KR102221418B1 - Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same - Google Patents
Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same Download PDFInfo
- Publication number
- KR102221418B1 KR102221418B1 KR1020190127411A KR20190127411A KR102221418B1 KR 102221418 B1 KR102221418 B1 KR 102221418B1 KR 1020190127411 A KR1020190127411 A KR 1020190127411A KR 20190127411 A KR20190127411 A KR 20190127411A KR 102221418 B1 KR102221418 B1 KR 102221418B1
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- positive electrode
- electrode active
- secondary battery
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 79
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 63
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 12
- 239000002131 composite material Substances 0.000 title abstract description 39
- 230000008569 process Effects 0.000 title description 3
- 239000002245 particle Substances 0.000 claims abstract description 113
- 238000004519 manufacturing process Methods 0.000 claims abstract description 27
- 239000007774 positive electrode material Substances 0.000 claims description 36
- 239000007864 aqueous solution Substances 0.000 claims description 18
- 230000014759 maintenance of location Effects 0.000 claims description 18
- 239000006182 cathode active material Substances 0.000 claims description 13
- 239000002738 chelating agent Substances 0.000 claims description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 28
- 239000011149 active material Substances 0.000 description 22
- 230000008859 change Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- -1 chalcogenide compound Chemical class 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 2
- 206010017076 Fracture Diseases 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬 복합 산화물 전구체, 이의 제조 방법 및 이에 의하여 제조된 리튬 복합 산화물에 관한 것으로서, 더욱 상세하게는 리튬 복합 산화물 전구체 초기 입자의 형상을 제어함으로써, 이를 이용한 리튬 복합 산화물의 입자 제조 시 입자 강도가 개선되고, 이를 적용한 전지의 특성을 크게 개선할 수 있는 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물에 관한 것이다. The present invention relates to a lithium composite oxide precursor, a method of manufacturing the same, and a lithium composite oxide prepared thereby, and more particularly, by controlling the shape of the initial particles of the lithium composite oxide precursor, particle strength when preparing particles of a lithium composite oxide using the same Is improved, and a lithium composite oxide precursor capable of greatly improving the characteristics of a battery to which the same is applied, a method of manufacturing the same, and a lithium composite oxide prepared using the same.
Description
본 발명은 리튬 복합 산화물 전구체, 이의 제조 방법 및 이에 의하여 제조된 리튬 복합 산화물에 관한 것으로서, 더욱 상세하게는 리튬 복합 산화물 전구체 초기 입자의 형상을 제어함으로써, 이를 이용한 리튬 복합 산화물의 입자 제조 시 입자 강도가 개선되고, 이를 적용한 전지의 특성을 크게 개선할 수 있는 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물에 관한 것이다.The present invention relates to a lithium composite oxide precursor, a method of manufacturing the same, and a lithium composite oxide prepared thereby, and more particularly, by controlling the shape of the initial particles of the lithium composite oxide precursor, particle strength when preparing particles of a lithium composite oxide using the same Is improved, and a lithium composite oxide precursor capable of greatly improving the characteristics of a battery to which the same is applied, a method of manufacturing the same, and a lithium composite oxide prepared using the same.
최근 전자 제품, 전자 기기, 통신 기기의 소형화, 경량화 및 고성능화가 급속히 진전됨에 따라 이들 제품의 전원으로 사용될 이차 전지의 성능 개선이 크게 요구되고 있다. 이러한 요구를 만족시키는 이차 전지로 리튬 이차 전지가 있다. Recently, as electronic products, electronic devices, and communication devices have rapidly progressed in miniaturization, weight reduction, and high performance, there is a great demand for improvement in performance of secondary batteries to be used as power sources for these products. As a secondary battery that satisfies this demand, there is a lithium secondary battery.
양극 활물질은 리튬 이차 전지의 전지 성능 및 안전성에 가장 중요한 역할을 하는 물질로서, 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiNiO2, LiNi1 - xCoxO2(0<x<1), LiMnO2, LiMn2O4, LiFePO4 등의 복합 금속 산화물들이 연구되고 있다. 이와 같은 양극 활물질을 카본 블랙과 같은 도전재, 바인더 및 용매를 혼합하여 양극 활물질 슬러리 조성물을 제조한 후, 알루미늄 호일 등의 얇은 금속판에 코팅하여 리튬 이온 이차 전지의 양극으로 사용한다.The positive electrode active material is a material that plays the most important role in battery performance and safety of lithium secondary batteries, and a chalcogenide compound is used, for example LiCoO 2 , LiNiO 2 , LiNi 1 - x Co x O 2 (0< Complex metal oxides such as x<1), LiMnO 2 , LiMn 2 O 4 , and LiFePO 4 are being studied. The positive electrode active material is mixed with a conductive material such as carbon black, a binder, and a solvent to prepare a positive electrode active material slurry composition, and then coated on a thin metal plate such as aluminum foil to be used as a positive electrode of a lithium ion secondary battery.
이러한 이차전지용 양극 활물질은 제조 공정 중 하나로서 압연 공정을 거치게 된다. 압연 공정이란 밀도를 증가시키고 결정성을 높이기 위해 소정의 압력으로 활물질 층을 수회 프레싱하는 것을 의미한다. The positive electrode active material for a secondary battery is subjected to a rolling process as one of the manufacturing processes. The rolling process means pressing the active material layer several times with a predetermined pressure to increase the density and increase the crystallinity.
종래 양극 활물질 전구체 및 활물질은 공침 공정으로 제조되는 과정에서 복수개의 seed가 응집되어 초기 입자를 형성시 구형이 유지되기 어렵다. 이와 같이 형상 유지가 어려운 전구체 입자를 이용한 활물질의 제조는 결과적으로 상기 압연 공정 동안 양극 활물질 입자가 받게 되는 압축 응력을 이기지 못하고 일부는 깨어져 입자가 파괴되는 문제점이 있다.Conventional positive electrode active material precursors and active materials are difficult to maintain a spherical shape when forming initial particles due to agglomeration of a plurality of seeds in a process of being manufactured by a coprecipitation process. As a result, the production of the active material using the precursor particles, which are difficult to maintain the shape, has a problem in that the positive electrode active material particles cannot overcome the compressive stress received during the rolling process, and some of them are broken and the particles are destroyed.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬 복합 산화물 전구체 입자의 형상을 제어함으로써, 구형도 및 밀도가 개선된 리튬 복합 산화물 전구체, 이의 제조 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a lithium composite oxide precursor having improved sphericity and density by controlling the shape of the lithium composite oxide precursor particles in order to solve the problems of the prior art as described above, and a method of manufacturing the same.
본 발명은 또한, 본 발명에 의한 리튬 복합 산화물 전구체를 이용함으로써 우수한 입자 강도를 갖는 리튬 이차전지용 양극활물질로서 리튬 복합 산화물을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a lithium composite oxide as a positive electrode active material for a lithium secondary battery having excellent particle strength by using the lithium composite oxide precursor according to the present invention.
본 발명은 상기와 같은 과제를 해결하기 위하여, 본 발명은The present invention in order to solve the above problems, the present invention
아래 식으로 표시되는 압력을 인가하기 전후의 입자 직경의 비를 나타내는 입자 직경 유지율이 80% 이상인 리튬 이차전지용 양극활물질을 제공한다. A positive electrode active material for a lithium secondary battery having a particle diameter retention ratio of 80% or more, representing the ratio of the particle diameter before and after applying the pressure represented by the following equation, is provided.
입자 직경 유지율 = (압력 인가 후 D10 / 압력 인가 전 D10)×100 Particle diameter retention rate = (D10 after pressure application / D10 before pressure application)×100
본 발명에 의한 리튬 이차전지용 양극활물질의 입자 직경 유지율이 80% 이상인 것은 압력 인가 후 D10 의 입자 직경이, 압력 인가 전 D10 의 입자 직경에 비해 80% 이상을 유지하는 것을 의미하며, 결과적으로 아래 식으로 나타내어지는 압력에 따른 입자 직경의 변화율이 20% 미만의 입자 강도를 나타내는 것을 의미한다. When the particle diameter retention rate of the positive electrode active material for lithium secondary batteries according to the present invention is 80% or more, it means that the particle diameter of D10 after pressure is applied is maintained at least 80% compared to the particle diameter of D10 before pressure is applied. It means that the rate of change of the particle diameter according to the pressure represented by represents a particle strength of less than 20%.
입자 직경 변화율 = (압력 인가 전 D10-압력 인가 후 D10) / (압력 인가 전 D10)×100 Particle diameter change rate = (D10 before pressure application-D10 after pressure application) / (D10 before pressure application)×100
본 발명에 의한 리튬 이차전지용 양극활물질의 상기 압력에 따른 입자 직경의 유지율 및 변화율은 압연 공정 시 인가되는 압력에 따른 것으로, 전극 활물질은 에너지 밀도를 높이고 적절한 전기전도도 및 기계적 성능을 높여주기 위하여 높은 강도의 압연 공정을 거치게 되며, 이러한 압연 공정에서 미분 제어를 최소로 하는 입자의 강도가 요구된다. The retention rate and rate of change of the particle diameter according to the pressure of the positive electrode active material for a lithium secondary battery according to the present invention are dependent on the pressure applied during the rolling process, and the electrode active material has high strength to increase energy density and appropriate electrical conductivity and mechanical performance. It goes through the rolling process of, and in this rolling process, the strength of the particles that minimizes fine powder control is required.
이에 따라, 본 발명에 의한 리튬 이차전지용 양극활물질은 3톤 이하의 압력을 인가 시에도 입자 직경 유지율이 80% 이상인 것, 즉 입자 직경 변화율이 20% 미만인 것을 특징으로 한다. Accordingly, the cathode active material for a lithium secondary battery according to the present invention is characterized in that the particle diameter retention rate is 80% or more, that is, the particle diameter change rate is less than 20% even when a pressure of 3 tons or less is applied.
본 발명에 의한 리튬 이차전지용 양극활물질은 입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.85 ≤(s/l)≤ 1 인 것을 특징으로 한다. 상기 입자의 장축(l)과 단축(s)의 길이비(s/l)는 구형도를 나타내는 것으로써, 0.85 이하에서는 입자의 강도 특성이 저하되어 압력에 따른 미분 제어가 어려워 결국 양극활물질의 특성의 감소를 초래한다. 바람직하게는 구형도가 0.9 이상일 때 입자의 강도 특성이 우수하다.The cathode active material for a lithium secondary battery according to the present invention is characterized in that the length ratio (s/l) of the long axis (l) and the minor axis (s) of the particles is 0.85 ≤ (s/l) ≤ 1. The length ratio (s/l) of the long axis (l) and the minor axis (s) of the particles represents a sphericity. Below 0.85, the strength characteristics of the particles are deteriorated, making it difficult to control the fines according to the pressure, resulting in the characteristics of the positive electrode active material. Results in a decrease in Preferably, when the sphericity is 0.9 or more, the strength characteristics of the particles are excellent.
본 발명에 의한 리튬 이차전지용 양극활물질은 겉보기 밀도가 3.0 g/cc 이상인 것을 특징으로 한다. 상기 양극활물질은 입자의 구형도가 상기 범위 0.85 ≤ (s/l)≤ 1 를 만족하는 입자의 형상 제어를 통해 보다 개선된 밀도 값을 얻을 수 있으며 결과적으로 상기 개선된 밀도는 입자의 강도를 향상시키는 효과가 있다. The positive electrode active material for a lithium secondary battery according to the present invention is characterized in that the apparent density is 3.0 g/cc or more. The positive electrode active material can obtain an improved density value by controlling the shape of the particles satisfying the range of 0.85 ≤ (s/l) ≤ 1 with the sphericity of the particles, and as a result, the improved density improves the strength of the particles. There is an effect of letting go.
본 발명에 의한 리튬 이차전지용 양극활물질은 비표면적(BET)이 0.1 m2/g 이상, 3.0 m2/g 이하인 것을 특징으로 한다. The cathode active material for a lithium secondary battery according to the present invention is characterized in that the specific surface area (BET) is 0.1 m 2 /g or more and 3.0 m 2 /g or less.
본 발명에 의한 리튬 이차전지용 양극활물질은 아래 화학식 2로 표시되는 것을 특징으로 한다.The positive electrode active material for a lithium secondary battery according to the present invention is characterized in that it is represented by the following formula (2).
<화학식 2> LixNi1 -a-b- cCoaM1bM2cM3dOw <
(상기 화학식 2에서 0.95≤x≤1.05, 1.50≤w≤2.1, 0.02≤a≤0.25, 0.01≤b≤0.20, 0≤c≤0.20, 0≤d≤0.20, M1은 Mn 또는 Al 이고, M2 및 M3 는 Al, Ba, B, Co,Ce ,Cr, F, Li, Mg, Mn, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상임)(In
본 발명은 또한, 본 발명의 리튬 이차전지용 양극활물질 제조에 이용되는 입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.85 ≤(s/l)≤ 1 이고, 아래 화학식 1로 표시되는 리튬 복합 산화물 전구체를 제공한다.In the present invention, the length ratio (s/l) of the long axis (l) and the short axis (s) of the particles used in the production of the positive electrode active material for a lithium secondary battery of the present invention is 0.85 ≤ (s/l) ≤ 1, and the following formula It provides a lithium composite oxide precursor represented by 1.
<화학식 1> Ni1-a-bCoaMb(OH)2 <
(상기 화학식 1에서 a+b≤0.5, a≤0.2, b≤0.3, (In Formula 1, a+b≤0.5, a≤0.2, b≤0.3,
M은 Mn, Al, B, Ba, Ce, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상의 원소임) M is at least one element selected from the group consisting of Mn, Al, B, Ba, Ce, Cr, F, Li, Mo, P, Sr, Ti and Zr)
본 발명에 의한 리튬 복합 산화물 전구체는 상기 입자의 장축(l)과 단축(s)의 길이비(s/l)를 통하여 구형도를 나타내는 것으로써, 상기 전구체 초기 입자의 형상 제어를 통해 보다 개선된 밀도를 갖는 전구체 입자 및 이를 이용하여 제조되는 양극활물질의 형상 제어를 통한 입자의 강도 향상 효과를 기대한다.The lithium composite oxide precursor according to the present invention exhibits sphericity through the length ratio (s/l) of the long axis (l) and the minor axis (s) of the particles, and is more improved through shape control of the precursor initial particles. The effect of improving the strength of the particles is expected by controlling the shape of the precursor particles having a density and the positive electrode active material manufactured using the same.
본 발명에 의한 리튬 복합 산화물 전구체는 입자의 진밀도가 3.50 g/cc 이상 3.80 g/cc이하인 것을 특징으로 한다. The lithium composite oxide precursor according to the present invention is characterized in that the true density of the particles is 3.50 g/cc or more and 3.80 g/cc or less.
본 발명에 의한 리튬 복합 산화물 전구체는 입자의 겉보기밀도가 1.5 g/cc 이상 2.5 g/cc이하인 것을 특징으로 한다. The lithium composite oxide precursor according to the present invention is characterized in that the apparent density of the particles is 1.5 g/cc or more and 2.5 g/cc or less.
본 발명에 의한 리튬 복합 산화물 전구체는 입자의 높은 구형도로 인하여 종래 형상을 제어하지 않은 전구체 입자 대비 개선된 밀도 값을 확보할 수 있다.The lithium composite oxide precursor according to the present invention can secure an improved density value compared to the precursor particles without controlling the conventional shape due to the high sphericity of the particles.
본 발명에 의한 리튬 복합 산화물 전구체는 입자의 기공률이 20% 이하인 것을 특징으로 한다. 본 발명에 의한 리튬 복합 산화물 전구체는 제조 공정 시간을 조절하여 입자 내의 기공률을 20% 미만으로 조절함으로써 입자 강도를 개선하는 효과를 나타낸다. The lithium composite oxide precursor according to the present invention is characterized in that the porosity of the particles is 20% or less. The lithium composite oxide precursor according to the present invention exhibits an effect of improving particle strength by controlling the porosity in the particles to less than 20% by controlling the manufacturing process time.
본 발명에 의한 리튬 복합 산화물 전구체의 초기 입자, 최종 입자 및 이와 같은 본 발명에 의한 리튬 복합 산화물 전구체를 이용하여 제조되는 양극활물질 입자의 파단면 형상에 대하여 도 1에 도시하였다. The initial particles, the final particles of the lithium composite oxide precursor according to the present invention, and the shape of the fracture surface of the positive electrode active material particles prepared using the lithium composite oxide precursor according to the present invention are illustrated in FIG. 1.
본 발명에 의한 리튬 복합 산화물 전구체는 반응기에 seed 를 먼저 분산시키고, 분산된 seed 로부터 형성되는 초기 입자가 엉기지 않도록 하여 결과적으로 최종 전구체 입자의 입자 구형도를 개선하는 효과를 나타낸다. The lithium composite oxide precursor according to the present invention exhibits an effect of first dispersing a seed in a reactor and preventing initial particles formed from the dispersed seed from being agglomerated, thereby improving the particle sphericity of the final precursor particles.
본 발명은 또한, The present invention also,
Seed 형성을 위한 킬레이팅제 수용액을 반응기에 투입하고 200 내지 1000 rpm 으로 교반하는 제 1 단계;A first step of introducing an aqueous solution of a chelating agent for seed formation into the reactor and stirring at 200 to 1000 rpm;
전구체 수용액, 킬레이팅제 수용액 및 염기성 수용액을 반응기에 동시에 연속적으로 투입하여 구형의 침전물을 얻는 제 2 단계; 및A second step of obtaining a spherical precipitate by continuously adding an aqueous precursor solution, an aqueous chelating agent solution, and an aqueous basic solution to the reactor at the same time; And
상기 침전물을 건조시키거나 열처리하여 리튬 복합 산화물 전구체를 제조하는 제 3 단계; 를 포함하는 리튬 복합 산화물 전구체의 제조방법을 제공한다. A third step of drying or heat treating the precipitate to prepare a lithium composite oxide precursor; It provides a method for producing a lithium composite oxide precursor comprising a.
본 발명에 의한 리튬 복합 산화물 전구체 제조 방법에 있어서, 상기 제 1 단계에서 킬레이팅제 수용액의 농도는 2 내지 3 mol/L 이며, 상기 킬레이팅제 수용액을 전체 반응기 부피의 25 내지 35% 까지 투입하는 것을 특징으로 한다. In the method for preparing a lithium composite oxide precursor according to the present invention, in the first step, the concentration of the chelating agent aqueous solution is 2 to 3 mol/L, and the chelating agent aqueous solution is added to 25 to 35% of the total reactor volume. It is characterized by that.
본 발명에 의한 리튬 복합 산화물 전구체 제조 방법에 있어서, 상기 제 2 단계의 상기 전구체 수용액은 Ni: Co: Me1 = a:b:1-(a+b) (0.7≤a≤1.0, 0≤b≤0.2)이고, 상기 킬레이팅제와 상기 전구체 수용액 중의 금속염의 몰 비는 0.1 내지 0.5 이며, 상기 전구체 수용액, 상기 킬레이팅제 수용액 및 상기 염기성 수용액을 전체 반응기 부피의 30 ~ 60% 까지 반응기에 동시에 연속적으로 투입하여 구형의 침전물을 얻는 것을 특징으로 한다. In the method for preparing a lithium composite oxide precursor according to the present invention, the aqueous precursor solution in the second step is Ni: Co: Me1 = a:b:1-(a+b) (0.7≤a≤1.0, 0≤b≤ 0.2), and the molar ratio of the chelating agent and the metal salt in the precursor aqueous solution is 0.1 to 0.5, and the precursor aqueous solution, the chelating agent aqueous solution, and the basic aqueous solution are simultaneously continuously and continuously in the reactor up to 30 to 60% of the total reactor volume. It is characterized in that to obtain a spherical precipitate by adding.
본 발명에 의한 리튬 복합 산화물 전구체 제조 방법에 있어서, 상기 전구체 입자의 입자 성장 속도는 0.10 ㎛/Hr 이상 1.01 ㎛/Hr 이하인 것을 특징으로 한다. 본 발명에 의한 전구체 제조 방법에 있어서, 상기 제 1 단계부터 제 3 단계까지의 수행 시간은 500 분 이상 800 분 이하인 것을 특징으로 한다.In the method for producing a lithium composite oxide precursor according to the present invention, the particle growth rate of the precursor particles is 0.10 µm/Hr or more and 1.01 µm/Hr or less. In the precursor manufacturing method according to the present invention, the execution time from the first step to the third step is 500 minutes or more and 800 minutes or less.
본 발명에 의한 리튬 복합 산화물 전구체 제조 방법에 있어서, 상기 제 1 단계부터 제 2 단계까지의 수행 시간이 50 분 이상 200 분 이하인 경우 생성되는 전구체 입자의 크기가 5 ㎛ 이하인 것을 특징으로 한다. In the method for producing a lithium composite oxide precursor according to the present invention, when the execution time from the first step to the second step is 50 minutes or more and 200 minutes or less, the size of the generated precursor particles is 5 μm or less.
본 발명에 의한 리튬 복합 산화물 전구체 제조 방법은 전구체 입자의 성장 속도를 일정 범위로 유지하여 전구체 입자가 얽히지 않고 입자의 구형도를 유지하면서 입자 밀도를 증가시키면서 전구체 입자를 형성할 수 있다.In the method for preparing a lithium composite oxide precursor according to the present invention, the precursor particles are not entangled by maintaining the growth rate of the precursor particles in a certain range, while maintaining the sphericity of the particles, while increasing the particle density and forming the precursor particles.
본 발명에 의한 리튬 복합 산화물 전구체는 반응기에 seed 형성을 위한 킬레이트 수용액을 투입하여 교반함으로써 seed를 먼저 분산시키고, 분산된 seed로부터 초기 입자 형성시 형성되는 초기 입자가 엉기지 않도록 하여 결과적으로 최종 전구체 입자의 입자 구형도를 개선하는 효과를 나타낸다. In the lithium composite oxide precursor according to the present invention, the seed is first dispersed by adding and stirring an aqueous chelate solution for seed formation in the reactor, and the initial particles formed during initial particle formation from the dispersed seed are prevented from being agglomerated, resulting in the final precursor particles. It shows the effect of improving the particle sphericity of.
또한, 이와 같은 본원 발명의 전구체 입자로부터 제조되는 리튬 복합 산화물은 입자 강도가 크게 개선되어, 리튬 복합 산화물 제조 공정 및 전지 제조 공정에서의 압연, 코팅 공정에서 압력이 인가되더라도 이에 의한 미분 발생을 감소시켜 결과적으로는 전지의 안정성을 개선하는 효과를 나타낸다. In addition, the lithium composite oxide produced from the precursor particles of the present invention has greatly improved particle strength, and even when pressure is applied in the rolling and coating processes in the lithium composite oxide manufacturing process and the battery manufacturing process, the generation of fine powder is reduced. As a result, it exhibits the effect of improving the stability of the battery.
도 1 은 본 발명에 의한 전구체 입자의 제조 및 활물질 입자의 제조 과정을 나타낸다.
도 2는 본 발명의 일 실시예에서 제조된 전구체 입자의 구형도 분석을 위한 SEM 사진을 나타낸다.
도 3은 본 발명의 일 실시예에서 제조된 활물질 입자의 구형도 분석을 위한 SEM 사진을 나타낸다.
도 4 및 도 5는 본 발명의 일 실시예에서 제조된 활물질 입자의 강도 측정 결과를 나타낸다.
도 6 내지 도 10은 본 발명의 일 실시예에서 제조된 활물질을 포함하는 전지의 특성 평가 결과를 나타낸다. 1 shows a manufacturing process of a precursor particle and an active material particle according to the present invention.
2 shows a SEM photograph for analyzing the sphericity of the precursor particles prepared in an embodiment of the present invention.
3 shows an SEM photograph for analyzing the sphericity of the active material particles prepared in an embodiment of the present invention.
4 and 5 show the results of measuring the strength of the active material particles prepared in an embodiment of the present invention.
6 to 10 show characteristics evaluation results of a battery including the active material prepared in an embodiment of the present invention.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by examples. However, the present invention is not limited by the following examples.
<실시예> <Example>
(실시예 1) 전구체 제조(Example 1) Precursor Preparation
내용적 100 L의 용량을 가지는 공침 반응기(co-precipitation reactor, 회전모터의 출력 80 W이상)에 증류수 20 L와 킬레이팅제로서 암모니아를 1000 g을 넣은 뒤, 반응기 내의 온도를 45 ℃로 유지하면서 1000 rpm으로 반응기 내부의 임펠러를 교반하여 생성되는 seed 가 얽히지 않고 분산되도록 하였다. After adding 20 L of distilled water and 1000 g of ammonia as a chelating agent into a co-precipitation reactor (more than 80 W of the output of a rotary motor) having a capacity of 100 L, the temperature in the reactor is maintained at 45 °C. The impeller inside the reactor was stirred at 1000 rpm so that the generated seeds were not entangled and dispersed.
황산니켈, 황산코발트의 몰 비(mole ratio)가 98 : 2 의 비율로 혼합된 2.5 M 농도의 전구체 수용액을 2.2 L/hr으로, 28% 농도의 암모니아 수용액을 0.15 L/hr으로 반응기에 연속적으로 투입하여 전구체 입자를 형성하였다. A 2.5 M concentration precursor aqueous solution in which the molar ratio of nickel sulfate and cobalt sulfate is 98: 2 is mixed at 2.2 L/hr, and a 28% aqueous ammonia solution at 0.15 L/hr is continuously used in the reactor. To form a precursor particle.
또한, pH 조정을 위해 25% 농도의 수산화나트륨 수용액을 공급하여 pH가 11.3~11.4 로 유지되도록 하였다. 임펠러 속도는 300~1000 rpm 으로 조절하였다. In addition, an aqueous solution of sodium hydroxide at a concentration of 25% was supplied to adjust the pH so that the pH was maintained at 11.3-11.4. The impeller speed was adjusted to 300 ~ 1000 rpm.
반응이 종결되고 난 후, 반응기(reactor)로부터 구형의 니켈망간코발트 복합수산화물 침전물을 얻었다.After the reaction was completed, a spherical nickel manganese cobalt complex hydroxide precipitate was obtained from a reactor.
상기 침전된 복합금속수산화물을 여과하고, 순수로 세척한 후에 100 ℃ 온풍건조기에서 12시간 건조시켜 (Ni0.98Co0.02)(OH)2 로 표시되는 금속 복합 수산화물 형태의 전구체 분말을 얻었다.The precipitated composite metal hydroxide was filtered, washed with pure water, and dried in a hot air dryer at 100° C. for 12 hours to obtain a precursor powder in the form of a metal composite hydroxide represented by (Ni 0.98 Co 0.02 )(OH) 2.
(비교예 1) 전구체 제조(Comparative Example 1) Precursor Preparation
내용적 100 L의 용량을 가지는 공침 반응기(co-precipitation reactor, 회전모터의 출력 80 W이상)에 증류수 20 L와 킬레이팅제로서 암모니아를 1000 g 및 황산니켈, 황산코발트의 몰 비가 98 : 2 의 비율로 혼합된 2.5 M 농도의 전구체 수용액을 2.2 L/hr으로, 28% 농도의 암모니아 수용액을 0.15 L/hr으로 반응기에 연속적으로 투입하여 전구체 입자를 형성하였다. In a co-precipitation reactor (co-precipitation reactor, output of 80 W or more of a rotary motor) with an internal volume of 100 L, 20 L of distilled water and 1000 g of ammonia as a chelating agent, and nickel sulfate and cobalt sulfate in a molar ratio of 98:2. A precursor aqueous solution having a concentration of 2.5 M mixed at a ratio of 2.2 L/hr and an aqueous ammonia solution having a concentration of 28% were continuously added to the reactor at 0.15 L/hr to form precursor particles.
(실시예 2~3, 비교예 2~3) 양극활물질의 제조(Examples 2 to 3, Comparative Examples 2 to 3) Preparation of cathode active material
상기 실시예 1 및 비교예 1에서 제조된 전구체인 금속 복합 수산화물과 수산화리튬(LiOH.H2O) 및 Al, Mg, Ti 를 1 : 1.00~1.10 몰 비로 혼합한 후에 2 ℃/min의 승온 속도로 가열하여 550 ℃에서 10시간 열처리를 진행한 후, 하기 표 1에서와 같은 조성을 갖는 실시예 2 및 비교예 2의 양극 활물질 분말을 얻었다. After mixing the metal composite hydroxide, lithium hydroxide (LiOH.H 2 O) and Al, Mg, and Ti, which are precursors prepared in Example 1 and Comparative Example 1 in a 1:1.00 to 1.10 molar ratio, a heating rate of 2°C/min After heating and heat treatment at 550° C. for 10 hours, positive electrode active material powders of Example 2 and Comparative Example 2 having the composition shown in Table 1 below were obtained.
또한, 상기 실시예 2 및 비교예 2에서 제조된 양극활물질을 증류수로 수세 또는 열처리하여 실시예 3 및 비교예 3의 양극 활물질 분말을 얻었다. In addition, the positive electrode active material prepared in Example 2 and Comparative Example 2 was washed with water or heat treated with distilled water to obtain the positive electrode active material powder of Example 3 and Comparative Example 3.
수세 후 건조에 의하여 제조된 양극 활물질을 실시예 3-1 및 비교예 3-1 로 하였고, 수세 후 700 내지 750 ℃ 에서 20 시간 동안 열처리하여 제조된 양극 활물질을 실시예 3-2 및 비교예 3-2 로 하였다. The positive electrode active material prepared by washing with water and drying was used as Example 3-1 and Comparative Example 3-1, and the positive electrode active material prepared by heat treatment at 700 to 750° C. for 20 hours after washing with water was used in Example 3-2 and Comparative Example 3 It was set to -2.
<실험예> 전구체 입자 및 활물질 입자의 구형도 분석(SEM 측정)<Experimental Example> Analysis of sphericity of precursor particles and active material particles (SEM measurement)
상기 실시예 1 및 비교예 1 에서 제조된 전구체 입자와, 실시예 2 및 비교예 2 에서 제조된 활물질 입자의 구형도를 분석하기 위하여, SEM 측정을 실시하고 그 결과를 도 2 및 도 3에 나타내었다. In order to analyze the sphericity of the precursor particles prepared in Example 1 and Comparative Example 1 and the active material particles prepared in Examples 2 and 2, SEM measurements were performed and the results are shown in FIGS. 2 and 3. I got it.
상기 SEM 측정 사진을 통하여, 전구체 입자 및 활물질 입자 장축과 단축의 길이를 측정하고 그 결과를 하기 표 2에 나타내었다.Through the SEM measurement photos, the lengths of the major and minor axes of the precursor particles and active material particles were measured, and the results are shown in Table 2 below.
도 2에서 보는 바와 같이, 본 발명의 실시예 1에서 제조된 전구체 입자는 1개의 seed 로부터 성장되어 구형을 나타내는데 비해, 비교예 1에서 제조된 전구체 입자는 여러 개의 seed 가 결합되어 구형이 유지되지 못하는 것을 볼 수 있다. As shown in FIG. 2, the precursor particles prepared in Example 1 of the present invention were grown from one seed to show a spherical shape, whereas the precursor particles prepared in Comparative Example 1 were combined with several seeds, so that the spherical shape could not be maintained. Can be seen.
표 2에서 보는 바와 같이, 본 발명의 실시예 1에 의하여 제조된 전구체의 장축과 단축의 길이비는 0.97 인데 비해, 비교예 1의 경우 장축과 단축의 길이비가 0.79로 구형도에 대한 차이를 알 수 있다.As shown in Table 2, the length ratio of the long axis and the short axis of the precursor prepared according to Example 1 of the present invention is 0.97, whereas in the case of Comparative Example 1, the length ratio of the long axis and the short axis is 0.79, indicating the difference in sphericity. I can.
또한, 도 3에서 보는 바와 같이, 본 발명의 실시예에 의하여 구형 전구체로부터 형성되는 활물질 입자는 구형이 유지되는데 비해, 비교예의 활물질 입자는 여러 개의 seed 가 결합되어 구형이 유지되지 못하는 것을 알 수 있다. In addition, as shown in FIG. 3, it can be seen that the active material particles formed from the spherical precursor according to the embodiment of the present invention maintain the spherical shape, whereas the active material particles of the comparative example are combined with several seeds, so that the spherical shape cannot be maintained. .
상기 표 2에서 보는 바와 같이, 본 발명의 실시예 2 및 비교예 2의 활물질 입자의 장축과 단축의 길이비는 0.74 인데 비해, 비교예 1의 경우 장축과 단축의 길이비가 0.96 으로 구형도가 크게 개선되었음을 알 수 있다. As shown in Table 2, the length ratio of the long axis and the short axis of the active material particles of Example 2 and Comparative Example 2 of the present invention is 0.74, whereas in the case of Comparative Example 1, the length ratio of the long axis and the short axis is 0.96, so that the sphericity is large. It can be seen that it has been improved.
<실험예> 활물질 입자 직경 변화율 및 유지율 평가(압축 파괴 강도 분석)<Experimental Example> Evaluation of active material particle diameter change rate and retention rate (compression fracture strength analysis)
상기 실시예 2 및 실시예 3에서 제조된 활물질 입자의 입자 직경 변화율 및 유지율을 평가하기 위하여, 입자의 압축 파괴 강도를 측정하고, 그 결과를 도 4 및 도 5에 나타내었다. In order to evaluate the rate of change in particle diameter and retention rate of the active material particles prepared in Examples 2 and 3, the compressive fracture strength of the particles was measured, and the results are shown in FIGS. 4 and 5.
입자 직경 변화율 및 유지율은 활물질 입자에 인가하는 압력을 증가시키면서 입자 직경 D10 의 변화율 및 유지율을 측정하고, 하기 식에 따라 평가하였다. The rate of change of the particle diameter and the retention rate were evaluated according to the following equation by measuring the rate of change and retention of the particle diameter D10 while increasing the pressure applied to the active material particles.
입자 직경 유지율 = (압력 인가 후 D10 / 압력 인가 전 D10)×100 Particle diameter retention rate = (D10 after pressure application / D10 before pressure application)×100
입자 직경 변화율 = (압력 인가 전 D10-압력 인가 후 D10) / (압력 인가 전 D10 )×100Particle diameter change rate = (D10 before pressure application-D10 after pressure application) / (D10 before pressure application)×100
도 4 및 도 5에서 보는 바와 같이, 본 발명의 실시예 2 및 실시예 3에서 제조된 활물질의 경우, 인가하는 압력이 3톤으로 증가함에도 D10 의 입자 직경 유지율은 80% 인데 비하여, 비교예 2 및 비교예 3에서 제조된 활물질의 경우 D10 의 입자 직경 유지율이 40% 까지 감소한 것을 알 수 있다. 따라서, 본 발명의 실시예에 의하여 제조된 활물질 입자의 압축 강도가 크게 개선되었다는 것을 입증한다. 4 and 5, in the case of the active materials prepared in Examples 2 and 3 of the present invention, even though the applied pressure increased to 3 tons, the particle diameter retention rate of D10 was 80%, whereas Comparative Example 2 And in the case of the active material prepared in Comparative Example 3, it can be seen that the particle diameter retention rate of D10 was reduced to 40%. Accordingly, it is proved that the compressive strength of the active material particles prepared according to the examples of the present invention is greatly improved.
<실험예> 전구체 물성 및 양극활물질 특성 분석<Experimental Example> Analysis of properties of precursor and cathode active material
상기 실시예 1 및 비교예 1에서 제조된 전구체의 밀도, 비표면적, 기공률을 분석하였고, 각각 실시예 1 및 비교예 1의 전구체를 이용하여 제조된 실시예 3-2 및 비교예 3-2의 양극활물질 특성을 분석하였다. 그 결과를 하기 표 3에 나타내었다. The density, specific surface area, and porosity of the precursors prepared in Example 1 and Comparative Example 1 were analyzed, and Examples 3-2 and 3-2 prepared using the precursors of Example 1 and Comparative Example 1 were analyzed. The characteristics of the cathode active material were analyzed. The results are shown in Table 3 below.
상기 표에서 겉보기 밀도는 입자 내부의 내부 공공, 빈 공간을 포함하는 상태에서 측정한 밀도를 나타내며, 진밀도는 내부의 빈공간을 제외한 밀도를 의미한다. 따라서 일반적으로 겉보기 밀도는 공극을 뺀 진밀도보다 낮게 측정된다.In the above table, the apparent density refers to the density measured in the state including the inner voids and empty spaces inside the particle, and the true density refers to the density excluding the inner voids. Therefore, in general, the apparent density is measured lower than the true density minus the voids.
본 발명의 실시예에서 제조된 전구체의 경우, 겉보기 밀도는 분말을 일정용기에 담았을 때의 단위 용적당 분말의 질량으로 측정하였고, 진밀도는 입자와 입자사이의 간극을 제외한 완전히 재료로 채워진 부분만의 밀도, 즉 입자 밀도로서 입자 부피당 건조 입자의 질량을 측정하여 구하였다.In the case of the precursor prepared in the example of the present invention, the apparent density was measured by the mass of the powder per unit volume when the powder was put in a certain container, and the true density was a part completely filled with the material excluding the gap between the particles and the particles. The density of the bay, that is, the particle density, was obtained by measuring the mass of dry particles per particle volume.
표 3에서 보는 바와 같이, 본 발명의 실시예 1에서 제조된 전구체의 경우, 비교예 1의 전구체에 비하여 진밀도 및 겉보기 밀도가 증가하는 동시에 기공률은 감소하는 것을 통해, 본 발명에 의하여 제조된 리튬 복합 산화물 전구체 입자의 밀도가 향상된 것을 알 수 있다. As shown in Table 3, in the case of the precursor prepared in Example 1 of the present invention, as compared to the precursor of Comparative Example 1, the true density and the apparent density increased, while the porosity decreased. It can be seen that the density of the composite oxide precursor particles is improved.
또한, 상기 실시예 1 및 비교예 1의 전구체를 각각 이용하여 제조된 실시예 3-2 및 비교예 3-2의 양극활물질의 특성 측정 결과, 비교예 3-2에 비하여 실시예 3-2의 양극활물질은 개선된 펠렛 밀도를 나타내며, 이에 따라 입자 직경 D10 유지율이 2배 이상 향상된 89% 를 나타내는 것을 알 수 있다. In addition, as a result of measuring the properties of the positive electrode active material of Example 3-2 and Comparative Example 3-2 prepared using the precursors of Example 1 and Comparative Example 1, respectively, compared to Comparative Example 3-2, It can be seen that the positive electrode active material exhibits an improved pellet density, and accordingly, the retention rate of the particle diameter D10 is increased by more than two times, showing 89%.
결과적으로, 상기 실시예 3의 양극활물질을 포함한 전지의 경우, 충방전 용량 및 수명 유지율 특성의 증가와 저항 특성이 개선된 것을 확인할 수 있다.As a result, in the case of the battery including the positive electrode active material of Example 3, it can be seen that the charge/discharge capacity and life retention characteristics were increased, and the resistance characteristics were improved.
<제조예> 전지 제조<Production Example> Battery production
상기 실시예 1 내지 3 및 비교예에서 제조된 양극 활물질과 도전제로 super-P, 결합제로는 폴리비닐리덴플루오라이드(PVdF)를 92:5:3의 중량비로 혼합하여 슬러리를 제조하였다. A slurry was prepared by mixing the positive electrode active materials prepared in Examples 1 to 3 and Comparative Examples with super-P as a conductive agent and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 92:5:3.
상기 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 135 ℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다.The slurry was uniformly applied to an aluminum foil having a thickness of 15 μm, and vacuum dried at 135° C. to prepare a positive electrode for a lithium secondary battery.
상기 양극과, 리튬 호일을 상대 전극으로 하며, 다공성폴리에틸렌막 (셀가르드엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 에틸메틸카보네이트가 부피비로 3:7로 혼합된 용매에 LiPF6가 1.15 M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.The positive electrode and lithium foil were used as counter electrodes, and a porous polyethylene membrane (Celgard 2300, thickness: 25 μm) was used as a separator, and ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 3:7. A coin battery was manufactured according to a commonly known manufacturing process using a liquid electrolyte in which LiPF6 was dissolved at a concentration of 1.15 M in a solvent.
<실험예> 전지 특성 평가(열안정성)<Experimental Example> Evaluation of battery characteristics (thermal stability)
상기 실시예 및 비교예에서 제조된 활물질로 제조된 전지의 열안정성을 평가하기 위하여, DSC(differential scanning colorimetry) 분석을 실시하고 그 결과를 도 6 에 나타내었다.In order to evaluate the thermal stability of batteries made of the active materials prepared in Examples and Comparative Examples, DSC (differential scanning colorimetry) analysis was performed and the results are shown in FIG. 6.
도 6에서 보는 바와 같이, 본 발명의 실시예에 의하여 제조된 전지는 활물질의 높은 구형화 유지율에 따라 입자 강도가 우수하여, 전지 제조 과정에서 압력이 인가되더라도 미분이 제어됨으로써 열안정성이 크게 향상되는 것을 확인할 수 있다. As shown in Figure 6, the battery manufactured according to the embodiment of the present invention has excellent particle strength according to the high spheroidization retention rate of the active material, so that the fine powder is controlled even when pressure is applied during the battery manufacturing process, thereby greatly improving thermal stability. Can be confirmed.
<실험예> 전지 특성 평가<Experimental Example> Evaluation of battery characteristics
상기 실시예 및 비교예에서 제조된 활물질로 제조된 전지의 초기 용량, 초기 효율, 율특성, 수명 특성 및 고온 저장 특성을 측정하고 그 결과를 아래 도 7 내지 도 10 에 나타내었다Initial capacity, initial efficiency, rate characteristics, life characteristics, and high-temperature storage characteristics of batteries made of the active materials prepared in Examples and Comparative Examples were measured, and the results are shown in FIGS. 7 to 10 below.
본 발명의 실시예에 의하여 제조된 전지의 초기 용량 및 율특성은, 도 7 내지 도 8을 참조하면, 비교예에 의하여 제조된 전지에 뒤쳐지지 않으며 어느 정도 유사한 특성 내지 소폭 개선된 특성을 나타낸다.The initial capacity and rate characteristics of the battery manufactured according to the embodiment of the present invention, referring to FIGS. 7 to 8, are not inferior to the battery manufactured according to the comparative example, and exhibit somewhat similar or slightly improved characteristics.
본 발명의 실시예에 의하여 제조된 전지의 수명 특성은, 도 9를 참조하면, 비교예에 의하여 제조된 전지에 비하여 50회 사이클에도 91% 이상의 수명 유지율을 보이며, 약 5% 가까이 향상된 특성을 나타낸다.The life characteristics of the battery manufactured according to the embodiment of the present invention, referring to FIG. 9, exhibits a life retention rate of 91% or more even at 50 cycles compared to the battery manufactured according to the comparative example, and is improved by about 5%. .
본 발명의 실시예에 의하여 제조된 전지의 고온 저장 특성은, 도 10을 참조하면, 비교예에 의하여 제조된 전지에 비하여 고온 저장 전, 후에서 모두 저항 특성이 개선되며, 특히 고온 저장 후 크게 개선된 것을 알 수 있다. As for the high-temperature storage characteristics of the battery manufactured according to the embodiment of the present invention, referring to FIG. 10, the resistance characteristics are improved both before and after high-temperature storage compared to the battery manufactured according to the comparative example, especially after high-temperature storage. I can see that it was done.
Claims (15)
씨드(seed)가 얽히지 않고 분산되도록 반응기에 킬레이팅제 수용액을 투입하고 200 내지 1000rpm으로 교반하여 분산시키는 제 1 단계;
상기 킬레이팅제 수용액이 분산된 반응기에 전구체 수용액, 킬레이팅제 수용액 및 염기성 수용액을 반응기에 동시에 연속적으로 투입하여 입자를 성장시키면서 구형의 침전물을 얻는 제 2 단계;
상기 얻어진 구형의 침전물을 건조시키거나 열처리하여 양극활물질 전구체를 제조하는 제 3 단계; 및
상기 제조된 양극활물질 전구체와 수산화리튬을 혼합하여 열처리하여 양극활물질을 제조하는 제 4 단계;를 포함하고,
상기 제 1 단계에서 투입되는 킬레이팅제 수용액은 전체 반응기 부피의 25 내지 35% 까지 투입되고,
상기 제 2 단계에서 투입되는 전구체 수용액, 킬레이팅제 수용액 및 염기성 수용액은 전체 반응기 부피의 30 ~ 60% 까지 투입되고,
상기 제 2 단계에서 성장되는 입자의 성장 속도는 0.10 ㎛/Hr 이상 1.01 ㎛/Hr 이하로 제어되고,
상기 제 1 단계부터 제 2 단계까지 수행하는데 소요되는 시간은 50분 내지 200분으로 제어되고,
상기 제 1 단계부터 제 3 단계까지 수행하는데 소요되는 시간은 500분 내지 800분으로 제어되고,
상기 제 3 단계에서 제조되는 양극활물질 전구체는 입자의 크기가 5μm 이하이고, 하기 화학식1로 표시되고,
상기 제조되는 리튬 이차 전지용 양극활물질은 하기 식 1로 표시되는 2.5톤/cm2의 압력을 인가하기 전후의 입자 직경 유지율이 80% 이상이고, 입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.96 ≤(s/l)≤ 1 인,
리튬 이차전지용 양극활물질 제조방법:
<화학식 1> Ni1-a-bCoaMb(OH)2
(상기 화학식 1에서 0.7≤1-a-b≤1, a≤0.2, b≤0.3,
M은 Mn, Al, B, Ba, Ce, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상임):
[식 1] 입자 직경 유지율 = (압력 인가 후 D10 / 압력 인가 전 D10)Х100.
In the method of manufacturing a positive electrode active material for a lithium secondary battery,
A first step of dispersing by adding an aqueous chelating agent solution to the reactor so that the seeds are not entangled and dispersed and stirred at 200 to 1000 rpm;
A second step of obtaining a spherical precipitate while growing particles by simultaneously continuously adding a precursor aqueous solution, a chelating agent aqueous solution, and a basic aqueous solution to the reactor in which the chelating agent aqueous solution is dispersed;
A third step of drying or heat treating the obtained spherical precipitate to prepare a positive electrode active material precursor; And
Including; a fourth step of preparing a positive electrode active material by heat treatment by mixing the prepared positive electrode active material precursor and lithium hydroxide,
The chelating agent aqueous solution introduced in the first step is added up to 25 to 35% of the total volume of the reactor,
The precursor aqueous solution, the chelating agent aqueous solution, and the basic aqueous solution introduced in the second step are added up to 30 to 60% of the total volume of the reactor,
The growth rate of the particles grown in the second step is controlled to be 0.10 µm/Hr or more and 1.01 µm/Hr or less,
The time required to perform the first step to the second step is controlled from 50 minutes to 200 minutes,
The time required to perform the first step to the third step is controlled from 500 minutes to 800 minutes,
The positive electrode active material precursor prepared in the third step has a particle size of 5 μm or less, and is represented by the following formula (1),
The prepared positive electrode active material for a lithium secondary battery has a particle diameter retention rate of 80% or more before and after applying a pressure of 2.5 ton/cm 2 represented by the following equation 1, and the length ratio of the long axis (l) and the short axis (s) (s/l) is 0.96 ≤ (s/l) ≤ 1,
Method for manufacturing cathode active material for lithium secondary battery:
<Formula 1> Ni 1-ab Co a M b (OH) 2
(In Chemical Formula 1, 0.7≤1-ab≤1, a≤0.2, b≤0.3,
M is at least one selected from the group consisting of Mn, Al, B, Ba, Ce, Cr, F, Li, Mo, P, Sr, Ti and Zr):
[Equation 1] Particle diameter retention rate = (D10 after pressure application / D10 before pressure application) Х100.
상기 제조되는 리튬 이차전지용 양극활물질 입자의 겉보기 밀도가 3.0 g/cc 이상인 리튬 이차전지용 양극활물질 제조방법.
The method of claim 1,
A method for producing a positive electrode active material for a lithium secondary battery having an apparent density of 3.0 g/cc or more of the prepared positive electrode active material particles for a lithium secondary battery.
상기 제조되는 리튬 이차전지용 양극활물질 입자의 비표면적(BET)이 0.1 m2/g 이상, 3.0 m2/g 이하인 리튬 이차전지용 양극활물질 제조방법.
The method of claim 1,
A method for producing a positive electrode active material for a lithium secondary battery having a specific surface area (BET) of 0.1 m 2 /g or more and 3.0 m 2 /g or less of the prepared positive electrode active material particle for a lithium secondary battery.
상기 제 3 단계에서 제조되는 양극활물질 전구체 입자의 진밀도가 3.50 g/cc 이상 3.80 g/cc이하인 리튬 이차전지용 양극활물질 제조방법.
The method of claim 1,
A method for producing a cathode active material for a lithium secondary battery, wherein the true density of the cathode active material precursor particles prepared in the third step is 3.50 g/cc or more and 3.80 g/cc or less.
상기 제 3 단계에서 제조되는 양극활물질 전구체 입자의 겉보기 밀도가 1.5 g/cc 이상, 2.5 g/cc이하인 리튬 이차전지용 양극활물질 제조방법.
The method of claim 1,
A method of manufacturing a cathode active material for a lithium secondary battery, wherein the apparent density of the cathode active material precursor particles prepared in the third step is 1.5 g/cc or more and 2.5 g/cc or less.
상기 제 3 단계에서 제조되는 양극활물질 전구체 입자의 기공률이 20% 이하인 리튬 이차전지용 양극활물질 제조방법.
The method of claim 1,
A method of manufacturing a cathode active material for a lithium secondary battery in which the porosity of the cathode active material precursor particles prepared in the third step is 20% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190127411A KR102221418B1 (en) | 2019-10-15 | 2019-10-15 | Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190127411A KR102221418B1 (en) | 2019-10-15 | 2019-10-15 | Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180102373A Division KR20190013674A (en) | 2018-08-30 | 2018-08-30 | Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190127617A KR20190127617A (en) | 2019-11-13 |
KR102221418B1 true KR102221418B1 (en) | 2021-03-02 |
Family
ID=68535328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190127411A Active KR102221418B1 (en) | 2019-10-15 | 2019-10-15 | Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102221418B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE069004T2 (en) * | 2020-01-30 | 2025-02-28 | Lg Energy Solution Ltd | Positive electrode active material for lithium secondary battery and method of preparing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002208401A (en) * | 2001-01-09 | 2002-07-26 | Toshiba Electronic Engineering Corp | Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery |
KR100765970B1 (en) * | 2006-09-29 | 2007-10-10 | 대정화금주식회사 | Manganese composite oxide using coprecipitation method and its manufacturing method, spinel type cathode active material for lithium secondary battery using same and manufacturing method |
WO2012137534A1 (en) * | 2011-04-07 | 2012-10-11 | 日本碍子株式会社 | Lithium secondary battery and cathode active material thereof |
JP2015072801A (en) * | 2013-10-03 | 2015-04-16 | 住友金属鉱山株式会社 | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
JP2015191844A (en) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4211865B2 (en) * | 2006-12-06 | 2009-01-21 | 戸田工業株式会社 | Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
KR101313575B1 (en) * | 2010-07-21 | 2013-10-02 | 주식회사 에코프로 | Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery |
-
2019
- 2019-10-15 KR KR1020190127411A patent/KR102221418B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002208401A (en) * | 2001-01-09 | 2002-07-26 | Toshiba Electronic Engineering Corp | Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery |
KR100765970B1 (en) * | 2006-09-29 | 2007-10-10 | 대정화금주식회사 | Manganese composite oxide using coprecipitation method and its manufacturing method, spinel type cathode active material for lithium secondary battery using same and manufacturing method |
WO2012137534A1 (en) * | 2011-04-07 | 2012-10-11 | 日本碍子株式会社 | Lithium secondary battery and cathode active material thereof |
JP2015072801A (en) * | 2013-10-03 | 2015-04-16 | 住友金属鉱山株式会社 | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
JP2015191844A (en) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20190127617A (en) | 2019-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11682755B2 (en) | Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material | |
CN112750999B (en) | Cathode material, preparation method thereof and lithium ion battery | |
EP3723172B1 (en) | Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material | |
US20230282825A1 (en) | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material | |
US11569503B2 (en) | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material | |
KR102553596B1 (en) | Nickel manganese-containing composite hydroxide and method for producing the same | |
JP7094248B2 (en) | A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same. | |
KR101587293B1 (en) | Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE | |
KR101746187B1 (en) | Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same | |
KR101562686B1 (en) | Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same | |
JP2022179559A (en) | Lithium composite oxide for lithium secondary battery and method for producing the same | |
US20120258369A1 (en) | Lithium secondary battery and cathode active material therefor | |
JP7216059B2 (en) | Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same | |
KR101309150B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR101622352B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
WO2005112152A1 (en) | Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery | |
US11522189B2 (en) | Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode | |
CN116454261A (en) | Lithium ion battery anode material and preparation method thereof | |
JP2022174094A (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact | |
JP2020027800A (en) | Nickel based active material precursor for lithium secondary battery, manufacturing method the same, nickel based active material for lithium secondary battery formed from the same, and lithium secondary battery including positive electrode containing the same | |
CN111656586A (en) | Cathode active material for lithium secondary battery, cathode including the cathode active material, and lithium secondary battery including the cathode | |
KR20200022359A (en) | Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same | |
JP2023540364A (en) | Positive electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same | |
JP2020035693A (en) | Transition metal composite hydroxide, manufacturing method thereof, lithium transition metal composite oxide active material, and lithium ion secondary battery | |
CN113825725A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode for non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
PA0107 | Divisional application |
Comment text: Divisional Application of Patent Patent event date: 20191015 Patent event code: PA01071R01D Filing date: 20180830 Application number text: 1020180102373 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20200603 Comment text: Request for Examination of Application Patent event code: PA02011R04I Patent event date: 20191015 Comment text: Divisional Application of Patent |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200629 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210222 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210223 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210224 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240108 Start annual number: 4 End annual number: 4 |