[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102224810B1 - 가스 재기화 시스템을 구비하는 선박 - Google Patents

가스 재기화 시스템을 구비하는 선박 Download PDF

Info

Publication number
KR102224810B1
KR102224810B1 KR1020160092309A KR20160092309A KR102224810B1 KR 102224810 B1 KR102224810 B1 KR 102224810B1 KR 1020160092309 A KR1020160092309 A KR 1020160092309A KR 20160092309 A KR20160092309 A KR 20160092309A KR 102224810 B1 KR102224810 B1 KR 102224810B1
Authority
KR
South Korea
Prior art keywords
seawater
line
connection line
valve
circulation connection
Prior art date
Application number
KR1020160092309A
Other languages
English (en)
Other versions
KR20170108757A (ko
Inventor
이광진
박상민
Original Assignee
한국조선해양 주식회사
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국조선해양 주식회사, 현대중공업 주식회사 filed Critical 한국조선해양 주식회사
Publication of KR20170108757A publication Critical patent/KR20170108757A/ko
Application granted granted Critical
Publication of KR102224810B1 publication Critical patent/KR102224810B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명에 따른 가스 재기화 시스템을 구비하는 선박은, 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템을 구비하는 선박에 있어서, 상기 해수공급장치는, 상기 재기화 장치로 상기 해수를 공급하는 해수공급라인; 상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인; 및 상기 해수배출라인에서 분기되어 상기 해수공급라인을 연결하는 순환연결라인을 포함하고, 상기 순환연결라인은, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 해수공급라인 또는 상기 해수배출라인 상으로 유동하는 상기 해수를 공급받는 것을 특징으로 한다.

Description

가스 재기화 시스템을 구비하는 선박{A Regasification System Of Gas and Vessel having same}
본 발명은 가스 재기화 시스템을 구비하는 선박에 관한 것이다.
일반적으로, LNG는 청정연료이고 매장량도 석유보다 풍부하다고 알려져 있고, 채광과 이송기술이 발달함에 따라 그 사용량이 급격히 증가하고 있다. 이러한 LNG는 주성분인 메탄을 1기압 하에서 -162℃ 이하로 온도를 내려서 액체 상태로 보관하는 것이 일반적인데, 액화된 메탄의 부피는 표준 상태인 기체상태의 메탄 부피의 600분의 1 정도이고, 비중은 0.42로 원유 비중의 약 2분의 1이 된다.
LNG는 운반의 용이성으로 액화시켜 운송 후 사용처에서 기화시켜서 사용한다. 그러나, 자연재해 및 테러의 위험으로 인하여 육상에 LNG 기화설비를 설치하는 것을 우려한다.
이로 인하여 종래 육상에 설치하는 액화천연가스 재기화 시스템 대신에, 액화천연가스(Liquefied Natural Gas)를 운반하는 LNG 운반선에 재기화 장치를 설치하여 육상으로 기화된 천연가스(Natural Gas)를 공급하는 설비가 각광을 받고 있다.
LNG 재기화 장치 시스템에서 액화가스 저장탱크에 저장된 LNG는 부스팅 펌프에 의해 가압되어 LNG 기화기로 보내어지고, LNG 기화기에서 NG로 기화되어 육상의 수요처로 보내진다. 여기서 LNG 기화기 상에 LNG의 온도를 높이는 열교환이 이루어지는 과정에서 많은 에너지를 필요로 하게 된다. 따라서, 이 과정에서 쓰이는 에너지가 비효율적인 교환이 이루어짐으로 인해 낭비되는 문제점을 해결하기 위해 효율적인 재기화를 위한 다양한 열교환 기술들이 연구되고 있는 실정이다.
본 발명은 종래의 기술을 개선하고자 창출된 것으로서, 액화가스의 재기화 효율이 극대화될 수 있는 가스 재기화 시스템을 구비하는 선박을 제공하기 위한 것이다.
본 발명에 따른 가스 재기화 시스템을 구비하는 선박은, 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템을 구비하는 선박에 있어서, 상기 해수공급장치는, 상기 재기화 장치로 상기 해수를 공급하는 해수공급라인; 상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인; 및 상기 해수배출라인에서 분기되어 상기 해수공급라인을 연결하는 순환연결라인을 포함하고, 상기 순환연결라인은, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 해수공급라인 또는 상기 해수배출라인 상으로 유동하는 상기 해수를 공급받는 것을 특징으로 한다.
구체적으로, 해수면보다 낮게 위치하는 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프; 상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브; 및 상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브를 포함하고, 상기 제2 개폐밸브는, 상기 해수배출라인으로 배출되는 해수 중 적어도 일부를 상기 순환연결라인 상으로 공급할 수 있다.
구체적으로, 상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브; 상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브; 및 상기 제1 내지 제4 개폐밸브의 개도를 조절하여, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함할 수 있다.
구체적으로, 상기 제어부는, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 제2 개폐밸브를 개방하여, 상기 해수배출라인으로 배출되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하도록 제어할 수 있다.
구체적으로, 상기 제어부는, 상기 순환연결라인 상에 상기 해수가 가득 차는 경우, 상기 제3 및 제4 개폐밸브를 폐쇄하고, 상기 제1 개폐밸브를 개방하도록 제어할 수 있다.
구체적으로, 해수면보다 낮게 위치하는 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프; 및 상기 해수공급라인 상의 상기 재기화 장치 상류에서 분기되어 상기 순환연결라인으로 연결되는 제1 분기라인을 더 포함하고, 상기 제1 분기라인은, 상기 해수공급라인 상의 상기 재기화 장치로 공급되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급할 수 있다.
구체적으로, 상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브; 상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브; 상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브; 상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브; 상기 제1 분기라인 상에 구비되는 제1 분기밸브; 상기 제1 내지 제4 개폐밸브 및 상기 제1 분기밸브의 개도를 조절하여, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함할 수 있다.
구체적으로, 상기 제어부는, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 제1 분기밸브를 개방하여, 상기 해수공급라인 상의 상기 재기화 장치로 공급되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하도록 제어할 수 있다.
구체적으로, 상기 제어부는, 상기 순환연결라인 상에 상기 해수가 가득 차는 경우, 상기 제3 및 제4 개폐밸브 및 상기 제1 분기밸브를 폐쇄하고, 상기 제1 및 제2 개폐밸브를 개방하도록 제어할 수 있다.
구체적으로, 해수면보다 낮게 위치하는 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프; 및 상기 해수공급라인 상의 상기 재기화 장치 하류에서 분기되어 상기 순환연결라인으로 연결되는 제2 분기라인을 더 포함하고, 상기 제2 분기라인은, 상기 해수공급라인 상의 상기 재기화 장치에서 배출되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급할 수 있다.
구체적으로, 상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브; 상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브; 상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브; 상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브; 상기 제2 분기라인 상에 구비되는 제2 분기밸브; 상기 제1 내지 제4 개폐밸브 및 상기 제2 분기밸브의 개도를 조절하여, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함할 수 있다.
구체적으로, 상기 제어부는, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 제2 분기밸브를 개방하여, 상기 해수배출라인 상의 상기 재기화 장치에서 배출되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하도록 제어할 수 있다.
구체적으로, 상기 제어부는, 상기 순환연결라인 상에 상기 해수가 가득 차는 경우, 상기 제3 및 제4 개폐밸브 및 상기 제2 분기밸브를 폐쇄하고, 상기 제1 및 제2 개폐밸브를 개방하도록 제어할 수 있다.
구체적으로, 상기 순환연결라인 상에 구비되며, 상기 순환연결라인에 유동하는 해수의 압력을 유지시키는 압력유지장치를 더 포함할 수 있다.
구체적으로, 상기 압력유지장치는, 대기압을 이용하여, 해수의 압력을 유지시킬 수 있다.
구체적으로, 상기 재기화 장치는, 상기 액화가스를 상기 해수로 직접 기화시키는 기화기를 포함할 수 있다.
구체적으로, 상기 재기화 장치는, 상기 액화가스를 중간 열매로 기화시키는 기화기; 및 상기 해수의 열원을 상기 중간 열매로 공급하는 열원 열교환기를 포함할 수 있다.
구체적으로, 상기 제1 개폐밸브는, 논스톱 전환밸브이고, 상기 제2 개폐밸브는, 순환밸브이고, 상기 제3 개폐밸브는, 해수공급밸브이고, 상기 제4 개폐밸브는, 해수배출밸브이고, 상기 제어부는 제4 제어부일 수 있다.
본 발명에 따른 가스 재기화 시스템을 구비하는 선박은, 액화가스의 재기화 효율이 극대화될 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 가스 재기화 시스템을 구비한 선박의 개념도이다.
도 2는 본 발명의 제1 실시예에 따른 해수공급장치의 개념도이다.
도 3은 본 발명의 제2 실시예에 따른 해수공급장치의 개념도이다.
도 4는 본 발명의 제3 실시예에 따른 해수공급장치의 개념도이다.
도 5는 본 발명의 제4 실시예에 따른 해수공급장치의 개념도이다.
도 6은 본 발명의 제5 실시예에 따른 해수공급장치의 개념도이다.
도 7은 본 발명의 제6 실시예에 따른 해수공급장치의 개념도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하 본 명세서에서, 액화가스는 LNG 또는 LPG, 에틸렌, 암모니아 등과 같이 일반적으로 액체 상태로 보관되는 모든 가스 연료를 포괄하는 의미로 사용될 수 있으며, 가열이나 가압에 의해 액체 상태가 아닌 경우 등도 편의상 액화가스로 표현할 수 있다. 이는 증발가스도 마찬가지로 적용될 수 있다. 또한, LNG는 편의상 액체 상태인 NG(Natural Gas) 뿐만 아니라 초임계 상태 등인 NG를 모두 포괄하는 의미로 사용될 수 있으며, 증발가스는 기체 상태의 증발가스뿐만 아니라 액화된 증발가스를 포함하는 의미로 사용될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 가스 재기화 시스템을 구비한 선박의 개념도이다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 가스 재기화 시스템(1)은, 액화가스 저장탱크(10), 피딩 펌프(20), 버퍼 탱크(30), 부스팅 펌프(40), 기화기(50), 수요처(60), 해수공급장치(100)를 포함한다.
여기서 가스 재기화 시스템(1)이 설치된 선박(부호 도시하지 않음)은, 선수부(부호 도시하지 않음), 선미부(부호 도시하지 않음), 상갑판(부호 도시하지 않음)으로 구성된 선체(H)를 가지고 있으며, 선미부에 배치되는 엔진룸(부호 도시하지 않음)의 엔진(E)에서 생산한 동력을 프로펠러 축(S)이 프로펠러(P)로 전달하여 작동함으로써 추진된다.
또한, 상기 선박은, 해상에서 액화가스를 재기화하여 액화가스를 육상 터미널로 공급할 수 있도록 하기 위해, 액화가스 운반선(부호 도시하지 않음)에 가스 재기화 시스템(1)을 설치한 액화가스 재기화 선박(LNG RV) 또는 부유식 액화가스 저장 및 재기화 설비(FSRU)일 수 있다.
이하 도 1을 참고로 하여 본 발명의 실시예에 따른 가스 재기화 시스템(1)을 설명하도록 한다.
본 발명의 실시예에 따른 가스 재기화 시스템(1)은, 액화가스 저장탱크(10)로부터 액체 상태의 액화가스를 피딩 펌프(20)를 통해 빼내어 버퍼 탱크(30)를 거쳐 부스팅 펌프(40)로 가압시킨 후, 기화기(50)에서 열원을 통해 액화가스를 가열시켜 재기화시키고 이를 수요처(60)로 공급하는 방식을 사용한다. 즉, 간단히 말해서 본 발명의 가스 재기화 시스템(1)은, 기화기(50)를 사용하여 액화가스를 재기화시켜 수요처(60)로 공급한다.
기화기(50)는 해수공급장치(100)로부터 직접적으로 해수를 공급받아 액화가스를 재기화시킬 수 있으며(직접 재기화 방식), 해수공급장치(100)로부터 간접적으로 해수를 공급받아 액화가스를 재기화시킬 수 있다.(간접 재기화 방식; 중간열매인 글리콜 워터가 열원 열교환기(110)로부터 해수의 열원을 공급받고, 다시 중간열매가 해수로부터 공급받은 열원을 기화기(50)로 공급하는 방식)
본 발명의 모든 실시예에서는 간접 재기화 방식을 기준으로 설명하도록 하며, 이는 설명의 편의를 위한 것일 뿐, 본 발명에서 특별히 한정되는 이유가 아님을 주지바라며, 재기화 장치는 직접 재기화 방식에서는 기화기(50)만을 말하고, 간접 재기화 방식에서는 기화기(50) 및 열원 열교환기(110)를 통틀어서 지칭할 수 있고 편의상 열원 열교환기(110)를 의미할 수 있다.
본 발명의 실시예에 따른 가스 재기화 시스템(1)은, 액화가스 공급라인(RL)을 더 포함할 수 있으며, 액화가스 공급라인(RL) 상에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 액화가스 또는 기화된 액화가스의 공급량이 제어될 수 있다.
액화가스 공급라인(RL)은, 액화가스 저장탱크(10)와 수요처(60)를 연결하고, 피딩 펌프(20), 버퍼 탱크(30), 부스팅 펌프(40), 기화기(50)를 구비하여, 액화가스 저장탱크(10)에 저장된 액화가스를 재기화시킨 후 수요처(60)로 공급할 수 있다.
이하에서는 상기 본 발명의 실시예에 따른 가스 재기화 시스템(1)을 구현하는 개별적인 구성들에 대해서 상세히 설명하도록 한다.
액화가스 저장탱크(10)는, 수요처(60)에 공급될 액화가스를 저장한다. 액화가스 저장탱크(10)는, 액화가스를 액체상태로 보관하여야 하는데, 이때, 액화가스 저장탱크(10)는 압력탱크의 형태를 가질 수 있다.
여기서 액화가스 저장탱크(10)는, 선체(H)의 내부에 배치되며, 엔진룸의 전방에 일례로 4개 형성될 수 있다. 또한, 액화가스 저장탱크(10)는 일례로 멤브레인 형 탱크이나, 이에 한정되지 않고 독립형 탱크 등, 다양한 형태로 그 종류를 특별히 한정하지는 않는다.
피딩 펌프(20)는, 액화가스 공급라인(RL) 상에 구비되고, 액화가스 저장탱크(10)의 내부 또는 외부에 설치되어 액화가스 저장탱크(10)에 저장된 액화가스를 버퍼 탱크(30)로 공급할 수 있다.
구체적으로, 피딩 펌프(20)는, 액화가스 공급라인(RL) 상에 액화가스 저장탱크(10)와 버퍼 탱크(30) 사이에 구비되어 액화가스 저장탱크(10)에 저장된 액화가스를 1차 가압하여 버퍼 탱크(30)로 공급할 수 있다.
피딩 펌프(20)는, 액화가스 저장탱크(10)에 저장된 액화가스를 6 내지 8bar로 가압하여 버퍼 탱크(30)로 공급할 수 있다. 여기서 피딩 펌프(20)는, 액화가스 저장탱크(10)로부터 배출되는 액화가스를 가압하여 압력 및 온도가 다소 높아질 수 있으며, 가압된 액화가스는 여전히 액체상태일 수 있다.
이때, 피딩 펌프(20)는, 액화가스 저장탱크(10) 내부에 구비되는 경우 잠형 펌프일 수 있고, 액화가스 저장탱크(10)의 외부에 설치되는 경우에는 액화가스 저장탱크(10)에 저장된 액화가스의 수위보다 낮은 선체(H) 내부의 위치에 구비될 수 있고 원심형 펌프일 수 있다.
버퍼 탱크(30)는, 액화가스 공급라인(RL) 상에 구비되어 액화가스 저장탱크(10)로부터 액화가스를 공급받아 임시저장할 수 있다.
구체적으로, 버퍼 탱크(30)는, 액화가스 공급라인(RL)을 통해 피딩 펌프(20)로부터 액화가스 저장탱크(10)에 저장된 액화가스를 공급받을 수 있고, 공급받은 액화가스를 임시 저장함으로써 액화가스를 액상과 기상으로 분리할 수 있으며, 분리된 액상은 부스팅 펌프(40)로 공급될 수 있다.
즉, 버퍼 탱크(30)는, 액화가스를 임시 저장하여 액상과 기상을 분리한 후 완전한 액상을 부스팅 펌프(40)로 공급하여, 부스팅 펌프(40)가 유효흡입수두(NPSH)를 만족하도록 하며, 이로 인해 부스팅 펌프(40)에서의 공동현상(Cavitation)을 방지할 수 있도록 한다.
부스팅 펌프(40)는, 액화가스 공급라인(RL) 상에 버퍼 탱크(30)와 기화기(50) 사이에 구비될 수 있으며, 피딩 펌프(20)로부터 공급받은 액화가스 또는 버퍼 탱크(30)로부터 공급받은 액화가스를 50 내지 120bar로 가압하여 기화기(50)로 공급할 수 있다.
부스팅 펌프(40)는, 수요처(60)가 요구하는 압력에 맞춰 액화가스를 가압할 수 있으며, 원심형 펌프로 구성될 수 있다.
기화기(50)는, 액화가스 공급라인(RL) 상에 마련되어 부스팅 펌프(40)로부터 배출되는 고압의 액화가스를 재기화시킬 수 있다.
구체적으로, 기화기(50)는, 수요처(60)와 부스팅 펌프(40) 사이의 액화가스 공급라인(RL) 상에 마련되어, 부스팅 펌프(40)로부터 공급되는 고압의 액화가스를 기화시켜 수요처(60)가 원하는 상태로 공급할 수 있다.
기화기(50)는, 열원 순환라인(GWL)을 통해서 중간 열매를 공급받아 액화가스와 열교환시켜 액화가스를 기화시키고, 액화가스와 열교환된 중간 열매를 다시 열원 순환라인(GWL)을 통해서 순환시킨다.
기화기(50)는 제1 열매에 열원을 지속적으로 공급하기 위해서 열원순환라인(GWL) 상에 열원 열교환기(110)를 구비할 수 있으며, 열원 펌프(GWP)를 추가구비하여 제1 열매를 열원순환라인(GWL)에 순환시킬 수 있다.
이때, 기화기(50)는, 극저온의 액화가스를 기화시키기 위한 제1 열매로 글리콜 워터(Glycol Water), 해수(Sea Water), 스팀(Steam) 또는 엔진 배기가스 등 비폭발성 열매를 사용할 수 있으며, 고압의 기화된 액화가스를 압력 변동없이 수요처(60)로 공급할 수 있다.
여기서 열원 공급장치(110)는, 해수를 통해 열원을 공급받아 기화기(50)로 열원을 전달하는데, 열원 공급장치(110)로 해수를 전달하는 장치를 해수공급장치(100)라고 한다.
해수공급장치(100)는, 재기화 장치(열원 열교환기(110))가 액화가스를 재기화시키기 위한 열원인 해수를 재기화 장치로 공급하며, 구동방식으로 오픈루프 구동방식(open loop operation type)과 클로우즈루프 구동방식(Close loop operation tyoe)을 가질수 있다.
여기서, 오픈루프 구동방식(open loop operation type)이란, 해수공급라인(L1)에서 해수배출라인(L2)으로의 일방향으로만, 해수의 공급 및 배출이 이루어지는 경우를 말하며, 클로우즈루프 구동방식(Close loop operation tyoe)이란, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3)을 거쳐 다시 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3)으로 해수의 순환이 이루어지는 경우를 말한다.
본 발명의 실시예에서 해수공급장치(100)는, 오픈루프 구동방식에서 클로우즈루프 구동방식으로 양방향 전환할 수 있다. 이러한 해수공급장치(100)의 구동방식의 전환은 해수의 온도변화에 기인한다.
여름에는 해수의 온도가 높아 해수를 그대로 액화가스의 재기화 열원으로 사용가능하다. 그러나, 겨울에는 해수의 온도가 낮아 해수를 그대로 액화가스의 재기화 열원으로 사용할 수 없었고, 그에 따라 해수를 가열하여 액화가스의 재기화 열원으로 사용하여야 한다.
이에 가열원의 공급을 줄이고 에너지를 효율적으로 사용하기 위해서 여름에는 해수공급장치(100)를 개회로, 즉 오픈루프 구동방식으로 구동하고, 겨울에는 해수공급장치(100)를 폐회로, 즉 클로우즈루프 구동방식으로 전환시켜 구동하였다.
종래의 해수공급장치(도시하지 않음)는, 이러한 오픈루프구동방식에서 클로우즈루프 구동방식으로 전환시, 오픈루프 구동방식에서 사용하지 않는 순환연결라인(L3) 상의 내부 패킹유체(공기; air)를 제거하여야 하므로 해수공급장치의 구동을 이틀 내지 사흘간 정지해야만 하는 문제점이 있었다.
이는, 순환연결라인(L3) 상의 내부 패킹 유체를 제거하지 않고 그대로 사용하게 되면, 해수 펌프(140)로 공기가 유입되어 해수 펌프(140)에 캐비테이션이 발생해 작동불능이 될 우려가 발생하는 것에 이유가 있다.
이에 본 발명의 실시예에서는 상기의 문제점을 해결하기 위해서 본 발명의 실시예에서 해수공급장치(100)는, 오픈루프 구동방식에서 클로우즈루프 구동방식으로 양방향 전환시, 논스톱(Non-Stop)으로 구현할 수 있다.
이하. 도 2 내지 도 7을 참고로 하여 해수공급장치(100a~f)를 상세히 살펴보도록 하며, 도 1에서 미설명된 부호 120, 130, 140, L4, SW1, SW2는 각각 히터(120), 압력유지장치(130), 해수 펌프(140), 압력유지장치 연결라인(L4), 해수 유입구(SW1) 및 해수 유출구(SW2)로, 도 2 내지 도 7에서 해수공급장치(100)를 설명할 때, 상세히 기술하도록 한다.
도 2는 본 발명의 제1 실시예에 따른 해수공급장치의 개념도이다.
도 2에 도시된 바와 같이 해수공급장치(100a)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 중간탱크(150) 및 제1 제어부(170)를 포함한다.
본 발명의 실시예의 해수공급장치(100a)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
해수공급라인(L1)은, 해수유입구(SW1)와 열원 열교환기(110)를 연결하며, 해수유입구(SW1)로부터 공급되는 해수를 해수 펌프(140)를 통해 열원 열교환기(110)로 공급할 수 있다.
해수공급라인(L1)은, 해수 펌프(140), 해수유입밸브(B1) 및 히터(120)를 구비할 수 있고, 적어도 일부 해수면 아래에 배치될 수 있다. 여기서 해수유입구(SW1)는, 해수면보다 약 5m 아래에 위치할 수 있고, 해수유입밸브(B1)는, 해수공급라인(L1) 상의 해수 펌프(140) 상류에 구비될 수 있다.
해수배출라인(L2)은, 열원 열교환기(110)와 해수유출구(SW2)를 연결하며, 열원 열교환기(110)로부터 토출되는 해수를 해수유출구(SW2)로 배출시킬 수 있다.
해수배출라인(L2)은, 해수배출밸브(B2)를 구비할 수 있고, 적어도 일부 해수면 아래에 배치될 수 있다. 여기서 해수유출구(SW2)는, 해수면보다 약 1.6m 아래에 위치할 수 있고 해수배출밸브(B2)는, 해수배출라인(L2) 상의 순환연결라인(L3a)의 분기점보다 하류에 구비될 수 있다.
순환연결라인(L3)은, 해수배출라인(L2)에서 분기되어 해수공급라인(L1)을 연결하며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동시 해수가 흐르도록 해수배출라인(L2)으로 배출되는 해수를 해수공급라인으로 재공급함으로써, 해수를 순환시킬 수 있다.
구체적으로, 순환연결라인(L3)은, 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되어 해수공급라인(L1) 상의 해수공급밸브(B1)와 해수펌프(140) 사이에 연결될 수 있으며, 순환밸브(B3)를 구비할 수 있다. 여기서 순환연결라인(L3)이 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되는 지점은 해수면에서 대략 20m 더 높은 위치에 위치할 수 있다.
본 실시예에 따른 해수공급장치(100a)에서 순환연결라인(L3)은, 순환연결라인(L3a)과 중간탱크 바이패스라인(L3b)으로 구성될 수 있다. 여기서 순환연결라인(L3a)은 중간탱크(150)와 순환밸브(B3) 및 중간탱크 공급밸브(B6)를 포함할 수 있고, 중간탱크 바이패스 라인(L3b)은 순환연결라인(L3a) 상에 중간탱크(150)를 바이패스하도록 구성되어 중간탱크 바이패스 밸브(B5)를 포함할 수 있다.
순환밸브(B3)는, 순환연결라인(L3a) 상에서 중간탱크(150)보다 해수배출라인(L2)과의 분기점에 더 가깝게 구비될 수 있고, 중간탱크 공급밸브(B6)는, 순환연결라인(L3a) 상에서 해수배출라인(L2)과의 분기점보다 중간탱크(150)에 더 가깝게 구비될 수 있다.
바이패스라인(L3b)은, 중간탱크(150)에 해수가 가득차는 경우에, 순환연결라인(L3a) 상에 유동하는 해수가 중간 탱크(150)를 바이패스하도록 수행할 수 있다.
압력유지장치 연결라인(L4)은, 압력유지장치(130)와 순환연결라인(L3a)을 연결하며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3a)으로 압력유지장치(130) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 연결라인(L4)은, 압력유지장치 공급밸브(B4)를 구비할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4)에 의해 유기적으로 형성되어 해수공급장치(100a)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
열원 열교환기(110)는, 해수공급라인(L1)과 해수배출라인(L2)이 연결되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
열원 열교환기(110)는, 해수공급라인(L1)을 통해서 해수를 공급받아 중간열매에 열원을 전달할 수 있고, 해수배출라인(L2)을 통해서 중간열매와 열교환한 해수를 배출시킬 수 있다.
여기서 열원 열교환기(110)는, 쉘 앤 튜브(Shell & tube) 방식이거나 인쇄회로기판형 열교환기(Printed Circuit Heat Exchanger; PCHE)일 수 있다.
히터(120)는, 해수공급라인(L1) 상의 열원 열교환기(110)와 해수 펌프(140)사이에 마련되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
히터(120)는, 해수공급라인(L1)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 히터(120)는, 보일러(부호 도시하지 않음)로부터 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다.
압력유지장치(130)는, 순환연결라인(L3a) 상에 구비되며, 순환연결라인(L3a)에 유동하는 해수의 압력을 유지시킬 수 있다.
구체적으로, 압력유지장치(130)는, 순환연결라인(L3a)에서 해수공급라인(L1)과 연결되는 지점과 중간탱크(150) 사이에 압력유지장치 연결라인(L4)을 통해 연결될 수 있으며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 공급밸브(L4)를 개방하여 내부에 저장된 유체로 순환연결라인(L3a) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130)가 해수면에서 대략 5m 더 낮게 위치한 순환연결라인(L3a)에 연결됨으로써, 압력유지장치(130)가 해수의 수두(대략 40m; 4bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3a), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
해수 펌프(140)는, 해수공급라인(L1) 상에 구비되어, 해수를 재기화 장치 즉, 열원 열교환기(110)로 공급할 수 있다.
구체적으로, 해수 펌프(140)는, 해수공급라인(L1) 상의 해수공급밸브(B1)와 히터(120) 사이에 구비되어, 해수유입구(SW1)로부터 공급되는 해수를 가압하여 히터(120)를 거쳐 열원 열교환기(110)로 공급할 수 있다.
해수 펌프(140)는, 선체(H) 내부의 해수면보다 낮은 위치에 배치되며, 열원 열교환기(110) 및 히터(120)는 선체(H) 내부의 해수면보다 높은 위치에 배치될 수 있다. 일례로 해수 펌프(140)는, 선체(H) 내부의 해수면보다 약 5m 낮은 위치에 배치될 수 있고, 열원 열교환기(110) 및 히터(120)는, 선체(H) 내부의 해수면보다 30m 높은 위치에 배치될 수 있다.
이로 인해, 해수 펌프(140)로부터 열원 열교환기(110) 및 히터(120)로 해수를 공급하기 위해서 해수 펌프(140)는 해수의 수두(water head; 대략 35m)를 이겨낼 수 있는 만큼 해수를 가압할 수 있으며, 일례로 대략 3.5bar 이상의 압력으로 가압할 수 있다.
중간탱크(150)는, 순환연결라인(L3a) 상에 구비되어, 해수가 해수배출라인(L2)에서 순환연결라인(L3a)으로 흐르도록 전환시 즉, 클로우즈루프 구동방식으로 구동시 논스톱(Non-Stop)으로 구현되도록 한다.
구체적으로, 중간탱크(150)는, 해수면보다 높게 위치한 순환연결라인(L3a) 상에 위치하며, 클로우즈루프 구동방식으로 구동시 논스톱(Non-Stop)으로 구현되도록하기 위해 내부에 해수를 적어도 일부 저장한 상태를 유지할 수 있다.
즉, 중간탱크(150)는, 해수면보다 높게 위치한 상태에서 순환연결라인(L3a) 상에 구비되어, 해수공급장치(100a)가 오픈루프 구동방식으로 구동하고 있는 경우에도 대기압에 의해 내부에 해수를 일부 저장할 수 있고 중간탱크(150)보다 아래에 위치한 순환연결라인(L3a)은 모두 해수로 가득차있게된다. 이때, 중간 탱크(150) 내부에서 해수면보다 높은 부분은 공기로 채워져있고, 순환연결라인(L3a) 상의 해수면보다 높은 부분도 공기로 채워져있다.
이로 인해, 본 발명에서의 해수공급장치(100a)는, 오픈루프 구동방식에서 해수공급장치(100a)가 클로우즈루프 구동방식으로 전환하는 때에, 해수 펌프(140) 방향의 순환연결라인(L3a)에 이미 해수가 가득 차 있게되어 해수 펌프(140)를 중단하지 않고 전환이 가능하게 된다.
중간탱크(150)는, 순환연결라인(L3a) 상에 잔존하는 패킹유체를 배출시키는 중간탱크 토출밸브(B7)를 더 포함할 수 있다.
중간탱크 토출밸브(B7)는, 오픈루프 구동방식에서 해수공급장치(100a)가 클로우즈루프 구동방식으로 전환하는 때에, 개도를 개방하여 중간탱크(150)로 밀려오는 해수에 의해 점점 밀집하는 패킹유체들을 외부로 토출시킬 수 있다.
제1 제어부(170)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 중간탱크 바이패스 밸브(B5) 및 중간탱크 공급밸브(B6)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3a)으로 흐르도록 전환시, 즉 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제1 제어부(170)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 중간탱크 바이패스 밸브(B5) 및 중간탱크 공급밸브(B6)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B6)의 개도를 조절할 수 있다.
제1 제어부(170)는, 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 중간탱크(150)에 해수가 가득찰 때까지 순환밸브(B3)와 중간탱크 공급밸브(B6)를 개방시킬 수 있다.
구체적으로, 제1 제어부(170)는, 즉 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 중간탱크 바이패스 밸브(B5)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)와 중간탱크 공급밸브(B6)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3a)으로 유입되어 중간탱크(150)로 해수를 채우게 된다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제1 제어부(170)는, 중간탱크(150)에 해수가 가득찰 때까지 순환밸브(B3)와 중간탱크 공급밸브(B6)를 개방상태로 유지하고, 중간탱크(150)에 해수가 가득차는 순간에는 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2) 및 중간탱크 공급밸브(B6)를 폐쇄시키고, 중간탱크 바이패스 밸브(B5)를 개방하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3a)으로 유입되고, 순환연결라인(L3a)으로 유입된 해수는 중간탱크 바이패스 라인(L3b)을 거쳐 다시 순환연결라인(L3a)으로 합류되고 이후 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3a), 중간탱크 바이패스 라인(L3b), 순환연결라인(L3a), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
이와 같이 본 발명의 실시예에서는, 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3a) 내에 잔존하는 패킹유체 즉, 공기의 제거가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 3은 본 발명의 제2 실시예에 따른 해수공급장치의 개념도이다.
도 3에 도시된 바와 같이 해수공급장치(100b)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 오리피스(160), 제2 제어부(171) 및 논스톱 전환밸브(B3)를 포함한다.
여기서 열원 열교환기(110), 히터(120), 압력유지장치(130) 및 해수 펌프(140)는 본 발명의 제1 실시예에 따른 해수공급장치(100a)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100b)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다. 여기서 해수공급라인(L1), 해수배출라인(L2) 및 압력유지장치 연결라인(L4)은 본 발명의 제1 실시예에 따른 해수공급장치(100a)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
순환연결라인(L3)은, 해수배출라인(L2)에서 분기되어 해수공급라인(L1)을 연결하며, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동시 해수가 흐르도록 해수배출라인(L2)으로 배출되는 해수를 해수공급라인(L1)으로 재공급함으로써, 해수를 순환시킬 수 있다.
구체적으로, 순환연결라인(L3)은, 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되어 해수공급라인(L1) 상의 해수공급밸브(B1)와 해수펌프(140) 사이에 연결될 수 있으며, 논스톱 전환밸브(B8)를 구비할 수 있다. 여기서 순환연결라인(L3)이 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되는 지점은 해수면에서 대략 5m 더 낮은 위치에 위치할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4)에 의해 유기적으로 형성되어 해수공급장치(100b)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
오리피스(160)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환되거나 클로우즈루프 구동방식으로 구동시, 해수공급라인(L1)을 통해 열원 열교환기(110)로 공급되는 해수의 압력을 조절한다. 즉, 오리피스(160)는, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동시,열원 열교환기(110)로 공급되는 해수를 감압하여 공급할 수 있다.
여기서 오리피스(160)는 갑압장치로 중앙부가 오목하게 들어간 형상을 가질 수 있으며, 해수를 감압할 수 있는 장치라면 오리피스에 한정되지 않고 다양한 장치로 대체가능할 수 있다.
본 발명의 실시예에서 해수 펌프(140)는, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시에도 토출시키는 해수의 압력을 변화시키지 않는다. 따라서, 해수가 폐루프공간을 유동하게되면 해수의 수두는 제거되므로 해수 펌프(140)를 통한 가압이 많이 필요치 않게된다.
즉, 해수 펌프(140)는, 클로우즈루프 구동방식에서 해수를 사용하는 장치들 예를 들어 히터(120) 또는 열원 열교환기(110)의 내부 저항에 따른 압력손실을 보충하면 되는데, 오픈루프 구동방식에서의 압력을 그대로 사용하므로 압력이 과다하게 히터(120) 또는 열원 열교환기(110)로 유입되어 진동 및 소음이 발생하는 문제점이 있었다.
이를 해결하기 위해서 본 발명의 실시예에서는 오리피스(160)외에 오리피스 바이패스 라인(L8), 해수차단밸브(161) 및 바이패스 밸브(162)를 더 구비하여, 오픈루프 구동방식으로 구동시에 오리피스(160)가 사용되지 않게 하고, 클로우즈루프 구동방식으로 구동시에 오리피스(160)가 구동되도록 하여, 진동 및 소음 문제를 해결하고 있다.
여기서 오리피스(160)는, 오리피스 바이패스라인(L8) 상에 구비되어 유입되는 해수를 감압한 후 열원 열교환기(110)로 해수를 공급할 수 있다.
해수차단밸브(161)는, 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이에 구비되어, 해수공급장치(100b)가 오픈루프 구동방식으로 구동시 개방되고, 클로우즈루프 구동방식으로 구동시 폐쇄될 수 있다.
바이패스 밸브(162)는, 오리피스 바이패스 라인(L8) 상의 오리피스(160)의 상류에 배치되어, 해수공급장치(100b)가 오픈루프 구동방식으로 구동시 폐쇄되고, 클로우즈루프 구동방식으로 구동시 개방될 수 있다.
오리피스 바이패스 라인(L8)은, 해수공급라인(L1) 상의 히터(120)와 해수차단밸브(161) 사이에 분기되어, 다시 해수공급라인(L1) 상의 해수차단밸브(161)와 열원 열교환기(110) 사이에 연결되며, 해수공급장치(100b)가 오픈루프 구동방식으로 구동시 해수가 유입되지 않고, 클로우즈루프 구동방식으로 구동시 해수가 유입되어 해수차단밸브(161)를 바이패스한 상태로 열원 열교환기(110)로 해수를 공급할 수 있다.
이를 통해 본 발명의 실시예에서는, 오리피스(160), 오리피스 바이패스 라인(L8), 해수차단밸브(161) 및 바이패스 밸브(162)를 구비하여, 열원 열교환기(110)로 감압된 해수를 공급함으로써, 진동 및 소음이 줄어드는 효과가 있다.
제2 제어부(171)는, 해수공급밸브(B1), 해수배출밸브(B2), 논스톱 전환밸브(B8)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제2 제어부(171)는, 해수공급밸브(B1), 해수배출밸브(B2), 논스톱 전환밸브(B8)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1,B2,B8)의 개도를 조절할 수 있다.
제2 제어부(171)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 논스톱 전환밸브(B8)의 개도를 개방하고, 해수공급밸브(B1) 및 해수배출밸브(B2)의 개도를 폐쇄시켜, 해수가 해수공급라인(L1), 해수배출라인(L2) 및 순환연결라인(L3)을 순환하도록 제어할 수 있다.
구체적으로, 제2 제어부(171)는, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 즉각적으로, 논스톱 전환밸브(B8)를 개방함과 동시에 해수공급밸브(B1) 및 해수배출밸브(B2)의 개도를 폐쇄시키도록 제어할 수 있다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
또한, 제2 제어부(171)는, 해수차단밸브(161) 및 바이패스 밸브(162)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환되거나 클로우즈루프 구동방식으로 구동시, 오리피스(160; 감압장치)로의 해수의 유입을 제어할 수 있다.
여기서 제2 제어부(171)는, 해수차단밸브(161) 및 바이패스 밸브(162)와 유선 또는 무선으로 연결되어 각각의 밸브들(161,162)의 개도를 조절할 수 있다.
제2 제어부(171)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 해수차단밸브(161)를 폐쇄하고 바이패스 밸브(162)를 개방하여 오리피스(160)로 해수가 공급되도록 제어함으로써, 열원 열교환기(110)가 오리피스(160)에 의해 감압된 해수를 공급받을 수 있다.
논스톱 전환밸브(B8)는, 순환연결라인 상에 구비되며, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시 즉, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 논스톱(Non-Stop)으로 구현되도록 한다.
구체적으로, 논스톱 전환밸브(B8)는, 해수면보다 아래에 위치하는 순환연결라인(L3) 상에 구비되며, 일례로 해수면보다 대략 5m 아래에 위치하는 순환연결라인(L3) 상에 구비될 수 있다.
이로 인해 논스톱 전환밸브(B8)가 해수면보다 대략 5m 아래에 위치함과 동시에, 순환연결라인(L3)이 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되는 지점 또한, 해수면에서 대략 5m 더 낮은 위치에 위치함으로써, 순환연결라인(L3) 상에는 해수가 가득차게되고, 순환연결라인(L3) 상에 잔존하는 패킹유체가 존재하지 않게된다.
즉, 논스톱 전환밸브(B8)는, 해수공급장치(100b)가 오픈루프 구동방식인 경우에도 순환연결라인(L3) 내에 잔존하는 패킹유체가 없이 모두 해수로 가득 차 있게 함으로써, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환을 논스톱으로 이루어지지 못하게 하는 잔존 패킹유체가 존재하지 않아 전환이 논스톱으로 이루어질 수 있게되는 효과가 있다.
이와 같이 이와 같이 본 발명의 실시예에서는, 오픈루프 구동방식에서도 순환연결라인(L3) 내에 잔존하는 패킹유체가 없이 모두 해수로 가득 차있어, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 논스톱으로 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 4는 본 발명의 제3 실시예에 따른 해수공급장치의 개념도이다.
도 4에 도시된 바와 같이 해수공급장치(100c)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 밸러스트 펌프(141) 및 제3 제어부(172)를 포함한다.
여기서 열원 열교환기(110), 히터(120), 압력유지장치(130) 및 해수 펌프(140)는 본 발명의 제1 및 제2 실시예에 따른 해수공급장치(100a,100b)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100c)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4) 및 유체공급라인(L5)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
여기서 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3) 및 압력유지장치 연결라인(L4)은 본 발명의 제1 및 제2 실시예에 따른 해수공급장치(100a,100b)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
유체공급라인(L5)은, 해수유입구(SW1)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)의 상류를 연결하고 밸러스트 펌프(141) 및 유체 공급밸브(B9)를 구비하며, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3) 상에 해수가 흐르도록 밸러스트 펌프(141)를 통해 공급되는 밸러스트 워터(Ballast Water)를 순환연결라인(L3)으로 공급함으로써, 순환연결라인(L3) 상에 잔존하는 패킹유체를 제거할 수 있다.
구체적으로, 유체공급라인(L5)은, 해수유입구(SW1)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이를 연결하고, 해수가 해수배출라인(L2) 에서 순환연결라인(L3)으로 흐르도록 전환시, 순환연결라인(L3) 상에 유체를 공급한다.
여기서 유체공급라인(L5)이 순환연결라인(L3) 상의 논스톱 전환밸브(B8)의 상류에서 연결되는 지점은 해수면에서 대략 5m 더 낮은 위치에 위치할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L5)에 의해 유기적으로 형성되어 해수공급장치(100c)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
밸러스트 펌프(141)는, 유체공급라인(L5) 상에 구비되어, 순환연결라인(L3)으로 유체를 공급할 수 있다.
구체적으로, 밸러스트 펌프(141)는, 유체공급라인(L5) 상의 해수유입구(SW1)와 유체공급밸브(B9) 사이에 구비되며, 선체(H)의 평형을 제어하는 평형수(밸러스트 워터; Ballast water)를 선체(H) 내의 임의의 밸러스트 저장고(도시하지 않음)로 공급함과 동시에, 해수가 해수배출라인(L2) 에서 순환연결라인(L3)으로 흐르도록 전환시, 즉, 해수공급장치(100c)가 클로우즈루프 구동모드로 구동시 순환연결라인(L3) 상에 잔존하는 패킹유체를 제거하기 위한 유체를 순환연결라인(L3)으로 공급할 수 있다.
여기서 밸러스트 펌프(141)는, 원심형일 수 있다.
제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8) 및 유체공급밸브(B9)의 개도를 조절하고, 밸러스트 펌프(141)의 가동을 제어하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 유체공급밸브(B9) 및 밸러스트 펌프(141)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3,B8,B9)의 개도를 조절할 수 있다.
제3 제어부(172)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 유체공급밸브(B9)의 개도를 개방하고, 밸러스트 펌프(141)를 가동시켜 순환연결라인(L3)으로 평형수가 공급되도록 제어할 수 있다.
구체적으로, 제3 제어부(172)는, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8) 및 순환밸브(B3)는 폐쇄된 상태를 유지하도록 제어하며, 유체공급밸브(B9)를 폐쇄된 상태에서 개방상태로 전환시키고, 밸러스트 펌프(141)를 가동하도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 유체 공급라인(L5)으로 밸러스트 펌프(141)를 통해 평형수가 순환연결라인(L3)으로 유입되어 순환연결라인(L3) 내부를 채우게 된다. 내부에 잔존하는 패킹유체는, 평형수에 밀려 공기제거밸브(151)를 통해 제거될 수 있다. 공기제거밸브(151)는, 순환연결라인(L3) 상에 구비될 수 있다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제3 제어부(172)는, 순환연결라인(L3)에 해수가 가득찰 때까지 유체공급밸브(B9)를 개방상태로 유지하고, 순환연결라인(L3)에 해수가 가득차는 순간에는, 해수공급밸브(B1)와 해수배출밸브(B2) 및 유체공급밸브(B9)를 폐쇄시키고, 밸러스트 펌프(141)의 가동을 중단시키며, 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 다시 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
또한, 본 발명의 실시예에서는, 압력유지장치(130) 내부의 유체를 순환연결라인(L3)으로 공급시킴으로써, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3) 내에 잔존하는 패킹유체를 제거할 수 있다.
구체적으로, 제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8) 및 압력유지장치 공급밸브(B4)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8) 및 압력유지장치 공급밸브(B4)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B4,B8)의 개도를 조절할 수 있다.
제3 제어부(172)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 압력유지장치 공급밸브(B4)의 개도를 개방하여 순환연결라인(L3)으로 압력유지장치(130) 내부에 저장된 유체가 공급되도록 제어할 수 있다.
구체적으로, 제3 제어부(172)는, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8) 및 순환밸브(B3)는 폐쇄된 상태를 유지하도록 제어하며, 압력유지장치 공급밸브(B4)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 압력유지장치 연결라인(L4)으로 압력유지장치(130) 내부에 저장된 유체가 순환연결라인(L3)으로 유입되어 순환연결라인(L3) 내부를 채우게 된다. 내부에 잔존하는 패킹유체는, 유체에 밀려 공기제거밸브(151)를 통해 제거될 수 있다. 공기제거밸브(151)는, 순환연결라인(L3) 상에 구비될 수 있고, 여기서 유체는 해수일 수 있다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제3 제어부(172)는, 순환연결라인(L3)에 해수가 가득찰 때까지 압력유지장치 공급밸브(B4)를 개방상태로 유지하고, 순환연결라인(L3)에 해수가 가득차는 순간에는, 압력해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고, 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방하도록 제어할 수 있다. 압력유지장치 공급밸브(B4)는 순환연결라인(L3)에 해수가 가득차는 순간에도 개방상태를 유지하여 해수공급장치(100c)가 클로우즈루프 구동모드시에도 순환연결라인(L3) 상에 유동하는 해수의 압력이 유지되도록 할 수 있다.
여기서 압력유지장치(130)는, 화재를 진압하는 소화수를 저장하는 화재진압용 소화수저장탱크(도시하지 않음)와 연결될 수 있고, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 이루어지는 동안에 화재진압용 소화수저장탱크로부터 소화수를 공급받을 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 다시 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
이와 같이 본 발명의 실시예에서는, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3) 내에 잔존하는 패킹유체 즉, 공기의 제거가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 5는 본 발명의 제4 실시예에 따른 해수공급장치의 개념도이다.
도 5에 도시된 바와 같이 해수공급장치(100d)는, 열원 열교환기(110), 히터(120), 압력유지장치(130a,130b,130c), 해수 펌프(140) 및 제4 제어부(173)를 포함한다.
여기서 열원 열교환기(110), 히터(120) 및 해수 펌프(140)는 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a,100b,100c)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100d)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 제1 연결라인(L4a), 압력유지장치 제2 연결라인(L4b), 압력유지장치 제3 연결라인(L4c), 제1 분기라인(L6) 및 제2 분기라인(L7)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
여기서 해수공급라인(L1) 및 해수배출라인(L2)은 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a,100b,100c)에서 기술한 바와 동일하므로 이에 갈음하고, 압력유지장치 제1 연결라인(L4a)은, 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a,100b,100c)에서 기술된 압력유지장치 연결라인(L4)과 동일하므로 이에 갈음하도록 한다.
압력유지장치 제2 연결라인(L4b)은, 압력유지장치(130b)와 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이를 연결하며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3)으로 압력유지장치(130b) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 제2 연결라인(L4b)은, 해수면보다 상측의 위치로 해수면보다 대략 30m 위의 위치의 해수공급라인(L1)과 연결될 수 있고, 압력유지장치 제2 공급밸브(B4b)를 구비할 수 있다.
압력유지장치 제3 연결라인(L4c)은, 압력유지장치(130c)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이 중 해수면보다 높은 위치의 라인을 연결하며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3)으로 압력유지장치(130c) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 제3 연결라인(L4a)은, 해수면보다 상측의 위치로 해수면보다 대략 20m 위의 위치의 순환연결라인(L3)과 연결될 수 있고, 압력유지장치 제3 공급밸브(B4c)를 구비할 수 있다.
본 발명의 실시예에서 순환연결라인(L3)은 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a,100b,100c)에서 기술한 바와 동일하다. 다만, 해수가 해수배출라인(L2)에서 순환연결라인(L30)으로 흐르도록 전환시에 순환연결라인(L3)은, 해수배출라인(L1) 또는 해수배출라인(L2) 상으로 유동하는 해수를 공급받아 내부에 잔존하는 패킹유체를 제거할 수 있다는 점에서 약간의 차이가 있다.
이에 대해서는 하기 제1 및 제2 분기라인(L6,L7)과 제4 제어부(173)에서 상세히 기술하도록 한다.
제1 분기라인(L6)은, 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이에서 분기되어 순환연결라인(L3)에 연결되어, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급라인(L1) 상에 유동하는 해수의 적어도 일부를 순환연결라인(L3)으로 공급할 수 있다. 여기서 제1 분기라인(L6)은, 제1 분기밸브(B10)를 구비할 수 있고, 해수면보다 높은 위치에 마련되는 순환연결라인(L3)에 연결될 수 있다.
제2 분기라인(L7)은, 해수배출라인(L2) 상의 열원 열교환기(110)와 해수배출라인(L2) 상에서 순환연결라인(L3)이 분기되는 지점 사이에서 분기되어 순환연결라인(L3)에 연결되며, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급라인(L1) 상에 유동하는 해수의 적어도 일부를 순환연결라인(L3)으로 공급할 수 있다. 여기서 제2 분기라인(L7)은, 제2 분기밸브(B11)를 구비할 수 있고, 해수면보다 높은 위치에 마련되는 순환연결라인(L3)에 연결될 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4,L6,L7)에 의해 유기적으로 형성되어 해수공급장치(100d)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
압력유지장치(130a)는, 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이 중 해수면보다 낮은 위치에 마련되는 라인에 압력유지장치 제1 결라인(L4a)을 통해 연결될 수 있으며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 제1 공급밸브(B4a)를 개방하여 내부에 저장된 유체로 순환연결라인(L3) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130a)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130a)가 해수면에서 대략 5m 더 낮게 위치한 순환연결라인(L3)에 연결됨으로써, 압력유지장치(130a)가 해수의 수두(대략 40m; 4bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
압력유지장치(130b)는, 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이에 압력유지장치 제2 연결라인(L4b)을 통해 연결될 수 있으며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 제2 공급밸브(B4b)를 개방하여 내부에 저장된 유체로 해수공급라인(L1) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130b)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있고, 압력유지장치 제2 연결라인(L4b)과 연결되는 해수공급라인(L1)은 해수면에서 대략 30m 더 높게 위치할 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130b)가 해수면에서 대략 30m 더 높게 위치한 해수공급라인(L1)에 연결됨으로써, 압력유지장치(130b)가 해수의 수두(대략 5m; 0.5bar)를 이용하여 열원 열교환기(110)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
따라서, 이 경우 압력유지장치 제1 연결라인(L4a)의 길이에 비해 길이가 상당히 많이 줄어들어 구축비용이 줄어드는 장점이 있다.
압력유지장치(130c)는, 해수배출라인(L2) 상의 열원 열교환기(110)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이 중 해수면보다 높은 위치에 마련되는 라인 사이에 압력유지장치 제3 연결라인(L4c)을 통해 연결될 수 있으며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 제3 공급밸브(B4c)를 개방하여 내부에 저장된 유체로 순환연결라인(L3) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130c)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있고, 압력유지장치 제3 연결라인(L4c)과 연결되는 순환연결라인(L3)은 해수면에서 대략 20m 더 높게 위치할 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130c)가 해수면에서 대략 20m 더 높게 위치한 순환연결라인(L3)에 연결됨으로써, 압력유지장치(130c)가 해수의 수두(대략 15m; 1.5bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
따라서, 이 경우 압력유지장치 제1 연결라인(L4a)의 길이에 비해 길이가 많이 줄어들어 구축비용이 줄어드는 장점이 있다.
제4 제어부(173)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 제1 분기밸브(B10) 및 제2 분기밸브(B11)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제4 제어부(173)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 제1 분기밸브(B10) 및 제2 분기밸브(B11)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3,B8,B10,B11)의 개도를 조절할 수 있다.
제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제1 분기밸브(B10) 및 제2 분기밸브(B11)의 제어 없이 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8)을 제어할 수 있다.
즉, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 순환밸브(B3)를 개방하여 해수배출라인(L2)으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제4 제어부(173)는, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제4 제어부(173)는, 순환연결라인(L3))에 해수가 가득차는 순간에 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고 논스톱 전환밸브(B8)를 개방하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
또한, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제2 분기밸브(B11)의 제어 없이 해수공급밸브(B1), 해수배출밸브(B2), 제1 분기밸브(B10), 논스톱 전환밸브(B8)만을 제어할 수 있다.
즉, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제1 분기밸브(B10)를 개방하여 해수공급라인(L1)에서 열원 열교환기(110)로 공급되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제4 제어부(173)는, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 순환밸브(B3) 및 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 제1 분기밸브(B10)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수공급라인(L1)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제4 제어부(173)는, 순환연결라인(L3)에 해수가 가득차는 순간에 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방시키고, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키며, 제1 분기밸브(B10)를 폐쇄하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 루게된다.
또한, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제1 분기밸브(B10)의 제어 없이 해수공급밸브(B1), 해수배출밸브(B2), 제2 분기밸브(B11), 논스톱 전환밸브(B8)만을 제어할 수 있다.
즉, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제2 분기밸브(B11)를 개방하여 해수배출라인(L2)에으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제4 제어부(173)는, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 순환밸브(B3) 및 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 제2 분기밸브(B11)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
즉, 해수 펌프(140)의 가동중단없이, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제4 제어부(173)는, 순환연결라인(L3)에 해수가 가득차는 순간에 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방시키고, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키며, 제2 분기밸브(B11)를 폐쇄하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 루게된다.
이와 같이 본 발명의 실시예에서는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3) 내에 잔존하는 패킹유체 즉, 공기의 제거가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 6은 본 발명의 제5 실시예에 따른 해수공급장치의 개념도이다.
도 6에 도시된 바와 같이 해수공급장치(100e)는, 열원 열교환기(110), 히터(120), 압력유지장치(130b), 해수 펌프(140), 저압 펌프(142) 및 제5 제어부(174)를 포함한다.
여기서 열원 열교환기(110), 히터(120), 압력유지장치(130b) 및 해수 펌프(140)는 본 발명의 제1 내지 제4 실시예에 따른 해수공급장치(100a,100b,100c,100d)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100e)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 제2 연결라인(L4b)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
여기서 해수공급라인(L1), 해수배출라인(L2) 및 압력유지장치 제2 연결라인(L4b)은 본 발명의 제1 내지 제4 실시예에 따른 해수공급장치(100a,100b,100c,100d)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예에서 순환연결라인(L3)은 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a,100b,100c)에서 기술한 바와 동일하다. 다만, 순환연결라인(L3)이 해수공급라인(L1)과 연결되는 부분이 해수 펌프(140)와 히터(120) 사이인 점에서 약간의 차이가 있다. 이에 대해서는 하기 저압 펌프(142)와 제5 제어부(174)에서 상세히 기술하도록 한다.
이하에서는 상기 설명한 각 라인들(L1~L4b)에 의해 유기적으로 형성되어 해수공급장치(100e)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
저압 펌프(142)는, 순환연결라인(L3) 상에 구비되어 해수 펌프(140)의 가압용량보다 적은 가압용량을 가지고 해수를 가압할 수 있으며, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시에만 구동되어 열원 열교환기(110)로 해수를 저압으로 가압한 후 공급할 수 있다.
구체적으로 저압 펌프(142)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환되거나 클로우즈루프 구동방식으로 구동시, 해수배출라인(L2)을 거쳐 순환연결라인(L3)으로 유입되는 해수를 저압으로 가압하여 열원 열교환기(110)로 할 수 있다.
즉, 본 발명의 실시예에서는, 해수공급장치(100e)가 오픈루프 구동방식으로 구동시 해수 펌프(140)를 통해 해수를 가압하여 열원 열교환기(110)로 공급하고, 클로우즈루프 구동방식으로 구동시 저압 펌프(142)를 통해 해수를 가압하여 열원 열교환기(110)로 공급할 수 있다. 여기서 저압 펌프(142)는 원심형일 수 있다.
본 발명의 실시예에서 해수 펌프(140)는, 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시에도 토출시키는 해수의 압력을 변화시키지 않는다. 따라서, 해수가 폐루프공간을 유동하게되면 해수의 수두는 제거되므로 해수 펌프(140)를 통한 가압이 많이 필요치 않게된다.
즉, 해수 펌프(140)는, 클로우즈루프 구동방식에서 해수를 사용하는 장치들 예를 들어 히터(120) 또는 열원 열교환기(110)의 내부 저항에 따른 압력손실을 보충하면 되는데, 오픈루프 구동방식에서의 압력을 그대로 사용하므로 압력이 과다하게 히터(120) 또는 열원 열교환기(110)로 유입되어 진동 및 소음이 발생하는 문제점이 있었다.
이를 해결하기 위해서 본 발명의 실시예에서는 저압 펌프(142)를 해수 펌프(140)와는 별도로 구비하여, 오픈루프 구동방식에서 해수펌프(140)가 사용되게 하고, 클로우즈루프 구동방식에서 저압 펌프(142)가 구동되도록 하여, 진동 및 소음 문제를 해결하고 있다.
이를 통해 본 발명의 실시예에서는, 해수 펌프(140)와 별도로 구동되는 저압 펌프(142)를 구비하여, 열원 열교환기(110)로 적정한 압력의 해수를 공급함으로써, 진동 및 소음이 줄어드는 효과가 있다.
제5 제어부(174)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 전환밸브(B12)의 개도를 조절하고, 해수 펌프(140) 및 저압 펌프(142)의 가동을 제어하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제5 제어부(174)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 전환밸브(B12), 해수 펌프(140) 및 저압 펌프(142)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3,B12)의 개도를 조절하고 펌프(140,142)의 가동을 제어할 수 있다.
제5 제어부(174)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 순환 밸브(B3)의 개도를 개방하여 해수배출라인(L2)으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제5 제어부(174)는, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 전환밸브(B12)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
제5 제어부(174)는, 순환연결라인(L3)에 해수가 가득차는 순간에 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고 전환밸브(B12)를 개방하며, 해수 펌프(140)는 가동 중단하고 저압 펌프(142)는 가동하도록 제어할 수 있다.
이때, 해수는 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 저압 펌프(142)를 통해 저압으로 가압되어 해수공급라인(L1)으로 공급되며, 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
이를 통해 본 발명의 실시예에서는, 해수 펌프(140)와는 별도로 구동되는 저압 펌프(142)를 구비하여, 열원 열교환기(110)로 적정한 압력의 해수를 공급함으로써, 진동 및 소음이 줄어드는 효과가 있다.
도 7은 본 발명의 제6 실시예에 따른 해수공급장치의 개념도이다.
도 7에 도시된 바와 같이 해수공급장치(100f)는, 열원 열교환기(110), 제1 히터(120a), 제2 히터(120b), 압력유지장치(130), 해수 펌프(140) 및 제6 제어부(175)를 포함한다.
여기서 열원 열교환기(110), 압력유지장치(130) 및 해수 펌프(140)는 본 발명의 제1 내지 제5 실시예에 따른 해수공급장치(100a~100e)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
제1 히터(120a)는, 해수공급라인(L1) 상의 열원 열교환기(110)와 해수 펌프(140)사이에 마련되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
제1 히터(120a)는, 해수공급라인(L1)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100f)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 제1 히터(120a)는, 보일러(부호 도시하지 않음)로부터 스팀라인(STL)을 통해 연결되어, 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다. 여기서 제1 히터(120a)는, 후술할 제2 히터(120b)와 스팀라인(STL)을 통해 직렬로 연결되며, 하나의 열원 즉, 하나의 스팀 열원으로 구동될 수 있다.
제2 히터(120b)는, 순환연결라인(L3) 상에 배치되어 해수면보다 높은 위치로 대략 해수면에서 20m 정도 높은 위치에 배치될 수 있고, 순환연결라인(L3) 상에 유동하는 해수를 가열할 수 있다.
제2 히터(120b)는, 해수배출라인(L2)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100f)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 제2 히터(120b)는, 제1 히터(120a)와 스팀라인(STL)을 통해 직렬 연결되어, 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다.
즉, 제2 히터(120b)는, 제1 히터(120a)와 열원을 공유할 수 있고, 제1 히터(120a)에서 해수를 가열하고 남은 스팀의 열원을 제2 히터(120b)에서 최종적으로 뽑아서 사용할 수 있어 에너지 효율이 극대화되는 효과가 있다.
제6 제어부(175)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8)의 개도를 조절하고, 제2 히터(120b)의 가동을 제어하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100f)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 에너지를 최적화하여 사용할 수 있도록 제어할 수 있다.
여기서 제6 제어부(175)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 제2 히터(120b)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3,B8)의 개도를 조절하고 제2 히터(120b)의 가동을 제어할 수 있다.
제6 제어부(175)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100f)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 순환 밸브(B3)의 개도를 개방하여 해수배출라인(L2)으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제6 제어부(175)는, 즉 해수공급장치(100f)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
제6 제어부(175)는, 순환연결라인(L3)에 해수가 가득차는 순간에 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고 논스톱 전환밸브(B8)를 개방시키며, 해수의 온도를 해수온도측정센서(180)로 측정하여 해수의 온도가 기설정온도보다 낮으면 제2 히터(120b)를 가동하도록 제어할 수 있다.
여기서 해수온도측정센서(180)는 순환연결라인(L3) 상에 구비될 수 있고, 제6 제어부(175)와 유선 또는 무선으로 연결되어 해수의 온도 정보를 제6 제어부(175)로 전달할 수 있다.
이때, 해수는 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 다시 해수공급라인(L1)으로 공급되며, 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게되고, 적정한 온도를 열원 열교환기(110)로 지속적인 공급을 수행할 수 있다.
이를 통해 본 발명의 실시예에서는, 해수의 온도변화에도 상관없이 열원 열교환기(110)로 지속적인 열원의 공급이 가능해지고 제1 히터(120a)외에 제2 히터(120b)가 제1 히터(120a)의 열원을 공유하면서 해수를 가열하므로 에너지를 경제적으로 소비할 수 있는 효과가 있다.
수요처(60)는, 기화기(50)에 의해 기화된 액화가스를 공급받아 소비할 수 있다. 여기서 수요처(60)는, 액화가스를 기화시켜 기상의 액화가스를 공급받아 사용할 수 있으며, 육상에 설치되는 육상 터미널 또는 해상에 부유되어 설치되는 해상 터미널일 수 있다.
이와 같이 본 발명에 따른 가스 재기화 시스템(1)을 구비하는 선박은, 액화가스의 재기화 효율이 극대화될 수 있는 효과가 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
1: 가스 재기화 시스템을 구비한 선박 10: 액화가스 저장탱크
20: 피딩 펌프 30: 재응축기
40: 부스팅 펌프 50: 기화기
60: 수요처 100: 해수공급장치
100a~f: 해수공급장치 110: 열원 열교환기
120: 히터 120a: 제1 히터
120b: 제2 히터 130: 압력유지장치
130a~c: 압력유지장치 140: 해수 펌프
141: 밸러스트 펌프 142: 저압 펌프
151: 공기제거밸브 160: 오리피스
161: 해수차단밸브 162: 바이패스 밸브
170: 제1 제어부 171: 제2 제어부
172: 제3 제어부 173: 제4 제어부
174: 제5 제어부 175: 제6 제어부
L1: 해수공급라인 L2: 해수배출라인
L3: 순환연결라인 L3a: 순환연결라인
L3b: 중간탱크 바이패스 라인 L4: 압력유지장치 연결라인
L4a: 압력유지장치 제1 연결라인 L4b: 압력유지장치 제2 연결라인
L4c: 압력유지장치 제3 연결라인 L5: 유체공급라인
L6: 제1 분기라인 L7: 제2 분기라인
L8: 오리피스 바이패스 라인 B1: 해수유입밸브
B2: 해수유출밸브 B3: 순환밸브
B4: 압력유지장치 공급밸브 B4a: 압력유지장치 제1 공급밸브
B4b: 압력유지장치 제2 공급밸브 B4c: 압력유지장치 제3 공급밸브
B5: 중간탱크 바이패스 밸브 B6: 중간탱크 공급밸브
B7: 중간탱크 토출밸브 B8: 논스톱 전환밸브
B9: 유체 공급밸브 B10: 제1 분기밸브
B11: 제2 분기밸브 B12: 전환밸브
SW1: 해수유입구 SW2: 해수유출구
GWL: 열원 순환라인 GWP: 열원 펌프
E: 엔진 S: 프로펠러 축
P: 프로펠러 H: 선체
RL: 액화가스 공급라인

Claims (18)

  1. 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템을 구비하는 선박에 있어서,
    상기 해수공급장치는,
    상기 재기화 장치로 상기 해수를 공급하는 해수공급라인;
    상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인;
    상기 해수배출라인에서 분기되어 상기 해수공급라인을 연결하는 순환연결라인;
    해수면보다 낮게 위치하는 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프; 및
    상기 해수공급라인 상의 상기 재기화 장치 상류에서 분기되어 상기 순환연결라인으로 연결되는 제1 분기라인을 포함하고,
    상기 순환연결라인은,
    상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 해수공급라인 또는 상기 해수배출라인 상으로 유동하는 상기 해수를 공급받으며,
    상기 제1 분기라인은,
    상기 해수공급라인 상의 상기 재기화 장치로 공급되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  2. 제 1 항에 있어서,
    해수면보다 낮게 위치하는 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프;
    상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브; 및
    상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브를 포함하고,
    상기 제2 개폐밸브는,
    상기 해수배출라인으로 배출되는 해수 중 적어도 일부를 상기 순환연결라인 상으로 공급하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  3. 제 2 항에 있어서,
    상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브;
    상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브; 및
    상기 제1 내지 제4 개폐밸브의 개도를 조절하여, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  4. 제 3 항에 있어서, 상기 제어부는,
    상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 제2 개폐밸브를 개방하여, 상기 해수배출라인으로 배출되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  5. 제 4 항에 있어서, 상기 제어부는,
    상기 순환연결라인 상에 상기 해수가 가득 차는 경우, 상기 제3 및 제4 개폐밸브를 폐쇄하고, 상기 제1 개폐밸브를 개방하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  6. 삭제
  7. 제 1 항에 있어서,
    상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브;
    상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브;
    상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브;
    상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브;
    상기 제1 분기라인 상에 구비되는 제1 분기밸브;
    상기 제1 내지 제4 개폐밸브 및 상기 제1 분기밸브의 개도를 조절하여, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  8. 제 7 항에 있어서, 상기 제어부는,
    상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 제1 분기밸브를 개방하여, 상기 해수공급라인 상의 상기 재기화 장치로 공급되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  9. 제 8 항에 있어서, 상기 제어부는,
    상기 순환연결라인 상에 상기 해수가 가득 차는 경우, 상기 제3 및 제4 개폐밸브 및 상기 제1 분기밸브를 폐쇄하고, 상기 제1 및 제2 개폐밸브를 개방하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  10. 제 1 항에 있어서,
    해수면보다 낮게 위치하는 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프; 및
    상기 해수공급라인 상의 상기 재기화 장치 하류에서 분기되어 상기 순환연결라인으로 연결되는 제2 분기라인을 더 포함하고,
    상기 제2 분기라인은,
    상기 해수공급라인 상의 상기 재기화 장치에서 배출되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  11. 제 10 항에 있어서,
    상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브;
    상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브;
    상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브;
    상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브;
    상기 제2 분기라인 상에 구비되는 제2 분기밸브;
    상기 제1 내지 제4 개폐밸브 및 상기 제2 분기밸브의 개도를 조절하여, 상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  12. 제 11 항에 있어서, 상기 제어부는,
    상기 해수가 상기 해수배출라인에서 상기 순환연결라인으로 흐르도록 전환시, 상기 제2 분기밸브를 개방하여, 상기 해수배출라인 상의 상기 재기화 장치에서 배출되는 해수 중 적어도 일부를 상기 순환연결라인으로 공급하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  13. 제 12 항에 있어서, 상기 제어부는,
    상기 순환연결라인 상에 상기 해수가 가득 차는 경우, 상기 제3 및 제4 개폐밸브 및 상기 제2 분기밸브를 폐쇄하고, 상기 제1 및 제2 개폐밸브를 개방하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  14. 제 1 항에 있어서,
    상기 순환연결라인 상에 구비되며, 상기 순환연결라인에 유동하는 해수의 압력을 유지시키는 압력유지장치를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  15. 제 14 항에 있어서, 상기 압력유지장치는,
    대기압을 이용하여, 해수의 압력을 유지시키는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  16. 제 1 항에 있어서, 상기 재기화 장치는,
    상기 액화가스를 상기 해수로 직접 기화시키는 기화기를 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  17. 제 1 항에 있어서, 상기 재기화 장치는,
    상기 액화가스를 중간 열매로 기화시키는 기화기; 및
    상기 해수의 열원을 상기 중간 열매로 공급하는 열원 열교환기를 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  18. 제 4 항, 또는 제13 항 중 어느 한 항에 있어서,
    상기 제1 개폐밸브는, 논스톱 전환밸브이고, 상기 제2 개폐밸브는, 순환밸브이고, 상기 제3 개폐밸브는, 해수공급밸브이고, 상기 제4 개폐밸브는, 해수배출밸브이고, 상기 제어부는 제4 제어부인 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
KR1020160092309A 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박 KR102224810B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160032911 2016-03-18
KR1020160032911 2016-03-18

Publications (2)

Publication Number Publication Date
KR20170108757A KR20170108757A (ko) 2017-09-27
KR102224810B1 true KR102224810B1 (ko) 2021-03-09

Family

ID=60036104

Family Applications (9)

Application Number Title Priority Date Filing Date
KR1020160092315A KR102233970B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092314A KR102231805B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092305A KR102233968B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092310A KR102233969B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092304A KR102231803B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092307A KR102231804B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092308A KR101850606B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092312A KR102226283B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092309A KR102224810B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박

Family Applications Before (8)

Application Number Title Priority Date Filing Date
KR1020160092315A KR102233970B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092314A KR102231805B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092305A KR102233968B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092310A KR102233969B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092304A KR102231803B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092307A KR102231804B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092308A KR101850606B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR1020160092312A KR102226283B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박

Country Status (1)

Country Link
KR (9) KR102233970B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911121B2 (ja) 2017-11-13 2021-07-28 ヤーマン株式会社 美容マスク
KR102473953B1 (ko) * 2017-12-18 2022-12-05 대우조선해양 주식회사 선박의 해수 공급 시스템
KR102188469B1 (ko) * 2018-01-19 2020-12-08 한국조선해양 주식회사 재기화 시스템 및 이를 포함하는 선박

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346235B1 (ko) * 2011-07-20 2014-01-02 삼성중공업 주식회사 해수 가열 장치 및 이를 이용한 액화천연가스 재기화 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080085284A (ko) * 2007-03-19 2008-09-24 대우조선해양 주식회사 Lng 재기화 선박의 온수 순환식 기화장치 및액화천연가스 기화방법
KR101195149B1 (ko) * 2010-07-06 2012-10-29 삼성중공업 주식회사 액화천연가스의 재기화 장치 및 방법
KR101422599B1 (ko) * 2012-10-04 2014-07-23 삼성중공업 주식회사 재기화 시스템
KR101978331B1 (ko) * 2013-06-24 2019-08-28 대우조선해양 주식회사 선박의 액화천연가스 연료 공급 시스템 및 방법
KR20150019520A (ko) * 2013-08-14 2015-02-25 대우조선해양 주식회사 선박의 lng 재기화 시스템 및 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346235B1 (ko) * 2011-07-20 2014-01-02 삼성중공업 주식회사 해수 가열 장치 및 이를 이용한 액화천연가스 재기화 시스템

Also Published As

Publication number Publication date
KR20170108756A (ko) 2017-09-27
KR102233970B1 (ko) 2021-03-30
KR102233969B1 (ko) 2021-03-30
KR20170108760A (ko) 2017-09-27
KR102226283B1 (ko) 2021-03-09
KR102231804B1 (ko) 2021-03-24
KR20170108753A (ko) 2017-09-27
KR20170108758A (ko) 2017-09-27
KR20170108761A (ko) 2017-09-27
KR102231803B1 (ko) 2021-03-24
KR20170108759A (ko) 2017-09-27
KR20170108757A (ko) 2017-09-27
KR20170108754A (ko) 2017-09-27
KR101850606B1 (ko) 2018-04-19
KR102233968B1 (ko) 2021-03-30
KR102231805B1 (ko) 2021-03-24
KR20170108755A (ko) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6983858B2 (ja) ガス再気化システムを備える船舶
KR102286693B1 (ko) 가스 재기화 시스템 및 이를 포함하는 선박
KR102224810B1 (ko) 가스 재기화 시스템을 구비하는 선박
KR102067892B1 (ko) 재기화 시스템 및 이를 포함하는 선박
KR102237252B1 (ko) 가스 재기화 시스템 및 이를 포함하는 선박
KR101556296B1 (ko) 연료 공급 시스템 및 이를 포함하는 선박 및 연료 공급 방법
KR102295010B1 (ko) 가스 처리 시스템 및 이를 구비하는 해양 구조물
KR102306454B1 (ko) 가스 재기화 시스템 및 이를 포함하는 선박
KR102017946B1 (ko) 재기화 시스템 및 이를 포함하는 선박
KR102263164B1 (ko) 액화가스 재기화 시스템
KR20180028180A (ko) 가스 재기화 시스템 및 이를 포함하는 선박
KR102144180B1 (ko) 가스 재기화 시스템 및 이를 구비하는 선박
KR20200021328A (ko) 가스 재기화 시스템 및 이를 구비하는 선박

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant