KR102208012B1 - Markers for cocaine addiction - Google Patents
Markers for cocaine addiction Download PDFInfo
- Publication number
- KR102208012B1 KR102208012B1 KR1020170176088A KR20170176088A KR102208012B1 KR 102208012 B1 KR102208012 B1 KR 102208012B1 KR 1020170176088 A KR1020170176088 A KR 1020170176088A KR 20170176088 A KR20170176088 A KR 20170176088A KR 102208012 B1 KR102208012 B1 KR 102208012B1
- Authority
- KR
- South Korea
- Prior art keywords
- seq
- primer pair
- nos
- cocaine
- primer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/30—Psychoses; Psychiatry
- G01N2800/307—Drug dependency, e.g. alcoholism
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 코카인의 급성 또는 만성 투여시 발현이 유의적으로 변화하는 바이오 마커들에 관한 것으로, 본 발명의 바이오 마커인 ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A는 코카인의 급성 또는 만성 투여시 mRNA 및 단백질의 발현량이 유의적으로 상향 또는 하향 조절되므로, 이들의 발현 패턴을 통해 코카인의 급성 또는 만성 노출에 의한 코카인 중독 및 의존성을 확인할 수 있다.The present invention relates to biomarkers whose expression is significantly changed upon acute or chronic administration of cocaine, the biomarkers of the present invention ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6 , GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, MCM311, WNTBM14, TP5311, WNTBD14 , DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLC1866, B179, LOCL101, BP, ECL101, and BP, LOC101865389 And TNFRSF1A significantly increases or decreases the expression levels of mRNA and protein during acute or chronic administration of cocaine, so cocaine addiction and dependence due to acute or chronic exposure of cocaine can be confirmed through their expression patterns.
Description
본 발명은 코카인 중독 특이적 바이오 마커에 관한 것으로, 구체적으로, 코카인의 급성 또는 만성 투여시 발현이 유의적으로 변화하는 바이오 마커들에 관한 것이다.The present invention relates to biomarkers specific for cocaine addiction, and specifically, to biomarkers whose expression is significantly changed upon acute or chronic administration of cocaine.
약물남용이란 약물을 의도적으로 다른 목적 (비의학적 목적)을 위해 사용하는 것을 말하며, 약물남용은 사용자의 의도에 따라 약물오용과 구별된다. 아편, 대마, 코카인, 메스암페타민 등과 같은 많은 약물들이 쾌락, 불안해소, 기분전환을 위해 남용되고 있는 가운데, 최근에는 이런 종류뿐만 아니라 진정제, 각성제, 흡입제, 호르몬제 등의 다양한 물질들이 남용되고 있다. 이들 물질들의 반복적인 사용은 뇌에서의 장기적인 변화를 초래하게 되는 심각한 질환을 야기 시킬 뿐만아니라 개인과 사회 모두에게 해를 끼치고, 이러한 약물남용은 특정 사회, 경제적 집단에 한정된 것이 아니라 사회전체에 널리 영향을 미치기 때문에 국가적으로 이들 약물의 사용을 규제하고 있다.남용 약물은 약물추구행동(drug- seeking behavior)을 유도하고, 이러한 현상은 일차적으로 약물 섭취와 관련하여 강한 보상작용(reward)에 의한 정신적 의존성(psychological dependence)이 형성되며, 계속되는 남용은 내성(tolerance)과 만성적 의존을 일으킨다. 약물 사용을 중단하면 신체적 의존성(physical dependence)이 나타나고, 이러한 현상은 신체를 정상으로 유지하려는 생리적 기능 때문에 생기는 현상이며, 그 결과로 생리적으로 견디기 어려운 금단증상(withdrawal, abstinence syndrome)이 나타나며 그 증상은 약물에 따라 다르다.Substance abuse refers to the intentional use of drugs for other purposes (non-medical purposes), and substance abuse is distinguished from substance abuse according to the intention of the user. Many drugs, such as opium, hemp, cocaine, and methamphetamine, are being abused for pleasure, anxiety relief, and relaxation. Recently, not only these types, but also various substances such as sedatives, stimulants, inhalants, and hormones are abused. The repeated use of these substances not only causes serious diseases that lead to long-term changes in the brain, but also harms both individuals and society, and such substance abuse is not limited to specific social and economic groups, but widely affects society as a whole. The use of these drugs is regulated nationally because drugs of abuse induce drug-seeking behavior, which is primarily a mental dependence due to strong rewards related to drug intake. (psychological dependence) is formed, and continued abuse leads to tolerance and chronic dependence. When drug use is stopped, physical dependence appears, and this phenomenon occurs due to the physiological function to keep the body in normal condition, and as a result, withdrawal, abstinence syndrome, which is difficult to tolerate physiologically, appears. It depends on the drug.
코카인 또는 암페타민과 같은, 정신 흥분제(Psychostimulants)는 기민함을 증가시키고 인간 내 물리적 역량을 증가시킨다. 이러한 물질들은 처음에는 도파민 투과를 증가시키나, 장기간 약물 사용은 뇌 보상 시스템의 조절장애(dysregulation) 및 정신불안을 이끌어내면서 결과적으로 도파민 활동성이 감소된다. 만성적 코카인 남용은 주요한 건강 상의 문제를 일으킨다. 코카인 사용자는 혈관 수축, 동공 확대, 및 체온, 심장 박동수 및 혈압 증가를 통해 심장 마비 또는 뇌졸중과 같은, 돌연사로 이어질 수 있는 급성 심혈관 또는 뇌혈관 응급 상황을 경험할 수 있으며, 과자극(hyperstimulation), 빈맥(tachycardia), 고혈압(hypertension), 산동(mydriasis), 근육 뒤틀림(muscle twitching), 불면증(sleeplessness), 극단적 신경예민(extreme nervousness), 망상(hallucinations), 편집증(paranoia), 공격적 행위, 및 의기소침의 증상이 발생한다. 코카인 사용과 관련된 기타 합병증은 심장 리듬 장애, 흉통 및 호흡 부전, 발작, 두통, 및 복통 및 구역질과 같은 위장관 합병증을 포함한다. 또한, 코카인이 식욕을 감소시키는 경향이 있기 때문에, 많은 장기 사용자들은 영양 실조 상태가 될 수 있다. 나아가, 니코틴, 코카인 및 알코올을 동시적으로 남용하는 것이 흔하다는 것이 익히 알려져 있다. 코카인 및 알코올의 병용은 인간에서 어느 하나의 약물 단독으로보다 더 많은 심혈관 독성을 발휘하는 것으로 나타났다.Psychostimulants, such as cocaine or amphetamine, increase alertness and increase physical capacity in humans. These substances initially increase dopamine permeation, but long-term drug use leads to dysregulation and mental anxiety of the brain reward system, resulting in decreased dopamine activity. Chronic cocaine abuse causes major health problems. Cocaine users may experience acute cardiovascular or cerebrovascular emergencies that can lead to sudden death, such as a heart attack or stroke through vasoconstriction, dilated pupils, and increased body temperature, heart rate and blood pressure, and hyperstimulation, tachycardia. (tachycardia), hypertension, mydriasis, muscle twitching, sleeplessness, extreme nervousness, hallucinations, paranoia, aggressive behavior, and depression The symptoms occur. Other complications associated with cocaine use include heart rhythm disorders, chest pain and respiratory failure, seizures, headaches, and gastrointestinal complications such as abdominal pain and nausea. Also, because cocaine tends to reduce appetite, many long-term users can become malnourished. Furthermore, it is well known that simultaneous abuse of nicotine, cocaine and alcohol is common. The combination of cocaine and alcohol has been shown to exert more cardiovascular toxicity in humans than either drug alone.
역사적으로, 화학물질 의존성 치료는 주로 해당 물질의 사용을 자발적으로 중단하도록 환자를 설득하는 시도(행동요법)를 수반하였다. 그러나, 코카인, 모르핀, 암페타민, 니코틴 및 알코올, 및 기타 유형의 도파민-생성제는 중독성이 강한 물질이며, 이러한 약물에 대한 의존은 끊기가 더 어려울 수 있고, 대부분의 다른 중독성 물질들에 대한 의존보다 피해가 상당히 더 크다. 특히, 알코올, 코카인 및 헤로인 의존은 통상 만성 재발성 장애이다. 정신적 의존은 거의 언제나 신체적 의존에 선행하지만 반드시 신체적 의존으로 발전되는 것은 아니며, 내성은 동일한 효과를 얻기 위해 보다 많은 용량의 투여를 필요로 하는 약물효과에 대한 반응의 감소를 의미하고, 내성의 종류로는 약물을 만성적으로 사용한 후 약물의 대사가 증대되는 대사성 내성(metabolic tolerance), 약물의 효과를 보상하는 행동적 내성(behavioral tolerance: behavioral sensitization), 약물수용체, 효소 또는 생체막에 대한 작용의 보상적 변화인 기능적 내성(functional tolerance)이 있다.Historically, chemical-dependent treatment has primarily involved attempts to persuade patients to voluntarily stop using the substance (behavioral therapy). However, cocaine, morphine, amphetamine, nicotine and alcohol, and other types of dopamine-producing agents are highly addictive substances, and dependence on these drugs can be more difficult to break, and than dependence on most other addictive substances. The damage is significantly greater. In particular, alcohol, cocaine and heroin dependence are usually chronic recurrent disorders. Mental dependence almost always precedes physical dependence, but does not necessarily develop into physical dependence. Tolerance refers to a decrease in response to drug effects requiring administration of higher doses to obtain the same effect. Is metabolic tolerance in which the metabolism of the drug increases after chronic use of the drug, behavioral tolerance (behavioral sensitization) that compensates for the effect of the drug, and compensatory changes in the action of drug receptors, enzymes, or biological membranes. There is a functional tolerance.
이러한 약물 중독 및 의존성 연구를 위하여, 중추신경흥분제의 의존성 발현 기전 연구가 있어 왔으며, 데시프라민(Desipramine), 아만타딘(amantadine) 및 브로모크립틴(bromocriptine)은 코카인 금단 증상을 감소시키고, 디술피람이 코카인 의존성의 치료에 사용될 수 있다는 것이 최근 제시되었다 (예를 들어, Bonet et al., Journal of Substance Abuse Treatment, 26 (2004), 225-232 참조). 또한, 최근 마이크로어레이 기술을 적용하여 약물남용에 의한 중추신경계의 분자생물학적 표지마커 또는 바이오마커를 발굴하고자 하는 연구가 진행되고 있다. For the study of drug addiction and dependence, there have been studies on the mechanism of expression of the dependence of central nervous system stimulants. Desipramine, amantadine and bromocriptine reduce cocaine withdrawal symptoms, and disulfiram It has recently been shown that it can be used in the treatment of cocaine dependence (see, e.g., Bonet et al., Journal of Substance Abuse Treatment, 26 (2004), 225-232). In addition, recent research to discover molecular biological markers or biomarkers of the central nervous system due to drug abuse by applying microarray technology is being conducted.
본 발명에서는 코카인을 사용하였을 때 발현의 변화를 보여 약물 중독 여부를 판단하는데 주요한 증거가 될 수 있는 유전자와 단백질 마커를 발굴함으로써 급성 또는 만성 코카인 중독 (또는 노출)을 진단하는데 이용하는 것을 목적으로 한다.In the present invention, it is an object of the present invention to be used to diagnose acute or chronic cocaine addiction (or exposure) by discovering genes and protein markers that can serve as major evidence for determining drug addiction by showing changes in expression when cocaine is used.
상기 목적의 달성을 위해, 본 발명은 코카인 중독 및 의존성 확인용 바이오 마커를 제공한다.In order to achieve the above object, the present invention provides a biomarker for confirming cocaine addiction and dependence.
또한, 본 발명은 급성 및 만성 코카인 중독 및 의존성 구별용 바이오 마커를 제공한다.In addition, the present invention provides a biomarker for distinguishing acute and chronic cocaine addiction and dependence.
또한, 본 발명은 코카인 중독 및 의존성 확인용 바이오마커 단백질을 제공한다.In addition, the present invention provides a biomarker protein for confirming cocaine addiction and dependence.
또한, 본 발명은 코카인 중독 및 의존성 확인용 조성물을 제공한다.In addition, the present invention provides a composition for determining cocaine addiction and dependence.
또한, 본 발명은 코카인 중독 및 의존성 확인용 키트를 제공한다.In addition, the present invention provides a kit for checking cocaine addiction and dependence.
아울러, 본 발명은 코카인 노출 진단에 필요한 정보를 제공하는 방법을 제공한다.In addition, the present invention provides a method of providing information necessary for cocaine exposure diagnosis.
본 발명에 따르면, ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A는 코카인의 급성 또는 만성 투여시 mRNA 및 단백질의 발현량이 유의적으로 상향 또는 하향 조절되므로, 코카인의 급성 또는 만성 노출에 의한 코카인 중독 및 의존성 확인에 유용하게 이용될 수 있다.According to the present invention, ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DLG3 , NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC5J2926461, ACHEC3101, ADC5389, ACHEC3, PPP289 LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175, and TNFRSF1A significantly up or down the expression of mRNA and protein when cocaine is administered acute or chronic. It can be usefully used to confirm cocaine addiction and dependence by acute or chronic exposure of cocaine.
도 1은 본 발명의 전체적인 실험 프로토콜의 도식도이다.
도 2는 해마에서의 급성/만성 코카인 중독에 따른 발현 변화 유전자들을 벤 다이어그램 분석을 통해 발굴하는 과정을 나타낸 도이다.
도 3은 급성/만성 코카인 중독에 따라 해마에서 발현이 변화한 유전자 ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, MCM3AP 및 WNT10B의 발현량을 나타낸 도이다:
Con: 코카인 무처리군;
CA: 급성 코카인 투여군;
CC: 만성 코카인 투여군;
Acute Cocaine: 급성 코카인 투여군; 및
Chronic Cocaine: 만성 코카인 투여군.
도 4는 선조체에서의 급성/만성 코카인 중독에 따른 발현 변화 유전자들을 벤 다이어그램 분석을 통해 발굴하는 과정을 나타낸 도이다.
도 5는 급성/만성 코카인 중독에 따라 선조체에서 발현이 변화한 유전자 DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A의 발현량을 나타낸 도이다:
Con: 코카인 무처리군;
CA: 급성 코카인 투여군; 및
CC: 만성 코카인 투여군.
도 6은 급성/만성 코카인 중독에 따라 선조체에서 발현이 변화한 유전자 DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A의 피어슨 상관 분석 결과를 나타낸 도이다.
도 7은 급성/만성 코카인 중독에 따라 선조체에서 발현이 변화한 유전자 CAMK2A 및 CASP9의 mRNA 발현 변화와 단백질 발현량 변화를 확인한 도이다:
a: CAMK2A 및 CASP9의 mRNA 발현량;
b: 인산화 CAMK2A, CAMK2A 및 절단된 CASP9의 단백질 발현량;
c: pCAMK2A/CAMK2A의 정량화;
d: 절단된 CASP9의 정량화;
Con: 코카인 무처리군;
CA: 급성 코카인 투여군; 및
CC: 만성 코카인 투여군.
도 8은 인간 뇌조직에서의 CAMK2A 발현 조절 양상을 검증한 도이다.
도 9는 CAMK2A에 대한 기능성 단백질 네트워크를 확인한 도이다.1 is a schematic diagram of the overall experimental protocol of the present invention.
2 is a diagram showing a process of discovering genes that change expression according to acute/chronic cocaine poisoning in the hippocampus through Venn diagram analysis.
Figure 3 shows genes ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA genes whose expression was changed in the hippocampus according to acute/chronic cocaine poisoning. , CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, MCM3AP, and WNT10B expression levels:
Con: cocaine untreated group;
CA: acute cocaine administration group;
CC: chronic cocaine administration group;
Acute Cocaine: acute cocaine administration group; And
Chronic Cocaine: Chronic cocaine administration group.
4 is a diagram illustrating a process of discovering genes that change expression according to acute/chronic cocaine poisoning in striatum through Venn diagram analysis.
5 shows genes DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, and SLC5A7926461, PLCB1, and SLC5. , CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 and TNFRSF1A is a diagram showing the expression levels of:
Con: cocaine untreated group;
CA: acute cocaine administration group; And
CC: chronic cocaine administration group.
6 shows genes whose expression in striatum was changed according to acute/chronic cocaine poisoning: DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC5A7926461, PLCB1, SLC5. , CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175, and TNFRSF1A Pearson correlation analysis results.
7 is a diagram illustrating changes in mRNA expression and protein expression levels of genes CAMK2A and CASP9 whose expression was changed in striatum according to acute/chronic cocaine poisoning:
a: mRNA expression levels of CAMK2A and CASP9;
b: protein expression levels of phosphorylated CAMK2A, CAMK2A and truncated CASP9;
c: quantification of pCAMK2A/CAMK2A;
d: quantification of truncated CASP9;
Con: cocaine untreated group;
CA: acute cocaine administration group; And
CC: chronic cocaine administration group.
8 is a diagram illustrating the regulation of CAMK2A expression in human brain tissue.
9 is a diagram illustrating a functional protein network for CAMK2A.
이하, 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다. Hereinafter, the present invention will be described in detail as an embodiment of the present invention. However, the following embodiments are presented as examples of the present invention, whereby the present invention is not limited, and the present invention can be variously modified and applied within the scope of equality interpreted from the description of the claims to be described later. .
달리 지시되지 않는 한, 핵산은 좌측에서 우측으로 5'→3' 배향으로 기록된다. 명세서 내에서 열거된 수치 범위는 범위를 정의하는 숫자를 포함하고, 정의된 범위 내의 각각의 정수 또는 임의의 비-정수 분획을 포함한다.Unless otherwise indicated, nucleic acids are written in a 5'→3' orientation from left to right. Numerical ranges recited within the specification include the numbers defining the range, and include each integer or any non-integer fraction within the defined range.
달리 정의되지 않는 한, 본원에서 사용된 모든 기술적 및 과학적 용어는 본 발명이 속하는 분야의 당업자가 통상적으로 이해하는 것과 동일한 의미를 갖는다. 본원에 기술된 것들과 유사하거나 등가인 임의의 방법 및 재료가 본 발명을 테스트하기 위한 실행에서 사용될 수 있지만, 바람직한 재료 및 방법이 본원에서 기술된다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in practice to test the present invention, preferred materials and methods are described herein.
본 발명에서 용어, "대상체" 또는 "환자"는 인간, 유인원, 원숭이, 소, 개, 기니아 피그, 토끼, 닭, 곤충 등을 포함하여 치료가 요구되는 임의의 단일 개체를 의미한다. 또한, 임의의 질병 임상 소견을 보이지 않는 임상 연구 시험에 참여한 임의의 대상 또는 역학 연구에 참여한 대상 또는 대조군으로 사용된 대상이 대상에 포함된다. 본 발명의 일 실시예에서는 원숭이와 인간을 대상으로 하였다.In the present invention, the term "subject" or "patient" refers to any single individual in need of treatment, including humans, apes, monkeys, cows, dogs, guinea pigs, rabbits, chickens, insects, and the like. In addition, any subject who participated in a clinical study trial showing no clinical manifestation of any disease, or a subject who participated in an epidemiological study or a subject used as a control group is included. In one embodiment of the present invention, monkeys and humans were targeted.
본 발명에서 용어, "조직" 또는 "시료(샘플)"는 대상 또는 환자로부터 얻은 조직 또는 세포를 의미한다. 조직 또는 세포 샘플의 공급원은 신선한, 동결된 및/또는 보존된 장기 또는 조직 샘플 또는 생검 또는 흡인물로부터의 고형 조직; 혈액 또는 임의의 혈액 구성분; 대상의 임신 또는 발생의 임의의 시점의 세포일 수 있다. 조직 샘플은 또한 1차 또는 배양 세포 또는 세포주일 수 있다.In the present invention, the term "tissue" or "sample (sample)" refers to a tissue or cell obtained from a subject or patient. The source of the tissue or cell sample may be a fresh, frozen and/or preserved organ or tissue sample or solid tissue from a biopsy or aspirate; Blood or any blood component; It may be a cell at any point in the subject's pregnancy or development. The tissue sample can also be a primary or cultured cell or cell line.
본 발명에서 용어, "코카인 중독(cocaine Addiction)"은 중독성 약물인 코카인의 남용으로 약물에 대한 의존성(dependence)이 생기고, 사용할 때마다 양을 늘려야 효과가 생기는 내성(tolerance)이 생기고, 사용하지 않으면 온 몸에 견디기 힘든 이상을 일으키는 금단증상(withdrawal symptoms)이 생기는 현상이며, 코카인에 장기간 노출된 "만성 중독"과 단기간 노출된 "급성 중독"을 포함한다.In the present invention, the term "cocaine addiction" refers to the abuse of cocaine, which is an addictive drug, resulting in dependence on the drug, and tolerance occurs when the amount is increased to produce an effect, and if not used It is a phenomenon of withdrawal symptoms that cause abnormalities that are difficult to endure in the whole body, and includes "chronic addiction" exposed to cocaine for a long time and "acute addiction" exposed for a short period of time.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.All technical terms used in the present invention, unless otherwise defined, are used in the same sense as those of ordinary skill in the art generally understand in the related field of the present invention. In addition, although preferred methods or samples are described in the present specification, those similar or equivalent are included in the scope of the present invention. The contents of all publications referred to herein by reference are incorporated into the present invention.
일 측면에서, 본 발명은 코카인 노출시 발현 변화를 나타내는 ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 상기 유전자가 코딩하는 단백질을 포함하는, 코카인 중독 및 의존성 확인용 바이오 마커에 관한 것이며, 상기 유전자들은 표 1 및 2에 기재된 Accession no.로 정의된다. 일 실시예에서, 급성/만성 코카인 투여에 따라 발현량이 변화하는 유전자들을 확인하기 위해, 도 1에 나타낸 바와 같이 분석을 수행한 결과, 상기 유전자군들의 발현량이 유의미하게 상향 또는 하향 조절된 것을 확인하였다.In one aspect, the present invention represents a change in expression upon exposure to cocaine ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2 CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD2101, GNAL, and PCHE2 , ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 and TNFRSF1A encoding one or more genes selected from the group or genes selected from the group. It relates to a biomarker for confirming cocaine addiction and dependence, including a protein, and the genes are defined as Accession no. shown in Tables 1 and 2. In one embodiment, in order to identify genes whose expression levels change according to acute/chronic cocaine administration, as a result of performing an analysis as shown in FIG. 1, it was confirmed that the expression levels of the gene groups were significantly increased or down-regulated. .
일 구현예에서, 급성 코카인 노출시 PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175 및 CASP9로 이루어진 군으로부터 선택되는 하나 이상의 유전자 발현이 상향 조절되고, MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A 및 BCL2L1로 이루어진 군으로부터 선택되는 하나 이상의 유전자 발현이 하향 조절될 수 있다. In one embodiment, upon acute cocaine exposure PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, CASP9, LOC1015, KCN175 and KCN175 Expression of one or more genes selected from the group consisting of is upregulated, MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2 And expression of one or more genes selected from the group consisting of BCL2L1 may be down-regulated.
일 구현예에서, 만성 코카인 노출시 ARHGEF7, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1 및 BAD로 이루어진 군으로부터 선택되는 하나 이상의 유전자 발현이 상향 조절되고, MCM3AP, PTOV1, GTF2I, AKT3, CAMK2A 및 LOC101866246로 이루어진 군으로부터 선택되는 하나 이상의 유전자 발현이 하향 조절될 수 있다. In one embodiment, upon chronic cocaine exposure, expression of at least one gene selected from the group consisting of ARHGEF7, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1, and BAD is upregulated and , MCM3AP, PTOV1, GTF2I, AKT3, CAMK2A and LOC101866246 expression of one or more genes selected from the group consisting of may be down-regulated.
일 측면에서, 본 발명은 ARHGEF7, PTOV1 및 GTF2I 유전자 또는 상기 유전자가 코딩하는 단백질을 포함하는, 급성 및 만성 코카인 중독 및 의존성 구별용 바이오 마커에 관한 것이며, 상기 ARHGEF7, PTOV1 및 GTF2I 유전자의 발현 조절 패턴으로 급성 및 만성 코카인 중독 및 의존성을 구별할 수 있다. 일 실시예에서, ARHGEF7는 만성 코카인 중독군에서 발현이 증가하였고, PTOV1는 급성 코카인 중독군에서 발현이 증가하고 만성 코카인 중독군에서는 발현이 감소하였으며, GTF2I는 급성 및 만성 코카인 중독군에서 발현이 감소하였으나 급성 코카인 중독군에서의 발현 감소가 만성 코카인 중독군에 비해 현저한 것으로 나타났다 (도 3a 위쪽 그래프 참조).In one aspect, the present invention relates to a biomarker for acute and chronic cocaine addiction and dependence discrimination, including the ARHGEF7, PTOV1 and GTF2I genes or the protein encoded by the gene, and the expression control pattern of the ARHGEF7, PTOV1 and GTF2I genes Can distinguish between acute and chronic cocaine addiction and dependence. In one embodiment, the expression of ARHGEF7 was increased in the chronic cocaine addicted group, the expression of PTOV1 increased in the acute cocaine addicted group and decreased in the chronic cocaine addicted group, and the expression of GTF2I decreased in the acute and chronic cocaine addicted group. However, it was found that the decrease in expression in the acute cocaine addicted group was remarkable compared to the chronic cocaine addicted group (see the upper graph of Fig. 3a).
일 측면에서, 본 발명은 코카인 노출시 단백질 발현량이 변화하는 CAMK2A 단백질, GRIN1 단백질 및 CASP9 단백질을 포함하는, 코카인 중독 및 의존성 확인용 바이오마커 단백질에 관한 것이다. 일 구현예에서 DLG1 마커 단백질을 추가로 포함할 수 있다. 일 실시예에서, 코카인 노출시 CAMK2A 유전자 발현이 감소하고, CASP9의 발현이 증가하였으나, 단백질 수준에서는 급성 및 만성 코카인 노출시 CAMK2A 단백질의 인산화가 감소하였으며, 만성 코카인 노출시 CAMK2A 단백질의 발현량이 감사하였고, 급성 코카인 노출시 절단된 CASP9이 증가한 반면, 만성 코카인 노출시 절단된 CASP9가 관찰되지 않았다 (도 7 참조). In one aspect, the present invention relates to a biomarker protein for confirming cocaine addiction and dependence, including CAMK2A protein, GRIN1 protein, and CASP9 protein whose protein expression level changes upon exposure to cocaine. In one embodiment, it may further include a DLG1 marker protein. In one embodiment, the expression of CAMK2A gene decreased when exposed to cocaine, and the expression of CASP9 increased, but at the protein level, phosphorylation of CAMK2A protein decreased when exposed to acute and chronic cocaine, and the expression level of CAMK2A protein was appreciated during chronic cocaine exposure. , While the cleaved CASP9 increased upon acute cocaine exposure, the cleaved CASP9 was not observed upon chronic cocaine exposure (see FIG. 7).
일 측면에서, 본 발명은 코카인 노출시 발현 변화를 나타내는 ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A으로 이루어진 군으로부터 선택되는 하나 이상의 바이오 마커의 검출 시약을 포함하는 코카인 중독 및 의존성 확인용 조성물에 관한 것이다.In one aspect, the present invention represents a change in expression upon exposure to cocaine ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2 CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD2101, GNAL, and PCHE2 , ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 and TNFRSF1A reagent selected from the group of one or more biomarkers for detection It relates to a composition for determining cocaine addiction and dependence, including.
일 구현예에서, 검출 시약은 마커를 단백질 또는 핵산 수준에서 검출할 수 있는 시약일 수 있다.In one embodiment, the detection reagent may be a reagent capable of detecting a marker at the protein or nucleic acid level.
일 구현예에서, 마커의 핵산 수준 검출 시약은 상기 마커의 핵산서열, 상기 핵산서열에 상보적인 핵산서열, 상기 핵산서열 및 상보적인 서열의 단편을 특이적으로 인식하는 프라미어 쌍, 또는 프로브, 또는 프라이머쌍 및 프로브를 포함할 수 있으며, 이를 중합효소연쇄반응, 실시간 RT-PCR (Real-time RT-PCR), 역전사 중합효소연쇄반응, 경쟁적 중합효소연쇄반응(Competitive RT-PCR), Nuclease 보호 분석(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 노던블랏, DNA 칩을 포함하는 유전자 발현량 분석 방법에 이용할 수 있으나 이로 제한되는 것은 아니다. In one embodiment, the reagent for detecting the nucleic acid level of the marker is a primer pair or probe that specifically recognizes the nucleic acid sequence of the marker, a nucleic acid sequence complementary to the nucleic acid sequence, the nucleic acid sequence and a fragment of the complementary sequence, or Primer pairs and probes may be included, which are polymerase chain reaction, real-time RT-PCR, reverse transcription polymerase chain reaction, competitive polymerase chain reaction (Competitive RT-PCR), and Nuclease protection analysis. (RNase, S1 nuclease assay), in situ hybridization, nucleic acid microarray, Northern blot, can be used for gene expression analysis methods including DNA chips, but is not limited thereto.
일 구현예에서, 본 발명의 유전자 마커들에 대한 프라이머 쌍은 서열번호 1 및 2의 프라이머 쌍, 서열번호 3 및 4의 프라이머 쌍, 서열번호 5 및 6의 프라이머 쌍, 서열번호 7 및 8의 프라이머 쌍, 서열번호 9 및 10의 프라이머 쌍, 서열번호 11 및 12의 프라이머 쌍, 서열번호 13 및 14의 프라이머 쌍, 서열번호 15 및 16의 프라이머 쌍, 서열번호 17 및 18의 프라이머 쌍, 서열번호 19 및 20의 프라이머 쌍, 서열번호 21 및 22의 프라이머 쌍, 서열번호 23 및 24의 프라이머 쌍, 서열번호 25 및 26의 프라이머 쌍, 서열번호 27 및 28의 프라이머 쌍, 서열번호 29 및 30의 프라이머 쌍, 서열번호 31 및 32의 프라이머 쌍, 서열번호 33 및 34의 프라이머 쌍, 서열번호 35 및 36의 프라이머 쌍, 서열번호 37 및 38의 프라이머 쌍, 서열번호 39 및 40의 프라이머 쌍, 서열번호 41 및 42의 프라이머 쌍, 서열번호 43 및 44의 프라이머 쌍, 서열번호 45 및 46의 프라이머 쌍, 서열번호 47 및 48의 프라이머 쌍, 서열번호 49 및 50의 프라이머 쌍, 서열번호 51 및 52의 프라이머 쌍, 서열번호 53 및 54의 프라이머 쌍, 서열번호 55 및 56의 프라이머 쌍, 서열번호 57 및 58의 프라이머 쌍, 서열번호 61 및 62의 프라이머 쌍, 서열번호 63 및 64의 프라이머 쌍, 서열번호 65 및 66의 프라이머 쌍, 서열번호 67 및 68의 프라이머 쌍, 서열번호 69 및 70의 프라이머 쌍, 서열번호 71 및 72의 프라이머 쌍, 서열번호 73 및 74의 프라이머 쌍, 서열번호 75 및 76의 프라이머 쌍, 서열번호 77 및 78의 프라이머 쌍, 서열번호 79 및 80의 프라이머 쌍, 서열번호 81 및 82의 프라이머 쌍, 서열번호 83 및 84의 프라이머 쌍, 서열번호 85 및 86의 프라이머 쌍, 서열번호 87 및 88의 프라이머 쌍, 서열번호 89 및 90의 프라이머 쌍, 서열번호 91 및 92의 프라이머 쌍, 서열번호 93 및 94의 프라이머 쌍, 서열번호 95 및 96의 프라이머 쌍, 서열번호 97 및 98의 프라이머 쌍, 서열번호 99 및 100의 프라이머 쌍, 서열번호 101 및 102의 프라이머 쌍, 서열번호 103 및 104의 프라이머 쌍, 서열번호 105 및 106의 프라이머 쌍, 서열번호 107 및 108의 프라이머 쌍, 서열번호 109 및 110의 프라이머 쌍, 서열번호 111 및 112의 프라이머 쌍, 및 서열번호 113 및 114의 프라이머 쌍으로 이루어진 군으로부터 선택될 수 있다.In one embodiment, the primer pair for the genetic markers of the present invention is a primer pair of SEQ ID NO: 1 and 2, a primer pair of SEQ ID NO: 3 and 4, a primer pair of SEQ ID NO: 5 and 6, a primer of SEQ ID NO: 7 and 8 A pair, a primer pair of SEQ ID NOs: 9 and 10, a primer pair of SEQ ID NOs: 11 and 12, a primer pair of SEQ ID NOs: 13 and 14, a primer pair of SEQ ID NOs: 15 and 16, a primer pair of SEQ ID NOs: 17 and 18, SEQ ID NO: 19 And a primer pair of 20, a primer pair of SEQ ID NOs: 21 and 22, a primer pair of SEQ ID NOs: 23 and 24, a primer pair of SEQ ID NOs: 25 and 26, a primer pair of SEQ ID NOs: 27 and 28, a primer pair of SEQ ID NOs: 29 and 30. , A primer pair of SEQ ID NOs: 31 and 32, a primer pair of SEQ ID NOs: 33 and 34, a primer pair of SEQ ID NOs: 35 and 36, a primer pair of SEQ ID NOs: 37 and 38, a primer pair of SEQ ID NOs: 39 and 40, and SEQ ID NO: 41 and A primer pair of 42, a primer pair of SEQ ID NOs: 43 and 44, a primer pair of SEQ ID NOs: 45 and 46, a primer pair of SEQ ID NOs: 47 and 48, a primer pair of SEQ ID NOs: 49 and 50, a primer pair of SEQ ID NOs: 51 and 52, A primer pair of SEQ ID NOs: 53 and 54, a primer pair of SEQ ID NOs: 55 and 56, a primer pair of SEQ ID NOs: 57 and 58, a primer pair of SEQ ID NOs: 61 and 62, a primer pair of SEQ ID NOs: 63 and 64, and SEQ ID NOs: 65 and 66 A primer pair of, a primer pair of SEQ ID NOs: 67 and 68, a primer pair of SEQ ID NOs: 69 and 70, a primer pair of SEQ ID NOs: 71 and 72, a primer pair of SEQ ID NOs: 73 and 74, a primer pair of SEQ ID NOs: 75 and 76, sequence The primer pair of SEQ ID NO: 77 and 78, the primer pair of SEQ ID NO: 79 and 80, the primer pair of SEQ ID NO: 81 and 82, the primer pair of SEQ ID NO: 83 and 84, the primer pair of SEQ ID NO: 85 and 86, of SEQ ID NO: 87 and 88 Primer pair, primer pair of SEQ ID NO: 89 and 90, SEQ ID NO: 9 Primer pairs of 1 and 92, primer pairs of SEQ ID NOs: 93 and 94, primer pairs of SEQ ID NOs: 95 and 96, primer pairs of SEQ ID NOs: 97 and 98, primer pairs of SEQ ID NOs: 99 and 100, primers of SEQ ID NOs: 101 and 102 A pair, a primer pair of SEQ ID NOs: 103 and 104, a primer pair of SEQ ID NOs: 105 and 106, a primer pair of SEQ ID NOs: 107 and 108, a primer pair of SEQ ID NOs: 109 and 110, a primer pair of SEQ ID NOs: 111 and 112, and SEQ ID NO: It may be selected from the group consisting of primer pairs of 113 and 114.
일 구현예에서, 마커의 단백질 수준 검출 시약은 상기 마커의 단백질 전장 또는 그 단편을 특이적으로 인식하는 항체, 항체단편, 앱타머(aptamer), 아비머(avidity multimer) 또는 펩티도모방체(peptidomimetics)를 포함할 수 있으며, 이를 웨스턴블랏, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: Radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 면역 전기영동, 조직면역염색, 면역침전 분석법(Immunoprecipitation assay), 보체 고정 분석법(Complement Fixation Assay), FACS, 질량분석, 또는 단백질 마이크로어레이를 포함하는 단백질 양 분석 방법에 이용할 수 있으나 이로 제한되는 것은 아니다. In one embodiment, the reagent for detecting the protein level of the marker is an antibody, antibody fragment, an aptamer, an avidity multimer, or a peptidomimetics that specifically recognizes the entire protein length of the marker or a fragment thereof. ), which may include Western blot, ELISA (enzyme linked immunosorbent assay), radioimmunoassay (RIA), radioimmunodiffusion, immunoelectrophoresis, tissue immunostaining, and immunoprecipitation assay (Immunoprecipitation assay). , Complement Fixation Assay, FACS, mass spectrometry, or protein quantity analysis methods including protein microarrays, but are not limited thereto.
본 발명에서 사용된 용어 "검출" 또는 "측정"은 검출 또는 측정된 대상의 농도를 정량하는 것을 의미한다.The term "detection" or "measurement" as used in the present invention means to quantify the concentration of a detected or measured object.
본 발명에서 용어, "프라이머"는 짧은 자유 3말단 수산화기 (free 3 hydroxyl group)를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍 (base pair)를 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응 (즉, DNA 폴리머레이트 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성이 개시할 수 있다. 본 발명에서는 코카인의 급성 또는 만성 중독 (노출)에 의해 발현이 변화하는 유전자에 특이적인 센스 및 안티센스 프라이머를 이용해 PCR 증폭을 실시하여 원하는 생성물의 수준의 측정을 통해 mRMA 발현 정도를 판별할 수 있다. 상기 PCR 조건, 센스 및 안티센스 프라이머의 길이는 통상의 기술분야에 공지된 것을 기초로 변형할 수 있으나 본 발명에서는 서열번호 1 내지 114의 프라이머 쌍을 이용하여 각각의 유전자의 발현 정도를 확인하였다.In the present invention, the term "primer" is a nucleic acid sequence having a short free 3 hydroxyl group, which can form a complementary template and a base pair, and is used as a starting point for template strand copying. It refers to a short functional nucleic acid sequence. The primer can initiate DNA synthesis in the presence of a reagent for polymerization (ie, DNA polymerate or reverse transcriptase) and four different nucleoside triphosphates at an appropriate buffer and temperature. In the present invention, PCR amplification using sense and antisense primers specific to genes whose expression changes due to acute or chronic poisoning (exposure) of cocaine can be performed, and the level of mRMA expression can be determined by measuring the level of a desired product. The PCR conditions, the length of the sense and antisense primers can be modified based on those known in the art, but in the present invention, the expression level of each gene was confirmed using a primer pair of SEQ ID NOs: 1 to 114.
본 발명에서 용어, "프로브"란 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며 라벨링 되어 있어서 특정 mRNA의 존재 유무를 확인할 수 있다. 프로브는 올리고 뉴클레오타이드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있다. 본 발명에서는 코카인의 급성 또는 만성 중독 (노출)에 의해 발현이 변화하는 유전자와 상보적인 프로브를 이용하여 혼성화를 실시하여, 혼성화 여부를 통해 각각의 유전자 발현 정도를 진단할 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 통상의 기술분야에 공지된 것을 기초로 변형할 수 있으므로 본 발명에서는 이에 대해 특별히 한정하지 않는다.In the present invention, the term "probe" refers to a nucleic acid fragment such as RNA or DNA corresponding to a few bases to a few hundred bases for a specific binding to mRNA, and is labeled to confirm the presence or absence of a specific mRNA. I can. The probe may be manufactured in the form of an oligonucleotide probe, a single stranded DNA probe, a double stranded DNA probe, or an RNA probe. In the present invention, hybridization is performed using a probe complementary to a gene whose expression changes due to acute or chronic poisoning (exposure) of cocaine, and the degree of expression of each gene can be diagnosed through hybridization. Selection and hybridization conditions for suitable probes may be modified based on those known in the art, and thus are not particularly limited in the present invention.
본 발명의 프라이머 또는 프로브는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, 캡화, 천연 뉴클레오타이드 하나 이상의 동족체로의 치환및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체 (예: 메틸 포스포네이트, 포스소트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체 (예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.The primers or probes of the present invention can be chemically synthesized using the phosphoramidite solid support method, or other well known methods. Such nucleic acid sequences can also be modified using a number of means known in the art. Non-limiting examples of such modifications include methylation, encapsulation, substitution of one or more homologs of natural nucleotides, and modifications between nucleotides, e.g., uncharged linkers (e.g. methyl phosphonate, phosphotriester, phosphoro Amidates, carbamates, etc.) or to charged linkers (eg phosphorothioate, phosphorodithioate, etc.).
본 발명에서 용어, "항체"란 당해 분야에서 공지된 용어로서 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명의 목적상, 항체는 본 발명의 코카인의 급성 또는 만성 중독 (노출)에 의해 발현이 변화하는 마커인 유전자들에서 발현되는 단백질에 대해 특이적으로 결합하는 항체를 의미하며, 상기 항체의 제조방법은 널리 공지된 방법을 사용하여 제조할 수 있다. 여기에는 상기 단백질에서 만들어질 수 있는 부분 펩티드도 포함된다. 본발명의 항체의 형태는 특별히 제한되지 않으며 폴리클로날 항체, 모노클로날 항체 또는 항원 결합성을 갖는 것이면 그것의 일부도 본 발명의 항체에 포함되고 모든 면역 글로불린 항체가 포함된다. 나아가, 본 발명의 항체에는 인간화 항체 등의 특수 항체도 포함된다.In the present invention, the term "antibody" is a term known in the art and refers to a specific protein molecule directed against an antigenic site. For the purposes of the present invention, an antibody refers to an antibody that specifically binds to a protein expressed in genes that are markers whose expression changes due to acute or chronic poisoning (exposure) of cocaine of the present invention, and the preparation of the antibody The method can be prepared using well known methods. This includes partial peptides that can be made from these proteins. The form of the antibody of the present invention is not particularly limited, and a polyclonal antibody, monoclonal antibody, or any one having antigen-binding properties is also included in the antibody of the present invention, and all immunoglobulin antibodies are included. Furthermore, the antibody of the present invention also includes special antibodies such as humanized antibodies.
본 발명의 코카인 중독 및 의존성 확인용 조성물은 대상체의 코카인 중독 및 의존성을 확인하기 위한 것 뿐 아니라, 코카인 중독 및 의존성의 예방 내지 치료 약물을 개발하기 위하여 코카인을 대상체에 투여하거나 처치한 경우 나타나는 바이오마커들의 변화를 확인하기 위한 "중독 및 의존성"의 정도 내지 변화의 확인을 포함한다.The composition for confirming cocaine addiction and dependence of the present invention is a biomarker that appears when cocaine is administered or treated to a subject not only for confirming the cocaine addiction and dependence of the subject, but also to develop a drug for preventing or treating cocaine addiction and dependence. The degree of "addiction and dependence" to confirm the change of the children or the identification of the change.
일 측면에서, 본 발명은 ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A으로 이루어진 군으로부터 선택되는 하나 이상의 바이오 마커의 검출 시약을 포함하는 코카인 중독 및 의존성 확인용 키트에 관한 것이다.In one aspect, the present invention ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, CDH8 , NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, PPPY, LOC2926, ACN, ADC101865389, KJ2, and AKT LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 and TNFRSF1A detection reagents for detection of one or more biomarkers selected from the group consisting of poisoning and dependence of cocaine. It is about the dragon kit.
일 구현예에서, 상기 키트는 대상체 또는 환자로부터 생체 시료를 수집하기 위한 도구 및/또는 시약 뿐 아니라 그 시료로부터 게놈 DNA, cDNA, RNA 또는 단백질을 준비하기 위한 도구 및/또는 시약을 더 포함할 수 있다. 예를 들면, 게놈 DNA의 관련 영역을 증폭하기 위한 PCR 프라이머를 포함할 수 있다. 상기 키트는 약리게놈학적 프로파일링에 유용한 유전 인자의 프로브를 포함할 수 있다. 또한, 이러한 키트의 사용에 있어서, 표지화된 올리고뉴클레오티드를 사용하여 분석 중 용이하게 동정할 수 있다.In one embodiment, the kit may further include tools and/or reagents for collecting biological samples from a subject or patient, as well as tools and/or reagents for preparing genomic DNA, cDNA, RNA, or proteins from the samples. have. For example, it may include PCR primers for amplifying the relevant region of genomic DNA. The kit may contain probes of genetic factors useful for pharmacogenomic profiling. In addition, in the use of such a kit, a labeled oligonucleotide can be used to easily identify it during analysis.
일 구현예에서, 상기 키트는 DNA 중합효소 및 dNTP(dGTP, dCTP, dATP 및 dTTP), 형광물질 등의 표지 물질을 추가로 더 함유할 수 있다.In one embodiment, the kit may further contain a labeling material such as DNA polymerase and dNTP (dGTP, dCTP, dATP and dTTP), and a fluorescent material.
일 측면에서, 본 발명은 검사 대상체 유래의 생물학적 시료로부터 ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 및 TNFRSF1A으로 이루어진 군으로부터 선택되는 하나 이상의 바이오 마커의 핵산 또는 단백질의 농도를 검출하는 단계; 상기 핵산 또는 단백질의 농도에 대한 검출 결과를 정상 대조군 시료의 해당 마커의 상응하는 결과와 비교하는 단계; 및 상기 정상 대조군 시료와 비교하여, 대상체 유래 시료에서 상기 정상 대조군 시료와 비교하여, 대상체 유래 시료에서 PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175, CASP9, ARHGEF7, SLC18A3, TNFRSF1A, BCL2L1 및 BAD로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질이 상향 조절되고, MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A, BCL2L1, PTOV1, AKT3 및 LOC101866246로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질이 하향 조절되면 코카인 노출로 판정하는 단계를 포함하는, 코카인 노출 진단에 필요한 정보를 제공하는 방법에 관한 것이다.In one aspect, the present invention from a biological sample derived from a test subject ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1 (GRIA1X3, GRIA1X4), GRIA2 (GRIA2X6, GRIA2X7), HDAC5, HDAC10, NCAM1, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10, KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B, MCM3AP, DRD1, DRD2, DRD2101, GNAL, and PCHE2 , ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7, CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246, BAD, BCL2L1, CASP9, LOC101925175 and TNFRSF1A consisting of one or more biomarkers selected from the group of nucleic acids or proteins Detecting the concentration of; Comparing the detection result of the concentration of the nucleic acid or protein with the corresponding result of the corresponding marker of the normal control sample; And compared with the normal control sample, compared with the normal control sample in the subject-derived sample, PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL in the subject-derived sample. , PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175, CASP9, ARHGEF7, SLC18A3, TNFRSF1A, BCL2L1, and one or more genes or proteins selected from the group consisting of BAD are upregulated, MCM3AP, GTF2I, ADAM23, and GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A, BCL2L1, PTOV1, AKT3, and LOC101866246 When one or more genes or proteins are downregulated from the group consisting of one or more genes or proteins selected from the group consisting of downregulation It relates to a method of providing information necessary for diagnosing cocaine exposure, comprising the step of determining as cocaine exposure.
일 구현예에서, 상기 방법은 정상 대조군 시료와 비교하여, PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175 및 CASP9로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질이 상향 조절되고; 및 MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A 및 BCL2L1로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질이 하향 조절되면 급성 코카인 노출인 것으로 판정하는 단계를 추가로 포함할 수 있다.In one embodiment, the method is compared with a normal control sample, PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5 , One or more genes or proteins selected from the group consisting of KCNJ2, LOC101925175 and CASP9 are upregulated; And one or more genes or proteins selected from the group consisting of MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A and BCL2L1. If downregulated, it may further comprise determining that there is an acute cocaine exposure.
일 구현예에서, 상기 방법은 정상 대조군 시료와 비교하여, ARHGEF7, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1 및 BAD로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질이 상향 조절되고; 및 MCM3AP, PTOV1, GTF2I, AKT3, CAMK2A 및 LOC101866246로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질이 하향 조절되면 만성 코카인 노출인 것으로 판정하는 단계를 추가로 포함할 수 있다.In one embodiment, the method is compared to a normal control sample, ARHGEF7, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, at least one selected from the group consisting of BCL2L1 and BAD. The gene or protein is upregulated; And when one or more genes or proteins selected from the group consisting of MCM3AP, PTOV1, GTF2I, AKT3, CAMK2A, and LOC101866246 are down-regulated, it may further include determining that it is chronic cocaine exposure.
상기 “검사 대상체 유래의 생물학적 시료”란 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 또는 뇨와 같은 시료 등을 포함하나, 이에 제한되지 않는다. 또한, 상기 유전자의 mRNA 또는 이의 단백질의 발현 수준을 측정하는 구체적인 방법은 상기 유전자의 발현을 mRNA 수준 또는 단백질 수준에서 검출할 수 있고, 생물학적 시료에서 mRNA또는 단백질의 분리는 공지의 공정을 이용하여 수행할 수 있다. 본 발명의 일 실시예에서, 유전자 또는 단백질의 발현 수준은 원숭이의 해마 또는 선조체에서 분리한 조직을 이용하여 수행되었다.The “biological sample derived from a test subject” includes, but is not limited to, a sample such as tissue, cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine. In addition, a specific method of measuring the expression level of the mRNA or protein thereof of the gene can detect the expression of the gene at the mRNA level or protein level, and the isolation of mRNA or protein from a biological sample is performed using a known process. can do. In one embodiment of the present invention, the expression level of the gene or protein was performed using tissue isolated from the hippocampus or striatum of a monkey.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are only for embodiing the contents of the present invention and the present invention is not limited thereto.
실시예 1. 해마에서의 급성/만성 코카인 중독 특이적 바이오 마커Example 1. Acute/chronic cocaine poisoning specific biomarkers in the hippocampus
1-1. 급성/만성 코카인 중독에 따른 발현 변화 유전자들 발굴1-1. Identification of genes that change expression according to acute/chronic cocaine addiction
평균 3.1 ± 0.1 kg 몸무게의 약 5 내지 6연령의 암컷 게먹이 원숭이(crab-eating macaque, Macaca fascicularis) (Suzhou, China)를 대조군 (n = 2), 급성 코카인 투여군 (CA, n = 2~4) 및 만성 코카인 투여군 (CC, n = 2~3)으로 구분하였다. 염산 코카인(Cocaine hydrochloride) (Johnson Matthey Macfarlan Smith, Edinburgh, Scotland)을 투여 직전에 0.9% 식염수에 완전히 용해시킨 후 원숭이들에게 5일 내지 8주 동안 일 회 1~3 mg/kg (body weight)/day의 용량으로 4:00 p.m.에 근육 주사하였다. 코카인 투여 후, 원숭이들을 희생시키고 해마(hippocampus)를 수득하였다. 모든 과정은 KRIBB IACUC(Institutional Animal Care and Use Committee) (Approval No. KRIBB-AEC-16070 및 KRIBB-AEC-17079)의 관리 감독하에 수행하였다. TRIzol (Invitrogen, Carlsbad, California, USA)를 이용하여 해마로부터 전체 RNA를 분리한 뒤, 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA)를 이용하여 RIN(RNA integrity number) 값이 7 이상인 것을 확인하였다. RNA-Seq(RNA sequencing)를 위해, TruSeq RNA library preparation kit (Illumina, San Diego, CA, USA)를 이용하여 RNA 라이브러리를 제조한 뒤, oligo-dT 부착 마그네틱 비드를 이용하여 mRNA를 정제하였다. 정제된 mRNA는 절단되고 랜덤 프라이머와 역전사 효소를 이용하여 cDNA로 역전사되었으며, RNA 주형을 제거한 후 이에 대한 상보 서열이 합성되었다. 말단 수리, 3' 아데닐레이션 및 아답터 연결을 수행한 뒤 정제한 cDNA 라이브러리가 PCR로 농축되었다. 제작된 라이브러리는 Illumina HiSeq 2000 sequencer (Macrogen, Seoul, Korea)로 시퀀싱되었다. RNA-Seq로부터 얻은 서열들을 FastQC (version 0.10.0, http://www.bioinformatics. babraham.ac.uk/projects/fastqc/)로 확인한 뒤 아답터 서열, 오염된 DNA 및 PCR 복제물을 포함하는 낮은 퀄리티의 판독 결과 및 아티팩트를 Trimmomatic ver. 0.32 (Bolger, Lohse & Usadel, 2014)로 제거하였다. 판독 결과는 TopHat (version 2.0.13) 소프트웨어를 이용하여 참고 게놈으로 매핑되었다. 각 시료의 전사물은 FPKM(fragments per kilobase of transcript per million mapped reads) 방법에 기초한 Cufflinks (version 2.2.1) (Trapnell et al., 2010)로 어셈블되었다. 전사물의 FPKM 값에 기초하여 시료들 사이에서 발현 차이를 나타낸 유전자들을 선별하였으며, 시료들 사이의 유사성은 MDS(multidimensional scaling) 플롯으로 나타냈다. RNA-seq 데이터는 GEO(Gene Expression Omnibus)에 수탁하였다 (accession number GSE104332). 그 결과, 대조군, 급성 코카인 중독 및 만성 코카인 중독군에서 특정 쌍에서 |fold change| ≥ 2 및 P < 0.05을 만족하는 954개의 유전자(전사물)을 확인하였으며, 상기 군들 사이의 계층적 군집 분석(hierarchical clustering analysis)을 수행하고 (도 2a), 상기 군들 중 2개의 군들 (two pair-wise groups) 사이에서 상향 및 하향 조절되는 유전자들의 수를 계수하였다 (도 2b). 급성 코카인 중독 (노출)군 및 만성 코카인 중독 (노출)군 사이에서 408개의 유전자가 상향 조절되고, 381개의 유전자가 하향 조절되었으며, 이는 대조군 vs CA 또는 대조군 vs CC에 비해 현저히 높게 나타났다. 벤다이어그램 분석에서 세 쌍의 군에 대한 비교를 통해 중복된 세개의 유전자 ARHGEF7(Rho guanine nucleotide exchange factor 7), PTOV1(prostate tumor overexpressed 1) 및 GTF2I(general transcription factor Iii)를 선별하였다 (도 2c). Female crab monkeys (crab-eating macaque, Macaca fascicularis) (Suzhou, China) of about 5 to 6 years old with an average weight of 3.1 ± 0.1 kg in control (n = 2), acute cocaine administration group (CA, n = 2 to 4) ) And chronic cocaine administration group (CC, n = 2~3). Cocaine hydrochloride (Johnson Matthey Macfarlan Smith, Edinburgh, Scotland) was completely dissolved in 0.9% saline immediately before administration, and then to
또한, 상기 유전자 3개에 추가로 NCBI(National Center for Biotechnology Information database)에서 신경 발생 또는 중독과 관련된 유전자로 알려진 ADAM23, CDH2, GRIA1 (GRIA1X3 및 GRIA1X4 포함), GRIA2 (GRIA2X6 GRIA2X7 포함), HDAC10, HDAC5, NCAM1, NPY 및 SNCA과 관련성이 알려지지 않은 유전자 CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (KDM2BX10 및 KDM2BX13 포함), KIFAP3, RBM10, RBM14, TP53I11, WNT10B 및 MCM3AP를 선택하였다. In addition, in addition to the above three genes, ADAM23, CDH2, GRIA1 (including GRIA1X3 and GRIA1X4), GRIA2 (including GRIA2X6 GRIA2X7), HDAC10, HDAC5, which are known as genes related to neurogenesis or addiction in NCBI (National Center for Biotechnology Information database). , Genes CCNG2, CDC7, CDH8, DLG3, DOCK3, NEUROD6, NEUROG2, SPEN, KDM2B (including KDM2BX10 and KDM2BX13), KIFAP3, RBM10, RBM14, TP53I11, WNT10B and WNT10B of genes of unknown association with NCAM1, NPY and SNCA were selected. .
1-2. 급성/만성 코카인 중독에 따른 유전자들의 mRNA 발현 패턴 비교1-2. Comparison of mRNA expression patterns of genes according to acute/chronic cocaine poisoning
전체 RNA 1 μg을 키트 (Thermo Fisher Scientific, Carlsbad, USA)를 이용하여 cDNA로 역전사하였다. 제조된 cDNA, 상기 실시예 1-1에서 선택한 유전자들에 대한 프라이머 세트 (표 1)와 SYBR Green Core Reagents (SYBR Premix Ex Taq II, Takara, Japan)를 이용하여 qRT-PCR(Real time quantitative PCR)을 수행하였다. 참고로, 본 발명의 프라이머 세트들은 NCBI cynomolgus monkey 게놈 서열 데이터베이스에 대해 BLAST에 의해 확인되어 특이성이 확인되었다. 구체적으로, 상기 시료를 95℃에서 3분 간 변성시키고 (1 사이클), 증폭을 위해 90℃에서 10초 및 65℃에서 30초 동안 어닐링한 후 최종 용융 곡선으로 95℃에서 10초 동안 변성 및 60℃에서 30초 동안 처리하였다. 데이터는 ViiA7 Real-Time PCR 시스템인 Applied Biosystems (Carlsbad, CA, USA)의 2-ΔΔCT 방법으로 분석하였다. 분석 최종 산물은 2% 아가로오즈 젤에서 전기영동한 뒤 UV로 밴드를 확인하였다.1 μg of total RNA was reverse transcribed into cDNA using a kit (Thermo Fisher Scientific, Carlsbad, USA). The prepared cDNA, a primer set for the genes selected in Example 1-1 (Table 1) and qRT-PCR (Real time quantitative PCR) using SYBR Green Core Reagents (SYBR Premix Ex Taq II, Takara, Japan) Was performed. For reference, the primer sets of the present invention were confirmed by BLAST against the NCBI cynomolgus monkey genome sequence database to confirm specificity. Specifically, the sample was denatured at 95°C for 3 minutes (1 cycle), annealed at 90°C for 10 seconds and 65°C for 30 seconds for amplification, and then denatured at 95°C for 10 seconds as a final melting curve and 60 Treated at °C for 30 seconds. The data were analyzed by the 2-ΔΔCT method of Applied Biosystems (Carlsbad, CA, USA), a ViiA7 Real-Time PCR system. The final product of the analysis was electrophoresed on a 2% agarose gel and the band was confirmed by UV.
그 결과, 도 3에 나타낸 바와 같이, CA 군에서 PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3 및 WNT10B의 발현이 유의적으로 상향 조절되었으며, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN 및 MCM3AP의 발현이 유의적으로 하향 조절되었다. 또한, CC 군에서 ARHGEF7의 발현이 유의적으로 상향 조절되었고, PTOV1, MCM3AP 및 GTF2I의 발현이 유의적으로 하향 조절되었다 (도 3a 내지 f). 특히, 구체적으로, ARHGEF7의 발현이 CC 군에서만 유의적으로 증가하였으며 PTOV1의 발현은 CA 군에서는 현저히 증가하고 CC 군에서는 현저히 감소하였다. 또한, GTF2I는 CA 및 CC 군에서 모두 감소하였으며 CA 군에서의 감소가 CC 군에 비해 현저하게 감소하는 것으로 나타났다. 또한, KDM2BX13 및 KIFAP3은 CA 군에서만 증가하는 것으로 나타났다.As a result, as shown in Figure 3, the expression of PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3 and WNT10B was significantly upregulated in the CA group, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, Expression of GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN and MCM3AP was significantly downregulated. In addition, the expression of ARHGEF7 was significantly upregulated in the CC group, and the expressions of PTOV1, MCM3AP and GTF2I were significantly downregulated (FIGS. In particular, the expression of ARHGEF7 significantly increased only in the CC group, and the expression of PTOV1 was significantly increased in the CA group and decreased significantly in the CC group. In addition, GTF2I decreased in both CA and CC groups, and the decrease in CA group was found to be significantly decreased compared to CC group. In addition, KDM2BX13 and KIFAP3 were found to increase only in the CA group.
이를 통해, 상기 마커들의 조절 패턴과 ARHGEF7, PTOV1 및 GTF2I의 발현 조절을 통해 CA 및 CC를 구별할 수 있음을 알 수 있었다 (CA: PTOV1 발현 증가, GTF2I 감소/CC: ARHGEF7 증가, PTOV1 감소, GRF2I CA보다 현저히 적게 감소)Through this, it was found that CA and CC can be distinguished through the regulation pattern of the markers and the expression regulation of ARHGEF7, PTOV1 and GTF2I (CA: increased PTOV1 expression, decreased GTF2I/CC: increased ARHGEF7, decreased PTOV1, GRF2I) Significantly less than CA)
실시예 2. 선조체에서의 급성/만성 코카인 중독 특이적 바이오 마커Example 2. Acute/chronic cocaine poisoning specific biomarkers in striatum
2-1. 벤다이어 그램 분석을 통한 유전자들의 선별2-1. Selection of genes through Venn diagram analysis
코카인을 급성/만성으로 투여한 경우 선조체(striatum)에서 발현이 유의적으로 변화하는 유전자들을 확인하기 위해, 평균 3.1 ± 0.1 kg 몸무게의 약 5 내지 6연령의 암컷 게먹이 원숭이(crab-eating macaque, Macaca fascicularis) (Suzhou, China)를 대조군 (n = 2), 급성 코카인 투여군 (CA, n = 2) 및 만성 코카인 투여군 (CC, n = 3)으로 구분하였다. 모든 과정은 KRIBB IACUC(Institutional Animal Care and Use Committee) (Approval No. KRIBB-AEC-16070)의 관리 감독하에 수행하였다. 염산 코카인(Cocaine hydrochloride) (Johnson Matthey Macfarlan Smith, Edinburgh, Scotland)을 투여 직전에 0.9% 식염수에 완전히 용해시킨 후 원숭이들에게 5일 내지 8주 동안 일 회 1~3 mg/kg (body weight)/day의 용량으로 4:00 p.m.에 근육 주사하였다. 코카인 투여 후, 원숭이들을 희생시키고 선조체를 수득하였다. TRIzol (Invitrogen, Carlsbad, California, USA)를 이용하여 각 군의 선조체로부터 전체 RNA를 분리한 뒤, 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA)를 이용하여 RIN(RNA integrity number) 값이 7 이상인 것을 확인하였다. RNA-Seq(RNA sequencing)를 위해, TruSeq RNA library preparation kit (Illumina, San Diego, CA, USA)를 이용하여 RNA 라이브러리를 제조한 뒤, oligo-dT 부착 마그네틱 비드를 이용하여 mRNA를 정제하였다. 정제된 mRNA는 절단되고 랜덤 프라이머와 역전사 효소를 이용하여 cDNA로 역전사되었으며, RNA 주형을 제거한 후 이에 대한 상보 서열이 합성되었다. 말단 수리, 3' 아데닐레이션 및 아답터 연결을 수행한 뒤 정제한 cDNA 라이브러리가 PCR로 농축되었다. 제작된 라이브러리는 Illumina HiSeq 2000 sequencer (Macrogen, Seoul, Korea)로 시퀀싱되었다. RNA-Seq로부터 얻은 서열들을 FastQC (version 0.10.0, http://www.bioinformatics. babraham.ac.uk/projects/fastqc/)로 확인한 뒤 아답터 서열, 오염된 DNA 및 PCR 복제물을 포함하는 낮은 퀄리티의 판독 결과 및 아티팩트를 Trimmomatic ver. 0.32 (Bolger, Lohse & Usadel, 2014)로 제거하였다. 판독 결과는 TopHat (version 2.0.13) 소프트웨어를 이용하여 참고 게놈 Macaca_fascicularis_5.0 (BioSample: SAMN00811240)으로 매핑되었다. 각 시료의 전사물은 FPKM(fragments per kilobase of transcript per million mapped reads) 방법에 기초한 Cufflinks (version 2.2.1) (Trapnell et al., 2010)로 어셈블되었다. 전사물의 FPKM 값에 기초하여 시료들 사이에서 발현 차이를 나타낸 유전자들을 선별하였으며, 시료들 사이의 유사성은 MDS(multidimensional scaling) 플롯으로 나타냈다. RNA-seq 데이터는 GEO(Gene Expression Omnibus)에 수탁하였다 (accession number GSE103419). 대조군, 급성 코카인 중독 및 만성 코카인 중독군은 MRI 분석 및 헤마톡실린 및 에오신 염색에서는 서로 유의적인 차이를 나타내지 않았으나 (데이터 미도시), 상기 군들 사이의 계층적 군집 분석(hierarchical clustering analysis)을 수행한 결과, 발현량 2배 이상 및 P <0.05를 만족시키는 1613개의 유전자들 확인하였다 (도 4a 및 b). 또한, 2.0 이상의 배수 변화 및 0.05 미만의 P 값을 갖는 1613개의 유전자들 중 급성 코카인에 노출된 선조체에서 총 263개가 차등 발현되었으며, 만성 코카인에 노출된 선조체에서 총 178개가 차등 발현되었고, 총 1413개의 유전자가 급성 및 만성 코카인 중독(노출) 선조체 사이에서 서로 상이하게 발현량이 변화하였다 (도 4c). 또한, BioVenn (http://www.biovenn.nl/) (Hulsen, de Vlieg & Alkema, 2008)을 사용하여 그룹 간 벤 다이어그램 (Control vs. CA, Control vs. CC, CA vs. CC)을 분석한 결과, 13개의 유전자 SNAP25, CAMK2A, LOC101867149, KCNAB2, LOC102137553, RBM14, ADD3, PTPRZ1, LOC101865389, ARFGEF2, KCNJ10, LOC101925503 및 GOPC을 선별할 수 있었다 (도 4d 및 e).In order to identify genes whose expression significantly changes in striatum when cocaine was administered acutely/chronicly, female crab-eating macaque (crab-eating macaque, about 5 to 6 years old) with an average weight of 3.1 ± 0.1 kg. Macaca fascicularis) (Suzhou, China) was divided into a control group (n = 2), acute cocaine administration group (CA, n = 2), and chronic cocaine administration group (CC, n = 3). All procedures were performed under the supervision of KRIBB Institutional Animal Care and Use Committee (IACUC) (Approval No. KRIBB-AEC-16070). Cocaine hydrochloride (Johnson Matthey Macfarlan Smith, Edinburgh, Scotland) was completely dissolved in 0.9% saline immediately before administration, and then to
2-2. 기능적 주석 및 경로 분석을 통한 유전자들의 선별2-2. Selection of genes through functional annotation and pathway analysis
상기 13개의 유전자의 서열을 인간 BLAST 데이터베이스를 사용하여 확인한 결과, Macaca fascicularis 게놈은 호모 사피엔스와 92.8%의 동일성을 나타냈다 (Ebeling et al., 2011). 또한, 상기 유전자들과 관련된 생물학적 반응과 다양한 표준 경로를 분석하기 위해 KEGG 경로 (http://www.genome.jp/kegg/pathway.html) 분석을 사용했으며, 코카인이 신경 세포의 발달 및 신호 전달 경로에 영향을 미치는 것으로 나타났으므로, KEGG 경로 중 도파민 성, 콜린성, HIF 및 세포 사멸 관련 경로와 같은 신경학적 경로에 관련된 유전자 27개를 선택하여 (도파민성: DRD1, DRD2, DRD3, GNAL, GNG7, LOC101865389, LOC101926461, PPP2R2B; 콜린성: ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7; HIF1 알파 경로: CAMK2A, EGLN2, ENO2, LOC101866179, LOC101866246; 및 세포 사멸: BAD, BCL2L1, CASP9, LOC101925175, TNFRSF1A) 하기 표 2의 프라이머쌍을 이용하여 qRT-PCR을 수행하였다. 또한 급성 및 만성 코카인 중독 간의 유전자 발현 관계를 결정하기 위해 qRT-PCR 분석 결과에서 이들 전사 인자의 발현 수준에 대한 피어슨 상관 분석을 수행 하였다.As a result of confirming the sequences of the 13 genes using the human BLAST database, the Macaca fascicularis genome showed 92.8% identity with Homo sapiens (Ebeling et al., 2011). In addition, KEGG pathway (http://www.genome.jp/kegg/pathway.html) analysis was used to analyze biological responses and various standard pathways related to the genes, and cocaine was used in neuronal development and signal transduction. Since it has been shown to affect the pathway, 27 genes related to neurological pathways such as dopaminergic, cholinergic, HIF and apoptosis-related pathways were selected among the KEGG pathways (dopaminergic: DRD1, DRD2, DRD3, GNAL, GNG7. , LOC101865389, LOC101926461, PPP2R2B; Cholinergic: ACHE, ADCY5, AKT3, KCNJ2, LOC101865389, LOC101926461, PLCB1, SLC18A3, SLC5A7; HIF1 alpha pathway: CAMK2A, EGLN2, ENO1, CAS101, BCL9866 and cell death: BCL9866; , LOC101925175, TNFRSF1A) qRT-PCR was performed using the primer pairs in Table 2 below. In addition, to determine the gene expression relationship between acute and chronic cocaine addiction, a Pearson correlation analysis was performed on the expression level of these transcription factors in the qRT-PCR analysis results.
그 결과, 도 5에 나타난 바와 같이, CA 군에서 DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175 및 CASP9의 발현이 상향 조절되고, CAMK2A, EGLN2, TNFRSF1A 및 BCL2L1이 하향 조절되었다. 이들 중 GNG7, LOC101925175 및 CASP9은 CA에만 특이적으로 발현이 상향 조절되었으며, EGLN2 및 BCL2L1은 CA에서만 특이적으로 하향 조절되었다. 또한, CC 군에서 DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1 및 BAD가 상향조절되고, AKT3, CAMK2A 및 LOC101866246이 하향조절되었다. 이들 중 BAD은 CC 군 특이적으로 발현이 상향 조절되었다. 또한, 대조군, CA 및 CC에 따라 유의적으로 발현량이 변화한 유전자는 DRD1, DRD3, PPP2R2B, GNG7, ACHE, CAMK2A, BCL2L1으로 나타났다. 아울러, 피어슨 상관 분석 결과, 상기 유전자들은 급성 및 만성 코카인 투여 후 상관 관계가있는 것으로 나타났다 (R = 0.587, P = 0.0013) (도 6).As a result, as shown in Figure 5, in the CA group, the expression of DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175 and CASP9 was upregulated, CAMK2A, EGLN2, TNFRSF1A and BCL2L1. It was downregulated. Of these, GNG7, LOC101925175 and CASP9 were specifically upregulated in CA only, and EGLN2 and BCL2L1 were specifically downregulated only in CA. In addition, in the CC group, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1 and BAD were upregulated, and AKT3, CAMK2A and LOC101866246 were downregulated. Among these, the expression of BAD was upregulated specifically in the CC group. In addition, the genes whose expression levels were significantly changed according to the control group, CA and CC were DRD1, DRD3, PPP2R2B, GNG7, ACHE, CAMK2A, and BCL2L1. In addition, as a result of Pearson correlation analysis, the genes were found to be correlated after acute and chronic cocaine administration (R = 0.587, P = 0.0013) (Fig. 6).
2-3. 코카인 투여에 따른 CAMK2A의 발현 조절 확인2-3. Confirmation of the regulation of CAMK2A expression according to cocaine administration
2-3-1. CAMK2A 및 CASP9의 mRNA 발현 변화 확인2-3-1. Confirmation of changes in mRNA expression of CAMK2A and CASP9
상기 독립적인 벤 다이어그램 분석 결과 (도 4e) 및 HIF 알파 경로 분석 (도 5c)에 모두 포함된 CAMK2A와, KEGG 경로 중에서 세포 항상성에 중요한 세포 사멸 경로와 관련된 CASP9를 선택하여 이들의 급성/만성 코카인 투여에 의한 유전자 발현 및 단백질 발현 양상을 확인하였다. 구체적으로, 상기 실시예 2-1에서와 같이 급성/만성 코카인 투여 후 원숭이의 뇌 선조체에서 분리한 RNA를 이용하여 RT-PCR 분석한 최종 산물을 아가로오스 젤에 전기영동하여 이들의 mRNA 수준을 확인하였다. 그 결과, 상기 RNA-seq 및 qRT-PCR 데이터와 유사하게 코카인 투여에 의해 CAMK2A의 발현이 감소한 반면, CASP9는 발현이 증가하는 것으로 나타났다 (도 7a). CAMK2A included in both the independent Venn diagram analysis results (FIG. 4e) and HIF alpha pathway analysis (FIG. 5c), and CASP9 related to apoptosis pathway important for cell homeostasis among the KEGG pathways were selected, and their acute/chronic cocaine administration By confirming the gene expression and protein expression pattern. Specifically, as in Example 2-1, after the administration of acute/chronic cocaine, the final product of RT-PCR analysis using RNA isolated from the brain striatum of monkeys was electrophoresed on an agarose gel to determine their mRNA levels. Confirmed. As a result, similar to the RNA-seq and qRT-PCR data, the expression of CAMK2A decreased by cocaine administration, whereas the expression of CASP9 was increased (Fig. 7a).
2-3-2. CAMK2A 및 CASP9의 단백질 수준 변화 확인2-3-2. Confirmation of changes in protein level of CAMK2A and CASP9
CAMK2A 및 CASP9의 발현은 단백질 수준에서 확인하기 위해, 상기 실시예 2-1에서와 같이 급성/만성 코카인 투여 후 원숭이의 뇌 선조체에서 전체 RNA를 준비한 후, 나머지는 1 % SDS 완충액으로 조직을 용해시켰다. 동량의 단백질을 10% SDS-PAGE(sodium dodecyl sulphate polyacrylamide gel electrophoresis)로 젤에서 전기영동하고 니트로셀롤로오스 멤브레인(nitrocellulose membrane) (Whatman, dassel, Germany)으로 트랜스퍼하였다. 1% 스킴밀크 (TBST, 20mM Tris, 137mM NaCl 및 0.1% Tween 20) 로 1시간 동안 블로킹한 뒤, 항-pCAMK2A, 항-CAMK2A, 항-절단된 CASP9 (Abcam, Cambridge, UK) 및 항-GAPDH (Cell 신호, Danvers, Massachusetts, USA) 항체와 인큐베이션시켰다. 그 후, 2차 항체로 1 : 10,000로 희석된 horseradish peroxidase 결합된 항-토끼 IgG (Thermo scientific)로 인큐베이션한 뒤, 밴드를 PXi4 Chemiluminscent 및 Fluorescent Imaging System (Syngene, Boston, MA, USA)로 시각화하였다. 각 밴드의 강도의 정량화, GAPDH에 대한 평균화 및 대조군에 대한 상대적 비율은 Image J 소프트웨어 (National Institutes of Health, Bethesda, MD, USA)를 사용하여 계산되었다. 그 결과, 코카인 투여에 의해 CAMK2A의 단백질 수준 및 이의 인산화가 감소하였고, 특히, 만성 코카인 투여시 급격하게 감소하는 것으로 나타났으며 (도 7b 및 c), 급성 코카인 투여된 선조체에서 절단된 CASP9가 증가하는 것으로 나타났다 (도 7b 및 d). In order to confirm the expression of CAMK2A and CASP9 at the protein level, as in Example 2-1, after the administration of acute/chronic cocaine, total RNA was prepared in the brain striatum of monkeys, and the remaining tissues were dissolved in 1% SDS buffer. . The same amount of protein was electrophoresed on the gel by 10% SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) and transferred to a nitrocellulose membrane (Whatman, dassel, Germany). After blocking with 1% skim milk (TBST, 20mM Tris, 137mM NaCl and 0.1% Tween 20) for 1 hour, then anti-pCAMK2A, anti-CAMK2A, anti-cleaved CASP9 (Abcam, Cambridge, UK) and anti-GAPDH (Cell signal, Danvers, Massachusetts, USA) Incubated with antibody. Then, after incubation with horseradish peroxidase-conjugated anti-rabbit IgG (Thermo scientific) diluted 1: 10,000 with a secondary antibody, the band was visualized with PXi4 Chemiluminscent and Fluorescent Imaging System (Syngene, Boston, MA, USA). . Quantification of the intensity of each band, averaging to GAPDH, and relative ratio to control were calculated using Image J software (National Institutes of Health, Bethesda, MD, USA). As a result, the protein level of CAMK2A and its phosphorylation decreased by cocaine administration, and in particular, it was found to be rapidly decreased when chronic cocaine administration (Figs. 7b and c), and CASP9 cleaved in the striatum to which acute cocaine administration was administered increased. (Fig. 7b and d).
2-3-3. 인간 뇌조직에서의 CAMK2A 발현 조절 양상 검증2-3-3. Verification of CAMK2A expression regulation pattern in human brain tissue
NCBI (National Center for Biotechnology Information) Gene Expression Omnibus (GEO) 데이터베이스 포털 (http://www.ncbi.nlm.nih.gov/geo/, accession number : GSE54839, GSE7762 , 및 GSE44456)를 사용하여 CAMK2A의 mRNA 수준이 인간 뇌 조직에서도 코카인의 투여에 의해 변화하는지를 확인하였다. 구체적으로, 만성 코카인 투여시 인간 뇌에서의 CAMK2A의 mRNA 발현 변화 (GSE54839, GDS5047, 프로브 ID : ILMN_1666445), 만성 알코올 투여시 인간 뇌에서의 CAMK2A의 mRNA 발현 변화 (GSE44456, GDS4879, control n=19, Alcoholic n=20) 및 만성 몰핀 투여시 마우스 선조체에서의 CAMK2A의 mRNA 발현 변화 (GSE7762, GDS2815, n=36)를 확인하였다. 그 결과, 만성 코카인 남용자 (n=10, triplicate)의 중뇌에서의 CAMK2A의 상대적 mRNA 발현이 대조군 조직에서보다 현저하게 감소된 것으로 나타났으나 (** P <0.01), 알코올 및 몰핀에 의해서는 발현에 변화가 없는 것으로 나타났다 (도 8). 따라서, CAMK2A의 발현이 인간 중뇌에서 만성 코카인 투여에 의해 하향 조절되는 것을 확인할 수 있었다.MRNA of CAMK2A using NCBI (National Center for Biotechnology Information) Gene Expression Omnibus (GEO) database portal (http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE54839, GSE7762, and GSE44456) It was confirmed whether the level was changed by the administration of cocaine even in human brain tissue. Specifically, changes in mRNA expression of CAMK2A in human brain when chronic cocaine administration (GSE54839, GDS5047, probe ID: ILMN_1666445), change in mRNA expression of CAMK2A in human brain when chronic alcohol administration (GSE44456, GDS4879, control n=19, Alcoholic n=20) and chronic morphine administration showed changes in mRNA expression of CAMK2A in mouse striatum (GSE7762, GDS2815, n=36). As a result, it was found that the relative mRNA expression of CAMK2A in the midbrain of chronic cocaine abusers (n=10, triplicate) was significantly reduced compared to that in the control tissue (** P <0.01), but expressed by alcohol and morphine. There was no change in the (Fig. 8). Thus, it was confirmed that the expression of CAMK2A is down-regulated by chronic cocaine administration in the human midbrain.
2-4. CAMK2A에 대한 기능성 단백질 네트워크 확인2-4. Identification of functional protein network for CAMK2A
CAMK2A와 기능적으로 관련된 유전자들이 코카인 투여에 의해 바뀌었는지 확인하기 위해, STRING 데이터베이스 (Szklarczyk et al., 2017)를 이용하여 CAMK2A에 대한 기능성 단백질 네트워크를 확인하였다. 그 결과, GRIN1 및 DLG1가 CAMK2A와 기능적으로 연결되어 있는 것을 확인하였다 (도 9a). 이에, CAMK2A, GRIN1 및 DLG1의 발현 수준을 상기 실시예에 기재된 방법으로 확인한 결과, GRIN1은 CAMK2A와 유사하게 급성/만성 코카인 투여시 발현이 하향 조절되었으나, DLG1은 급성 코카인 투여에서는 다소 하향 조절되고 만성 코카인 투여에서는 오히려 상향 조절되는 것으로 나타났다 (도 9b). 또한, GRIN1 및 DLG1의 발현 수준을 상기 실시예 2-3-3에서와 같이 GEO 데이터에서 확인한 결과, DLG1가 유의미한 변화를 나타내지 않은 것과 달리 (도 9d), GRIN1은 만성 코카인 중독된 인간 뇌조직에서도 CAMK2A와 유사하게 하향 조절되는 발현 패턴을 나타냈다 (도 9c 내지 f). 이를 통해, CAMK2A과 GRIN1이 코카인 중독과 관련되어 있음을 알 수 있었다. In order to confirm whether genes functionally related to CAMK2A were changed by cocaine administration, a functional protein network for CAMK2A was identified using the STRING database (Szklarczyk et al., 2017). As a result, it was confirmed that GRIN1 and DLG1 were functionally linked to CAMK2A (FIG. 9A). Accordingly, as a result of confirming the expression levels of CAMK2A, GRIN1 and DLG1 by the method described in the above examples, GRIN1 was down-regulated when administered acute/chronic cocaine similar to CAMK2A, but DLG1 was somewhat down-regulated and chronically It was found that cocaine administration was rather upregulated (Fig. 9b). In addition, as a result of confirming the expression levels of GRIN1 and DLG1 in the GEO data as in Example 2-3-3, unlike that DLG1 did not show a significant change (FIG. 9D ), GRIN1 was also in chronic cocaine-addicted human brain tissue. It showed a downregulated expression pattern similar to CAMK2A (Figs. 9c-f). Through this, it was found that CAMK2A and GRIN1 were related to cocaine addiction.
실시예 3. 통계적 분석Example 3. Statistical Analysis
유전자 발현 수준은 평균 ± 표준 편차로 표현되며, Student's t- 검정을 사용하여 두 그룹 간의 유전자 발현 수준의 차이를 비교 하였다. SPSS 21 소프트웨어 (SPSS Inc., Chicago, IL, USA)를 이용하여 일원배치 분산 분석을 통해 그룹간의 차이를 분석하였다. qRT-PCR을 통해 유의한 차이가 있는 CA 및 CC 군의 각각의 발현값은 SPSS 21 소프트웨어 및 GraphPad PRISM 5 (CA, USA)를 이용한 피어슨 상관 분석(Pearson's correlation coefficients)을 이용하여 분석되어, P 값이 0.05 미만인 결과 (q-values < 0.2)는 유의적인 것으로 간주하였다.Gene expression levels are expressed as mean ± standard deviation, and the difference in gene expression levels between the two groups was compared using Student's t-test. Differences between groups were analyzed through a one-way variance analysis using SPSS 21 software (SPSS Inc., Chicago, IL, USA). The expression values of each CA and CC group with significant differences through qRT-PCR were analyzed using Pearson's correlation coefficients using SPSS 21 software and GraphPad PRISM 5 (CA, USA), and P values Results below 0.05 (q-values <0.2) were considered significant.
<110> THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> MARKERS FOR COCAINE ADDICTION <130> PN1712-461 <160> 116 <170> KoPatentIn 3.0 <210> 1 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ARHGEF7 forward primer <400> 1 gacattaaaa ctctgggcaa cg 22 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ARHGEF7 reverse primer <400> 2 ccaacgacag gaatgacaat c 21 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PTOV1 forward primer <400> 3 catcccctac gaccagagc 19 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PTOV1 reverse primer <400> 4 gagcccaaca gtcggtcca 19 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GTF2I forward primer <400> 5 gtatggaatc ccgaggct 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GTF2I reverse primer <400> 6 cggaagcaag tggaagag 18 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADAM23 forward primer <400> 7 catcaaccaa gactcggaaa g 21 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ADAM23 reverse primer <400> 8 ctccacataa tccgaagaca ac 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDH2 forward primer <400> 9 gacattatca cagtggcagc 20 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CDH2 reverse primer <400> 10 gcagtaaact ctggaggatt g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X3 forward primer <400> 11 ggtggtggtg gactgtgaat c 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X3 reverse primer <400> 12 gctgggatgg tgtctgtgta g 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X4 forward primer <400> 13 cagaacgcct caatgctatc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X4 reverse primer <400> 14 cactattctt ccactgctgc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X6 forward primer <400> 15 ctgggtttca gatagtggac 20 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X6 reverse primer <400> 16 ctctgcttcc ttaggttgc 19 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X7 forward primer <400> 17 ggagactgtc tggcaaacc 19 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X7 reverse primer <400> 18 ctctgcttcc ttaggttgcg 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HDAC10 forward primer <400> 19 gatgggaaac gctgactac 19 <210> 20 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HDAC10 reverse primer <400> 20 cagcagatgt gtgaggtgg 19 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HDAC5 forward primer <400> 21 cagtgacacc gtctggaatg 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HDAC5 reverse primer <400> 22 catggctgtg gattcctcg 19 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> NCAM1 forward primer <400> 23 cactccctct tcaccatcca tc 22 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NCAM1 reverse primer <400> 24 ctggcttcct tggcatcata c 21 <210> 25 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> NPY forward primer <400> 25 gactgaccct cgccctgt 18 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NPY reverse primer <400> 26 cttgccatac ctctgcctg 19 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SNCA forward primer <400> 27 gagttgtggc tgctgctg 18 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SNCA reverse primer <400> 28 caccaccgct cctccaac 18 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CCNG2 forward primer <400> 29 gggctgagtt tgattgaggc 20 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CCNG2 reverse primer <400> 30 gaacagactc caatgcaaga c 21 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CDC7 forward primer <400> 31 ctgacctgtg actgctatg 19 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDC7 reverse primer <400> 32 gtatcgtcca ctaagcaaag 20 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CDH8 forward primer <400> 33 gctataaaaa gacttgaccg g 21 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDH8 reverse primer <400> 34 gcgttgtcat tgatgtcttg 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DLG3 forward primer <400> 35 caggacgggg atgattgagt 20 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DLG3 reverse primer <400> 36 gaactgcttt cgctgtcact g 21 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DOCK3 forward primer <400> 37 ctttggcttt gcattctcac 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DOCK3 reverse primer <400> 38 tattagggca gccattgtag 20 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NEUROD6 forward primer <400> 39 cctcaacgac gctctggac 19 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NEUROD6 reverse primer <400> 40 ctggtctctt gccgattctc 20 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> NEUROG2 forward primer <400> 41 caagaagacc cgtagactga agg 23 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NEUROG2 reverse primer <400> 42 agatgtagtt gtgggcgaag c 21 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPEN forward primer <400> 43 caatcagcag cagcagtagt 20 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPEN reverse primer <400> 44 atctgtagag cgtactggaa g 21 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX10 forward primer <400> 45 gtccctgtgg tgacttggc 19 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX10 reverse primer <400> 46 aggcaggcct cgcacttg 18 <210> 47 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX13 forward primer <400> 47 gaggaggagg agaaggacga g 21 <210> 48 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX13 reverse primer <400> 48 cttcacgctc tcctctgact cg 22 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KIFAP3 forward primer <400> 49 gcttatctgt gaaggaaatg g 21 <210> 50 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KIFAP3 reverse primer <400> 50 aactcctctt cctcatcatt ag 22 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RBM10 forward primer <400> 51 ggacgctaca cgatggatgg 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RBM10 reverse primer <400> 52 ctgctctgcc tctgacttgg 20 <210> 53 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RBM14 forward primer <400> 53 ctacgccgca caagccac 18 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RBM14 reverse primer <400> 54 gagtgcggta aggagctgc 19 <210> 55 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP53I11 forward primer <400> 55 cagttcgtct ctgctgtgct c 21 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TP53I11 reverse primer <400> 56 ccaagaactg gaccccgaag 20 <210> 57 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> WNT10B forward primer <400> 57 gctggctgct ggggtcat 18 <210> 58 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> WNT10B reverse primer <400> 58 cagggctggg cagagagtg 19 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MCM3AP forward primer <400> 59 ctgaagtcac agccatcc 18 <210> 60 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MCM3AP reverse primer <400> 60 ggctatcttt tggcacag 18 <210> 61 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DRD1 forward primer <400> 61 ccctctgatg ggaatgcc 18 <210> 62 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> DRD1 reverse primer <400> 62 ctggcaattc ttggcatgg 19 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DRD2 forward primer <400> 63 gagcattctg aacttgtgtg 20 <210> 64 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DRD2 reverse primer <400> 64 gttggcaatg atgcactc 18 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DRD3 forward primer <400> 65 cagccagcat cctgaacctc 20 <210> 66 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DRD3 reverse primer <400> 66 ccaaacagaa gagggcagga c 21 <210> 67 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GNAL forward primer <400> 67 ccaagtggac aaagtgaac 19 <210> 68 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GNAL reverse primer <400> 68 gactctctca gcctgttgg 19 <210> 69 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNG7 forward primer <400> 69 cgtatcaagg tctccaaagc gg 22 <210> 70 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNG7 reverse primer <400> 70 taaaggggtt ctcggaggca gg 22 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 forward primer <400> 71 cgaagtaggt tgcggaatgc 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 reverse primer <400> 72 cataggtgtc tgagccgaac 20 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 forward primer <400> 73 cagcaagggc tacaataagg 20 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 reverse primer <400> 74 gcaggttccg tagaaggtcc 20 <210> 75 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PPP2R2B forward primer <400> 75 gaccacagaa ggctcggac 19 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PPP2R2B reverse primer <400> 76 gggtatcaat gtcctcctcc 20 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ACHE forward primer <400> 77 cctgtggtag atggagactt c 21 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ACHE reverse primer <400> 78 gttgtctttg ctgaagcctg g 21 <210> 79 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ADCY5 forward primer <400> 79 gacaggcttt ccaggaga 18 <210> 80 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ADCY5 reverse primer <400> 80 catatcctcc tgcttggcg 19 <210> 81 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> AKT3 forward primer <400> 81 cagaacgacc aaagccaaac ac 22 <210> 82 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> AKT3 reverse primer <400> 82 cttcttgcct ctgcagtctg tc 22 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KCNJ2 forward primer <400> 83 gaaagatggt cactgtaacg 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KCNJ2 reverse primer <400> 84 tatcaaccaa aacacacagc 20 <210> 85 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 forward primer <400> 85 gaacaaatcg attccagt 18 <210> 86 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 reverse primer <400> 86 cgaatctctt tgttgctgtc c 21 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 forward primer <400> 87 ctgaagcaaa tagagcatac 20 <210> 88 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 reverse primer <400> 88 gaatgttagc actatctgag c 21 <210> 89 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PLCB1 forward primer <400> 89 cttaccgttg accagatgat g 21 <210> 90 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PLCB1 reverse primer <400> 90 cattcaaatc cagtttctca gg 22 <210> 91 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SLC18A3 forward primer <400> 91 cctacggaga gcgaagacg 19 <210> 92 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SLC18A3 reverse primer <400> 92 cgaacagcgt ggcgtagtc 19 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SLC5A7 forward primer <400> 93 ccttgctgac gaagactgtg 20 <210> 94 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SLC5A7 reverse primer <400> 94 gggtaatagc cagggtagaa g 21 <210> 95 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CAMK2A forward primer <400> 95 gctgctgaag cccttaag 18 <210> 96 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CAMK2A reverse primer <400> 96 cgatggtggt gttggtgc 18 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGLN2 forward primer <400> 97 gctacagcca cctctaccac 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGLN2 reverse primer <400> 98 ctcctggttc tcttgcctgg 20 <210> 99 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ENO2 forward primer <400> 99 aaggtctttt cagggctgca g 21 <210> 100 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ENO2 reverse primer <400> 100 cgatggtgga gttgatgtgg t 21 <210> 101 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LOC101866179 forward primer <400> 101 ggaggagaag caaatcatc 19 <210> 102 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LOC101866179 reverse primer <400> 102 cactggaatc actaactgg 19 <210> 103 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LOC101866246 forward primer <400> 103 cgtgagggca atgagaaag 19 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101866246 reverse primer <400> 104 catcaagtat tggtctctcg 20 <210> 105 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> BAD forward primer <400> 105 gggacaggcc ctcagactc 19 <210> 106 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> BAD reverse primer <400> 106 cgaagggatg gaggaggag 19 <210> 107 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> BCL2L1 forward primer <400> 107 ggagaccccc agtgccat 18 <210> 108 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> BCL2L1 reverse primer <400> 108 gctgggatgt caggtcac 18 <210> 109 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CASP9 forward primer <400> 109 ccttcgttca tctcctgctt ag 22 <210> 110 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CASP9 reverse primer <400> 110 atcaccgaat cctccagaac c 21 <210> 111 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> LOC101925175 forward primer <400> 111 gagaacctgg agaagaagac gg 22 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101925175 reverse primer <400> 112 ctgctccagg tcagccatcg 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TNFRSF1A forward primer <400> 113 cacctgaaaa agagggggag 20 <210> 114 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TNFRSF1A reverse primer <400> 114 catctctctg cgggaagcc 19 <210> 115 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 115 acaacagcct caagatcgtc ag 22 <210> 116 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 116 actgtggtca tgagtccttc c 21 <110> THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> MARKERS FOR COCAINE ADDICTION <130> PN1712-461 <160> 116 <170> KoPatentIn 3.0 <210> 1 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ARHGEF7 forward primer <400> 1 gacattaaaa ctctgggcaa cg 22 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ARHGEF7 reverse primer <400> 2 ccaacgacag gaatgacaat c 21 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PTOV1 forward primer <400> 3 catcccctac gaccagagc 19 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PTOV1 reverse primer <400> 4 gagcccaaca gtcggtcca 19 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GTF2I forward primer <400> 5 gtatggaatc ccgaggct 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GTF2I reverse primer <400> 6 cggaagcaag tggaagag 18 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADAM23 forward primer <400> 7 catcaaccaa gactcggaaa g 21 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ADAM23 reverse primer <400> 8 ctccacataa tccgaagaca ac 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDH2 forward primer <400> 9 gacattatca cagtggcagc 20 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CDH2 reverse primer <400> 10 gcagtaaact ctggaggatt g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X3 forward primer <400> 11 ggtggtggtg gactgtgaat c 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X3 reverse primer <400> 12 gctgggatgg tgtctgtgta g 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X4 forward primer <400> 13 cagaacgcct caatgctatc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA1X4 reverse primer <400> 14 cactattctt ccactgctgc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X6 forward primer <400> 15 ctgggtttca gatagtggac 20 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X6 reverse primer <400> 16 ctctgcttcc ttaggttgc 19 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X7 forward primer <400> 17 ggagactgtc tggcaaacc 19 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRIA2X7 reverse primer <400> 18 ctctgcttcc ttaggttgcg 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HDAC10 forward primer <400> 19 gatgggaaac gctgactac 19 <210> 20 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HDAC10 reverse primer <400> 20 cagcagatgt gtgaggtgg 19 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HDAC5 forward primer <400> 21 cagtgacacc gtctggaatg 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HDAC5 reverse primer <400> 22 catggctgtg gattcctcg 19 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> NCAM1 forward primer <400> 23 cactccctct tcaccatcca tc 22 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NCAM1 reverse primer <400> 24 ctggcttcct tggcatcata c 21 <210> 25 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> NPY forward primer <400> 25 gactgaccct cgccctgt 18 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NPY reverse primer <400> 26 cttgccatac ctctgcctg 19 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SNCA forward primer <400> 27 gagttgtggc tgctgctg 18 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SNCA reverse primer <400> 28 caccaccgct cctccaac 18 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CCNG2 forward primer <400> 29 gggctgagtt tgattgaggc 20 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CCNG2 reverse primer <400> 30 gaacagactc caatgcaaga c 21 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CDC7 forward primer <400> 31 ctgacctgtg actgctatg 19 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDC7 reverse primer <400> 32 gtatcgtcca ctaagcaaag 20 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CDH8 forward primer <400> 33 gctataaaaa gacttgaccg g 21 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDH8 reverse primer <400> 34 gcgttgtcat tgatgtcttg 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DLG3 forward primer <400> 35 caggacgggg atgattgagt 20 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DLG3 reverse primer <400> 36 gaactgcttt cgctgtcact g 21 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DOCK3 forward primer <400> 37 ctttggcttt gcattctcac 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DOCK3 reverse primer <400> 38 tattagggca gccattgtag 20 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NEUROD6 forward primer <400> 39 cctcaacgac gctctggac 19 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NEUROD6 reverse primer <400> 40 ctggtctctt gccgattctc 20 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> NEUROG2 forward primer <400> 41 caagaagacc cgtagactga agg 23 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NEUROG2 reverse primer <400> 42 agatgtagtt gtgggcgaag c 21 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPEN forward primer <400> 43 caatcagcag cagcagtagt 20 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPEN reverse primer <400> 44 atctgtagag cgtactggaa g 21 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX10 forward primer <400> 45 gtccctgtgg tgacttggc 19 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX10 reverse primer <400> 46 aggcaggcct cgcacttg 18 <210> 47 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX13 forward primer <400> 47 gaggaggagg agaaggacga g 21 <210> 48 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KDM2BX13 reverse primer <400> 48 cttcacgctc tcctctgact cg 22 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KIFAP3 forward primer <400> 49 gcttatctgt gaaggaaatg g 21 <210> 50 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KIFAP3 reverse primer <400> 50 aactcctctt cctcatcatt ag 22 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RBM10 forward primer <400> 51 ggacgctaca cgatggatgg 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RBM10 reverse primer <400> 52 ctgctctgcc tctgacttgg 20 <210> 53 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RBM14 forward primer <400> 53 ctacgccgca caagccac 18 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RBM14 reverse primer <400> 54 gagtgcggta aggagctgc 19 <210> 55 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP53I11 forward primer <400> 55 cagttcgtct ctgctgtgct c 21 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TP53I11 reverse primer <400> 56 ccaagaactg gaccccgaag 20 <210> 57 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> WNT10B forward primer <400> 57 gctggctgct ggggtcat 18 <210> 58 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> WNT10B reverse primer <400> 58 cagggctggg cagagagtg 19 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MCM3AP forward primer <400> 59 ctgaagtcac agccatcc 18 <210> 60 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MCM3AP reverse primer <400> 60 ggctatcttt tggcacag 18 <210> 61 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DRD1 forward primer <400> 61 ccctctgatg ggaatgcc 18 <210> 62 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> DRD1 reverse primer <400> 62 ctggcaattc ttggcatgg 19 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DRD2 forward primer <400> 63 gagcattctg aacttgtgtg 20 <210> 64 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DRD2 reverse primer <400> 64 gttggcaatg atgcactc 18 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DRD3 forward primer <400> 65 cagccagcat cctgaacctc 20 <210> 66 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DRD3 reverse primer <400> 66 ccaaacagaa gagggcagga c 21 <210> 67 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GNAL forward primer <400> 67 ccaagtggac aaagtgaac 19 <210> 68 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GNAL reverse primer <400> 68 gactctctca gcctgttgg 19 <210> 69 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNG7 forward primer <400> 69 cgtatcaagg tctccaaagc gg 22 <210> 70 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNG7 reverse primer <400> 70 taaaggggtt ctcggaggca gg 22 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 forward primer <400> 71 cgaagtaggt tgcggaatgc 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 reverse primer <400> 72 cataggtgtc tgagccgaac 20 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 forward primer <400> 73 cagcaagggc tacaataagg 20 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 reverse primer <400> 74 gcaggttccg tagaaggtcc 20 <210> 75 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PPP2R2B forward primer <400> 75 gaccacagaa ggctcggac 19 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PPP2R2B reverse primer <400> 76 gggtatcaat gtcctcctcc 20 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ACHE forward primer <400> 77 cctgtggtag atggagactt c 21 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ACHE reverse primer <400> 78 gttgtctttg ctgaagcctg g 21 <210> 79 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ADCY5 forward primer <400> 79 gacaggcttt ccaggaga 18 <210> 80 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ADCY5 reverse primer <400> 80 catatcctcc tgcttggcg 19 <210> 81 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> AKT3 forward primer <400> 81 cagaacgacc aaagccaaac ac 22 <210> 82 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> AKT3 reverse primer <400> 82 cttcttgcct ctgcagtctg tc 22 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KCNJ2 forward primer <400> 83 gaaagatggt cactgtaacg 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KCNJ2 reverse primer <400> 84 tatcaaccaa aacacacagc 20 <210> 85 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 forward primer <400> 85 gaacaaatcg attccagt 18 <210> 86 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LOC101865389 reverse primer <400> 86 cgaatctctt tgttgctgtc c 21 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 forward primer <400> 87 ctgaagcaaa tagagcatac 20 <210> 88 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LOC101926461 reverse primer <400> 88 gaatgttagc actatctgag c 21 <210> 89 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PLCB1 forward primer <400> 89 cttaccgttg accagatgat g 21 <210> 90 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PLCB1 reverse primer <400> 90 cattcaaatc cagtttctca gg 22 <210> 91 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SLC18A3 forward primer <400> 91 cctacggaga gcgaagacg 19 <210> 92 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SLC18A3 reverse primer <400> 92 cgaacagcgt ggcgtagtc 19 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SLC5A7 forward primer <400> 93 ccttgctgac gaagactgtg 20 <210> 94 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SLC5A7 reverse primer <400> 94 gggtaatagc cagggtagaa g 21 <210> 95 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CAMK2A forward primer <400> 95 gctgctgaag cccttaag 18 <210> 96 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CAMK2A reverse primer <400> 96 cgatggtggt gttggtgc 18 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGLN2 forward primer <400> 97 gctacagcca cctctaccac 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGLN2 reverse primer <400> 98 ctcctggttc tcttgcctgg 20 <210> 99 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ENO2 forward primer <400> 99 aaggtctttt cagggctgca g 21 <210> 100 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ENO2 reverse primer <400> 100 cgatggtgga gttgatgtgg t 21 <210> 101 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LOC101866179 forward primer <400> 101 ggaggagaag caaatcatc 19 <210> 102 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LOC101866179 reverse primer <400> 102 cactggaatc actaactgg 19 <210> 103 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> LOC101866246 forward primer <400> 103 cgtgagggca atgagaaag 19 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101866246 reverse primer <400> 104 catcaagtat tggtctctcg 20 <210> 105 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> BAD forward primer <400> 105 gggacaggcc ctcagactc 19 <210> 106 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> BAD reverse primer <400> 106 cgaagggatg gaggaggag 19 <210> 107 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> BCL2L1 forward primer <400> 107 ggagaccccc agtgccat 18 <210> 108 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> BCL2L1 reverse primer <400> 108 gctgggatgt caggtcac 18 <210> 109 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CASP9 forward primer <400> 109 ccttcgttca tctcctgctt ag 22 <210> 110 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CASP9 reverse primer <400> 110 atcaccgaat cctccagaac c 21 <210> 111 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> LOC101925175 forward primer <400> 111 gagaacctgg agaagaagac gg 22 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC101925175 reverse primer <400> 112 ctgctccagg tcagccatcg 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TNFRSF1A forward primer <400> 113 cacctgaaaa agagggggag 20 <210> 114 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TNFRSF1A reverse primer <400> 114 catctctctg cgggaagcc 19 <210> 115 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 115 acaacagcct caagatcgtc ag 22 <210> 116 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 116 actgtggtca tgagtccttc c 21
Claims (18)
2) 상기 유전자 또는 단백질의 농도에 대한 검출 결과를 코카인이 투여되지 않은 정상 대조군 시료의 해당 마커의 상응하는 결과와 비교하는 단계;
3) PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925175 및 CASP9을 포함하는 유전자 또는 단백질이 상향 조절되고, MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A 및 BCL2L1을 포함하는 유전자 또는 단백질이 하향 조절되면 급성 코카인 노출인 것으로 판정하는 단계; 및
4) 상기 정상 대조군 시료와 비교하여, 대상체 유래 시료에서 ARHGEF7, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1 및 BAD를 포함하는 유전자 또는 상기 유전자가 코딩하는 단백질이 상향 조절되고 MCM3AP, PTOV1, GTF2I, AKT3, CAMK2A 및 LOC101866246를 포함하는 유전자 또는 상기 유전자가 코딩하는 단백질이 하향 조절되면 만성 코카인 노출인 것으로 판정하는 단계를 포함하는 코카인 노출 진단에 필요한 정보를 제공하는 방법.1) ARHGEF7, PTOV1, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, HDAC5, HDAC10, NPY, SNCA, CCNG2, CDC7, CDH8, DLG3, NEUROD6, KEURBX10, NEURBX10, NEUROG2 Including, KDM2BX13, KIFAP3, WNT10B, MCM3AP, DRD1, DRD2, DRD3, GNAL, GNG7, PPP2R2B, ACHE, ADCY5, AKT3, KCNJ2, SLC18A3, SLC5A7, CAMK2A, EGLN2, CAS BRS, LOC101A925, and B175AD CAS, LOC101A925, B175 Detecting a concentration of a biomarker including a gene or a protein encoded by the gene;
2) comparing the detection result of the gene or protein concentration with the corresponding result of the corresponding marker of the normal control sample to which cocaine was not administered;
3) Genes or proteins including PTOV1, HDAC5, HDAC10, NPY, SNCA, KDM2BX10, KDM2BX13, KIFAP3, WNT10B, DRD1, DRD2, DRD3, GNAL, PPP2R2B, GNG7, ACHE, SLC5A7, ADCY5, KCNJ2, LOC101925, and CASP9925175 and proteins Upregulated and downregulated genes or proteins including MCM3AP, GTF2I, ADAM23, CDH2, GRIA1X3, GRIA1X4, GRIA2X6, GRIA2X7, CCNG2, CDC7, CDH8, DLG3, NEUROD6, NEUROG2, SPEN, CAMK2A, EGLN2, TNFRSF1A and BCL2L Determining that it is an acute cocaine exposure; And
4) Compared with the normal control sample, in a sample derived from a subject, ARHGEF7, DRD1, DRD2, DRD3, GNAL, PPP2R2B, SLC18A3, ACHE, SLC5A7, ADCY5, KCNJ2, TNFRSF1A, BCL2L1, and genes containing BAD or the gene are encoded. If the protein is upregulated and the gene or the protein encoded by the gene is down-regulated, including MCM3AP, PTOV1, GTF2I, AKT3, CAMK2A, and LOC101866246, information necessary for the diagnosis of cocaine exposure, including determining that it is chronic cocaine exposure, is provided. How to provide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170176088A KR102208012B1 (en) | 2017-12-20 | 2017-12-20 | Markers for cocaine addiction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170176088A KR102208012B1 (en) | 2017-12-20 | 2017-12-20 | Markers for cocaine addiction |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190074608A KR20190074608A (en) | 2019-06-28 |
KR102208012B1 true KR102208012B1 (en) | 2021-01-27 |
Family
ID=67066288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170176088A KR102208012B1 (en) | 2017-12-20 | 2017-12-20 | Markers for cocaine addiction |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102208012B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8426439B2 (en) * | 2007-04-11 | 2013-04-23 | Omeros Corporation | Compositions and methods for prophylaxis and treatment of addictions |
KR20140113021A (en) * | 2013-03-15 | 2014-09-24 | 삼육대학교산학협력단 | Biomarkers for confirmation of drug addiction and dependence |
-
2017
- 2017-12-20 KR KR1020170176088A patent/KR102208012B1/en active IP Right Grant
Non-Patent Citations (2)
Title |
---|
International Journal of Neuropsychopharmacology (2011) 14(8):1099-1110* |
Neuropsychopharmacology (2006) 31:2304-2312* |
Also Published As
Publication number | Publication date |
---|---|
KR20190074608A (en) | 2019-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102622309B1 (en) | Detection of chromosomal interactions | |
JP5690588B2 (en) | Method for determining hepatocellular carcinoma subtype and detecting hepatoma stem cells | |
US20070135369A1 (en) | Methods of modulating angiogenesis and screening compounds for activity in modulating angiogenesis | |
EP3336548B1 (en) | Method for providing information on chronic myeloid leukemia | |
US20200103418A1 (en) | Diagnostic and therapeutic methods for irak4-mediated disorders and conditions | |
JP2015501645A (en) | MiRNAs and related compositions and methods useful for reducing tumor development and chemotherapy resistance in lung cancer | |
Saliba et al. | Regulation of CXCL 1 chemokine and CSF 3 cytokine levels in myometrial cells by the MAFF transcription factor | |
KR102338510B1 (en) | Companion diagnostic biomarker for anti-her2 therapy and use thereof | |
AU2021101144A4 (en) | Use of miRNA 148 Cluster as Marker for Diagnosing and/or Treating Cognitive Impairment-Associated Diseases | |
CN117295952A (en) | Methods for predicting therapeutic response in ulcerative colitis | |
KR102208012B1 (en) | Markers for cocaine addiction | |
US11510911B2 (en) | Method for prediction of susceptibility to sorafenib treatment by using SULF2 gene, and composition for treatment of cancer comprising SULF2 inhibitor | |
EP4306657A1 (en) | Composition for diagnosing pancreatic cancer | |
JP2024510839A (en) | Composition for differential diagnosis of malignant peripheral nerve schwannoma | |
KR102208011B1 (en) | Markers for heroin addiction | |
CA3237899A1 (en) | Markers and cellular antecedents of rheumatoid arthritis flares | |
KR101973027B1 (en) | Use of markers in the diagnosis and treatment of brain cancer | |
CN113151432A (en) | Novel targets for neurodegenerative disease detection and treatment | |
KR102706327B1 (en) | Composition for Differential Diagnosis of Malignant Peripheral Nerve Sheath Tumor | |
KR20200110852A (en) | Method for provide useful information to diagnose resistive cancer to mitotic inhibitor | |
US20220184029A1 (en) | Compositions and methods for treating neuroblastoma | |
US11958885B2 (en) | Methods for determining a rapid progression rate of amyotrophic lateral sclerosis (ALS) and restoring phagocytic function of microglia thereof using a NCK-associated protein 1 (NCKAP1) protein or an mRNA thereof | |
KR102042332B1 (en) | TCIRG1 biomarker for diagnosing recurrent and prognosis of liver cancer and use thereof | |
KR20240161931A (en) | Discovery of target for inhibition of fibrosis in inflammatory bowel disease | |
KR20230168575A (en) | Biomarker for prognosis of squamous pancreatic cancer and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |