KR102230548B1 - Frbfnn 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템 - Google Patents
Frbfnn 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템 Download PDFInfo
- Publication number
- KR102230548B1 KR102230548B1 KR1020200111491A KR20200111491A KR102230548B1 KR 102230548 B1 KR102230548 B1 KR 102230548B1 KR 1020200111491 A KR1020200111491 A KR 1020200111491A KR 20200111491 A KR20200111491 A KR 20200111491A KR 102230548 B1 KR102230548 B1 KR 102230548B1
- Authority
- KR
- South Korea
- Prior art keywords
- power generation
- model
- prediction
- frbfnn
- unit
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 69
- 238000003745 diagnosis Methods 0.000 title claims abstract description 24
- 238000013480 data collection Methods 0.000 claims abstract description 24
- 230000006870 function Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/4257—Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/02—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/043—Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
-
- G06N3/0436—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J2001/4266—Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
- G01J2001/4285—Pyranometer, i.e. integrating over space
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Environmental & Geological Engineering (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Environmental Sciences (AREA)
- Development Economics (AREA)
- Ecology (AREA)
- Game Theory and Decision Science (AREA)
- Biodiversity & Conservation Biology (AREA)
- Atmospheric Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Optics & Photonics (AREA)
- Quality & Reliability (AREA)
- General Business, Economics & Management (AREA)
- Pure & Applied Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computational Mathematics (AREA)
Abstract
본 발명은 일사량과 태양광 모듈의 온도를 입력으로 받아 전력변환을 통해 AC전력을 출력으로 하는 예측모델을 FRBFNN을 이용하여 생성하고 이를 이용한 효율저하 판단하도록 한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템에 관한 것으로서, 인버터와 기상센서로부터 일사량, 모듈온도 그리고 출력데이터를 수집하는 데이터 수집부와, 상기 데이터 수집부에서 수집된 데이터를 이용하여 지능형 예측모델 파라미터를 생성하는 FRBFNN 모델 생성부와, 상기 FRBFNN 모델 생성부에서 생성된 예측모델 파라미터와 상기 데이터 수집부에서 수집된 일사량과 모듈 온도를 전달받아 태양광 발전부의 출력을 예측하는 태양광 출력 예측부와, 상기 태양광 출력 예측부에서 예측한 예측 값과 상기 데이터 수집부에서 수집된 실제전력을 전달받아 태양광 발전설비의 효율 저하 정도를 판단하는 효율 진단부를 포함하여 구성되는 것을 특징으로 한다.
Description
본 발명은 태양광 발전설비의 발전예측 및 효율진단 시스템에 관한 것으로, 특히 FRBFNN(Fuzzy RBF(Radial Basis Function) Neural Network)를 이용한 예측 모델 생성과 이를 활용한 효율 저하를 판단하도록 한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템에 관한 것이다.
일반적으로 태양광 발전 시스템은 태양광을 입사받아 DC 전력을 생산하는 태양광 모듈과 DC 전력을 AC 전력으로 변환해주는 인버터로 구성된다. 설치를 위해 부가적으로 구조물과 접속반 등이 추가적으로 구성되며, 효율적인 운영을 위해 기상센서와 모니터링 시스템도 포함될 수 있다.
이러한 태양광 발전 시스템은 소용량의 태양광 모듈 다수를 직렬과 병렬로 연결하여 대용량 발전 시스템을 구성하며, 일부 태양광 모듈에서 이상이 발생하더라도 전체 시스템은 발전량이 줄어든 상태로 동작한다. 접속반은 태양광 모듈을 직렬로 연결한 스트링을 병렬로 연결하는 장치로써 스트링마다 역전류를 방지하기 위한 블록킹 다이오드와 과전류 방지를 위한 퓨즈를 기본적으로 장착한다.
다수의 스트링으로 구성된 태양광 발전 시스템에서 접속반의 특정 스트링의 퓨즈가 단락되거나, 스위치가 차단되더라도 해당 태양광 발전 시스템은 정상적으로 동작한다.
이에 따라 태양광 발전 시스템의 발전효율을 높이기 위해서는 설비의 정상동작 여부를 최대한 빠르게 파악해야 한다.
예를 들어 태양광 모듈의 온도 25℃이고 일사량이 500W/m2인 경우 발전전력은 설비용량의 50%만큼 발전하게 되는데, 이는 태양광 모듈의 가장 이상적인 최대출력이다. 태양광 발전 시스템을 구성하는데 있어서 선로손실, 인버터에서의 변환효율, 인버터 MPPT 성능, 그리고 태양광 모듈이 설치된 방위각, 경사각 등의 요인으로 태양광 발전 시스템의 성능이 결정된다.
또한, 태양광 발전소마다 인버터의 종류, 케이블의 종류 및 전송선로길이, PV모듈 종류, 모듈설치 경사 및 방위각에 따라 성능계수가 다르게 되며 설계상으로 구하더라도 실제와 맞지 않는 경우가 대부분이기 때문에 기존의 방식으로는 태양광 발전 시스템의 발전을 예측하는 것이 어렵다.
즉, 태양광 발전 시스템에서 발전 효율이 저하되면, 이 태양광 모듈은 특정 일사량 및 온도 조건하에서 실제로 발전해야 할 전력보다 낮게 발전하게 된다.
이러한 발전효율의 저하를 방지하려면 태양광 발전 시스템의 유지보수가 수행되어야 하며, 이를 위해서는 먼저 이 태양광 발전 시스템의 발전효율을 정확하게 진단할 필요가 있다.
따라서 상기 태양광 모니터링 시스템은 태양광 발전설비의 동작상태를 감시하고, 고장과 효율을 판단할 수 있는 기능이 필요하다. 다수의 태양광 모듈을 직병렬로 연결해서 발전소를 구축하는데 태양광 모듈 일부가 고장이 나거나 효율이 저하되더라도 인버터가 정상이라면 효율이 저하된 상태로 발전을 한다. 특정 스트링의 퓨즈가 고장나서 동작을 하지 않더라고 효율이 저하된 상태에서 운전하기 때문에 효율의 저하 여부를 판달 할 수 있는 기술이 필요하다.
도 1은 일반적은 태양광 발전 시스템에서 효율진단을 위한 구성도이다.
도 1에 도시된 바와 같이, 태양광을 입사받아 전력을 생산하는 태양광 발전부(10)와, 상기 태양광 발전부(10)의 일사량과 모듈온도를 전달받아 발전전력을 예측하여 기준전력을 생산하는 예측 모델 생산부(20) 및 상기 태양광 발전부(10)에서 발전하여 생산한 실제전력과 상기 예측 모델 생산부(20)에서 예측한 기준전력을 전달받아 효율 저하 정도를 추정하는 연산부(30)를 포함한다.
특히 상기 태양광 발전 시스템의 효율 저하를 판단하기 위해 일사량과 태양광 모듈의 온도를 전달받아 예측 모델 생산부(20)를 이용하여 예측모델의 출력인 기준전력과 실제 태양광 발전부(10)의 실제전력을 비교함으로써 효율저하를 판단하는 방법이 많이 사용된다.
그러나 태양광 발전시스템의 출력은 일사량과 태양광 모듈의 온도에 의존적으로 변하게 되는데, 일사량이 많을수록 발전량이 증가하며 모듈의 온도는 25℃를 기준으로 25℃이상에서는 효율이 낮아지고 25℃이상에서는 효율이 높아지는 특성을 가지고 있다.
이러한 특성을 이용하여 일사량과 태양광 모듈의 온도를 입력으로 하여 AC전력을 출력으로 하는 예측모델을 만들 수가 있다. 예측모델의 수학적 모델이나 지능형 모델을 고려할 수 있다. 선형회귀모델, SVR 등의 수학적 모델과 NN(Neural Network)의 지능형 모델을 사용할 수 있는데 이는 예측모델을 통해 기준전력 생성과 더불어 효율 저하를 보다 정확하게 판단할 수 있다.
본 발명은 상기와 같은 문제를 해결하기 위해 안출된 것으로 일사량과 태양광 모듈의 온도를 입력으로 받아 전력변환을 통해 AC전력을 출력으로 하는 예측모델을 FRBFNN을 이용하여 생성하고 이를 이용한 효율저하 판단하도록 한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템은 인버터와 기상센서로부터 일사량, 모듈온도 그리고 출력데이터를 수집하는 데이터 수집부와, 상기 데이터 수집부에서 수집된 데이터를 이용하여 지능형 예측모델 파라미터를 생성하는 FRBFNN 모델 생성부와, 상기 FRBFNN 모델 생성부에서 생성된 예측모델 파라미터와 상기 데이터 수집부에서 수집된 일사량과 모듈 온도를 전달받아 태양광 발전부의 출력을 예측하는 태양광 출력 예측부와, 상기 태양광 출력 예측부에서 예측한 예측 값과 상기 데이터 수집부에서 수집된 실제전력을 전달받아 태양광 발전설비의 효율 저하 정도를 판단하는 효율 진단부를 포함하여 구성되는 것을 특징으로 한다.
본 발명의 실시예에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템은 다음과 같은 효과가 있다.
즉, 일사량과 태양광 모듈의 온도를 입력으로 받아 전력변환을 통해 AC전력을 출력으로 하는 예측모델을 FRBFNN을 이용하여 생성하고 이를 이용한 효율저하 판단할 수 있다.
도 1은 일반적은 태양광 발전 시스템에서 효율진단을 위한 구성도
도 2는 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템에서 FRBFNN 모델의 구성도
도 3은 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템을 개략적으로 나타낸 구성도
도 4는 태양광 발전소에서 수집된 입출력 데이터집합의 분포를 나타낸 도면
도 5는 전반부 학습 방법인 FCM에 의해 결정되는 각 규칙에 대한 멤버쉽 함수(적합도)를 나타낸 도면
도 6은 후반부 학습방법인 WLSE에 의해 결정된 각 규칙에 대한 후반부 다항식의 출력 즉 분할된 영역에 대한 로컬모델의 출력을 나타낸 도면
도 7은 각 규칙에 대하여 로컬모델에 적합도가 적용된 예를 나타낸 도면
도 8은 FRBFNN의 전체출력을 나타낸 도면
도 2는 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템에서 FRBFNN 모델의 구성도
도 3은 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템을 개략적으로 나타낸 구성도
도 4는 태양광 발전소에서 수집된 입출력 데이터집합의 분포를 나타낸 도면
도 5는 전반부 학습 방법인 FCM에 의해 결정되는 각 규칙에 대한 멤버쉽 함수(적합도)를 나타낸 도면
도 6은 후반부 학습방법인 WLSE에 의해 결정된 각 규칙에 대한 후반부 다항식의 출력 즉 분할된 영역에 대한 로컬모델의 출력을 나타낸 도면
도 7은 각 규칙에 대하여 로컬모델에 적합도가 적용된 예를 나타낸 도면
도 8은 FRBFNN의 전체출력을 나타낸 도면
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
본 발명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 2는 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템에서 FRBFNN 모델의 구성도이다.
도 2에 도시된 바와 같이, FRBFNN(Fuzzy RBF Neural Network)은 퍼지 클러스터링 알고리즘(FCM)과 RBFNN(Radial Basis Function Neural Network)이 융합된 지능형 구조이다.
이 구조는 RBFNN의 변경 및 확장된 구조로써 가우시안이나 타원형 등의 특정 RBF 커널을 사용하지 않고 FCM을 사용한 방식이다. 상기 FCM은 데이터셋을 유클리디안 거리 기반하여 클러스트링해주는 알고리즘으로써 모든 데이터들은 소속값을 가지고 있어서 각 클러스터에 어느 정도 소속정도를 가지고 있는 것이 특징이다. FRBNN에서는 FCM을 이용하여 입력공간을 분할하고, 소속값을 계산하데 사용한다.
한편, FRBFNN은 전반부와 후반부로 구성된다. FCM은 전반부에 해당한다. FCM에서 클러스터의 수는 퍼지규칙의 수가 되며, 각 데이터에 대한 소속 정도는 각 규칙에 대한 적합도로 사용된다. 후반부는 각 퍼지공간에서의 로컬모델을 의미하며 다항식 구조를 갖는다. FRBFNN은 아래의 수학식 1처럼 퍼지규칙으로 표현될 수 있다.
여기서 R j는 j번째 규칙이며, x1~xM은 입력변수이며, Aj는 j번째 클러스터를 의미한다. 후반부는 다항식으로써 상수, 선형, 2차식 그리고 변형된 2차식 등의 4가지 다항식형태를 일반적으로 고려하는데 수학식 2처럼 1차 선형식 형태를 고려한다.
FRBFNN은 학습을 통해서 파라메터를 결정해야 하는데 전반부의 멤버쉽 함수 학습과 후반부 다항식의 학습으로 구성된다. 전반부 멤버쉽 함수는 삼각형이나 가우시안 등의 특정형태를 사용하지 않고 FCM 알고리즘을 통하여 멤버쉽 값이 결정된다.
여기서 j는 1에서 N까지 증가하는 수이며 N는 규칙수이며, x=[x1,…,xM], M은 입력변수의 수이며 v j는 j번째 클러스터의 중심벡터이며, p는 퍼지화 계수이다. 중심벡터 v j는 FCM 알고리즘에 의하여 수학식 4에 의하여 계산될 수 있는데, FCM은 이들 중심 값들이 한 점으로 수렴해 갈 때까지 반복해서 계산하게 된다.
FRBFNN의 최종 출력은 수학식 5처럼 각 규칙에 대한 후반부 다항식과 적합도의 곱들의 합으로 계산한다.
후반부 다항식 학습은 후반부 다항식의 계수 파라메터를 구하는 것을 의미하여 WLSE(Weighted Least Squared Estimation)방법으로 구한다. WLSE는 로컬모델의 학습을 수행하기 위한 방법으로써 아래의 수학식 6처럼 정의되는 성능평가함수가 최소가 되도록 각각의 로컬모델인 다항식의 계수를 추정하는 방법으로써 각각의 로컬모델을 독립적으로 추정할 수 있다는 장점이 있다.
이 방법은 컴퓨터의 계산부하를 줄일 수 있고, 각각의 로컬모델로써 서로 다른 차수의 다항식들을 사용할 수 있다는 장점이 있다.
여기서, 는 입력공간에 대한 입력 데이터의 활성레벨(소속값)을 의미하고, 는 로컬모델의 계수를 추정하기 위한 입력 데이터 행렬을 의미하며 로컬모델이 선형일 경우 다음의 수학식 7처럼 정의된다.
여기서, m은 데이터의 수이다. j번째 규칙에 대한 로컬모델인 다항식의 계수는 수학식 8에 의해서 구해진다.
도 3은 본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템을 개략적으로 나타낸 구성도이다.
본 발명에 의한 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템은 도 3에 도시된 바와 같이, 데이터 수집부(100), FRBFNN 모델 생성부(200), 태양광 출력 예측부(300) 및 효율 진단부(400)로 구성된다.
상기 데이터 수집부(100)는 태양광 발전시스템의 예측모델을 생성하기 위해서는 우선 입출력 데이터를 수집한다.
일반적으로 태양광 발전소의 모듈은 정남향으로 설치되어 모듈에 태양광이 직각으로 입사할 때 가장 많은 출력을 얻을 수 있다. 계절마다 태양의 고도가 달라지기 때문에 계절마다 경사각을 조절할 수 있는 구조로 설치하기도 하지만 대부분 비용적인 문제로 인하여 경사각을 고정하는데, 봄과 가을에 온도에 대한 손실이 적어 발전량이 많기 때문에 봄가을에 출력이 최대가 되도록 23도 정도의 경사각으로 모듈을 설치하는 것이 보편적이다.
그러나 지붕 위에 설치하는 경우에는 지붕의 경사각에 맞춰서 설치하므로 최적의 경사각으로 설치하지 못하는 경우가 있다. 이처럼 태양광은 설치환경에 따라 효율이 다르기 때문에 각 발전소의 특성이 반영된 모델을 구축해야 한다.
일부 예측모델은 특정 발전소에 대하여 수집된 데이터를 이용하여 예측모델을 만들고 이 모델을 다른 발전소에 적용하는데 이런 경우 예측 오차가 많이 발생할 수 있다.
본 발명에서는 각 발전소마다 설치한 후에 현장에서 수집된 운영데이터를 이용하여 주기적으로 예측모델을 학습시킨다.
상기 데이터 수집부(100)는 인버터와 기상센서로부터 일사량, 모듈온도 그리고 출력데이터를 수집하는 기능을 한다. 상기 데이터 수집부(100)는 일사량, 모듈온도 및 발전전력의 출력데이터 수집을 위해 인버터와 기상센서와 RS485나 TCP 통신을 하여 초단위로 샘플 데이터를 취득하고, 취득된 샘플 데이터를 10분 단위로 평균값을 구한다. 이때 칼만필터 알고리즘을 이용하여 평균데이터를 계산함으로써 적은 메모리공간을 이용하여 평균값을 계산할 수 있다.
또한, 상기 데이터 수집부(100)는 데이터 베이스(Data Base)를 포함하고 있어 10분 단위로 구해진 일사량, 모듈온도, 출력데이터를 저장하는 기능을 포함한다. 이렇게 10분 단위로 저장된 데이터는 지능형모델을 학습과 평가하는데 사용된다. 최소 일주이상 동안 수집된 데이터를 지능형 모델을 생성하는데 사용한다.
상기 데이터 수집부(100)에 수집된 데이터는 일사량과 모듈온도 두 개의 입력과 출력전력의 1개의 출력데이터로 구성되는데, 수집된 데이터의 50%는 지능형모델을 학습하는 용도로 사용하고 나머지 50%는 생성된 지능형모델을 평가하기 위한 용도로 사용한다.
도 4는 태양광 발전소에서 수집된 입출력 데이터집합의 분포를 나타낸 도면이다. 여기서 하나의 점은 10간격의 평균값을 의미한다.
상기 FRBFNN 모델 생성부(200)는 상기 데이터 수집부(100)에서 수집된 데이터를 이용하여 지능형 예측모델 파라미터를 생성하는 기능을 한다. 상기 지능형 모델의 생성은 구조적인 부분과 파라메터 부분으로 나누어진다.
도 2의 FRBFNN 구조에서 결정해야 되는 부분은 가장 중요한 것이 규칙의 수와 후반부 다항식의 형태이다. 각 규칙은 입력공간의 분할을 의미하는데 규칙이 많을수록 입력공간이 세분하게 분할되어 정확도를 높일 수 있지만 학습과 출력을 계산하는데 계산부하가 기하급수적으로 증가하는 단점도 있다.
입출력 패턴이 비선형성이 크다면 규칙이 많아야 되지만 태양광 발전시스템은 온도와 일사량에 대하여 거의 비례하는 선형성이 크므로 규칙 수가 많을 필요는 없다. 또한 후반부 다항식은 각 규칙에 대한 로컬출력을 의미하는데, 복잡한 다항식으로 정의할수록 정확한 모델을 만들 수 있다. 규칙의 수와 후반부 다항식의 형태는 유전자 알고리즘이나, PSO 또는 HFGPGA 등의 최적화 알고리즘을 이용하여 튜닝할 수 있는데, 본 발명에서는 규칙을 4개하고 후반부 다항식의 형태를 선형식인 구조로 국한하여 설명한다.
파라메터적인 부분은 전반부학습과 후반부학습을 의미하며, 전반부 학습은 수학식 3처럼 FCM을 이용하여 전반부 적합도를 결정하는 것이며, 후반부 학습은 수학식 7에 의하여 후반부 다항식의 파라메터를 결정하는 것이다.
도 5는 전반부 학습 방법인 FCM에 의해 결정되는 각 규칙에 대한 멤버쉽 함수(적합도)을 나타낸 도면이다.
도 6은 후반부 학습방법인 WLSE에 의해 결정된 각 규칙에 대한 후반부 다항식의 출력 즉 분할된 영역에 대한 로컬모델의 출력을 나타낸 도면이다.
FRBFNN의 모델은 학습데이터의 양이 많을수록 정확도가 증가한다. 태양광 발전소는 설치 경사각이 고정되어있어 계절마다 입출력 특성이 다르기 때문에 하나의 모델을 사용하여 모든 기간에 사용하는 경우 오차가 클 수 있기 때문에 봄, 여름, 가을, 겨울 계절별로 수집된 데이터를 이용하여 계절별로 모델을 별도로 만들어서 사용할 수 있다.
상기 태양광 출력 예측부(300)는 상기 FRBFNN 모델 생성부(200)에서 생성된 예측모델 파라미터와 상기 데이터 수집부(100)의 생성모델과 상기 데이터 수집부(100)에서 수집된 일사량과 모듈 온도를 전달받아 태양광 발전부의 출력을 예측하는 기능을 하는 부분이다. 실시간으로 수집되는 일사량과 모듈 온도를 입력으로 하여 생성된 모델 파라메터에 대하여 수학식 5로 하면 발전전력을 예측할 수 있다.
도 7은 각 규칙에 대하여 로컬모델에 적합도가 적용된 예를 나타낸 도면이고, 도 8은 FRBFNN의 전체출력을 나타낸 도면이다.
상기 효율 진단부(400)는 상기 태양광 출력 예측부(300)에서 예측한 예측 값과 상기 데이터 수집부(100)에서 수집된 실제전력을 전달받아 태양광 발전설비의 효율 저하 정도를 판단한다. 즉, 아래의 수학식 9를 이용하여 태양광 발전설비의 효율을 계산한다.
일사량 센서, 모듈온도센서의 정확도 및 예측모델의 정확도에 영향을 받게 된다. 또한 일사량이 낮은 경우에는 데이터의 크기가 작아지므로 상대적으로 오차가 많아서 오판을 할 수 있다. 그렇기 때문에 일사량이 300W/m2 이상에서만 효율 저하 판단을 하고, 그 이하에서는 정상으로 간주한다. 아래의 표 1에 의해서 효율의 범위에 따라 고장, 점검, 정상 등의 상태를 판단하여 관리자에게 자동으로 알려줄 수 있다.
규칙 | 조건 | 상태 |
1 | 일사량 < 300 | 정상 발전 |
2 | 일사량 > 300 and 효율 > 120 | 일사량 또는 모듈온도 센서 점검 |
3 | 일사량 > 300 and 70 < 효율 ≤ 120 | 정상 발전 |
4 | 일사량 > 300 and 효율 ≤ 70 | 점검필요 |
한편, 이상에서와 같이, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.
100 : 데이터 수집부 200 : FRBFNN 모델 생성부
300 : 태양광 출력 예측부 400 : 효율 진단부
300 : 태양광 출력 예측부 400 : 효율 진단부
Claims (5)
- 인버터와 기상센서로부터 일사량, 모듈온도 그리고 출력데이터를 수집하는 데이터 수집부와,
상기 데이터 수집부에서 수집된 데이터를 이용하여 지능형 예측모델 파라미터를 생성하는 FRBFNN 모델 생성부와,
상기 FRBFNN 모델 생성부에서 생성된 예측모델 파라미터와 상기 데이터 수집부에서 수집된 일사량과 모듈 온도를 전달받아 태양광 발전부의 출력을 예측하는 태양광 출력 예측부와,
상기 태양광 출력 예측부에서 예측한 예측 값과 상기 데이터 수집부에서 수집된 실제전력을 전달받아 태양광 발전설비의 효율 저하 정도를 판단하는 효율 진단부를 포함하여 구성되고,
상기 FRBFNN 모델 생성부는 각 발전소마다 설치하고 현장에서 수집된 데이터를 이용하여 주기적으로 예측모델을 학습시키고,
상기 FRBFNN 모델 생성부는 상기 예측모델의 학습을 통해서 예측모델 파라메터를 결정하고 전반부의 멤버쉽 함수 학습과 후반부 다항식의 학습으로 구성되고 상기 전반부 멤버쉽 함수는 FCM 알고리즘을 통하여 멤버쉽 값을 결정하고 상기 후반부 다항식의 학습은 WLSE 방식으로 실시하는 것을 특징으로 하는 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템. - 삭제
- 제 1 항에 있어서, 상기 데이터 수집부에 수집된 데이터는 일사량과 모듈온도 두 개의 입력과 출력전력의 1개의 출력데이터로 구성되고, 상기 수집된 데이터의 50%는 지능형 예측모델을 학습하는 용도로 사용하고 나머지 50%는 생성된 지능형 예측모델을 평가하기 위해 사용하는 것을 특징으로 하는 FRBNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템.
- 제 1 항에 있어서, 상기 데이터 수집부는 칼만필터 알고리즘을 이용하여 평균데이터를 계산하고 데이터 베이스를 구축하여 10분 단위로 구해진 일사량, 모듈온도, 출력데이터를 저장하는 것을 특징으로 하는 FRBFNN 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템.
- 삭제
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200111491A KR102230548B1 (ko) | 2020-09-02 | 2020-09-02 | Frbfnn 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템 |
JP2021069828A JP2022042469A (ja) | 2020-09-02 | 2021-04-16 | Frbfnnモデルを用いた太陽光発電設備の発電予測及び効率診断システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200111491A KR102230548B1 (ko) | 2020-09-02 | 2020-09-02 | Frbfnn 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102230548B1 true KR102230548B1 (ko) | 2021-03-22 |
Family
ID=75222916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200111491A KR102230548B1 (ko) | 2020-09-02 | 2020-09-02 | Frbfnn 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022042469A (ko) |
KR (1) | KR102230548B1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102385383B1 (ko) * | 2021-03-25 | 2022-04-15 | 한국수자원공사 | 인공지능 모델을 이용하여 태양광 발전 장치의 발전량을 예측하는 전자 장치 및 제어 방법 |
KR102413415B1 (ko) * | 2021-11-29 | 2022-06-27 | 홍석훈 | 태양광 발전량 데이터에 대한 시계열 모델의 결측치 보간 방법 |
KR20220146012A (ko) * | 2021-04-23 | 2022-11-01 | 한국에너지기술연구원 | 태양광 모듈 및 스트링의 고장진단 시스템 및 그 방법 |
KR102553193B1 (ko) * | 2022-10-26 | 2023-07-07 | (주) 티이에프 | 태양광 발전량 예측 시스템 및 방법 |
KR20240008165A (ko) | 2022-07-11 | 2024-01-18 | 박기주 | 스트링 모듈 단위의 발전량을 미세 조정하는 스트링 옵티마, 및 태양광 발전시스템과 그 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180072954A (ko) * | 2016-12-22 | 2018-07-02 | 전자부품연구원 | 태양전지모듈 발전량 예측방법 및 예측장치 |
KR102148761B1 (ko) * | 2019-11-20 | 2020-08-27 | 주식회사 케이디티 | 태양광 발전 시스템의 고장 진단 장치 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5344614B2 (ja) * | 2009-10-14 | 2013-11-20 | Necエンジニアリング株式会社 | 太陽光発電システムの発電量予測方法及び予測装置 |
KR101748722B1 (ko) * | 2013-07-23 | 2017-06-19 | 엘에스산전 주식회사 | 태양 전지 모듈 온도 조절 장치 |
JP2016135058A (ja) * | 2015-01-22 | 2016-07-25 | 株式会社関電工 | 太陽光発電システムにおける開放電圧自動判定装置 |
JP2019022251A (ja) * | 2017-07-11 | 2019-02-07 | 米沢電気工事株式会社 | 太陽電池診断方法及び太陽電池診断システム |
JP2020028192A (ja) * | 2018-08-10 | 2020-02-20 | 株式会社別川製作所 | 太陽光発電装置、診断装置および太陽電池ストリングの診断方法 |
KR102092860B1 (ko) * | 2019-01-22 | 2020-03-24 | 인천대학교 산학협력단 | 미래의 기상 예보 데이터를 이용하지 않는 기계학습 기반의 태양광 발전량 예측 장치 및 방법 |
-
2020
- 2020-09-02 KR KR1020200111491A patent/KR102230548B1/ko active IP Right Grant
-
2021
- 2021-04-16 JP JP2021069828A patent/JP2022042469A/ja not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180072954A (ko) * | 2016-12-22 | 2018-07-02 | 전자부품연구원 | 태양전지모듈 발전량 예측방법 및 예측장치 |
KR102148761B1 (ko) * | 2019-11-20 | 2020-08-27 | 주식회사 케이디티 | 태양광 발전 시스템의 고장 진단 장치 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102385383B1 (ko) * | 2021-03-25 | 2022-04-15 | 한국수자원공사 | 인공지능 모델을 이용하여 태양광 발전 장치의 발전량을 예측하는 전자 장치 및 제어 방법 |
KR102421393B1 (ko) * | 2021-03-25 | 2022-07-18 | 한국수자원공사 | 발전량을 예측하는 인공지능 모델을 트레이닝 시키는 방법 |
KR102427604B1 (ko) * | 2021-03-25 | 2022-08-02 | 한국수자원공사 | 미래 발전량을 예측하도록 훈련된 인공지능 모델을 포함하는 전자 장치의 제어 방법 |
KR20220146012A (ko) * | 2021-04-23 | 2022-11-01 | 한국에너지기술연구원 | 태양광 모듈 및 스트링의 고장진단 시스템 및 그 방법 |
KR102598830B1 (ko) | 2021-04-23 | 2023-11-07 | 한국에너지기술연구원 | 태양광 모듈 및 스트링의 고장진단 시스템 및 그 방법 |
KR102413415B1 (ko) * | 2021-11-29 | 2022-06-27 | 홍석훈 | 태양광 발전량 데이터에 대한 시계열 모델의 결측치 보간 방법 |
KR20240008165A (ko) | 2022-07-11 | 2024-01-18 | 박기주 | 스트링 모듈 단위의 발전량을 미세 조정하는 스트링 옵티마, 및 태양광 발전시스템과 그 방법 |
KR102553193B1 (ko) * | 2022-10-26 | 2023-07-07 | (주) 티이에프 | 태양광 발전량 예측 시스템 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP2022042469A (ja) | 2022-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102230548B1 (ko) | Frbfnn 모델을 이용한 태양광 발전설비의 발전예측 및 효율진단 시스템 | |
Dhimish et al. | Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection | |
Kabilan et al. | Short‐Term Power Prediction of Building Integrated Photovoltaic (BIPV) System Based on Machine Learning Algorithms | |
De Benedetti et al. | Anomaly detection and predictive maintenance for photovoltaic systems | |
KR101761686B1 (ko) | 머신 러닝을 이용한 태양광 발전량 실시간 예측 시스템 | |
KR102148761B1 (ko) | 태양광 발전 시스템의 고장 진단 장치 | |
US20110066401A1 (en) | System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants | |
CN105260800A (zh) | 一种光伏组件温度预测方法及装置 | |
Guo et al. | An ensemble solar power output forecasting model through statistical learning of historical weather dataset | |
Ventura et al. | Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant | |
KR102194271B1 (ko) | 모델 기반의 태양광발전 통합 관리 시스템 및 방법 | |
Zhang et al. | A reinforcement learning based approach for on-line adaptive parameter extraction of photovoltaic array models | |
WO2016166991A1 (ja) | 太陽光発電設備の診断システムおよびプログラム | |
CN117318111B (zh) | 一种基于天气预测的光储能源动态调节方法及系统 | |
Wang et al. | Performance assessment of photovoltaic modules based on daily energy generation estimation | |
Park et al. | Multi-layer RNN-based short-term photovoltaic power forecasting using IoT dataset | |
Nour-eddine et al. | Power forecasting of three silicon-based PV technologies using actual field measurements | |
CN114399081A (zh) | 一种基于天气分类的光伏发电功率预测方法 | |
Soffiah et al. | Fault detection in grid connected PV system using artificial neural network | |
KR102498535B1 (ko) | 신재생에너지 발전 관리 시스템 | |
TW201727559A (zh) | 再生能源電廠的管理方法與系統 | |
Ma et al. | Shading fault detection method for household photovoltaic power stations based on inherent characteristics of monthly string current data mapping | |
TW201740296A (zh) | 再生能源發電量預測方法與系統 | |
CN117332920A (zh) | 一种新能源场站运行故障演化分析方法 | |
Sciuto et al. | Failure classification in high concentration photovoltaic system (HCPV) by using probabilistic neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |