KR102276065B1 - Method and apparatus for robust raman spectrum discrimination against measurement environmental conditions - Google Patents
Method and apparatus for robust raman spectrum discrimination against measurement environmental conditions Download PDFInfo
- Publication number
- KR102276065B1 KR102276065B1 KR1020190057395A KR20190057395A KR102276065B1 KR 102276065 B1 KR102276065 B1 KR 102276065B1 KR 1020190057395 A KR1020190057395 A KR 1020190057395A KR 20190057395 A KR20190057395 A KR 20190057395A KR 102276065 B1 KR102276065 B1 KR 102276065B1
- Authority
- KR
- South Korea
- Prior art keywords
- spectrum
- partial
- correlation
- library
- raman
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
본 발명의 일 실시 예는 라만 스펙트럼에 대한 효율적인 분석을 통해 화학 물질 판별 성능을 증대시키는 방법 및 장치를 제공한다. 본 발명의 실시 예에 따른 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법은, i) 사전에 각각의 화학 시료에 대한 라만 스펙트럼을 측정하여 라이브러리 스펙트럼을 수집하고 라이브러리 데이터베이스를 형성하는 단계; ii) 적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 입력 스펙트럼을 수집하는 단계; iii) 상기 입력 스펙트럼의 해상도를 조절하고 잡음을 제거하는 단계; iv) 무빙 윈도우를 이용하여 상기 입력 스펙트럼을 스캔하고 상기 입력 스펙트럼의 피크 값을 측정하여 상기 입력 스펙트럼의 피크 군집 영역을 결정하는 단계; v) 상기 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할하는 단계; vi) 각각의 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 분석하는 단계; 및 vii) 상기 측정대상에 포함되는 화학 물질을 도출하는 단계;를 포함한다.An embodiment of the present invention provides a method and apparatus for increasing chemical substance discrimination performance through efficient analysis of a Raman spectrum. According to an embodiment of the present invention, a method for determining a Raman spectrum robust to a measurement environment condition includes: i) measuring a Raman spectrum for each chemical sample in advance, collecting a library spectrum, and forming a library database; ii) collecting an input spectrum including at least one Raman spectrum by performing Raman spectroscopy on a measurement target including at least one chemical sample; iii) adjusting the resolution of the input spectrum and removing noise; iv) determining a peak cluster region of the input spectrum by scanning the input spectrum using a moving window and measuring a peak value of the input spectrum; v) dividing the peak cluster region of the input spectrum into at least one subspectrum; vi) analyzing a degree of similarity between each of the partial spectra and the library spectrum; and vii) deriving a chemical substance included in the measurement target.
Description
본 발명은 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법 및 장치에 관한 것으로, 더욱 상세하게는, 라만 스펙트럼에 대한 효율적인 분석을 통해 화학 물질 판별 성능을 증대시키는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for determining a Raman spectrum that is robust to measurement environmental conditions, and more particularly, to a method and apparatus for increasing chemical substance identification performance through efficient analysis of a Raman spectrum.
물질에 단파장의 가시 광선이나 자외선을 조사하면 분자 진동 중 분극률의 변화를 일으키기 때문에 입사광은 파장의 변화를 받아 산란되며, 이 산란 강도를 파장 변화에 대해 표시하여 라만 스펙트럼이 획득되며, 이와 같은 라만 스펙트럼은 물질 고유의 것이 때문에 화학 물질의 분석에 이용되고 있다.When a material is irradiated with short-wavelength visible light or ultraviolet light, it causes a change in polarization during molecular vibration, so incident light is scattered by changing the wavelength, and a Raman spectrum is obtained by displaying the scattering intensity against the change in wavelength. Spectra are used in the analysis of chemicals because they are material-specific.
라만 스펙트럼의 교정 방법으로는 SRM을 이용한 스펙트럼 교정 방법이 있다. 이 방법은 라만 장비 간에 스펙트럼의 차이를 발생시키는 전달 함수가 존재한다고 가정하고, 이를 구한 후 스펙트럼의 강도 교정을 수행하며, 한번 전달 함수를 얻으면, 상관 계수와 같은 단순한 알고리즘을 이용하여 판별할 수 있다. 다만, 전달 함수를 얻은 추가 과정이 필요하고, 측정 온도와 같은 기타 환경 변수에는 대응하기 어려운 문제가 있다.As a calibration method of the Raman spectrum, there is a spectrum calibration method using SRM. This method assumes that a transfer function that causes spectral differences between Raman instruments exists, and after obtaining it, performs spectrum intensity correction, and once the transfer function is obtained, it can be determined using a simple algorithm such as a correlation coefficient. . However, there is a problem in that an additional process to obtain the transfer function is required, and it is difficult to respond to other environmental variables such as the measured temperature.
라만 스펙트럼의 판별 방법으로는 SHQI방법이 있다. 이 방법은 전체 스펙트럼영역을 분할 하여, 각 부분 스펙트럼 영역에서 상관도를 결정 짓기 때문에, 강도 차이 특성에 기인한 판별 알고리즘으로써, 라만 스펙트럼의 분류 효율이 높은 장점이 있다. 다만, 피크 분포 특성이 반영되지 않았기 때문에, 상관도 수치가 고르지 못한 단점이 있고, 일반적인 임계 상관도인 0.95를 밑도는 수치가 종종 발생한다는 문제가 있다.As a method for discriminating the Raman spectrum, there is the SHQI method. Since this method divides the entire spectral region and determines the degree of correlation in each partial spectral region, it is a discrimination algorithm based on the intensity difference characteristic, and has the advantage of high classification efficiency of the Raman spectrum. However, since the peak distribution characteristic is not reflected, there is a disadvantage that the correlation value is uneven, and there is a problem that a value lower than 0.95, which is a general critical correlation, often occurs.
그리고, 기존 알고리즘의 경우, 전체 스펙트럼 영역에서 부분 영역을 선택 할 때, 고정적인 윈도우 파라미터를 사용하였고, 따라서 스펙트럼의 피크 분포 특성을 모델링 하지 못하는 문제가 있다.And, in the case of the existing algorithm, when selecting a partial region from the entire spectral region, a fixed window parameter is used, so there is a problem in that the peak distribution characteristic of the spectrum cannot be modeled.
대한민국 공개특허 제10-2018-0127939호(발명의 명칭: 라만 피크점 변동을 이용한 정량적 분자 센싱 장치 및 방법)에서는, 피검체에 여기광을 조사하는 광원을 포함하는 조명 광학계; 피검체로부터 산란되는 광을 검출하는 광검출기를 포함하는 검출 광학계; 및 검출 광학계에서의 출력 신호를 이용하여 피검체의 물성을 분석하는 신호처리기를 포함하는 라만 피크점 변동을 이용한 정량적 분자 센싱 장치가 개시되어 있다.In Korean Patent Laid-Open No. 10-2018-0127939 (Title of the Invention: Quantitative Molecular Sensing Apparatus and Method Using Raman Peak Point Variation), an illumination optical system including a light source irradiating excitation light to a subject; a detection optical system including a photodetector for detecting light scattered from the subject; and a signal processor for analyzing physical properties of an object by using an output signal from a detection optical system. A quantitative molecular sensing device using a Raman peak point variation is disclosed.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 라만 스펙트럼에 대한 효율적인 분석을 통해 화학 물질 판별 성능을 증대시키는 것이다.An object of the present invention for solving the above problems is to increase the chemical substance discrimination performance through efficient analysis of the Raman spectrum.
그리고, 본 발명의 목적은, 주위의 온도 조건 등에 따라 라만 스펙트럼의 피크 강도 차이가 발생하더라도 화학 물질 판별 성능이 유지되도록 하는 것이다.In addition, it is an object of the present invention to maintain chemical substance discrimination performance even when a difference in peak intensity of a Raman spectrum occurs depending on ambient temperature conditions and the like.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, i) 사전에 각각의 화학 시료에 대한 라만 스펙트럼을 측정하여 라이브러리 스펙트럼을 수집하고 라이브러리 데이터베이스를 형성하는 단계; ii) 적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 입력 스펙트럼을 수집하는 단계; iii) 상기 입력 스펙트럼의 해상도를 조절하고 잡음을 제거하는 단계; iv) 무빙 윈도우를 이용하여 상기 입력 스펙트럼을 스캔하고 상기 입력 스펙트럼의 피크 값을 측정하여 상기 입력 스펙트럼의 피크 군집 영역을 결정하는 단계; v) 상기 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할하는 단계; vi) 각각의 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 분석하는 단계; 및 vii) 상기 측정대상에 포함되는 화학 물질을 도출하는 단계;를 포함한다.The configuration of the present invention for achieving the above object includes the steps of: i) collecting a library spectrum by measuring a Raman spectrum for each chemical sample in advance, and forming a library database; ii) collecting an input spectrum including at least one Raman spectrum by performing Raman spectroscopy on a measurement target including at least one chemical sample; iii) adjusting the resolution of the input spectrum and removing noise; iv) determining a peak cluster region of the input spectrum by scanning the input spectrum using a moving window and measuring a peak value of the input spectrum; v) dividing the peak cluster region of the input spectrum into at least one subspectrum; vi) analyzing a degree of similarity between each of the partial spectra and the library spectrum; and vii) deriving a chemical substance included in the measurement target.
본 발명의 실시 예에 있어서, 상기 v) 단계에서, 상기 부분 스펙트럼은 상기 상기 입력 스펙트럼의 피크 군집 영역을 미리 설정된 임계 수치로 분할한 스펙트럼일 수 있다.In an embodiment of the present invention, in step v), the partial spectrum may be a spectrum obtained by dividing a peak cluster region of the input spectrum by a preset threshold value.
본 발명의 실시 예에 있어서, 상기 vi) 단계에서, 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼 각각의 피크 영역 정보를 사용하여 상관도를 구하는 교차 상관도를 수행하여 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 도출할 수 있다.In an embodiment of the present invention, in step vi), a degree of similarity between the partial spectrum and the library spectrum is derived by performing a cross-correlation diagram to obtain a correlation using peak area information of each of the partial spectrum and the library spectrum. can do.
본 발명의 실시 예에 있어서, 상기 vi) 단계에서, 복수 개(n개)의 상기 부분 스펙트럼 중 어느 하나의 부분 스펙트럼인 i번째 부분 스펙트럼을 정규화한 후 부분 상관도를 도출하고, 부분 상관도를 이용하여 전체 상관도를 도출할 수 있다.In an embodiment of the present invention, in step vi), the partial correlation is derived after normalizing the i-th partial spectrum, which is any one of the plurality of (n) partial spectra, and the partial correlation is calculated can be used to derive the overall correlation.
본 발명의 실시 예에 있어서, 복수 개의 상기 부분 스펙트럼에 대한 전체 상관도는, 상기 부분 스펙트럼 전체 수에 의한 상기 부분 상관도의 평균 값일 수 있다.In an embodiment of the present invention, the total correlations for the plurality of partial spectra may be an average value of the partial correlations by the total number of the partial spectra.
본 발명의 실시 예에 있어서, 상기 라이브러리 스펙트럼 중 일부에 대한 전체 상관도는, 상기 라이브러리 스펙트럼 중 일부의 분할 수에 의한 상기 부분 상관도의 평균 값일 수 있다.In an embodiment of the present invention, the overall correlation for a part of the library spectrum may be an average value of the partial correlation by the number of divisions of the part of the library spectrum.
본 발명의 실시 예에 있어서, 최종 상관도는, 복수 개의 상기 부분 스펙트럼에 대한 전체 상관도와 상기 라이브러리 스펙트럼 중 일부에 대한 전체 상관도의 합일 수 있다.In an embodiment of the present invention, the final correlation may be the sum of the total correlations for the plurality of partial spectra and the total correlations with respect to some of the library spectra.
본 발명의 실시 예에 있어서, 상기 vii) 단계에서, 상기 입력 스펙트럼과 가장 큰 최종 상관도를 얻은 상기 라이브러리 스펙트럼을 상기 화학 물질에 대한 라만 스펙트럼으로 판단할 수 있다.In an embodiment of the present invention, in step vii), the library spectrum obtained with the greatest final correlation with the input spectrum may be determined as a Raman spectrum for the chemical substance.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 입력 스펙트럼을 수집하는 신호취득부; 상기 신호취득부와 연결되고, 상기 입력 스펙트럼의 해상도를 조절하고 잡음을 제거하며, 무빙 윈도우를 이용하여 상기 입력 스펙트럼을 스캔하고 상기 입력 스펙트럼의 피크 값을 측정하여 상기 입력 스펙트럼의 피크 군집 영역을 결정하는 신호처리부; 상기 신호처리부와 연결되고, 상기 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할하고, 각각의 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 분석하는 신호판별부; 및 상기 신호판별부와 연결되고, 상기 측정대상에 포함되는 화학 물질을 도출하여 디스플레이 화면에 표시하는 출력부;를 포함한다.According to an aspect of the present invention, there is provided a signal acquisition unit configured to collect an input spectrum including at least one Raman spectrum by performing Raman spectroscopy on a measurement target including at least one or more chemical samples; It is connected to the signal acquisition unit, adjusts the resolution of the input spectrum and removes noise, scans the input spectrum using a moving window, and measures the peak value of the input spectrum to determine the peak clustering area of the input spectrum signal processing unit; a signal discrimination unit connected to the signal processing unit, dividing a peak cluster region of the input spectrum into at least one partial spectrum, and analyzing a degree of similarity between each partial spectrum and the library spectrum; and an output unit connected to the signal discrimination unit and displaying the chemical substance included in the measurement target on a display screen.
상기와 같은 구성에 따른 본 발명의 효과는, 라만 스펙트럼의 피크 분포를 모델링하는 적응적 윈도우 모델링을 통해 보다 면밀하고, 효율적인 상관도 평가를 통해 판별 성능을 강화 시킬 수 있다는 것이다.The effect of the present invention according to the above configuration is that discrimination performance can be strengthened through more detailed and efficient correlation evaluation through adaptive window modeling for modeling the peak distribution of the Raman spectrum.
그리고, 본 발명의 효과는, 측정된 라만 스펙트럼의 부분 스펙트럼과 라이브러리 스펙트럼의 상관도 분석을 통해 화학 물질을 판별함으로써, 주위 환경의 온도 변화 등의 조건에서도 화학 물질 판별 효율을 향상시킬 수 있다는 것이다.In addition, an effect of the present invention is that by discriminating a chemical substance through correlation analysis between a partial spectrum of the measured Raman spectrum and a library spectrum, chemical substance discrimination efficiency can be improved even under conditions such as temperature change in the surrounding environment.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시 예에 따른 입력 스펙트럼의 그래프이다.
도 2는 본 발명의 일 실시 예에 따른 부분 스펙트럼을 형성하는 과정에 대한 그래프이다.
도 3은 본 발명의 일 실시 예에 따른 라이브러리 스펙트럼과 입력 스펙트럼의 비교에 대한 그래프이다.
도 4는 본 발명의 일 실시 예에 따른 라이브러리 스펙트럼과 부분 스펙트럼의 비교에 대한 그래프이다.
도 5는 본 발명의 일 실시 예에 따른 라만 스펙트럼 판별 장치의 구성도이다.
도 6은 본 발명의 라만 스펙트럼 판별 방법을 포함한 복수 개의 화학 물질 판별 방법 수행 시 상관도 분포에 대한 그래프이다.1 is a graph of an input spectrum according to an embodiment of the present invention.
2 is a graph illustrating a process of forming a partial spectrum according to an embodiment of the present invention.
3 is a graph for comparing a library spectrum and an input spectrum according to an embodiment of the present invention.
4 is a graph for comparing a library spectrum and a partial spectrum according to an embodiment of the present invention.
5 is a block diagram of an apparatus for determining a Raman spectrum according to an embodiment of the present invention.
6 is a graph showing correlation distribution when a plurality of chemical substance discrimination methods including the Raman spectrum discrimination method of the present invention are performed.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be “connected (connected, contacted, coupled)” with another part, it is not only “directly connected” but also “indirectly connected” with another member interposed therebetween. "Including cases where In addition, when a part "includes" a certain component, this means that other components may be further provided without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In this specification, terms such as "comprises" or "have" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.
이하, 본 발명의 라만 스펙트럼 판별 방법에 대해 설명하기로 한다. 도 1은 본 발명의 일 실시 예에 따른 입력 스펙트럼의 그래프이고, 도 2는 본 발명의 일 실시 예에 따른 부분 스펙트럼을 형성하는 과정에 대한 그래프이다. 도 1에서 이동하는 박스는 무빙 윈도우를 나타낼 수 있다.Hereinafter, the Raman spectrum discrimination method of the present invention will be described. 1 is a graph of an input spectrum according to an embodiment of the present invention, and FIG. 2 is a graph illustrating a process of forming a partial spectrum according to an embodiment of the present invention. A moving box in FIG. 1 may represent a moving window.
첫째 단계에서, 사전에 각각의 화학 시료에 대한 라만 스펙트럼을 측정하여 라이브러리 스펙트럼을 수집하고 라이브러리 데이터베이스를 형성할 수 있다. 여기서, 먼저, 각각의 화학 시료의 라만 스펙트럼의 해상도를 조절하고 잡음을 제거한 후 무빙 윈도우를 이용하여 화학 시료의 라만 스펙트럼을 스캔하고 화학 시료의 스펙트럼의 피크 값을 측정하여, 화학 시료의 스펙트럼을 분할한 후 선별하여 라이브러리 스펙트럼을 획득할 수 있다. 이에 대한 사항은 입력 스펙트럼의 처리에도 이용되며 구체적인 사항은 하기의 관련 사항에서 상세히 설명하기로 한다. 그리고, 라이브러리 스펙트럼을 데이터화하여 라이브러리 데이터베이스를 형성할 수 있다.In the first step, by measuring the Raman spectrum for each chemical sample in advance, the library spectrum can be collected and a library database can be formed. Here, first, after adjusting the resolution of the Raman spectrum of each chemical sample and removing noise, the spectrum of the chemical sample is divided by scanning the Raman spectrum of the chemical sample using a moving window and measuring the peak value of the spectrum of the chemical sample After selection, the library spectrum can be obtained. This matter is also used for processing the input spectrum, and specific details will be described in detail in the following related matters. Then, the library spectrum can be converted into data to form a library database.
둘째 단계에서, 적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 입력 스펙트럼을 수집할 수 있다. 둘째 단계는 기존의 라만 분광기에 의해 수행될 수 있다. In the second step, Raman spectroscopy may be performed on a measurement target including at least one chemical sample to collect an input spectrum including at least one Raman spectrum. The second step can be performed by conventional Raman spectroscopy.
셋째 단계에서, 입력 스펙트럼의 해상도를 조절하고 잡음을 제거할 수 있다. 여기서, 입력 스펙트럼에 대한 리샘플링을 수행하여 해상도를 조절하고, 입력 스펙트럼에 대한 가산 잡음과 배경 잡음을 제거할 수 있다. 이에 대한 사항은 종래기술으로써 상세한 설명은 생략하기로 한다.In the third step, we can adjust the resolution of the input spectrum and remove the noise. Here, it is possible to adjust the resolution by performing resampling on the input spectrum, and to remove the addition noise and background noise for the input spectrum. As this is a prior art, a detailed description thereof will be omitted.
넷째 단계에서, 도 1에서 보는 바와 같이, 무빙 윈도우를 이용하여 입력 스펙트럼을 스캔하고 입력 스펙트럼의 피크 값을 측정하여 입력 스펙트럼의 피크 군집 영역을 결정할 수 있다.In the fourth step, as shown in FIG. 1 , a peak cluster region of the input spectrum may be determined by scanning the input spectrum using a moving window and measuring the peak value of the input spectrum.
먼저 임계 값을 설정하는데, 입력 스펙트럼의 피크 값 군집 분포를 알아야 함으로 의미 있는 임계 값 설정이 필요할 수 있다. 구체적으로, 입력 스펙트럼에서 가장 큰 피크를 등분할 수 있고, 잡음들 중 가장 큰 값으로 임계값을 결정할 수 있다. 다만, 이에 한정되는 것은 아니다. 그리고, 무빙 윈도우의 길이와 무빙 윈도우의 이동 길이는 임의로 결정될 수 있다.First, a threshold value is set, and a meaningful threshold value setting may be necessary because the distribution of the peak value cluster of the input spectrum must be known. Specifically, the largest peak in the input spectrum may be divided into equal parts, and the threshold value may be determined as the largest value among noises. However, the present invention is not limited thereto. In addition, the length of the moving window and the moving length of the moving window may be arbitrarily determined.
무빙 윈도우를 이용한 탐색 시, 무빙 윈도우 내에서 가장 큰 피크 값이 설정한 임계 값보다 크면, 해당 영역을 피크 영역으로 간주 하게 되고, 임계 값 보다 작으면 피크가 없는 영역으로 판단할 수 있다.When searching using the moving window, if the largest peak value within the moving window is greater than the set threshold value, the corresponding region is regarded as a peak region, and if it is smaller than the threshold value, the region may be determined as an area without a peak.
넷째 단계와 같은 과정을 수행하여 입력 스펙트럼에서 피크들이 군집되어 있는 영역을 결정할 수 있다.By performing the same process as the fourth step, it is possible to determine a region in which peaks are clustered in the input spectrum.
다섯째 단계에서, 도 2에서 보는 바와 같이, 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할할 수 있다. 여기서, 부분 스펙트럼은 입력 스펙트럼의 피크 군집 영역을 미리 설정된 임계 수치로 분할한 스펙트럼일 수 있다.In the fifth step, as shown in FIG. 2 , the peak cluster region of the input spectrum may be divided into at least one partial spectrum. Here, the partial spectrum may be a spectrum obtained by dividing the peak cluster region of the input spectrum by a preset threshold value.
넷째 단계에서, 입력 스펙트럼 내 피크 군집 영역이 결정되면, 임의로 미리 설정된 영역 크기인 임계 치수로 입력 스펙트럼 내 피크 군집 영역을 분할하여 부분 스펙트럼을 수집할 수 있다. 여기서, 임계 치수 이하의 크기인 영역에 대해서는 분할이 수행되지 않고, 임계 치수 초과의 크기인 영역에 대해서 분할이 수행될 수 있다. 구체적으로, 도 2의 (A)와 (B)의 박스에 의한 분할에서 보는 바와 같이, 도 2의 (A) 영역에서는 입력 스펙트럼 내 피크 군집 영역의 길이가 임계 치수의 길이를 초과하여 임계 치수를 기준으로 분할이 수행되고, 도 2의 (B) 영역에서는 입력 스펙트럼 내 피크 군집 영역의 길이가 임계 치수의 길이 이하로 형성되어 임계 치수를 기준으로 한 분할이 수행되지 않을 수 있다.In the fourth step, when the peak clustering region in the input spectrum is determined, partial spectra may be collected by dividing the peak clustering region in the input spectrum by a critical dimension that is an arbitrarily preset region size. Here, division may not be performed on an area having a size less than or equal to the critical dimension, but division may be performed on an area having a size greater than the critical dimension. Specifically, as shown in the division by the boxes in (A) and (B) of FIG. 2, in the region of (A) of FIG. 2, the length of the peak cluster region in the input spectrum exceeds the length of the critical dimension, so that the critical dimension is set. Segmentation is performed based on the reference, and in the region (B) of FIG. 2 , the length of the peak cluster region in the input spectrum is formed to be less than or equal to the length of the critical dimension, so the division based on the critical dimension may not be performed.
여섯째 단계에서, 각각의 부분 스펙트럼과 라이브러리 스펙트럼의 유사도를 분석할 수 있다. 이하, 양 스펙트럼의 유사도 분석 과정에 대해 설명하기로 한다.In the sixth step, the similarity between each partial spectrum and the library spectrum may be analyzed. Hereinafter, the similarity analysis process of both spectra will be described.
여섯째 단계에서는, 부분 스펙트럼과 라이브러리 스펙트럼 각각의 피크 영역 정보를 사용하여 상관도를 구하는 교차 상관도를 수행할 수 있다.In the sixth step, cross-correlation may be performed to obtain a correlation using peak area information of each of the partial spectrum and the library spectrum.
먼저, 복수 개(n개)의 부분 스펙트럼 중 어느 하나의 부분 스펙트럼인 i번째 부분 스펙트럼을 정규화한 후 부분 상관도를 도출하고, 부분 상관도를 이용하여 전체 상관도를 도출할 수 있다.First, a partial correlation may be derived after normalizing an i-th partial spectrum, which is a partial spectrum of any one of a plurality of (n) partial spectra, and an overall correlation may be derived using the partial correlation diagram.
i번째 부분 스펙트럼의 부분 상관도는 아래의 [수식 1]에 의해 도출될 수 있다.The partial correlation of the i-th partial spectrum may be derived by [Equation 1] below.
[수식 1][Formula 1]
여기서, Si는 i번째 부분 스펙트럼 부분 상관도 값이고, xi와 yi는 i번째 부분 스펙트럼 영역을 정규화한 데이터이다.Here, S i is the i-th partial spectral partial correlation value, and x i and y i are data obtained by normalizing the i-th partial spectral region.
([수식 1]에서 'ㆍ'는 내적을 의미하며, 따라서 정규화한 벡터의 경우(가령, 벡터 a=(a1, a2)를 정규화하면 normr(a)= ), 동일한 2개의 데이터끼리의 내적을 구하면 1이되므로, 상관도의 최대값은 1이고 최소값은 0일 수 있다. 즉, 상관도가 1이면 완전 상관을 의미할 수 있다.)(In [Equation 1], '·' means dot product, so in the case of a normalized vector (for example, if vector a=(a1, a2) is normalized, normr(a)= ), the dot product between two identical data becomes 1, so the maximum value of the correlation may be 1 and the minimum value may be 0. That is, if the correlation is 1, it may mean perfect correlation.)
그리고, 복수 개의 부분 스펙트럼에 대한 전체 상관도는, 부분 스펙트럼 전체 수에 의한 부분 상관도의 평균 값일 수 있다. 따라서, 복수 개의 부분 스펙트럼에 대한 전체 상관도는 [수식 2]에 의해 도출될 수 있다.In addition, the total degree of correlation for a plurality of partial spectra may be an average value of partial correlations by the total number of partial spectra. Accordingly, the overall correlation for a plurality of partial spectra can be derived by [Equation 2].
[수식 2][Formula 2]
여기서, Si는 i번째 부분 스펙트럼 부분 상관도 값이고, n은 부분 스펙트럼의 수이다.Here, S i is the i-th subspectral partial correlation value, and n is the number of partial spectra.
또한, 라이브러리 스펙트럼 중 일부에 대한 전체 상관도는, 라이브러리 스펙트럼 중 일부의 분할 수에 의한 부분 상관도의 평균 값일 수 있다. 따라서, 복수 개의 라이브러리 스펙트럼에 대한 전체 상관도는 [수식 3]에 의해 도출될 수 있다.In addition, the overall correlation for a part of the library spectrum may be an average value of the partial correlation by the number of divisions of the part of the library spectrum. Accordingly, the overall correlation for a plurality of library spectra can be derived by [Equation 3].
[수식 3][Equation 3]
여기서, Si는 i번째 부분 스펙트럼 부분 상관도 값이고, m은 라이브러리 스펙트럼의 수이다.Here, S i is the i-th subspectral partial correlation value, and m is the number of library spectra.
최종 상관도는, 하기의 [수식 4]에서와 같이, 복수 개의 부분 스펙트럼에 대한 전체 상관도와 라이브러리 스펙트럼 중 일부에 대한 전체 상관도의 합일 수 있다.The final correlation may be the sum of the total correlations for a plurality of partial spectra and the total correlations with respect to some of the library spectra, as shown in Equation 4 below.
[수식 4][Equation 4]
이하, 유사도 분석의 시각적 이해를 위하여 Acetonitrile의 라이브러리 스펙트럼과 inVia-785.0nm 장비에서 측정한 Acetonitrile을 판별하는 과정에 대해 설명하기로 한다.Hereinafter, for a visual understanding of the similarity analysis, the library spectrum of acetonitrile and the process of determining acetonitrile measured by inVia-785.0 nm equipment will be described.
도 3은 본 발명의 일 실시 예에 따른 라이브러리 스펙트럼과 입력 스펙트럼의 비교에 대한 그래프이고, 도 4는 본 발명의 일 실시 예에 따른 라이브러리 스펙트럼과 부분 스펙트럼의 비교에 대한 그래프이다.3 is a graph for comparing a library spectrum and an input spectrum according to an embodiment of the present invention, and FIG. 4 is a graph for comparing a library spectrum and a partial spectrum according to an embodiment of the present invention.
도 3의 (1)그래프에서, a그래프는 라이브러리 스펙트럼을 나타내고, b그래프는 입력 스펙트럼을 나타낼 수 있다. 그리고, 도 3의 (2)그래프에서, (a) 내지 (d)그래프는 도 3의 (1)그래프에서 (a) 내지 (d) 영역 각각의 부분 영역에서 라이브러리 스펙트럼과 입력 스펙트럼을 비교한 그래프일 수 있다.In graph (1) of FIG. 3 , graph a may represent a library spectrum, and graph b may represent an input spectrum. And, in the (2) graph of FIG. 3, the (a) to (d) graphs are graphs comparing the library spectrum and the input spectrum in each partial region of the (a) to (d) region in the (1) graph of FIG. can be
도 4의 (1)그래프에서, a그래프는 라이브러리 스펙트럼을 나타내고, b그래프는 부분 스펙트럼을 나타낼 수 있다. 그리고, 도 4의 (2)그래프에서, (a) 내지 (d)그래프는 도 4의 (1)그래프에서 (a) 내지 (d) 영역 각각의 부분 영역에서 라이브러리 스펙트럼과 부분 스펙트럼을 비교한 그래프일 수 있다.In the graph (1) of FIG. 4 , graph a may represent a library spectrum, and graph b may represent a partial spectrum. And, in the (2) graph of FIG. 4, the (a) to (d) graphs are graphs comparing the library spectrum and the partial spectrum in each partial region of the (a) to (d) region in the (1) graph of FIG. can be
도 3에서 보는 바와 같이, 라이브러리 스펙트럼과 입력 스펙트럼은 서로 피크 면적의 크기가 확연히 다르기 때문에 낮은 상관도 값을 얻음을 확인할 수 있다. 반면에, 라이브러리 스펙트럼과 부분 스펙트럼의 비교에서 다소 불일치하는 영역도 있으나, 라이브러리 스펙트럼과 부분 스펙트럼은 서로 피크 면적의 크기가 유사하여 0.9 이상의 부분 상관도를 얻는 것을 확인할 수 있고, 나머지 다른 부분 스펙트럼도 동일한 과정으로 상대적으로 높은 상관도를 얻기 때문에, 라이브러리 스펙트럼과 부분 스펙트럼의 전체 상관도가, 라이브러리 스펙트럼과 입력 스펙트럼의 전체 상관도 보다 높음을 확인할 수 있다.As shown in FIG. 3 , it can be confirmed that the library spectrum and the input spectrum have a low correlation value because the size of the peak area is significantly different from each other. On the other hand, there is a region where there is some discrepancy between the library spectrum and the partial spectrum, but it can be seen that the library spectrum and the partial spectrum have similar peak areas to obtain a partial correlation of 0.9 or more, and the other partial spectrum is also the same Since a relatively high correlation is obtained through the process, it can be confirmed that the overall correlation between the library spectrum and the partial spectrum is higher than the overall correlation between the library spectrum and the input spectrum.
일곱째 단계에서, 측정대상에 포함되는 화학 물질을 도출할 수 있다. 여기서, 입력 스펙트럼과 가장 큰 최종 상관도를 얻은 라이브러리 스펙트럼을 화학 물질에 대한 라만 스펙트럼으로 판단할 수 있다. 그리고, 이와 같은 정보는 디스플레이 화면에 표시될 수 있다.In the seventh step, a chemical substance included in the measurement target can be derived. Here, the library spectrum obtained with the greatest final correlation with the input spectrum may be determined as a Raman spectrum for a chemical substance. And, such information may be displayed on the display screen.
이하, 본 발명의 라만 스펙트럼 판별 장치에 대해 설명하기로 한다. 도 5는 본 발명의 일 실시 예에 따른 라만 스펙트럼 판별 장치의 구성도이다.Hereinafter, the Raman spectrum discriminating apparatus of the present invention will be described. 5 is a block diagram of an apparatus for determining a Raman spectrum according to an embodiment of the present invention.
도 5에서 보는 바와 같이, 본 발명의 라만 스펙트럼 판별 장치는, 적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 입력 스펙트럼을 수집하는 신호취득부(100); 신호취득부(100)와 연결되고, 입력 스펙트럼의 해상도를 조절하고 잡음을 제거하며, 무빙 윈도우를 이용하여 입력 스펙트럼을 스캔하고 입력 스펙트럼의 피크 값을 측정하여 입력 스펙트럼의 피크 군집 영역을 결정하는 신호처리부(200); 신호처리부(200)와 연결되고, 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할하고, 각각의 부분 스펙트럼과 라이브러리 스펙트럼의 유사도를 분석하는 신호판별부(300); 및 신호판별부(300)와 연결되고, 측정대상에 포함되는 화학 물질을 도출하여 디스플레이 화면에 표시하는 출력부(400);를 포함한다. 그리고, 신호판별부(300)는 라이브러리 데이터베이스를 저장하는 데이터부(500)과 연결되어, 데이터부(500)로부터 라이브러리 라만 스펙트럼에 대한 데이터가 신호판별부(300)로 전달될 수 있다.As shown in FIG. 5, the Raman spectrum discriminating device of the present invention includes a signal acquisition unit that collects an input spectrum including at least one Raman spectrum by performing Raman spectroscopy on a measurement target including at least one or more chemical samples ( 100); A signal that is connected to the
여기서, 신호취득부(100)는 라만 분광기일 수 있다. 그리고, 각각의 구성에 대한 상세한 설명은 상기된 본 발명의 라만 스펙트럼 판별 방법에서 대응되는 사항에 대한 설명과 동일하다.Here, the
이하, 본 발명의 라만 스펙트럼 판별 방법을 이용한 실험에 대해 설명하기로 한다.Hereinafter, an experiment using the Raman spectrum discrimination method of the present invention will be described.
실험은 두 가지로 구성하였다. 먼저, 서로 다른 3가지 장비(Renishaw 2000 514.5nm, inVia 632.8nm, inVia 785.0nm에서 10종의 화학 물질을 측정한 테스트 데이터 세트를 준비하였고, 이를 라이브러리 스펙트럼에서 인식하는 주 실험과 이에 앞서 본 발명의 라만 스펙트럼 판별 방법의 유효성 검증을 위해 테스트 데이터 세트 내에서 서로를 인지하는 사전 실험을 수행하였다. 아래 [표 1]은 실험장비의 기계적 명세이다.The experiment consisted of two parts. First, a test data set was prepared that measured 10 chemical substances at three different instruments (
여기서, 10종의 화학 물질은 Acetone, Acetonitrile, Benzene, Cyclohexane, Ethyl Alcohol, Ethylene Glycol, Hexane, Nitromethane, 2-Nitrotoluene 및 Toluene이다. 그리고, 본 발명의 라만 스펙트럼 판별 방법(Adaptive HQI, AHQI)의 수행을 위해, 임계 값은 잡음들 중 가장 큰 값으로 결정하였으며, 무빙 윈도우 길이 값을 100으로 설정하고, 무빙 윈도우의 이동 길이 값은 50(무빙 윈도우 길이 값의 절반)으로 설정하여 실험을 수행하였다.Here, the 10 chemical substances are Acetone, Acetonitrile, Benzene, Cyclohexane, Ethyl Alcohol, Ethylene Glycol, Hexane, Nitromethane, 2-Nitrotoluene and Toluene. And, in order to perform the Raman spectrum discrimination method (Adaptive HQI, AHQI) of the present invention, the threshold value is determined to be the largest value among noises, the moving window length value is set to 100, and the moving length value of the moving window is The experiment was performed by setting it to 50 (half the value of the moving window length).
(1) 실험 데이터간의 유효성 테스트(1) Validity test between experimental data
먼저, 3종류의 장비(Instrument)에서 10종의 물질을 각각 측정한 실험데이터를 기반으로 세트 내에서 유효성 검사를 수행하였으며, 상위 1, 2위를 기록한 물질들의 최종 상관도 결과를 [표 2] 내지 [표 4]에 나타내었다. 하기에서, Adaptive HQI는 본 발명의 라만 스펙트럼 판별 방법을 의미하고, Segmental HQI는 기존의 화학 물질 판별 방법을 의미할 수 있다.First, validation was performed within the set based on experimental data measuring 10 types of substances in 3 types of instruments, and the final correlation results of the substances that ranked 1st and 2nd were shown in [Table 2] to [Table 4]. Hereinafter, Adaptive HQI may refer to the Raman spectrum discrimination method of the present invention, and Segmental HQI may refer to a conventional chemical substance discrimination method.
여기서, [표 2]는 Instrument 1과 2에서 측정된 스펙트럼에 대한 상관도 실험에 대한 실험 데이터이고, [표 3]은 Instrument 1과 3에서 측정된 스펙트럼에 대한 상관도 실험에 대한 실험 데이터이며, [표 4]는 Instrument 2와 3에서 측정된 스펙트럼에 대한 상관도 실험에 대한 실험 데이터이다.Here, [Table 2] is the experimental data for the correlation experiment with respect to the spectrum measured in
실험결과 기존의 화학 물질 판별 방법(Segmental HQI, SHQI)와 본 발명의 라만 스펙트럼 판별 방법(Adaptive HQI, AHQI) 모두에서 100%의 판별 결과를 보였다. 하지만, 기존의 화학 물질 판별 방법(SHQI)의 경우, 낮은 값의 상관도를 보이는 것을 확인 할 수 있다. 특히, [표 3]을 살펴보면 0.834의 상관도를 보이는데, 이러한 낮은 상관도는 판별 시스템에 대한 신뢰도의 문제로 직결될 수 있다. Experimental results showed 100% discrimination results in both the conventional chemical substance discrimination method (Segmental HQI, SHQI) and the Raman spectrum discrimination method of the present invention (Adaptive HQI, AHQI). However, in the case of the conventional chemical substance identification method (SHQI), it can be seen that the correlation of a low value is shown. In particular, looking at [Table 3], a correlation of 0.834 is shown, and such a low correlation can be directly related to the problem of reliability of the discrimination system.
이에 비해, 본 발명의 라만 스펙트럼 판별 방법(AHQI)에서는 3가지 실험 조건에서 0.95 이상의 높은 상관도 결과를 보여주고 있다. 반면에 1위에 랭크된 물질이 아닌, 2위에 랭크된 물질의 상관도를 보면, 전체 30개의 스펙트럼 중 22개에서 기존의 화학 물질 판별 방법(SHQI)에 비해 상관도가 낮게 결정되었다. 이는, 본 발명의 라만 스펙트럼 판별 방법(AHQI)이 단순히 상관도 점수를 높이는 것이 아니라, 타겟 물질의 상관도 점수는 높이고, 나머지 물질에 대한 점수는 하락시키는 강인한 변별력을 제공한다는 것을 확인할 수 있다.In contrast, the Raman spectrum discrimination method (AHQI) of the present invention shows a high correlation result of 0.95 or more in three experimental conditions. On the other hand, when looking at the correlation of the second-ranked material rather than the first-ranked material, the correlation was determined to be lower than that of the conventional chemical substance identification method (SHQI) in 22 out of 30 spectra. It can be confirmed that the Raman spectrum discrimination method (AHQI) of the present invention does not simply increase the correlation score, but provides a strong discrimination power that increases the correlation score of the target material and decreases the score of the remaining substances.
(2) 실험 데이터와 라이브러리 표적물질에 대한 상관도 방식의 실험 결과(2) Experimental result of correlation method for experimental data and library target material
[표 5]에 입력 스펙트럼의 데이터를 라이브러리 데이터베이스 내 14033종의 라이브러리 스펙트럼을 이용하여 판별 실험한 결과를 제시하였다. 실험 결과를 살펴보면, 타켓 물질에 대한 상관도가 전반적으로 상승하였음을 확인 할 수 있는데, 특히, 라이브러리 스펙트럼과 피크 강도에서 확연한 차이를 보였던, inVia 785.0nm에서 측정한 입력 스펙트럼의 경우 기존의 화학 물질 판별 방법(SHQI)의 경우, 0.9295의 평균 상관도를 보인 반면, 본 발명의 라만 스펙트럼 판별 방법(ASHQI)에서는 0.9720의 상관도를 보였다. In [Table 5], the results of the experiment for discriminating input spectrum data using 14033 library spectra in the library database are presented. Looking at the experimental results, it can be seen that the correlation with the target material has increased overall. In particular, in the case of the input spectrum measured at inVia 785.0nm, which showed a clear difference in the library spectrum and the peak intensity, the existing chemical substance discrimination In the case of the method (SHQI), the average correlation was 0.9295, while the Raman spectrum discrimination method (ASHQI) of the present invention showed a correlation of 0.9720.
785.0nminVia
785.0nm
632.8nminVia
632.8nm
상기와 같이, 본 발명의 라만 스펙트럼 판별 방법(ASHQI)을 이용하는 경우, 타겟 물질과 나머지 물질의 변별력을 더욱 강화 시켰으며, 스펙트럼의 진위 여부를 확인(verification) 경우에서 일반적으로 신뢰도 있는 상관도라 여겨지는 0.95의 상관도에 근접하는 일관적인 상관도 결과를 보여준다.As described above, when the Raman spectrum discrimination method (ASHQI) of the present invention is used, the discrimination power between the target material and the rest of the material is further strengthened, and in the case of verifying the authenticity of the spectrum, it is generally considered a reliable correlation. It shows a consistent correlation result close to a correlation of 0.95.
도 6은 본 발명의 라만 스펙트럼 판별 방법을 포함한 복수 개의 화학 물질 판별 방법 수행 시 상관도 분포에 대한 그래프이다. 도 6의 (a)는 각각의 장비에서 각각의 화학 물질 판별 방법의 상관도 분포를 나타낸 그래프이고, 도 6의 (b)는 각각의 장비에서 각각의 화학 물질 판별 방법의 전체 상관도를 나타낸 그래프이다.6 is a graph showing correlation distribution when a plurality of chemical substance discrimination methods including the Raman spectrum discrimination method of the present invention are performed. Figure 6 (a) is a graph showing the correlation distribution of each chemical substance discrimination method in each equipment, Figure 6 (b) is a graph showing the overall correlation of each chemical substance discrimination method in each equipment to be.
도 6에서는 각 방식에 따른 상관도 값의 분포를 보였다. 도 6에서 보는 바와 같이, 기존의 화학 물질 판별 방법(HQI, SHQI)와 비교하여, 본 발명의 라만 스펙트럼 판별 방법(ASHQI)에서 각각의 장비를 이용한 화학 판별에서 상관도 값의 분포가 월등히 높고, 점수 분산의 정도가 크지 않음을 확인 할 수 있다.6 shows the distribution of correlation values according to each method. As shown in Figure 6, compared with the existing chemical substance discrimination methods (HQI, SHQI), the distribution of correlation values in the chemical discrimination using each equipment in the Raman spectrum discrimination method (ASHQI) of the present invention is significantly higher, It can be seen that the degree of distribution of scores is not large.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention.
100 : 신호취득부
200 : 신호처리부
300 : 신호판별부
400 : 출력부
500 : 데이터부100: signal acquisition unit
200: signal processing unit
300: signal discrimination unit
400: output unit
500: data part
Claims (10)
ii) 적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 입력 스펙트럼을 수집하는 단계;
iii) 상기 입력 스펙트럼의 해상도를 조절하고 잡음을 제거하는 단계;
iv) 무빙 윈도우를 이용하여 상기 입력 스펙트럼을 스캔하고 상기 입력 스펙트럼의 피크 값을 측정하여 상기 입력 스펙트럼에서 피크들이 군집되어 있는 영역인 피크 군집 영역을 결정하는 단계;
v) 상기 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할하는 단계;
vi) 각각의 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 분석하는 단계; 및
vii) 상기 측정대상에 포함되는 화학 물질을 도출하는 단계;를 포함하고,
상기 iv) 단계에서, 임계 값과 상기 무빙 윈도우의 길이를 설정하며, 상기 무빙 윈도우를 이용한 탐색 시, 상기 무빙 윈도우 내에서 가장 큰 피크 값이 설정한 임계 값보다 크면 해당 영역을 피크 영역으로 간주 하게 되고 임계 값 보다 작으면 피크가 없는 영역으로 판단함으로써, 상기 피크 군집 영역을 결정하고,
상기 vi) 단계에서, 상기 라이브러리 스펙트럼과 상기 부분 스펙트럼은 서로 피크 면적의 유사도가 증가하여 복수 개(n개)의 상기 부분 스펙트럼 중 어느 하나의 부분 스펙트럼인 i번째 부분 스펙트럼을 정규화한 후 도출한 부분 상관도가 증대되는 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
i) measuring Raman spectra for each chemical sample in advance to collect library spectra and form a library database;
ii) collecting an input spectrum including at least one Raman spectrum by performing Raman spectroscopy on a measurement target including at least one chemical sample;
iii) adjusting the resolution of the input spectrum and removing noise;
iv) scanning the input spectrum using a moving window and measuring a peak value of the input spectrum to determine a peak clustering region, which is a region in which peaks are clustered in the input spectrum;
v) dividing the peak cluster region of the input spectrum into at least one subspectrum;
vi) analyzing a degree of similarity between each of the partial spectra and the library spectrum; and
vii) deriving a chemical substance included in the measurement target;
In step iv), the threshold value and the length of the moving window are set, and when searching using the moving window, if the largest peak value within the moving window is greater than the set threshold value, the corresponding area is regarded as the peak area. and if it is less than the threshold value, the peak cluster area is determined by judging it as an area without a peak,
In step vi), the library spectrum and the partial spectrum have an increased similarity in peak areas to each other, so that the i-th partial spectrum, which is any one of the plurality (n) of the partial spectrum, is normalized and then derived. A Raman spectrum discrimination method robust to measurement environmental conditions, characterized in that correlation is increased.
상기 v) 단계에서, 상기 부분 스펙트럼은 상기 입력 스펙트럼의 피크 군집 영역을 미리 설정된 임계 수치로 분할한 스펙트럼인 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
The method according to claim 1,
In step v), the partial spectrum is a spectrum obtained by dividing a peak cluster region of the input spectrum by a preset threshold value.
상기 vi) 단계에서, 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼 각각의 피크 영역 정보를 사용하여 상관도를 구하는 교차 상관도를 수행하여 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 도출하는 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
The method according to claim 1,
In step vi), the partial spectrum and the library spectrum are measured environment conditions, characterized in that the degree of similarity between the partial spectrum and the library spectrum is derived by performing a cross-correlation diagram to obtain a correlation using the peak area information of each. A robust Raman spectrum discrimination method.
상기 vi) 단계에서, 상기 부분 상관도를 이용하여 전체 상관도를 도출하는 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
4. The method according to claim 3,
In step vi), a method for determining a Raman spectrum robust to a measurement environment condition, characterized in that deriving an overall correlation using the partial correlation.
상기 i번째 부분 스펙트럼의 부분 상관도는 아래의 다항식에 의해 도출되는 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
여기서, Si는 i번째 부분 스펙트럼 부분 상관도 값이고, xi와 yi는 i번째 부분 스펙트럼 영역을 정규화한 데이터이다.
5. The method according to claim 4,
A method for determining a Raman spectrum robust to a measurement environment condition, characterized in that the partial correlation of the i-th partial spectrum is derived by the following polynomial.
Here, S i is the i-th partial spectral partial correlation value, and x i and y i are data obtained by normalizing the i-th partial spectral region.
복수 개의 상기 부분 스펙트럼에 대한 전체 상관도는, 상기 부분 스펙트럼 전체 수에 의한 상기 부분 상관도의 평균 값인 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
6. The method of claim 5,
The Raman spectrum discrimination method robust to a measurement environment condition, characterized in that the total degree of correlation with respect to the plurality of partial spectra is an average value of the partial correlation degree by the total number of the partial spectrum.
상기 라이브러리 스펙트럼 중 일부에 대한 전체 상관도는, 상기 라이브러리 스펙트럼 중 일부의 분할 수에 의한 상기 부분 상관도의 평균 값인 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
7. The method of claim 6,
A Raman spectrum discrimination method robust to measurement environmental conditions, characterized in that the overall correlation for a part of the library spectrum is an average value of the partial correlation by the number of divisions of the part of the library spectrum.
최종 상관도는, 복수 개의 상기 부분 스펙트럼에 대한 전체 상관도와 상기 라이브러리 스펙트럼 중 일부에 대한 전체 상관도의 합인 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
8. The method of claim 7,
The final correlation degree is a Raman spectrum determination method robust to measurement environmental conditions, characterized in that it is the sum of the total correlation degrees for the plurality of partial spectra and the total correlation degrees for some of the library spectra.
상기 vii) 단계에서, 상기 입력 스펙트럼과 가장 큰 최종 상관도를 얻은 상기 라이브러리 스펙트럼을 상기 화학 물질에 대한 라만 스펙트럼으로 판단하는 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 방법.
9. The method of claim 8,
In step vii), the method for determining a Raman spectrum robust to a measurement environment condition, characterized in that the library spectrum, which has obtained the highest final correlation with the input spectrum, is determined as a Raman spectrum for the chemical substance.
적어도 하나 이상의 화학 시료를 포함하는 측정대상에 대해 라만 분광법을 수행하여 적어도 하나 이상의 라만 스펙트럼을 포함하는 상기 입력 스펙트럼을 수집하는 신호취득부;
상기 신호취득부와 연결되고, 상기 입력 스펙트럼의 해상도를 조절하고 잡음을 제거하며, 무빙 윈도우를 이용하여 상기 입력 스펙트럼을 스캔하고 상기 입력 스펙트럼의 피크 값을 측정하여 상기 입력 스펙트럼의 피크 군집 영역을 결정하는 신호처리부;
상기 신호처리부와 연결되고, 상기 입력 스펙트럼의 피크 군집 영역을 적어도 하나 이상의 부분 스펙트럼으로 분할하고, 각각의 상기 부분 스펙트럼과 상기 라이브러리 스펙트럼의 유사도를 분석하는 신호판별부; 및
상기 신호판별부와 연결되고, 상기 측정대상에 포함되는 화학 물질을 도출하여 디스플레이 화면에 표시하는 출력부;를 포함하는 것을 특징으로 하는 측정 환경 조건에 강인한 라만 스펙트럼 판별 장치.In the Raman spectrum discrimination apparatus used in the Raman spectrum discrimination method robust to the measurement environment conditions of claim 1,
a signal acquisition unit configured to collect the input spectrum including at least one Raman spectrum by performing Raman spectroscopy on a measurement target including at least one or more chemical samples;
It is connected to the signal acquisition unit, adjusts the resolution of the input spectrum and removes noise, scans the input spectrum using a moving window, and measures the peak value of the input spectrum to determine a peak cluster area of the input spectrum signal processing unit;
a signal discrimination unit connected to the signal processing unit, dividing a peak cluster region of the input spectrum into at least one partial spectrum, and analyzing a similarity between each partial spectrum and the library spectrum; and
and an output unit connected to the signal discrimination unit and displaying the chemical substance included in the measurement target on a display screen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190057395A KR102276065B1 (en) | 2019-05-16 | 2019-05-16 | Method and apparatus for robust raman spectrum discrimination against measurement environmental conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190057395A KR102276065B1 (en) | 2019-05-16 | 2019-05-16 | Method and apparatus for robust raman spectrum discrimination against measurement environmental conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200133083A KR20200133083A (en) | 2020-11-26 |
KR102276065B1 true KR102276065B1 (en) | 2021-07-14 |
Family
ID=73679244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190057395A KR102276065B1 (en) | 2019-05-16 | 2019-05-16 | Method and apparatus for robust raman spectrum discrimination against measurement environmental conditions |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102276065B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102690952B1 (en) * | 2021-12-03 | 2024-08-05 | 인사이트뷰테크 주식회사 | The raman spectroscopic library making method, the raman spectroscopic library storage unit and the raman spectroscopic analysis apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113029980B (en) * | 2021-02-10 | 2023-11-21 | 河南中烟工业有限责任公司 | Rapid nondestructive testing method for stability of sensory quality of tobacco sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001525054A (en) * | 1997-01-24 | 2001-12-04 | インフラソフト インターナショナル エルエルシー | Analysis method for unknown substances |
US20100265499A1 (en) * | 2006-08-07 | 2010-10-21 | Keith Carron | Programmable raman transducer |
US20150185153A1 (en) * | 2013-12-30 | 2015-07-02 | Tsinghua Yuan | Pesticide Residue Detection Method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2924267B2 (en) * | 1991-03-30 | 1999-07-26 | 株式会社島津製作所 | Chromatographic data processor |
US10859499B2 (en) | 2017-05-22 | 2020-12-08 | Samsung Electronics Co., Ltd. | Apparatus and method for quantitative molecular sensing based on raman peak shift |
-
2019
- 2019-05-16 KR KR1020190057395A patent/KR102276065B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001525054A (en) * | 1997-01-24 | 2001-12-04 | インフラソフト インターナショナル エルエルシー | Analysis method for unknown substances |
US20100265499A1 (en) * | 2006-08-07 | 2010-10-21 | Keith Carron | Programmable raman transducer |
US20150185153A1 (en) * | 2013-12-30 | 2015-07-02 | Tsinghua Yuan | Pesticide Residue Detection Method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102690952B1 (en) * | 2021-12-03 | 2024-08-05 | 인사이트뷰테크 주식회사 | The raman spectroscopic library making method, the raman spectroscopic library storage unit and the raman spectroscopic analysis apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20200133083A (en) | 2020-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018121122A1 (en) | Raman spectroscopy detection method for checking goods, and electronic device | |
US6333501B1 (en) | Methods, apparatus, and articles of manufacture for performing spectral calibration | |
CN106052864B (en) | Method for correction of background signal in spectrum | |
JP4967474B2 (en) | Judgment knowledge creation device, judgment knowledge creation method, program, and recording medium | |
EP2525213A1 (en) | Spectroscopic apparatus and methods for determining components present in a sample | |
US10718713B2 (en) | Unknown sample determining method, unknown sample determining instrument, and unknown sample determining program | |
KR102276065B1 (en) | Method and apparatus for robust raman spectrum discrimination against measurement environmental conditions | |
US20080281581A1 (en) | Method of identifying documents with similar properties utilizing principal component analysis | |
JP5964983B2 (en) | Method for identifying microorganisms by mass spectrometry | |
US7679740B2 (en) | Method and apparatus for multimodal detection | |
CN108802002B (en) | Silkworm egg Raman spectrum model construction method for rapidly identifying and removing diapause without damage | |
CN107991287B (en) | Raman spectrum detection equipment and method based on image gray scale identification | |
WO2014055683A1 (en) | Spectroscopic method for alzheimer's disease diagnosis | |
US7693689B2 (en) | Noise-component removing method | |
CN111208117B (en) | Method for identifying materials by utilizing laser-induced breakdown spectroscopy technology | |
US11067447B2 (en) | Analysis apparatus, imaging system, and storage medium | |
US10564105B2 (en) | Variable reduction method for spectral searching | |
González et al. | Fingermark analysis by fourier transform infrared microscopy using chemometric tools | |
CN116026808A (en) | Raman spectrum discrimination method and system | |
CN112881323B (en) | Quality evaluation method of cigarette mainstream smoke | |
Hiroaki et al. | Classification of pesticide residues in the agricultural products based on diffuse reflectance IR spectroscopy | |
WO2018121151A1 (en) | Method for identifying raman spectrogram, and electronic device | |
Sahu et al. | Tracing overlapping biological signals in mid-infrared using colonic tissues as a model system | |
CN117043585A (en) | Methods and systems for raman spectrum-based identification of compounds | |
CN114018856A (en) | Spectrum correction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |