병렬하지 않고, 서로 만나거나, 그 연장선이 서로 만나도록 위치할 수도 있다.The plurality of walls may not be parallel, but may meet each other, or may be positioned so that their extension lines meet each other.

본 발명의 다른 일 구현예에 따르면 상기 나노 격벽(200)의 간격은 예를 들면 5 내지 200㎛일 수 있으나 이에 제한되는 것은 아니다.According to another embodiment of the present invention, the spacing between the nano-barriers 200 may be, for example, 5 to 200 μm, but is not limited thereto.

나노 격벽은 소정의 패턴을 이룰 수 있다. 예를 들면 개구 패턴으로서, 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 등의 다각형, 또는 이들이 결합된 형상을 가질 수도 있고, 선형 패턴, 메쉬 패턴, 지그재그, 나선형, 방사선형, 불규칙한 단일 폐곡선 등의 형상을 가질 수도 있다. 도 4에는 육각형의 개구부를 갖는 개구 패턴인 경우가 예시되어 있으나, 이에 제한되는 것은 아니다.The nano barrier ribs may form a predetermined pattern. For example, as the opening pattern, the opening may have a polygonal shape such as a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a combination thereof, and a linear pattern, a mesh pattern, a zigzag, a spiral, a radial shape, an irregular shape It may have a shape such as a single closed curve. 4 illustrates an opening pattern having a hexagonal opening, but is not limited thereto.

개구 패턴은 나노 격벽들로 둘러쌓이면서 개구부를 갖는 패턴으로서, 개구 패턴은 단독 또는 복수개로 위치할 수 있다.The opening pattern is a pattern having openings while being surrounded by nano barrier ribs, and the opening patterns may be located singly or in plurality.

복수개의 개구 패턴이 위치하는 경우, 각 개구 패턴은 규칙적 또는 불규칙적인 간격으로 위치할 수 있다. 또한, 복수개의 개구 패턴은 서로 연결되거나 이격되어 위치할 수 있으며, 선대칭, 점대칭 또는 불규칙하게 위치할 수 있다.When a plurality of opening patterns are located, each opening pattern may be located at regular or irregular intervals. In addition, the plurality of opening patterns may be connected to or spaced apart from each other, and may be line-symmetrical, point-symmetrical, or irregularly located.

개구 패턴은 개구부가 상기 예시한 도형 형상; 상기 예시한 도형이 결합된 형상; 또는 이들 중 적어도 1개 이상의 도형이 혼재된 형상을 가질 수 있는 것으로서, 개구부는 주기적으로, 또는 비주기적으로 배열될 수 있다.The opening pattern may include a figure shape in which the opening is exemplified above; a shape in which the illustrated figures are combined; Alternatively, at least one of these figures may have a mixed shape, and the openings may be arranged periodically or non-periodically.

본 발명의 스마트 윈도우는 도전성 나노 격벽(200) 중 적어도 일부에 충진된 도전성 광 차폐 입자(500)를 포함한다.The smart window of the present invention includes conductive light-shielding particles 500 filled in at least a portion of the conductive nano barrier ribs 200 .

본 발명에 따른 도전성 나노 격벽(200)은 전극에 연결되므로, 컨트롤러 등의 제어에 의해서 스마트 윈도우에 대한 전압 공급 유무를 제어할 수 있다.Since the conductive nano barrier rib 200 according to the present invention is connected to an electrode, it is possible to control whether or not a voltage is supplied to the smart window by a control such as a controller.

도 1에 도시된 바와 같이, 스마트 윈도우에 전압이 인가되지 않은 경우에는 도전성 나노 격벽(200) 사이에 도전성 광 차폐 입자가 불규칙하게 분산되어 있기 때문에 광이 흡수, 산란되어 도전성 광 차폐 입자의 색, 예를 들면 검은색, 짙은 청색 등을 나타낸다.As shown in Figure 1, when no voltage is applied to the smart window, since the conductive light shielding particles are irregularly dispersed between the conductive nano-barriers 200, the light is absorbed and scattered, so that the color of the conductive light shielding particles, For example, black, dark blue, etc. are represented.

한편, 스마트 윈도우에 전압이 인가되는 경우에는 도전성 나노 격벽 주변으로 전계(electric field)가 형성된다. 이에 따라, 도 2에 도시된 바와 같이, 도전성을 가지는 도전성 광 차폐 입자(500)가 도전성 나노 격벽(200) 측면으로 규칙적으로 배열 및 부착되기 때문에 투명한 상태로 전환된다.On the other hand, when a voltage is applied to the smart window, an electric field is formed around the conductive nano barrier ribs. Accordingly, as shown in FIG. 2 , since the conductive light shielding particles 500 having conductivity are regularly arranged and attached to the side of the conductive nano barrier ribs 200 , they are converted to a transparent state.

이와 같이, 본 발명의 스마트 윈도우는 나노 두께를 가지는 도전성 나노 격벽 및 상기 도전성 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자를 포함함으로써, 시인성을 개선하여 광 투과율을 현저히 개선시킬 수 있다. As described above, the smart window of the present invention includes conductive light-shielding particles filled in at least a portion between the conductive nano-barriers having a nano-thickness and the conductive nano-barriers, thereby improving visibility and remarkably improving light transmittance.

본 발명에 따른 도전성 광 차폐 입자는 도전성을 가지는 것이라면 특별한 제한 없이 사용할 수 있으며, 예를 들면, 카본 블랙, C.I. 피그먼트 블랙 7, 극성나노염료 등을 들 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.The conductive light shielding particles according to the present invention may be used without particular limitation as long as they have conductivity, for example, carbon black, C.I. Pigment Black 7, a polar nano dye, etc. are mentioned. These can be used individually or in mixture of 2 or more types.

도전성 광 차폐 입자는 투명 유체 내에 분산되어 있을 수 있다.The conductive light-shielding particles may be dispersed in the transparent fluid.

투명 유체는 당분야에서 사용하는 것을 특별한 제한 없이 사용할 수 있으며, 예를 들면 비수성 극성 용매 등을 들 수 있다.As the transparent fluid, those used in the art may be used without particular limitation, and for example, a non-aqueous polar solvent may be used.

비수성 극성 용매의 구체적인 예를 들면, 1,2-프로필렌 글리콜, 1,3-프로필렌 글리콜, 1,4-부틸렌 글리콜, 디에틸렌글리콜, 디프로필렌 글리콜, 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 1,2- 사이클로헥산 카보네이트, 글리세린 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 아세토페논, 피리딘, 디메틸말로네이트, 디아세톤 알콜, 하이드록시프로필 카바메이트, 베타-하이드록시에틸 카바메이트, N-메틸 포름아미드, N-메틸 아세트아미드, 디메틸설폭사이드, 설폴란, 2-피롤리돈, N-메틸 -2-피롤리돈, N-사이클로헥실 -2-피롤리돈, 아세토닐 아세톤, 사이클로헥사논, 에틸 아세토아세테이트, 에틸-L-락테이트, 피롤, N-메틸 피롤, N-에틸 피롤, 4H-피란-4-온, 1,3-디메틸-2-이미다졸리디논, 모르폴린, N-메틸모르폴린, N-에틸모르폴린, N-포르밀모르폴린, 베타-프로피오락톤, 베타-발레로락톤, 베타-헥사락톤, 감마-부티로락톤, 감마-발레로락톤, 감마-헥사락톤, 감마-헵타락톤, 감마-옥타락톤, 감마-노나락톤, 감마-데카락톤, 델타-발레로락톤, 델타-헥사락톤, 델타-헵타락톤, 델타-옥타락톤, 델타-노나락톤, 델타-데카락톤, 델타-테트라데카락톤, 델타-옥타데코락톤 등을 들 수 있고, 이들에 한정되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.Specific examples of the non-aqueous polar solvent include 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, diethylene glycol, dipropylene glycol, ethylene carbonate, propylene carbonate, 1,2- Butylene carbonate, 1,2-cyclohexane carbonate, glycerin carbonate, dimethyl carbonate, diethyl carbonate, acetophenone, pyridine, dimethylmalonate, diacetone alcohol, hydroxypropyl carbamate, beta-hydroxyethyl carbamate, N -Methyl formamide, N-methyl acetamide, dimethylsulfoxide, sulfolane, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, acetonyl acetone, cyclo Hexanone, ethyl acetoacetate, ethyl-L-lactate, pyrrole, N-methyl pyrrole, N-ethyl pyrrole, 4H-pyran-4-one, 1,3-dimethyl-2-imidazolidinone, morpholine, N-methylmorpholine, N-ethylmorpholine, N-formylmorpholine, beta-propiolactone, beta-valerolactone, beta-hexalactone, gamma-butyrolactone, gamma-valerolactone, gamma- Hexalactone, gamma-heptalactone, gamma-octalactone, gamma-nonalactone, gamma-decalactone, delta-valerolactone, delta-hexalactone, delta-heptalactone, delta-octalactone, delta -Nonalactone, delta-decalactone, delta-tetradecalactone, delta-octadecolactone, etc. are mentioned, but are not limited to these. These can be used individually or in mixture of 2 or more types.

필요에 따라, 도전성 광 차폐 입자가 분산될 수 있는 투명 유체는 계면활성제를 더 포함할 수도 있다. If necessary, the transparent fluid in which the conductive light-shielding particles can be dispersed may further include a surfactant.

계면활성제의 예를 들면, 베타인(Zwittergent 社), 인지질, 레시틴, TRITONTM, TWEENTM과 같은 중성 계면활성제; 에틸렌 옥사이드, 프로필렌 옥사이드 등의 알켄옥사이드 블록 폴리머의 양이온성 계면활성제; 알킬디메틸아민과 같은 양이온성 계면활성제; CTAB 또는 하기 화학식 1로 표시되는 화합물과 같은 4급 암모늄염 계면활성제; 알킬 아릴 술폰산염, SDS(sodium dodecyl sulfate), 알킬 아릴 설포네이트, 비스-2-에틸엑실 나트륨 설포석시네이트(bis-2-ethylhexyl sodium sulfosuccinate), 카르복실계 계면활성제, 인산염계 계면활성제와 같은 음이온성 계면활성제; 플루오로탄소계 계면활성제; 양쪽성(양성) 계면활성제; SiO2, A1203, BaTiO4, 수 Åm 내지 수 ㎛의 입자 크기를 가지는 제올라이트와 같은 고체 또는 이들의 혼합물일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.Examples of surfactants include neutral surfactants such as betaine (Zwittergent), phospholipids, lecithin, TRITON™, and TWEENTM; cationic surfactants of alkene oxide block polymers such as ethylene oxide and propylene oxide; cationic surfactants such as alkyldimethylamine; a quaternary ammonium salt surfactant such as CTAB or a compound represented by the following formula (1); such as alkyl aryl sulfonate, sodium dodecyl sulfate (SDS), alkyl aryl sulfonate, bis-2-ethylhexyl sodium sulfosuccinate, carboxyl-based surfactant, and phosphate-based surfactant anionic surfactants; fluorocarbon-based surfactants; amphoteric (amphoteric) surfactants; SiO 2 , A1 2 0 3 , BaTiO 4 , a solid such as zeolite having a particle size of several Åm to several μm, or a mixture thereof. These can be used individually or in mixture of 2 or more types.

[화학식 1][Formula 1]

RxHyN+X- R x H y N + X -

(식 중에서, R은 알킬, 아릴 또는 에테르 등의 유기 치환기이며, x는 1 내지 4의 정수이고, y는 0 내지 3의 정수이고, X는 반대이온임).(wherein R is an organic substituent such as alkyl, aryl or ether, x is an integer from 1 to 4, y is an integer from 0 to 3, and X is a counterion).

계면활성제는 투명 유체 중의 도전성 광 차폐 입자의 콜로이드성 안정화에 기여하며, 계면장력을 저하시켜 필요한 전압을 감소시킬 수 있다.The surfactant contributes to colloidal stabilization of the conductive light-shielding particles in the transparent fluid, and can reduce the required voltage by lowering the interfacial tension.

본 발명의 스마트 윈도우는 도전성 나노 격벽(200)에 전압을 인가하는 전극을 포함하여, 전압의 인가 유무에 의해 광을 투과 또는 차폐한다.The smart window of the present invention includes an electrode for applying a voltage to the conductive nano barrier rib 200, and transmits or shields light depending on whether a voltage is applied or not.

전극은 도전성 나노 격벽(200)에 전계를 형성시킬 수 있는 것이라면, 당분야에서 사용하는 것을 특별한 제한 없이 사용할 수 있다.As the electrode, as long as it can form an electric field in the conductive nano barrier rib 200 , any electrode used in the art may be used without any particular limitation.

본 발명의 스마트 윈도우는 도전성 나노 격벽(200) 사이 중 적어도 일부에 고분자 패턴(400)을 더 포함할 수 있다.The smart window of the present invention may further include a polymer pattern 400 in at least a portion between the conductive nano barrier ribs 200 .

고분자 패턴(400)으로는 투명 고분자라면 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.As the polymer pattern 400 , as long as it is a transparent polymer, any polymer resin known in the art can be used without limitation, for example, epoxy-based, cellulose-based, acrylic, vinyl chloride-based, vinyl acetate-based, polyvinyl alcohol-based, polyurethane-based resins. , may be a polymer resin such as polyester. These can be used individually or in mixture of 2 or more types.

또한, 본 발명의 스마트 윈도우는 스마트 윈도우에 필요한 통상의 구성을 더 포함할 수 있다.In addition, the smart window of the present invention may further include a common configuration required for the smart window.

또한, 본 발명은 상기 스마트 윈도우를 포함하는 화상 표시 장치를 제공한다. 본 발명의 화상 표시 장치는 도전성 나노 격벽을 포함하는 스마트 윈도우를 포함함으로써, 시인성이 및 투과율이 현저히 개선된다.In addition, the present invention provides an image display device including the smart window. The image display device of the present invention includes a smart window including a conductive nano barrier rib, and thus visibility and transmittance are remarkably improved.

화상 표시 장치로는 액정 표시 장치, OLED, 플렉서블 디스플레이 등이 있을 수 있으나, 이에 한정되는 것은 아니며 적용이 가능한 당 분야에 알려진 모든 화상 표시 장치를 예시할 수 있다.The image display device may include a liquid crystal display device, an OLED, a flexible display, and the like, but is not limited thereto, and all image display devices known in the art to which it can be applied may be exemplified.

또한, 본 발명의 스마트 윈도우는 건축용 유리제품, 자동차, 항공기 등의 수송수단 등에 적용될 수 있다.In addition, the smart window of the present invention can be applied to transportation means such as glass products for construction, automobiles, and aircraft.

또한, 본 발명은 상기 스마트 윈도우의 제조 방법을 제공한다.In addition, the present invention provides a method of manufacturing the smart window.

이하 본 발명의 일 구현예에 따른 스마트 윈도우의 제조 방법을 설명한다.Hereinafter, a method of manufacturing a smart window according to an embodiment of the present invention will be described.

먼저, 도 5 (a)와 같이 기판(100) 상에 고분자 패턴(400)을 형성한다. First, a polymer pattern 400 is formed on the substrate 100 as shown in FIG. 5A .

고분자 패턴(400)은 기판(100) 상에 고분자 수지층을 형성하고, 이를 패터닝하여 형성할 수 있다.The polymer pattern 400 may be formed by forming a polymer resin layer on the substrate 100 and patterning it.

고분자 패턴의 높이에 따라 나노 격벽의 높이가 결정되므로, 고분자 패턴의 높이를 조절하여 본 발명의 나노 격벽의 높이를 선택할 수 있다.Since the height of the nano-barrier is determined according to the height of the polymer pattern, the height of the nano-barrier of the present invention can be selected by adjusting the height of the polymer pattern.

고분자 수지층으로는 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.As the polymer resin layer, polymer resins known in the art can be used without limitation, for example, epoxy-based, cellulose-based, acrylic-based, vinyl chloride-based, vinyl acetate-based, polyvinyl alcohol-based, polyurethane-based, polyester-based, etc. It may be a polymer resin of These can be used individually or in mixture of 2 or more types.

고분자 수지층의 패터닝 방법은 특별히 한정되지 않고 예를 들면 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법, 나노 임프린팅 등의 방법을 사용할 수 있으며, 미세 패턴을 형성할 수 있다는 측면에서 바람직하게는 나노 임프린팅법에 의할 수 있다.The patterning method of the polymer resin layer is not particularly limited, and for example, a screen printing method, a gravure printing method, a flexographic printing method, an offset printing method, an inkjet coating method, a dispenser printing method, a photolithography method, a method such as nanoimprinting. It can be used, and in terms of being able to form a fine pattern, it is preferably by the nano-imprinting method.

이후에, 도 5 (b)와 같이 상기 고분자 패턴(400)이 형성된 기판(100) 상에 도전층(300)을 형성한다.Thereafter, a conductive layer 300 is formed on the substrate 100 on which the polymer pattern 400 is formed, as shown in FIG. 5B .

도전층(300)은 전술한 1종 이상의 금속, 1종 이상의 금속산화물 등의 도전성 소재로, 물리적 증착법, 화학적 증착법, 플라즈마 증착법, 플라즈마 중합법, 열 증착법, 열 산화법, 양극 산화법, 클러스터 이온빔 증착법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법 등의 방법으로 형성할 수 있으나, 이에 제한되는 것은 아니다.The conductive layer 300 is a conductive material such as one or more metals and one or more metal oxides described above, and includes a physical vapor deposition method, a chemical vapor deposition method, a plasma deposition method, a plasma polymerization method, a thermal evaporation method, a thermal oxidation method, an anodic oxidation method, a cluster ion beam deposition method, It may be formed by methods such as screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, and photolithography, but is not limited thereto.

도전층(300)에 사용되는 도전성 소재로는 예를 들면 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.As a conductive material used for the conductive layer 300 , for example, In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag , Cr, Mo, Nb, Al, Ni, Cu, and at least one metal selected from the group consisting of WTi; or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide One or more metal oxides selected from the group consisting of -silver-aluminum zinc oxide (AZO-Ag-AZO) may be used, but the present invention is not limited thereto.

이후에, 도 5 (c)와 같이 상기 도전층(300)을 이온 밀링하여 식각하고, 상기 고분자 패턴(400)의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽(200)을 형성한다.Thereafter, as shown in FIG. 5 ( c ), the conductive layer 300 is ion-milled and etched, and a nano-thick coating layer is formed on the side surface of the polymer pattern 400 to form the nano barrier ribs 200 .

나노 두께의 코팅층이 나노 격벽(200)에 해당한다.The nano-thick coating layer corresponds to the nano partition wall 200 .

이온 형성에 사용되는 기체는 예를 들면 아르곤, 헬륨, 질소, 수소, 산소 또는 이들의 혼합 기체일 수 있고, 바람직하게는 아르곤일 수 있다.The gas used for ion formation may be, for example, argon, helium, nitrogen, hydrogen, oxygen, or a mixture thereof, preferably argon.

이온 밀링 조건은 특별히 한정되지 않으며, 예를 들면 10- 5Torr 내지 10- 3Torr의 압력 하에서 기체로 플라즈마를 형성한 다음, 플라즈마를 100eV ~ 1500eV로 가속화하여 수행할 수 있다. 에너지가 100eV 미만인 경우 도전층(300)의 식각이 어려울 수 있고, 1500eV 초과이면 고분자 패턴(400)이 손상되어 나노 격벽의 생성이 어려울 수 있다.Ion milling conditions are not particularly limited, and for example , plasma may be formed with a gas under a pressure of 10 - 5 Torr to 10 - 3 Torr, and then the plasma may be accelerated to 100 eV to 1500 eV. If the energy is less than 100 eV, it may be difficult to etch the conductive layer 300, and if it exceeds 1500 eV, the polymer pattern 400 may be damaged and it may be difficult to generate the nano barrier ribs.

본 발명에 따른 나노 격벽(200)의 두께는 이온 밀링의 조건을 조절하여 선택할 수 있다. The thickness of the nano-barrier 200 according to the present invention may be selected by controlling the conditions of ion milling.

나노 격벽(200)의 두께는 투과율을 개선할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 5 내지 200nm일 수 잇고, 바람직하게는 5 내지 100nm, 보다 바람직하게는 5 내지 50nm, 가장 바람직하게는 10 내지 30nm일 수 있다. 두께가 5nm 미만이면 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.The thickness of the nano-barrier 200 is not particularly limited as long as it is within a range capable of improving transmittance, and may be, for example, 5 to 200 nm, preferably 5 to 100 nm, more preferably 5 to 50 nm, most preferably may be 10 to 30 nm. If the thickness is less than 5 nm, there may be a problem in durability, and if it exceeds 200 nm, the transmittance may be reduced.

나노 격벽의 높이는 특별히 한정되지 않으며, 예를 들면 100m 내지 8,000nm일 수 있다. 높이가 100nm 미만이면 도전성 광 차폐 입자가 충분히 부착되기 어려울 수 있고, 5,000nm 초과이면 과다한 갭의 존재로 스마트 윈도우의 내구성 저하 등의 문제가 발생할 수 있다.The height of the nano barrier ribs is not particularly limited, and may be, for example, 100 m to 8,000 nm. If the height is less than 100 nm, it may be difficult to sufficiently attach the conductive light shielding particles, and if it exceeds 5,000 nm, problems such as deterioration of durability of the smart window may occur due to the existence of an excessive gap.

다음으로, 나노 격벽이 형성된 기판 상에 도전성 광 차폐 입자액을 코팅한다. Next, a conductive light-shielding particle solution is coated on the substrate on which the nano barrier ribs are formed.

도전성 광 차폐 입자액을 코팅하는 방법은 당분야에 공지된 방법이면 특별한 제한없이 사용하여 형성할 수 있고, 예를 들면 전술한 도전성 광 차폐 입자를 포함하는 투명 유체를 도포 및 건조하는 방법으로 코팅할 수 있으나. 이에 한정되는 것은 아니다.The method of coating the conductive light-shielding particle solution can be formed using any method known in the art without any particular limitation, for example, it can be coated by applying and drying a transparent fluid containing the conductive light-shielding particles described above. can, but The present invention is not limited thereto.

다음으로, 도전성 나노 격벽에 전극을 연결한다. 도전성 나노 격벽에 전극을 연결하는 방법은 당분야에 공지된 방법이면 특별한 제한없이 사용하여 형성할 수 있다.Next, the electrodes are connected to the conductive nano barrier ribs. A method of connecting the electrodes to the conductive nano barrier ribs may be formed using any method known in the art without any particular limitation.

필요에 따라, 본 발명의 스마트 윈도우의 제조 방법은 도 5 (d)와 같이 고분자 패턴(400)을 제거함으로써, 그 측면에 형성된 나노 격벽(200)만이 남을 수 있다. 도 6 (d)는 도 4의 A-A' 단면이다.If necessary, in the method for manufacturing a smart window of the present invention, only the nano partition wall 200 formed on the side surface may remain by removing the polymer pattern 400 as shown in FIG. 5(d). FIG. 6(d) is a cross-sectional view taken along line A-A' of FIG. 4 .

100: 기판 200: 도전성 나노 격벽
300: 도전층 400: 고분자 패턴
500: 도전성 광 차폐 입자
100: substrate 200: conductive nano barrier ribs
300: conductive layer 400: polymer pattern
500: conductive light shielding particles

Claims (17)

절연 기판;
상기 절연 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽;
상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및
상기 나노 격벽에 전압을 인가하는 전극;을 포함하며,
상기 전극이 도전성 나노 격벽에 전압을 인가하면, 도전성 광 차폐 입자가 도전성 나노 격벽의 측면에만 부착되는, 스마트 윈도우.
insulated substrate;
conductive nano barrier ribs formed on the insulating substrate at predetermined intervals;
conductive light-shielding particles filled in at least a portion between the nano-barriers; and
and an electrode for applying a voltage to the nano-barrier rib;
When the electrode applies a voltage to the conductive nano barrier rib, the conductive light shielding particles are attached only to the side of the conductive nano barrier rib, a smart window.
청구항 1에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우.
The smart window according to claim 1, wherein the nano barrier rib has a thickness of 5 to 200 nm.
청구항 1에 있어서, 상기 나노 격벽은 소정의 패턴을 이루는, 스마트 윈도우.
The smart window according to claim 1, wherein the nano barrier ribs form a predetermined pattern.
청구항 3에 있어서, 상기 패턴은 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 이들이 혼합된 도형 형상을 갖는 개구 패턴인, 스마트 윈도우.
The smart window of claim 3, wherein the opening is an opening pattern having a circle, ellipse, triangle, square, pentagon, hexagon, octagon, or a mixed figure shape.
청구항 1에 있어서, 상기 나노 격벽의 높이는 100 내지 8,000nm인, 스마트 윈도우.
The smart window of claim 1, wherein the nano-barrier has a height of 100 to 8,000 nm.
청구항 1에 있어서, 상기 나노 격벽은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우.
The method according to claim 1, The nano barrier ribs In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb , Al, Ni, Cu, and at least one metal selected from the group consisting of WTi; or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-Aluminum Zinc Oxide (AZO-Ag-AZO), a smart window comprising one or more metal oxides selected from the group consisting of.
청구항 1에 있어서, 상기 도전성 광 차폐 입자는 카본 블랙, C.I. 피그먼트 블랙 7, 및 극성나노염료로 이루어진 군에서 선택되는 적어도 하나인, 스마트 윈도우.
The smart window according to claim 1, wherein the conductive light shielding particles are at least one selected from the group consisting of carbon black, CI pigment black 7, and polar nano dyes.
삭제delete 청구항 1에 있어서, 상기 도전성 나노 격벽 사이 중 적어도 일부에 고분자 패턴을 더 포함하는, 스마트 윈도우.
The smart window according to claim 1, further comprising a polymer pattern in at least a portion of between the conductive nano barrier ribs.
청구항 1 내지 7, 및 9 중 어느 하나의 스마트 윈도우를 포함하는 화상 표시 장치.
An image display device comprising the smart window of any one of 1 to 7, and 9.
기판 상에 고분자 패턴을 형성하는 단계;
상기 고분자 패턴이 형성된 기판 상에 도전층을 형성하는 단계;
상기 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;
상기 나노 격벽이 형성된 기판 상에 도전성 광 차폐 입자액을 코팅하는 단계; 및
상기 도전성 나노 격벽에 전극을 연결하는 단계;를 포함하는, 스마트 윈도우의 제조 방법.
forming a polymer pattern on a substrate;
forming a conductive layer on the substrate on which the polymer pattern is formed;
etching the conductive layer by ion milling, and forming a nano-thick coating layer on a side surface of the polymer pattern to form nano partition walls;
coating a conductive light-shielding particle solution on the substrate on which the nano barrier ribs are formed; and
Connecting an electrode to the conductive nano barrier rib; Containing, a method of manufacturing a smart window.
청구항 11에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우의 제조 방법.
The method according to claim 11, wherein the nano barrier rib has a thickness of 5 to 200 nm.
청구항 11에 있어서, 상기 고분자 패턴은 나노 임프린팅법으로 형성하는, 스마트 윈도우의 제조 방법.
The method of claim 11 , wherein the polymer pattern is formed by a nano-imprinting method.
청구항 11에 있어서, 상기 코팅층은 이온 밀링으로 뜯겨져 나간 도전성 입자가 고분자 패턴의 측면에 부착되어 형성되는, 스마트 윈도우의 제조 방법.
The method of claim 11 , wherein the coating layer is formed by attaching conductive particles torn out by ion milling to a side surface of a polymer pattern.
청구항 11에 있어서, 상기 도전층은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우의 제조 방법.
The method according to claim 11, wherein the conductive layer is In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb , Al, Ni, Cu, and at least one metal selected from the group consisting of WTi; or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-Aluminum zinc oxide (AZO-Ag-AZO) will include one or more metal oxides selected from the group consisting of, a method of manufacturing a smart window.
청구항 11에 있어서, 상기 이온 밀링은 10- 5Torr 내지 10- 3Torr의 압력 하에서 플라즈마를 100ev 내지 1500eV로 가속화하여 수행되는 것인, 스마트 윈도우의 제조 방법.
The method of claim 11, wherein the ion milling is performed by accelerating the plasma to 100ev to 1500eV under a pressure of 10 - 5 Torr to 10 - 3 Torr.
청구항 11에 있어서, 상기 고분자 패턴을 제거하는 단계를 더 포함하는, 스마트 윈도우의 제조 방법.The method of claim 11, further comprising removing the polymer pattern.
KR1020150158181A 2015-11-11 2015-11-11 Smart window and preparing method thereof KR102288729B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150158181A KR102288729B1 (en) 2015-11-11 2015-11-11 Smart window and preparing method thereof
PCT/KR2016/013015 WO2017082681A1 (en) 2015-11-11 2016-11-11 Smart window and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150158181A KR102288729B1 (en) 2015-11-11 2015-11-11 Smart window and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20170055245A KR20170055245A (en) 2017-05-19
KR102288729B1 true KR102288729B1 (en) 2021-08-10

Family

ID=58695835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150158181A KR102288729B1 (en) 2015-11-11 2015-11-11 Smart window and preparing method thereof

Country Status (2)

Country Link
KR (1) KR102288729B1 (en)
WO (1) WO2017082681A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072469B1 (en) 2010-04-22 2011-10-11 홍익대학교 산학협력단 Active shutter glasses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767491A4 (en) * 2004-06-08 2010-11-03 Riken METHOD FOR MANUFACTURING NANOSTRUCTURE AND NANOSTRUCTURE
US8889245B2 (en) * 2010-06-29 2014-11-18 Korea Advanced Institute Of Science And Technology Three-dimensional nanostructures and method for fabricating the same
KR101231898B1 (en) * 2011-06-20 2013-02-08 한국과학기술원 Transparent Electrode Formed Nanostructure Pattern and Method for Preparing the Same
KR101888139B1 (en) 2011-10-06 2018-08-14 엘지디스플레이 주식회사 Smart window display
KR101495239B1 (en) * 2013-06-17 2015-02-25 한국기계연구원 Method for manufacturing flexible substrate with buried conducting trace using modification layer and flexible substrate manufactured thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072469B1 (en) 2010-04-22 2011-10-11 홍익대학교 산학협력단 Active shutter glasses

Also Published As

Publication number Publication date
WO2017082681A1 (en) 2017-05-18
KR20170055245A (en) 2017-05-19

Similar Documents

Publication Publication Date Title
US9280028B2 (en) Electrochromic display device and method of producing the same
US7532383B2 (en) Electrochromic device having improved color properties
US8300297B2 (en) Electrochromic device and method of fabricating the same
CN102947742B (en) Privacy protection filter and fabrication method thereof
US20140085578A1 (en) Color filter substrate, method of fabricating the same, and lcd panel
US8896907B2 (en) Plasmonic reflective display fabricated using anodized aluminum oxide
TWI281054B (en) Electrochromic device based on poly-(3,4-dioxy-thiophene)derivatives
US20110227080A1 (en) Flat panel display
US10372012B2 (en) Mechanical chameleon through dynamic real-time plasmonic tuning
CN102650823A (en) Color filter with polarization ability and manufacturing method thereof
Li et al. Structural color boosted electrochromic devices: strategies and applications
CN102792247A (en) Transparent conductive element, input device, and display device
US20160327691A1 (en) Polarizer and manufacturing method thereof, display panel and display device
JP2016114916A (en) Electrochromic device
KR20160048622A (en) Apparatus for displaying photonic crystal
KR20220164288A (en) Optical laminate, and manufacturing method for the same, and smart window including the same, and automobile or windows for buiding using the same
KR102288729B1 (en) Smart window and preparing method thereof
US7679807B2 (en) Display medium, display device and display method
KR20120110885A (en) Touch sensor intergrated with a polarizer and display device comprising the same
Yang et al. Enhanced electrochromic properties of nanorod based WO3 thin films with inverse opal structure
US20200326604A1 (en) Film Having Variable Transmittance
CN103558713B (en) Liquid crystal aligning device and method, to box substrate and liquid crystal indicator
CN102479487B (en) Driving method of electrowetting display
CN103744227B (en) A kind of color membrane substrates and method for making, display device
CN102650782A (en) Half-reflecting half-transmission LCD (Liquid Crystal Display) panel

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20151111

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200227

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20151111

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210323

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210709

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210805

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210805

End annual number: 3

Start annual number: 1

PG1601 Publication of registration