KR102213916B1 - 복합열원을 이용한 하이브리드 히트펌프 장치 - Google Patents
복합열원을 이용한 하이브리드 히트펌프 장치 Download PDFInfo
- Publication number
- KR102213916B1 KR102213916B1 KR1020200056028A KR20200056028A KR102213916B1 KR 102213916 B1 KR102213916 B1 KR 102213916B1 KR 1020200056028 A KR1020200056028 A KR 1020200056028A KR 20200056028 A KR20200056028 A KR 20200056028A KR 102213916 B1 KR102213916 B1 KR 102213916B1
- Authority
- KR
- South Korea
- Prior art keywords
- heat
- heat source
- heat exchanger
- valve
- source side
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/002—Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/90—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
- Y02A40/963—Off-grid food refrigeration
- Y02A40/966—Powered by renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
본 발명은 냉난방을 위한 히트펌프 장치에 관한 것으로, 보다 상세하게는 공기열, 지열, 수열 등의 복합열원을 이용한 하이브리드 히트펌프 장치에 관한 것이다. 이를 위해, 히트펌프 장치에 있어서, 고온고압의 냉매를 토출하는 압축기(100); 난방모드 또는 냉방모드시 냉매가 유입되어 부하측과 열교환하는 부하측 열교환기(120); 부하측 열교환기(120)와 연결되고, 냉매를 팽창시키는 메인 팽창밸브(140); 메인 팽창밸브(140)와 연결되고, 공기열부로 기능하는 열원측 핀코일 열교환기(180); 메인 팽창밸브(140)와 열원측 핀코일 열교환기(180) 사이에서 분지되어 열원측 핀코일 열교환기(180)와 병렬로 연결되고, 다수의 복합열원중 하나와 열교환하는 열원측 판형 열교환기(170); 제1 포트에 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)가 연결되고, 제2 포트에 부하측 열교환기(120)가 연결되고, 제3 포트에 압축기(100)가 연결되는 사방밸브(110); 및 열원측 판형 열교환기(170)에 연결되어 복합열원중 하나를 선택하는 3방밸브(260);를 포함하고, 복합열원은 수열부로 기능하는 열원축열조(210) 및 지열부(280)이고, 열원축열조(210)의 수열센서(290), 지열부(280)의 지열센서(230) 및 대기온도센서(240); 및 수열센서(290), 지열센서(230) 및 대기온도센서(240)의 측정 온도(T1, T2, T3)에 기초하여 3방밸브(260)를 제어하는 제어부를 더 포함한다
Description
본 발명은 냉난방을 위한 히트펌프 장치에 관한 것으로, 보다 상세하게는 공기열, 지열, 수열 등의 복합열원을 이용한 하이브리드 히트펌프 장치에 관한 것이다.
일반적으로 히트펌프는 압축기, 응축기, 팽창 밸브, 증발기로 이루어져 냉동 사이클을 통해 냉방, 축냉과 난방, 축열을 수행한다. 증발기에서 냉매가 비등하면서 열을 외부에서 흡수하고, 비등한 냉매가스는 압축기에서 고온 고압의 가스로 압축되어 응축기로 보내어진다. 응축기에서 외부로 열을 방출하여 고압의 냉매가스는 응축 액화되어 저온고압의 액체상태로 응축된다. 그 다음, 응축된 냉매는 팽창 밸브를 통하여 교축(Throttling) 팽창되면서 일부 냉매 액은 증발을 하고, 잠열의 흡수를 통하여 냉매 액은 더욱 차가워진 저온저압의 액상 및 기상이 공존하는 상태가 되어 증발기를 통하여 비등을 하게 된다. 이와 같이 냉동 사이클은 열을 흡수하는 부분과 방출하는 부분을 동시에 가지며, 열을 증발기에서 흡수하여 응축기로 열을 이송함으로써 냉난방을 동시에 수행할 수 있다.
이러한 히트펌프는 열원에 따라 공기열 히트펌프, 지열 히트펌프, 수열 히트펌프로 나눌 수 있다. 수열 히트펌프 시스템은 냉방이나 난방을 목적으로 사용되며 물을 매개체로 미활용 에너지를 회수하는 히트펌프 시스템이다.
도 1은 종래의 공기열 히트펌프 시스템을 이용한 냉난방 계통도이다. 도 1에 도시된 바와 같이, 공기열 히트펌프 시스템은 압축기(100), 사방밸브(110), 부하측 열교환기(120), 냉방 팽창밸브(20), 난방 팽창밸브(10) 및 열원측 핀코일 열교환기(180)로 이루어진 냉매 사이클로 운전된다. 이러한 히트펌프 시스템은 대기중의 공기열을 이용하여 난방을 하거나 냉방을 하고, 부하측에는 축열조(30)가 구비되어 난방수나 급탕에 이용하도록 한다.
도 2는 종래의 지열 히트펌프 시스템을 이용한 냉난방 계통도이다. 도 2에 도시된 바와 같이, 지열 히트펌프 시스템은 압축기(100), 사방밸브(110), 부하측 열교환기(120), 팽창밸브(40) 및 열원측 판형 열교환기(170)로 이루어진 냉매 사이클로 운전된다. 그리고, 지열부(280)는 열원측 판형 열교환기(170)에서 열교환을 한다. 이러한 히트펌프 시스템은 지하의 지열을 이용하여 난방을 하거나 냉방을 하고, 부하측에는 축열조(50)가 구비되어 난방수나 급탕 또는 냉수로 이용한다.
따라서, 종래의 히트펌프 기술분야에서는 히트펌프를 설치하고자 할 때, 고객의 선호도에 따라 지열 히트펌프 또는 공기열 히트펌프중 하나를 선택하여야 했다. 만약 난방을 하면서도 냉수를 필요로 하는 경우 또는 냉방을 하면서도 급탕을 필요로 하는 경우에는 지열 히트펌프과 공기열 히트펌프를 모두 설치하여야 한다. 이러한 요구가 있는 곳을 예를 들어, 대형 쇼핑몰, 스마트 농장, 헬스장, 사우나, 공장, 양어장 등이다. 그런데 이 경우 중복되는 설비가 많고, 시공비, 운영비 및 설치 공간이 중복적으로 필요한 비효율성이 있었다. 즉, 냉방과 급탕이 동시에 필요한 경우에는 지열 히트펌프와 공기열 히트펌프를 모두 개별적으로 운전해야 하는 단점이 있다.
본 발명이 해결하고자 하는 과제는, 전술한 바와 같은 문제점을 해결하기 위한 것으로, 공기열, 지열, 수열과 같은 복합열원을 선별적으로 이용하여 운전조건에 따라 효율을 높일 수 있는 복합열원을 이용한 하이브리드 히트펌프 장치를 제공하는 것이다.
본 발명의 또 다른 목적은, 냉방과 급탕을 동시에 필요로 하거나 난방과 냉수를 필요로 하는 경우에도 동작이 가능한 복합열원을 이용한 하이브리드 히트펌프 장치를 제공하는 것이다.
다만, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위하여, 본 발명의 일실시예로써, 히트펌프 장치에 있어서, 고온고압의 냉매를 토출하는 압축기(100); 난방모드 또는 냉방모드시 냉매가 유입되어 부하측과 열교환하는 부하측 열교환기(120); 부하측 열교환기(120)와 연결되고, 냉매를 팽창시키는 메인 팽창밸브(140); 메인 팽창밸브(140)와 연결되고, 공기열부로 기능하는 열원측 핀코일 열교환기(180); 메인 팽창밸브(140)와 열원측 핀코일 열교환기(180) 사이에서 분지되어 열원측 핀코일 열교환기(180)와 병렬로 연결되고, 다수의 복합열원중 하나와 열교환하는 열원측 판형 열교환기(170); 제1 포트에 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)가 연결되고, 제2 포트에 상기 부하측 열교환기(120)가 연결되고, 제3 포트에 압축기(100)가 연결되는 사방밸브(110); 및 열원측 판형 열교환기(170)에 연결되어 복합열원중 하나를 선택하는 3방밸브(260);를 포함하고,
복합열원은 수열부로 기능하는 열원축열조(210) 및 지열부(280)이고, 열원축열조(210)의 수열센서(290), 지열부(280)의 지열센서(230) 및 대기온도센서(240); 및 수열센서(290), 지열센서(230) 및 대기온도센서(240)의 측정 온도(T1, T2, T3)에 기초하여 3방밸브(260)를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치가 제공된다.
또한, 메인팽창밸브(140)는, 메인팽창밸브(140)로 유입되는 냉매의 일부가 분지하여 유입하는 보조팽창밸브(150); 보조팽창밸브(150)를 통과한 냉매와 메인팽창밸브(140)로 유입되는 냉매 사이에 열교환이 이루어지는 이코노마이저(160); 브릿지 정류회로 형태를 갖고, 메인팽창밸브(140)의 토출측에 분지하여 설치되는 제 3 체크밸브(250c)와 제 4 체크밸브(250d); 제 3 체크밸브(250c)와 직렬로 연결되는 제 1 체크밸브(250a); 및 제 4 체크밸브(250d)와 직렬로 연결되는 제 2 체크밸브(250b);를 더 포함하고, 부하측 열교환기(120)는 제 2 체크밸브(250b)와 제 4 체크밸브(250d) 사이에 연결되고, 열원측 판형 열교환기(170)와 열원측 핀코일 열교환기(180)는 제 1 체크밸브(250a)와 제 3 체크밸브(250c) 사이에 연결될 수 있다.
또한, 입구측이 제 1 체크밸브(250a)와 제 2 체크밸브(250b) 사이에 연결되고, 출구측이 이코노마이저(160)에 연결되는 수액기(130)를 더 포함할 수 있다.
또한, 입구측이 메인 팽창밸브(140)에 연결되고 그리고 출구측이 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)로 각각 연결되는 분지밸브(300)를 더 포함할 수 있다.
또한, 분지밸브(300)는, 메인 팽창밸브(140)로부터 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)로 각각 분지되는 비율 또는 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)로부터 메인 팽창밸브(140)로 합지되는 비율을 제어할 수 있다.
또한, 냉매의 액분리기(200)를 더 포함하고, 사방밸브(110)의 제 4포트는 액분리기(200)로 연결되고, 액분리기(200)의 출구는 압축기(100)에 연결된다.
또한, 수열센서(290)의 온도가 설정온도 이상 또는 이하인 경우, 제어부는 3방밸브(260)를 제어하여 열원측 판형 열교환기(170)를 지열부(280)와 연결되도록 한다.
또한, 수열센서(290)의 온도가 설정온도 이상 또는 이하인 경우, 제어부는 3방밸브(260)를 제어하여 열원측 판형 열교환기(170)를 지열부(280)와 열원축열조(210)로부터 차단한다.
또한, 제어부는 사방밸브(110)를 제어하여 난방모드와 냉방모드중 하나로 운전한다.
상기와 같은 본 발명의 목적은, 또 다른 실시예로서, 히트펌프 장치에 있어서, 수열부로 기능하는 열원축열조(210); 고온고압의 냉매를 토출하는 압축기(100); 난방모드 또는 냉방모드시 냉매가 유입되어 부하측과 열교환하는 부하측 열교환기(120); 부하측 열교환기(120)와 연결되고, 냉매를 팽창시키는 메인 팽창밸브(140); 메인 팽창밸브(140)와 연결되고, 공기열부로 기능하는 열원측 핀코일 열교환기(180); 메인 팽창밸브(140)와 열원측 핀코일 열교환기(180) 사이에서 분지되어 열원측 핀코일 열교환기(180)와 병렬로 연결되고, 열원축열조(210)와 열교환하는 열원측 판형 열교환기(170); 제1 포트에 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)가 연결되고, 제2 포트에 부하측 열교환기(120)가 연결되고, 제3 포트에 압축기(100)가 연결되는 사방밸브(110); 및 열원측 판형 열교환기(170)와 열원축열조(210) 사이를 연결 또는 차단하는 3방밸브(260);를 포함하고, 열원축열조(210)의 수열센서(290) 및 대기온도센서(240); 및 수열센서(290), 및 대기온도센서(240)의 측정 온도(T2, T3)에 기초하여 3방밸브(260)를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치에 의해서도 달성될 수 있다.
또한, 수열센서(290)의 온도가 설정온도 이상 또는 이하인 경우, 제어부는 3방밸브(260)를 제어하여 열원측 판형 열교환기(170)와 열원축열조(210)를 차단한다.
본 발명에 의하면, 공기열, 지열, 수열과 같은 복합열원을 선별적으로 이용하여 최적의 운전조건으로 고효율의 히트펌프 운전이 가능하다.
또한, 냉방과 급탕을 동시에 필요로 하거나 난방과 냉수를 필요로 하는 경우에도 효율적으로 대응할 수 있다.
아울러, 수열 히트펌프와 지열 히트펌프중 공기열 히트펌프와 중복되는 부품을 생략할 수 있으므로 시설비, 설치공간 등을 절약할 수 있다.
또한, 종래의 공기열 히트펌프에서 버려지던 에너지를 사용함으로써 COP(에너지 소비효율)가 증대되는 효과가 있다.
다만, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니된다.
도 1은 종래의 공기열 히트펌프 시스템을 이용한 냉난방 계통도,
도 2는 종래의 지열 히트펌프 시스템을 이용한 냉난방 계통도,
도 3a는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 난방 계통도,
도 3b는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 지열을 열원으로 하는 난방 계통도,
도 4a는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 냉방 계통도,
도 4b는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 지열을 열원으로 하는 냉방 계통도,
도 5a는 본 발명의 다른 실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 난방 계통도,
도 5b는 본 발명의 다른 실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 냉방 계통도이다.
도 1은 종래의 공기열 히트펌프 시스템을 이용한 냉난방 계통도,
도 2는 종래의 지열 히트펌프 시스템을 이용한 냉난방 계통도,
도 3a는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 난방 계통도,
도 3b는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 지열을 열원으로 하는 난방 계통도,
도 4a는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 냉방 계통도,
도 4b는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 지열을 열원으로 하는 냉방 계통도,
도 5a는 본 발명의 다른 실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 난방 계통도,
도 5b는 본 발명의 다른 실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 냉방 계통도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
공기열과 수열의 난방
도 3a는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 난방 계통도이다. 도 3a에 도시된 바와 같이, 압축기(100)는 냉매를 고온고압으로 압축하고, 출구측은 사방밸브(110)의 제3 포트로 전달한다. 압축기(100)의 유입측은 이코노마이저(160) 및 액분리기(200)와 연결되어 있다.
액분리기(200)는 냉매중 액체와 기체를 분리하여 기체만을 압축기(100)로 보내는 구성요소이다. 액분리기(200)의 입구측은 사방밸브(110)의 제 4포트와 연결되고, 액분리기(200)의 출구는 압축기(100)에 연결된다.
사방밸브(110)는 제1 포트에 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)가 합지되어 연결되고, 제2 포트에 부하측 열교환기(120)가 연결되고, 제3 포트에 압축기(100)가 연결되며, 제4 포트에 액분리기(200)가 연결된다. 제어부(미도시)는 사방밸브(110)를 제어하여 난방모드와 냉방모드 중 하나를 선택할 수 있다.
부하측 열교환기(120)는 사방밸브(110)의 제2 포트와 메인팽창밸브(140) 사이의 냉매 사이클 및 부하측 축열조(220)에 의한 물 사이클 사이의 열교환이 이루어지는 구성요소이다. 부하측 열교환기(120)는 판형 열교환기가 될 수 있다.
부하측 열교환기(120)와 메인팽창밸브(140) 사이에는, 브릿지 정류회로 형태의 제 1, 2, 3, 4 체크밸브(250a, 250b, 250c, 250d)와 연결된다. 제 3 체크밸브(250c)와 제 4 체크밸브(250d)는 메인팽창밸브(140)의 토출측에 각각 분지하여 설치된다. 제 1 체크밸브(250a)는 제 3 체크밸브(250c)와 같은 방향의 직렬로 연결되고, 제 2 체크밸브(250b)는 제 4 체크밸브(250d)와 같은 방향의 직렬로 연결된다.
제 2, 4 체크밸브(250b, 250d) 사이에는 부하측 열교환기(120)가 연결되고, 제 1, 3 체크밸브(250a, 250c) 사이에는 분지밸브(300)가 연결되며, 제 1, 2 체크밸브(250a, 250b) 사이에는 수액기(130)의 입구측이 연결되고, 제 3, 4 체크밸브(250c, 250d) 사이에는 메인팽창밸브(140)가 연결된다.
수액기(130)는 냉매량 조절 기능을 하기 위한 구성요소이다. 수액기(130)의 출구측은 이코노마이저(160)에 연결된다.
보조팽창밸브(150)의 입구측은 이코노마이저(160)의 출구측에서 분지되어 연결되며, 출구측은 이코노마이저(160)의 입구측에 연결된다. 보조팽창밸브(150)는 전자식 팽창밸브(EEV)가 될 수 있고, 제어부에 의해 팽창 정도가 제어된다.
이코노마이저(160)는 수액기(130)로부터의 냉매와 보조팽창밸브(150)에 의해 저온이 된 냉매 사이의 열교환이 이루어지는 구성요소이다. 이러한 이코노마이저(160)는 온도 및 압력이 낮은 운전영역에서도 냉,난방 성능 향상과 효율 향상에 기여한다. 즉, 냉방 시에도 이코노마이저(160)를 이용함으로써 운전성능을 향상(예를 들어, 10%up:45RT -> 50RT)시킬 수 있는 효과를 갖는다.
메인팽창밸브(140)의 입구측은 이코노마이저(160)에 연결되고, 출구측은 제 3, 4 체크밸브(250c, 250d) 사이에 연결된다. 메인팽창밸브(140)는 전자식 팽창밸브(EEV)가 될 수 있고, 제어부에 의해 팽창 정도가 제어된다.
분지밸브(300)는 메인팽창밸브(140)에 의해 저온으로 팽창된 냉매를 열원측 판형 열교환기(170)와 열원측 핀코일 열교환기(180)로 각각 분지하여 공급한다. 열원측 판형 열교환기(170)와 열원측 핀코일 열교환기(180)로 각각 분지하여 공급하는 비율은 제어부에 의해 제어되거나 기계적으로 셋팅할 수 있다. 비율의 일예는 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, 10:0 등이 될 수 있다.
열원측 판형 열교환기(170)는 분지밸브(300)와 사방밸브(110) 사이의 냉매 사이클 및 물 사이클 사이의 열교환이 이루어지는 구성요소이다. 이때, 물 사이클의 열원은 열원축열조(210)에 의한 수열 또는 지열부(280)에 의한 지열이 될 수 있다. 열원측 판형 열교환기(170)는 판형 열교환기가 될 수 있다.
열원측 핀코일 열교환기(180)는 분지밸브(300)와 사방밸브(110) 사이에서 열원측 판형 열교환기(170)와 병렬로 연결된다. 열원측 핀코일 열교환기(180)는 공기열을 이용한 냉매 증발을 수행하는 구성요소이다.
열원축열조(210)는 복합열원중 수열이 될 수 있고, 내부에 온도를 감지하는 수열센서(290)가 설치되며, 수열센서(290)는 제어부와 연결된다.
수열센서(290)는 난방모드와 냉방모드에 따라 설정온도 이상인 경우와 이하인 경우로 구분하여 제어된다. 즉, 제어부는 수열센서(290)와 지열센서(230)의 출력신호를 분석하여 유리한 열원을 선택하여 제어한다. 열원축열조(210)는 난방모드에서 냉수를 공급하는 공급원이 될 수 있다.
지열부(280)는 복합열원중 지열이 될 수 있고, 지하로부터 토출되는 물의 온도를 감지하는 지열센서(230)가 설치되며, 지열센서(230)는 제어부와 연결된다.
3방밸브(260)는 제어부에 의해 제어되며, 열원축열조(210)와 열원측 판형 열교환기(170)를 연결하는 사이클을 형성하거나, 지열부(280)와 열원측 판형 열교환기(170)를 연결하는 사이클을 형성하거나 열원측 판형 열교환기(170)를 차단하여 공기열 히트펌프로만 동작되도록 할 수 있다.
대기온도센서(240)는 실외에 설치되어 대기의 온도를 측정하고, 제어부와 연결된다. 이러한 대기온도센서(240)로 계절이나 현재 온도를 알 수 있다.
제어부는 수열센서(290), 지열센서(230) 및 대기온도센서(240)의 측정 온도(T1, T2, T3)에 기초하여 3방밸브(260) 및/또는 사방밸브(110)를 제어한다. 제어부는 마이컴, CPU, 컴퓨터가 될 수 있다.
도 3a에 도시된 바와 같이, 열원축열조(210)의 온도가 충분히 낮은 경우(예 : 5 ~ 10℃) 공기열 히트펌프와 수열 히트펌프를 복합해서 운전할 수 있다. 즉, 액분리기(200)에 의해 액체가 분리된 냉매는 압축기(100)에서 고온고압으로 압축되어 부하측 열교환기(120)로 간다. 부하측 축열조(220)는 부하측 열교환기(120)에서 냉수를 온수로 열교환하여 급탕이나 난방에 사용할 수 있다.
그 다음, 응축된 냉매는 제 2 체크밸브(250b)를 거쳐 수액기(130)로 향하고, 일부는 메인팽창밸브(140)에서 증발을 위해 교축작용을 일으키고, 나머지는 보조팽창밸브(150)에서 팽창된다. 보조팽창밸브(150)에서 팽창된 냉매는 이코노마이저(160)에서 열교환된 후 압축기(100)로 보내진다.
난방모드시 제 4 체크밸브(250d)와 제 2 체크밸브(250b) 사이의 분기점과 제 2 체크밸브(250b)와 제 1 체크밸브(250a) 사이의 분기점은 고압지점에 해당하므로 메인팽창밸브(140)를 통과한 냉매는 제 4 체크밸브(250d)측으로 유입되지 않고 제 3 체크밸브(250c)를 통과하여 분지밸브(300) 측으로 유입되게 된다.
메인팽창밸브(140)에서 팽창된 냉매는 분지밸브(300)에서 열원측 판형 열교환기(170)와 열원측 핀코일 열교환기(180)로 각각 분지된다.
열원측 핀코일 열교환기(180)에는 냉매의 증발이 일어난 후, 사방밸브(110)로 되돌아가는 사이클을 형성한다.
열원측 판형 열교환기(170)는 3방밸브(260)의 조작에 따라 열원축열조(210)로부터 냉수와 냉매 사이의 열교환을 한다. 즉, 수열원에 의해 냉매가 증발한다. 이로 인해, 열원축열조(210)의 온도는 점차 상승하게 되고, 수열센서(290)에 의해 측정된 온도(T3)의 범위가 지역측 온도 범위 보다 작동이 불리하다고 판단되면 연결을 차단한다. 이는 공기열 히트펌프로만 동작하거나 지열 히트펌프로 전환됨을 의미한다.
공기열과 지열의 난방
도 3b는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 지열을 열원으로 하는 난방 계통도이다. 도 3b에 도시된 바와 같이, 난방모드에서 공기열 히트펌프와 지열 히트펌프를 복합해서 운전할 수 있다. 즉, 액분리기(200)에 의해 액체가 분리된 냉매는 압축기(100)에서 고온고압으로 압축되어 부하측 열교환기(120)로 간다. 부하측 축열조(220)는 부하측 열교환기(120)에서 냉수를 온수로 열교환하여 급탕이나 난방에 사용할 수 있다.
그 다음, 응축된 냉매는 제 2 체크밸브(250b)를 거쳐 수액기(130)로 향하고, 일부는 메인팽창밸브(140)에서 증발을 위해 교축작용을 일으키고, 나머지는 보조팽창밸브(150)에서 교축된다. 보조팽창밸브(150)에서 교축작용이 일어난 냉매는 이코노마이저(160)에서 열교환된 후 압축기(100)로 보내진다.
난방모드시 제 4 체크밸브(250d)와 제 2 체크밸브(250b) 사이의 분기점과 제 2 체크밸브(250b)와 제 1 체크밸브(250a) 사이의 분기점은 고압지점에 해당하므로 메인팽창밸브(140)를 통과한 냉매는 제 4 체크밸브(250d)측으로 유입되지 않고 제 3 체크밸브(250c)를 통과하여 분지밸브(300) 측으로 유입되게 된다.
메인팽창밸브(140)에서 팽창된 냉매는 분지밸브(300)에서 열원측 판형 열교환기(170)와 열원측 핀코일 열교환기(180)로 각각 분지된다.
열원측 핀코일 열교환기(180)에는 냉매의 증발이 일어난 후, 사방밸브(110)로 되돌아가는 사이클을 형성한다.
열원측 판형 열교환기(170)는 3방밸브(260)의 조작에 따라 지열부(280)로부터 냉수(약 8℃)와 냉매 사이의 열교환을 한다. 즉, 지열원에 의해 냉매가 증발한다. 지열센서(230)에 의해 측정된 온도(T1)가 설정온도 이상 또는 이하이면 제어부는 지열부(280)와 열원측 판형 열교환기(170)의 연결을 차단한다. 이는 공기열 히트펌프로만 동작하거나 수열 히트펌프로 전환됨을 의미한다.
공기열과 수열의 냉방
도 4a는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 냉방 계통도이다. 도 4a에 도시된 바와 같이, 냉방모드에서 공기열 히트펌프와 수열 히트펌프를 복합해서 운전할 수 있다. 즉, 액분리기(200)에 의해 액체가 분리된 냉매는 압축기(100)에서 고온고압으로 압축되어 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)로 각각 분지되어 공급된다.
열원측 핀코일 열교환기(180)에는 공기열에 의한 냉매의 증발이 일어난다. 이때 열원측 핀코일 열교환기(180)는 대기온도센서(240)의 온도(T2)(예 : 30℃)를 참조한다. 그후, 분지밸브(300)를 통해 수액기(130)를 거치게 되고, 일부는 메인팽창밸브(140)에서 증발을 위해 교축작용을 일으키고, 나머지는 보조팽창밸브(150)에서 팽창된다. 보조팽창밸브(150)에서 팽창된 냉매는 이코노마이저(160)에서 열교환된 후 압축기(100)로 보내진다.
이때, 제 1 체크밸브(250a)와 제 3 체크밸브(250c) 사이의 분기점과 제 1 체크밸브(250a)와 제 2 체크밸브(250b) 사이의 분기점은 고압지점에 해당하므로 메인팽창밸브(140)를 통과한 냉매는 제 3 체크밸브(250c)측으로 유입되지 않고 제 4 체크밸브(250d)를 통과하여 부하측 열교환기(120) 측으로 유입되게 된다.
메인팽창밸브(140)를 거친 냉매는 부하측 열교환기(120)에서 열을 공급받아 증발되고 물은 냉각되어 부하측 축열조(220)로 유동한다. 부하측 축열조(220)는 부하측 열교환기(120)에서 생성된 냉수를 받아 냉방에 사용한다.
그 다음, 온도가 상승한 냉매는 사방밸브(110)로 되돌아가는 사이클을 형성한다.
그리고, 열원측 판형 열교환기(170)는 3방밸브(260)의 조작에 따라 열원축열조(210)로부터의 냉수와 냉매 사이의 열교환을 한다. 이때 냉수는 온수가 되고, 열원축열조(210)는 점차 온도가 상승하여 급탕(약 40℃)에 사용할 수 있게 된다. 제어부는 수열센서(290)의 온도(T3)를 감지하여 급탕으로의 공급 여부를 결정할 수 있다.
공기열과 지열의 냉방
도 4b는 본 발명의 일실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 지열을 열원으로 하는 냉방 계통도이다. 도 4b에 도시된 바와 같이, 냉방모드에서 공기열 히트펌프와 지열 히트펌프를 복합해서 운전할 수 있다. 즉, 액분리기(200)에 의해 액체가 분리된 냉매는 압축기(100)에서 고온고압으로 압축되어 열원측 핀코일 열교환기(180)와 열원측 판형 열교환기(170)로 각각 분지되어 공급된다.
열원측 핀코일 열교환기(180)에는 공기열에 의한 냉매의 증발이 일어난다. 이때 열원측 핀코일 열교환기(180)는 대기온도센서(240)의 온도(T2)(예 : 30℃)를 참조한다. 그 후, 분지밸브(300)를 통해 수액기(130)를 거치게 되고, 일부는 메인팽창밸브(140)에서 증발되고, 나머지는 보조팽창밸브(150)에서 증발된다. 보조팽창밸브(150)에서 증발된 냉매는 이코노마이저(160)에서 열교환된 후 압축기(100)로 보내진다.
이때, 제 1 체크밸브(250a)와 제 3 체크밸브(250c) 사이의 분기점과 제 1 체크밸브(250a)와 제 2 체크밸브(250b) 사이의 분기점은 고압지점에 해당하므로 메인팽창밸브(140)를 통과한 냉매는 제 3 체크밸브(250c)측으로 유입되지 않고 제 4 체크밸브(250d)를 통과하여 부하측 열교환기(120) 측으로 유입되게 된다.
메인팽창밸브(140)를 거친 냉매는 부하측 열교환기(120)에서 열을 공급받아 증발되고 물은 냉각되어 부하측 축열조(220)로 유동한다. 부하측 축열조(220)는 부하측 열교환기(120)에서 생성된 냉수를 받아 냉방에 사용한다.
그 다음, 온도가 상승한 냉매는 사방밸브(110)로 되돌아가는 사이클을 형성한다.
그리고, 열원측 판형 열교환기(170)는 3방밸브(260)의 조작에 따라 지열부(280)로부터의 냉수와 냉매 사이의 열교환을 한다. 이때 냉수는 온수가 되고, 급탕에 사용할 수 있게 된다. 제어부는 지열센서(290)의 온도(T3)(예 : 10℃)를 감지하여 급탕으로의 공급 여부를 결정할 수 있다.
단독모드
단독모드는 공기열, 수열 및 지열 중 하나의 열원만을 이용하여 난방 또는 냉방으로 동작하는 모드이다. 미리 내장된 제어부의 판단기준에 따라 또는 사용자의 동작 명령에 따라 하이브리드 히트 펌프 장치는 공기열, 수열 및 지열 중 하나의 열원만을 동작시킬 수 있다. 이를 위해, 제어부는 3방밸브(260) 및/또는 펌프(270)를 제어한다.
예를 들어, 도 3a 내지 도 5b에서 공기열만을 사용코자 하는 경우, 제어부는 열원측 판형 열교환기(170)의 전동 볼밸브(171)를 차단한다. 그리고, 수열만을 사용하고자 하는 경우, 3방밸브(260)를 제어하고 열원측 핀코일 열교환기(180)측 전동 볼밸브(181)를 차단하여, 열원측 판형 열교환기(170)와 냉수 축열조(210) 사이의 순환 회로를 형성한다. 만약, 지열만을 사용하고자 하는 경우, 3방밸브(260)를 제어하고 열원측 핀코일 열교환기(180)측 전동볼밸브(181)를 차단하여 지열부(280)와 열원측 판형 열교환기(170)사이의 순환회로를 형성한다. 난방모드와 냉방모드의 전환은 사방밸브(110)를 이용한다.
제 2 실시예의 난방
도 5a는 본 발명의 제 2 실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 난방 계통도이다. 도 5a에 도시된 구성은 도 3a의 구성요소와 매우 유사하다. 다만 제 2 실시예는 지열부(280), 지열센서(230) 및 3방밸브(260)의 구성요소가 생략되었다. 따라서, 제어부는 공기열 히트펌프의 동작을 기본동작으로 운전하면서 수열 히트펌프를 병행하여 동작시키거나 멈출 수 있다. 이를 통해 난방/급탕이 수행되는 동안 냉수가 선택적으로 공급될 수 있다.
제 2 실시예의 냉방
도 5b는 본 발명의 다른 실시예에 따른 복합열원을 이용한 하이브리드 히트펌프 장치로서, 공기열과 수열을 열원으로 하는 냉방 계통도이다. 도 5b에 도시된 구성은 도 3b의 구성요소와 매우 유사하다. 다만 제 2 실시예는 지열부(280), 지열센서(230) 및 3방밸브(260)의 구성요소가 생략되었다. 따라서, 제어부는 공기열 히트펌프의 동작을 기본동작으로 운전하면서 수열 히트펌프를 병행하여 동작시키거나 멈출 수 있다. 이를 통해 냉방이 수행되는 동안 급탕이 선택적으로 공급될 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
10 : 난방 팽창밸브,
20 : 냉방 팽창밸브,
30 : 축열조,
40 : 팽창밸브,
50 : 축열조,
100 : 압축기,
110 : 사방밸브,
120 : 부하측 열교환기,
130 : 수액기,
140 : 메인팽창밸브,
150 : 보조팽창밸브,
160 : 이코노마이저,
170 : 열원측 판형 열교환기,
171 : 열원측 판형 열교환기의 전동 볼밸브,
180 : 열원측 핀코일 열교환기,
181 : 열원측 핀코일 열교환기의 전동 볼밸브,
200 : 액분리기,
210 : 열원축열조,
220 : 부하측축열조,
230 : 지열센서,
240 : 대기온도센서,
250a : 제 1 체크밸브,
250b : 제 2 체크밸브,
250c : 제 3 체크밸브,
250d : 제 4 체크밸브,
260 : 삼방밸브,
270 : 펌프,
280 : 지열부,
290 : 수열센서,
300 : 분지밸브.
20 : 냉방 팽창밸브,
30 : 축열조,
40 : 팽창밸브,
50 : 축열조,
100 : 압축기,
110 : 사방밸브,
120 : 부하측 열교환기,
130 : 수액기,
140 : 메인팽창밸브,
150 : 보조팽창밸브,
160 : 이코노마이저,
170 : 열원측 판형 열교환기,
171 : 열원측 판형 열교환기의 전동 볼밸브,
180 : 열원측 핀코일 열교환기,
181 : 열원측 핀코일 열교환기의 전동 볼밸브,
200 : 액분리기,
210 : 열원축열조,
220 : 부하측축열조,
230 : 지열센서,
240 : 대기온도센서,
250a : 제 1 체크밸브,
250b : 제 2 체크밸브,
250c : 제 3 체크밸브,
250d : 제 4 체크밸브,
260 : 삼방밸브,
270 : 펌프,
280 : 지열부,
290 : 수열센서,
300 : 분지밸브.
Claims (11)
- 히트펌프 장치에 있어서,
고온고압의 냉매를 토출하는 압축기(100);
난방모드 또는 냉방모드시 상기 냉매가 유입되어 부하측과 열교환하는 부하측 열교환기(120);
상기 부하측 열교환기(120)와 연결되고, 상기 냉매를 팽창시키는 메인 팽창밸브(140);
상기 메인 팽창밸브(140)와 연결되고, 공기열부로 기능하는 열원측 핀코일 열교환기(180);
상기 메인 팽창밸브(140)와 상기 열원측 핀코일 열교환기(180) 사이에서 분지되어 상기 열원측 핀코일 열교환기(180)와 병렬로 연결되고, 다수의 복합열원중 하나와 열교환하는 열원측 판형 열교환기(170);
제1 포트에 상기 열원측 핀코일 열교환기(180)와 상기 열원측 판형 열교환기(170)가 연결되고, 제2 포트에 상기 부하측 열교환기(120)가 연결되고, 제3 포트에 상기 압축기(100)가 연결되는 사방밸브(110); 및
상기 열원측 판형 열교환기(170)에 연결되어 상기 복합열원중 하나를 선택하는 3방밸브(260);를 포함하고,
상기 복합열원은 수열부로 기능하는 열원축열조(210) 및 지열부(280)이고,
상기 열원축열조(210)의 수열센서(290), 상기 지열부(280)의 지열센서(230) 및 대기온도센서(240); 및
상기 수열센서(290), 상기 지열센서(230) 및 대기온도센서(240)의 측정 온도(T1, T2, T3)에 기초하여 상기 3방밸브(260)를 제어하는 제어부를 더 포함하며,
상기 메인팽창밸브(140)는,
상기 메인팽창밸브(140)로 유입되는 상기 냉매의 일부가 분지하여 유입하는 보조팽창밸브(150);
상기 보조팽창밸브(150)를 통과한 상기 냉매와 상기 메인팽창밸브(140)로 유입되는 상기 냉매 사이에 열교환이 이루어지는 이코노마이저(160);
브릿지 정류회로 형태를 갖고, 상기 메인팽창밸브(140)의 토출측에 분지하여 설치되는 제 3 체크밸브(250c)와 제 4 체크밸브(250d); 상기 제 3 체크밸브(250c)와 직렬로 연결되는 제 1 체크밸브(250a); 및 상기 제 4 체크밸브(250d)와 직렬로 연결되는 제 2 체크밸브(250b);를 더 포함하고,
상기 부하측 열교환기(120)는 상기 제 2 체크밸브(250b)와 상기 제 4 체크밸브(250d) 사이에 연결되고,
상기 열원측 판형 열교환기(170)와 상기 열원측 핀코일 열교환기(180)는 상기 제 1 체크밸브(250a)와 상기 제 3 체크밸브(250c) 사이에 연결되며,
입구측이 상기 메인 팽창밸브(140)에 연결되고 그리고 출구측이 상기 열원측 핀코일 열교환기(180)와 상기 열원측 판형 열교환기(170)로 각각 연결되는 분지밸브(300)를 더 포함하며,
상기 분지밸브(300)는, 상기 메인 팽창밸브(140)로부터 상기 열원측 핀코일 열교환기(180)와 상기 열원측 판형 열교환기(170)로 각각 분지되는 비율 또는
상기 열원측 핀코일 열교환기(180)와 상기 열원측 판형 열교환기(170)로부터 상기 메인 팽창밸브(140)로 합지되는 비율을 제어할 수 있는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치. - 삭제
- 제 1 항에 있어서,
입구측이 상기 제 1 체크밸브(250a)와 상기 제 2 체크밸브(250b) 사이에 연결되고, 출구측이 상기 이코노마이저(160)에 연결되는 수액기(130)를 더 포함하는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치. - 삭제
- 삭제
- 제 1 항에 있어서,
상기 냉매의 액분리기(200)를 더 포함하고,
상기 사방밸브(110)의 제 4포트는 상기 액분리기(200)로 연결되고,
상기 액분리기(200)의 출구는 상기 압축기(100)에 연결되는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치. - 제 1 항에 있어서,
상기 수열센서(290)의 온도가 설정온도 이상인 경우,
상기 제어부는 상기 3방밸브(260)를 제어하여 상기 열원측 판형 열교환기(170)를 상기 지열부(280)와 연결되도록 하는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치. - 제 1 항에 있어서,
상기 수열센서(290)의 온도가 설정온도 이상인 경우,
상기 제어부는 상기 3방밸브(260)를 제어하여 상기 열원측 판형 열교환기(170)를 상기 지열부(280)와 상기 열원축열조(210)로부터 차단하는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치. - 제 1 항에 있어서,
상기 제어부는 상기 사방밸브(110)를 제어하여 난방모드와 냉방모드중 하나로 운전하는 것을 특징으로 하는 복합열원을 이용한 하이브리드 히트펌프 장치. - 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200056028A KR102213916B1 (ko) | 2020-05-11 | 2020-05-11 | 복합열원을 이용한 하이브리드 히트펌프 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200056028A KR102213916B1 (ko) | 2020-05-11 | 2020-05-11 | 복합열원을 이용한 하이브리드 히트펌프 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102213916B1 true KR102213916B1 (ko) | 2021-02-10 |
Family
ID=74560855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200056028A KR102213916B1 (ko) | 2020-05-11 | 2020-05-11 | 복합열원을 이용한 하이브리드 히트펌프 장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102213916B1 (ko) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0134851Y1 (ko) | 1996-06-26 | 1999-05-15 | 구자홍 | 공기 조화기용 열교환기의 냉매 균일 분배장치 |
KR20050011187A (ko) | 2003-07-22 | 2005-01-29 | 엘지전자 주식회사 | 열교환기용 냉매 분배기 |
KR20090082733A (ko) | 2008-01-28 | 2009-07-31 | 엘지전자 주식회사 | 공기조화 시스템 |
KR101042472B1 (ko) | 2008-12-30 | 2011-06-16 | 세협기계(주) | 과부하 제어장치가 설치되는 히트펌프 시스템 |
KR101449899B1 (ko) | 2014-03-11 | 2014-10-13 | 대성히트펌프 주식회사 | 히트펌프 이코노마이저, 히트펌프 및 이를 이용한 냉난방 시스템 |
KR20140131793A (ko) * | 2013-05-06 | 2014-11-14 | 청주대학교 산학협력단 | 지열, 태양열 및 공기열을 이용한 하이브리드 히트펌프 시스템 |
KR101545104B1 (ko) * | 2014-12-22 | 2015-08-24 | 에이치티씨시스템 주식회사 | 축열기능을 겸비한 냉난방 히트펌프 시스템 |
KR101591290B1 (ko) | 2014-05-14 | 2016-02-03 | 오텍캐리어 주식회사 | 이원 냉동 사이클을 갖는 히트 펌프 시스템 및 그 운전 방법 |
KR20190027211A (ko) * | 2017-09-06 | 2019-03-14 | 주식회사 엠티에스 | 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법 |
-
2020
- 2020-05-11 KR KR1020200056028A patent/KR102213916B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0134851Y1 (ko) | 1996-06-26 | 1999-05-15 | 구자홍 | 공기 조화기용 열교환기의 냉매 균일 분배장치 |
KR20050011187A (ko) | 2003-07-22 | 2005-01-29 | 엘지전자 주식회사 | 열교환기용 냉매 분배기 |
KR20090082733A (ko) | 2008-01-28 | 2009-07-31 | 엘지전자 주식회사 | 공기조화 시스템 |
KR101042472B1 (ko) | 2008-12-30 | 2011-06-16 | 세협기계(주) | 과부하 제어장치가 설치되는 히트펌프 시스템 |
KR20140131793A (ko) * | 2013-05-06 | 2014-11-14 | 청주대학교 산학협력단 | 지열, 태양열 및 공기열을 이용한 하이브리드 히트펌프 시스템 |
KR101449899B1 (ko) | 2014-03-11 | 2014-10-13 | 대성히트펌프 주식회사 | 히트펌프 이코노마이저, 히트펌프 및 이를 이용한 냉난방 시스템 |
KR101591290B1 (ko) | 2014-05-14 | 2016-02-03 | 오텍캐리어 주식회사 | 이원 냉동 사이클을 갖는 히트 펌프 시스템 및 그 운전 방법 |
KR101545104B1 (ko) * | 2014-12-22 | 2015-08-24 | 에이치티씨시스템 주식회사 | 축열기능을 겸비한 냉난방 히트펌프 시스템 |
KR20190027211A (ko) * | 2017-09-06 | 2019-03-14 | 주식회사 엠티에스 | 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9316421B2 (en) | Air-conditioning apparatus including unit for increasing heating capacity | |
US9234676B2 (en) | Hot water supply apparatus associated with heat pump | |
JP2554208B2 (ja) | ヒートポンプ式給湯装置 | |
US9416990B2 (en) | Hot water supply apparatus associated with heat pump | |
WO2014020651A1 (ja) | 空気調和装置 | |
WO2011048695A1 (ja) | 空気調和装置 | |
EP4023961B1 (en) | Oil return control method of multifunctional multi-split system with two four-way valves | |
EP2584285B1 (en) | Refrigerating air-conditioning device | |
KR101142914B1 (ko) | 열교환이 향상된 2단 히트펌프 사이클을 이용한 온수 및 냉수 생산 시스템 | |
CN111811166B (zh) | 一种带热回收的三联供热泵机组 | |
WO2020082741A1 (zh) | 两管制喷气增焓室外机及多联机系统 | |
KR102434229B1 (ko) | 공기조화기 및 그 제어방법 | |
KR20100062405A (ko) | 공기조화기 및 그 제어방법 | |
KR101713543B1 (ko) | 열회수 온수공급 기능을 보유한 히트펌프 냉난방기 | |
KR102213916B1 (ko) | 복합열원을 이용한 하이브리드 히트펌프 장치 | |
KR20210093560A (ko) | 냉난방 및 급탕 동시형 공기조화시스템 및 그의 제어방법 | |
KR102345648B1 (ko) | 동시 또는 개별 급탕운전이 가능한 지열 히트펌프 시스템 | |
WO2022246968A1 (zh) | 一种热泵空调装置及其实现方法 | |
CN115164434B (zh) | 复叠式热泵系统及其控制方法 | |
CN115164433B (zh) | 复叠式热泵系统及其控制方法 | |
KR20140133375A (ko) | 공기열 이원 사이클 히트펌프 냉난방 장치 | |
KR101403452B1 (ko) | 냉동기 시스템 | |
KR101145051B1 (ko) | 고압방지용 공기조화기 | |
KR100419479B1 (ko) | 보조냉동기가 부착된 히트펌프시스템 | |
CN114710932A (zh) | 一种制冷/热管复合型机柜空调系统及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |