KR102196751B1 - System for Liquid Air Energy Storage using Liquefied Gas Fuel - Google Patents
System for Liquid Air Energy Storage using Liquefied Gas Fuel Download PDFInfo
- Publication number
- KR102196751B1 KR102196751B1 KR1020190005187A KR20190005187A KR102196751B1 KR 102196751 B1 KR102196751 B1 KR 102196751B1 KR 1020190005187 A KR1020190005187 A KR 1020190005187A KR 20190005187 A KR20190005187 A KR 20190005187A KR 102196751 B1 KR102196751 B1 KR 102196751B1
- Authority
- KR
- South Korea
- Prior art keywords
- air
- heat
- liquefied gas
- liquid
- cold heat
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 157
- 239000000446 fuel Substances 0.000 title claims abstract description 81
- 238000004146 energy storage Methods 0.000 title description 10
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000007789 gas Substances 0.000 claims description 126
- 239000003507 refrigerant Substances 0.000 claims description 62
- 238000001816 cooling Methods 0.000 claims description 30
- 238000007906 compression Methods 0.000 claims description 24
- 230000008016 vaporization Effects 0.000 claims description 23
- 230000006835 compression Effects 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000002918 waste heat Substances 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 238000010248 power generation Methods 0.000 abstract description 20
- 239000003949 liquefied natural gas Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000011084 recovery Methods 0.000 description 12
- 238000009834 vaporization Methods 0.000 description 12
- 230000006837 decompression Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000003915 liquefied petroleum gas Substances 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 239000003345 natural gas Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B43/00—Engines characterised by operating on gaseous fuels; Plants including such engines
- F02B43/10—Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0082—Methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
- F25J1/0224—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0242—Waste heat recovery, e.g. from heat of compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0251—Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0327—Heat exchange with the fluid by heating with recovery of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/24—Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/04—Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
본 발명은 액화가스를 연료로 사용하는 엔진으로 공급하는 액화가스의 냉열을 이용하여 액체공기를 저장함으로써, 연료 공급, 전력 생산 및 액체공기 재기화 공정 등 전체적인 시스템 효율을 향상시킬 수 있는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템에 관한 것이다.
본 발명에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템은, 액화가스를 연료로 사용하는 엔진으로 액화가스 연료를 공급하는 연료 공급부; 공기를 액화시키는 공기 액화부; 및 상기 액화된 액체공기를 재기화시켜 전력을 생산하는 재기화부;를 포함하고, 상기 공기 액화부는, 상기 액화가스와 액화시킬 공기를 열교환시켜 상기 엔진으로 공급할 액화가스는 기화시키고 상기 공기는 액화시키는 제1 열교환기;를 포함한다. The present invention is a liquefied gas that can improve overall system efficiency, such as fuel supply, power generation, and liquid air regasification process, by storing liquid air by using cold heat of liquefied gas supplied to an engine using liquefied gas as fuel. It relates to a liquid air storage system using cold heat of fuel.
A liquid air storage system using cold heat of liquefied gas fuel according to the present invention comprises: a fuel supply unit for supplying liquefied gas fuel to an engine using liquefied gas as fuel; An air liquefaction unit for liquefying air; And a regasification unit for generating power by regasifying the liquefied liquid air, wherein the air liquefaction unit heats the liquefied gas with air to be liquefied to vaporize the liquefied gas to be supplied to the engine and liquefy the air. It includes; a first heat exchanger.
Description
본 발명은 액화가스를 연료로 사용하는 엔진으로 공급하는 액화가스의 냉열을 이용하여 액체공기를 저장함으로써, 연료 공급, 전력 생산 및 액체공기 재기화 공정 등 전체적인 시스템 효율을 향상시킬 수 있는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템에 관한 것이다.The present invention is a liquefied gas that can improve overall system efficiency, such as fuel supply, power generation, and liquid air regasification process, by storing liquid air by using cold heat of liquefied gas supplied to an engine using liquefied gas as fuel. It relates to a liquid air storage system using cold heat of fuel.
세계적으로 화석연료를 이용한 전기생산량은 전체 전기생산량의 약 70%를 차지하는데 비해, 신재생에너지를 이용한 전기생산량은 전체 전기생산량의 약 6%에 불과하다. 최근 기후변화 연구에 따르면, 지구의 기온 상승을 2℃ 미만으로 유지하기 위해서는 2050년까지 이산화탄소(CO2) 배출량을 현재의 90% 이하로 감축시켜야 하며, 이를 위해서는 기존의 화석연료 사용을 반드시 저감시켜야 한다.Globally, electricity production using fossil fuels accounts for about 70% of the total electricity production, whereas electricity production using new and renewable energy accounts for only about 6% of the total electricity production. According to a recent climate change study, in order to keep the global temperature rise below 2℃, carbon dioxide (CO 2 ) emissions must be reduced to 90% or less by 2050, and for this, the use of existing fossil fuels must be reduced. .
따라서, 화석연료의 대체에너지로서 신재생에너지를 이용한 전기생산량을 현저하게 증가시켜야 할 필요가 있다. 그러나 아직 대부분의 신재생에너지는 생산량의 변동이 크기 때문에 전력수요와 공급의 균형을 맞추는데 어려움이 있다. Therefore, there is a need to remarkably increase the amount of electricity produced using renewable energy as an alternative energy for fossil fuels. However, most of the renewable energies still have large fluctuations in production, so it is difficult to balance power demand and supply.
이를 보완하기 위해서는, 에너지를 저장하는 에너지 저장 시스템(ESS; Energy Storage System)의 적용을 고려해볼 수 있다. 에너지 저장 시스템을 적용함으로써 안정적인 전기 공급과 유연성을 제공할 수 있다. In order to compensate for this, it is possible to consider the application of an energy storage system (ESS) that stores energy. By applying the energy storage system, it is possible to provide stable electricity supply and flexibility.
신재생에너지 저장 시스템으로는, 리튬이온전지(Li-ion battery), 나트륨-황전지(NaS battery), 레독스 흐름 전지(Redox flow battery), 수퍼 캐퍼시터(super capacitor), 플라이 휠(flywheel), 압축공기 저장(CAES; Compressed Air Energy Storage) 시스템, 양정 수력 저장(PHS; Pumped Hydro Storage) 시스템, 액체공기 저장(LAES; Liquid Air Energy Storage) 시스템 등이 대두되고 있다. Renewable energy storage systems include Li-ion battery, NaS battery, Redox flow battery, super capacitor, flywheel, Compressed Air Energy Storage (CAES) systems, Pumped Hydro Storage (PHS) systems, and Liquid Air Energy Storage (LAES) systems are emerging.
에너지 저장 시스템은, 지리적 특성이나 에너지 밀도, 수명, 설치 및 운영 비용, 안정성 등을 기준으로 평가되고 적용된다. 각 에너지 저장 시스템별로 장단점이 있으나 그 중 양정 수력 저장 방법이 가장 대표적인 에너지 저장방법이다. 또한, 액체공기 저장 장치는 지리적 제약이 적고, 수명이 길며, 운영 비용이 적고, 공기를 이용한 안전한 저장 방식을 이용한다는 점에서 상용화 가능성이 높다.Energy storage systems are evaluated and applied based on geographic characteristics, energy density, lifetime, installation and operating costs, and stability. Each energy storage system has advantages and disadvantages, but among them, the lift hydropower storage method is the most representative energy storage method. In addition, the liquid air storage device is highly likely to be commercialized in that it has low geographic restrictions, has a long lifespan, has low operating costs, and uses a safe storage method using air.
한편, 천연가스는, 화학적 특성으로 인해 연소 시 석유 제품에 비해 이산화탄소(CO2), 질소산화물(NOx), 미세먼지(PM; Particulate Matter) 등의 배출이 적어 화석 연료로서 유용하게 사용되고 있다. 그뿐 아니라, 황 함량이 적어 황산화물(SOx)의 배출도 거의 없다. 이와 같이, 천연가스는 연소 시 연소가스에 포함된 오염물질의 양이 적은 청정연료로서 엔진용 연료로 사용되고 있다.On the other hand, natural gas, due to its chemical properties, has less emission of carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and particulate matter (PM) than petroleum products during combustion, so it is usefully used as a fossil fuel. In addition, due to the low sulfur content, there is little emission of sulfur oxides (SO x ). As such, natural gas is used as a fuel for engines as a clean fuel having a small amount of pollutants contained in the combustion gas during combustion.
일반적으로 천연가스는, 극저온으로 액화시킨 액화천연가스(LNG; Liquefied Natural Gas)의 상태로 목적지까지 운반된다. LNG는 천연가스를 상압에서 약 -163℃의 극저온으로 냉각하여 얻어지는 것으로, 가스 상태일 때보다 그 부피가 대략 1/600로 감소하므로 액체 상태의 LNG가 저장 및 운반에 유리하다. In general, natural gas is transported to its destination in the form of liquefied natural gas (LNG) liquefied at cryogenic temperatures. LNG is obtained by cooling natural gas from atmospheric pressure to a cryogenic temperature of about -163°C, and its volume is reduced to about 1/600 compared to when it is in a gaseous state, so liquid LNG is advantageous for storage and transportation.
액체공기 저장(LAES) 시스템의 기본 원리는 다음과 같다. 외부로부터 유입되는 기체 상태의 공기를 압축시키고, 압축공기를 주열교환기를 통한 액화공정을 거쳐 약 -196℃ 이하로 냉각시켜, 에너지 밀도가 높은 액체 상태로 저장한다. 또한, 액체 상태로 저장되어 있는 액체공기를 가열하여 고압의 기체 상태로 만들고, 이 고압의 공기로 터빈을 구동시켜 전력을 생산한다.The basic principle of the liquid air storage (LAES) system is as follows. The gaseous air introduced from the outside is compressed, and the compressed air is cooled to about -196°C or less through a liquefaction process through the main heat exchanger, and stored in a liquid state with high energy density. In addition, liquid air stored in a liquid state is heated to a high-pressure gas state, and the high-pressure air is used to drive a turbine to generate electric power.
액체공기 저장 시스템은, 외부의 별도 열원 없이 공기만으로 액체공기 저장 시스템의 에너지 사이클을 구성하게 되면, 액화 및 재기화 공정에 많은 냉열이 필요하다. 또한, 공기의 팽창열 및 압축열만을 이용하여 공기를 액화 및 기화시키므로, 사이클 내 온도 구배가 크지 않고, 온도와 압력 변화에 다른 열용량의 현격한 차이에 의해 에너지 손실이 많아 액화 에너지를 그대로 기화 공정에 이용하지 못하는 등 사이클 효율이 낮다는 문제점이 있다. 실증 플랜트의 공정 효율은 약 8% 내외인 것으로 알려져있다.In the liquid air storage system, when the energy cycle of the liquid air storage system is composed of only air without an external heat source, a lot of cold heat is required for the liquefaction and regasification process. In addition, since air is liquefied and vaporized using only the heat of expansion and compression of air, the temperature gradient in the cycle is not large, and the energy loss is large due to the significant difference in different heat capacities due to changes in temperature and pressure. There is a problem that the cycle efficiency is low, such as not being able to use it. The process efficiency of the demonstration plant is known to be around 8%.
따라서, 본 발명은, 액체공기 저장 시스템에 있어서, 액화가스 연료의 냉열을 이용함으로써, 액체공기의 생산성을 향상시키는 동시에, 연료 공급 효율을 향상시키고, 엔진의 배기가스를 회수하여 액체공기 발전 공정에 활용하여 전력 생산의 효율도 향상시킬 수 있는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템을 제공하고자 하는 것을 목적으로 한다.Accordingly, in the liquid air storage system, by using the cooling heat of the liquefied gas fuel, the present invention improves the productivity of the liquid air, improves the fuel supply efficiency, and recovers the exhaust gas of the engine, thereby providing the liquid air power generation process. It is an object of the present invention to provide a liquid air storage system using cold heat of liquefied gas fuel that can also improve the efficiency of power generation by utilizing it.
상술한 목적을 달성하기 위한 본 발명의 일 측면에 의하면, 액화가스를 연료로 사용하는 엔진으로 액화가스 연료를 공급하는 연료 공급부; 공기를 액화시키는 공기 액화부; 및 상기 액화된 액체공기를 재기화시켜 전력을 생산하는 재기화부;를 포함하고, 상기 공기 액화부는, 상기 액화가스와 액화시킬 공기를 열교환시켜 상기 엔진으로 공급할 액화가스는 기화시키고 상기 공기는 액화시키는 제1 열교환기;를 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템이 제공된다. According to an aspect of the present invention for achieving the above object, a fuel supply unit for supplying liquefied gas fuel to an engine using the liquefied gas as fuel; An air liquefaction unit for liquefying air; And a regasification unit for generating power by regasifying the liquefied liquid air, wherein the air liquefaction unit heats the liquefied gas with air to be liquefied to vaporize the liquefied gas to be supplied to the engine and liquefy the air. A liquid air storage system using cold heat of liquefied gas fuel, including a first heat exchanger is provided.
바람직하게는, 상기 재기화부는, 상기 액체공기를 기화시키는 재기화기; 및 상기 재기화기에서 기화된 재기화 공기를 작동유체로 하여 전력을 생산하는 터빈-발전기;를 포함할 수 있다.Preferably, the regasification unit comprises: a regasifier for vaporizing the liquid air; And a turbine-generator generating electric power using the regasified air vaporized in the regasifier as a working fluid.
바람직하게는, 상기 재기화 공기를 터빈-발전기로 공급하기 전에, 상기 엔진의 폐열을 회수하여 상기 재기화 공기를 더 가열하여 상기 터빈-발전기의 온도 구배를 높이는 제2 가열기;를 포함할 수 있다.Preferably, before supplying the regasified air to the turbine-generator, a second heater recovering waste heat from the engine to further heat the regasified air to increase the temperature gradient of the turbine-generator; may include. .
바람직하게는, 상기 공기 액화부와 재기화부를 연결하며 제1 열전달 매체가 순환하면서 상기 재기화부에서 상기 액체공기로부터 냉열을 회수하여 상기 공기 액화부에서 공기를 액화시키기 위한 냉열로 제공하는 제1 냉매 사이클;을 더 포함할 수 있다.Preferably, a first refrigerant that connects the air liquefaction unit to the regasification unit and provides cold heat for liquefying air in the air liquefaction unit by recovering cold heat from the liquid air in the regasification unit while the first heat transfer medium circulates It may further include a cycle.
바람직하게는, 상기 공기 액화부는, 액화시킬 공기를 압축시키는 공기 압축기; 및 상기 압축에 의해 온도가 높아진 압축공기를 냉각시키는 중간 냉각기;를 포함하고, 상기 중간 냉각기에서는, 상기 제1 냉매 사이클을 순환하는 제1 열전달 매체가 회수한 액체공기의 냉열로 상기 압축공기가 냉각될 수 있다.Preferably, the air liquefaction unit includes an air compressor for compressing air to be liquefied; And an intermediate cooler for cooling the compressed air whose temperature is increased by the compression, wherein the compressed air is cooled by cooling the liquid air recovered by the first heat transfer medium circulating in the first refrigerant cycle. Can be.
바람직하게는, 상기 재기화부는, 상기 재기화 공기를 터빈-발전기로 공급하기 전에, 상기 중간 냉각기에서 압축공기를 냉각시키면서 압축열을 회수하여 온도가 상승한 제1 열전달 매체와 재기화 공기를 열교환시켜, 상기 재기화 공기를 더 가열하여 상기 터빈-발전기의 온도 구배를 높이는 제1 가열기;를 포함할 수 있다.Preferably, the regasification unit, before supplying the regasification air to the turbine-generator, recovers compressed heat while cooling the compressed air in the intermediate cooler to exchange heat between the first heat transfer medium and the regasification air whose temperature has risen. It may include; a first heater for increasing the temperature gradient of the turbine-generator by further heating the regasification air.
바람직하게는, 상기 공기 액화부와 재기화부를 연결하며 제2 열전달 매체가 순환하면서 상기 재기화부에서 상기 액체공기로부터 냉열을 회수하여 상기 공기 액화부에서 공기를 액화시키기 위한 냉열로 제공하는 제2 냉매 사이클;을 더 포함할 수 있다.Preferably, a second refrigerant that connects the air liquefaction unit and the regasification unit and provides cold heat for liquefying air in the air liquefaction unit by recovering cold heat from the liquid air in the regasification unit while the second heat transfer medium circulates It may further include a cycle.
바람직하게는, 상기 공기 액화부는, 상기 제2 냉매 사이클을 순환하는 제2 열전달 매체가 회수한 액체공기의 냉열로 상기 압축공기를 액화시키는 제2 열교환기;를 포함하고, 상기 제2 열전달 매체는, 상기 재기화기에서 상기 액체공기의 냉열을 회수하여 상기 제2 열교환기로 공급할 수 있다.Preferably, the air liquefaction unit includes a second heat exchanger for liquefying the compressed air by cooling heat of the liquid air recovered by the second heat transfer medium circulating in the second refrigerant cycle, wherein the second heat transfer medium comprises , The cooling heat of the liquid air may be recovered from the regasifier and supplied to the second heat exchanger.
상술한 목적을 달성하기 위한 본 발명의 다른 일 측면에 의하면, 액화가스를 기화시켜 연료로 사용하는 가스엔진; 압축공기와 상기 가스엔진으로 공급할 액화가스를 열교환시켜 상기 액화가스는 기화시키고 상기 압축공기는 액화시키는 열교환기; 상기 액화된 공기를 상기 압축공기의 온열을 이용하여 기화시키는 재기화기; 및 상기 가스엔진으로부터 상기 압축공기에 의해 기화된 액화가스의 연소에 의해 배출되는 폐열을 회수하여 상기 재기화기에서 기화된 재기화 공기를 가열하는 제2 가열기; 및 상기 제2 가열기에 의해 가열된 재기화 공기를 작동유체로 하여 전력을 생산하는 터빈-발전기;를 포함하여, 상기 가스엔진의 폐열로 상기 터빈-발전기의 도입온도를 높이는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템이 제공된다.According to another aspect of the present invention for achieving the above object, the gas engine for using as fuel by vaporizing liquefied gas; A heat exchanger for exchanging compressed air with liquefied gas to be supplied to the gas engine to evaporate the liquefied gas and liquefy the compressed air; A regasifier for vaporizing the liquefied air by using the heat of the compressed air; And a second heater for recovering waste heat discharged from combustion of the liquefied gas vaporized by the compressed air from the gas engine and heating the regasified air vaporized in the regasifier. And a turbine-generator for generating electric power using the regasified air heated by the second heater as a working fluid; including, waste heat of the gas engine to increase the introduction temperature of the turbine-generator, cooling heat of liquefied gas fuel A liquid air storage system is provided.
바람직하게는, 상기 공기를 압축하여 압축공기를 생산하는 공기 압축기;를 더 포함하고, 상기 터빈-발전기에서 생산된 전력은, 공기 압축기를 구동시키는 동력으로 사용할 수 있다.Preferably, an air compressor that compresses the air to produce compressed air; further comprising, the turbine-generator, and the power generated by the turbine-generator may be used as power to drive the air compressor.
본 발명의 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템은, 액화가스 연료를 기화시키면서 버려지는 냉열을 회수하여, 공기를 액화시키기 위한 냉매로 사용함으로써, 냉열 손실을 줄이고, 공기 액화 효율 및 액화가스 연료 공급 효율을 향상시킬 수 있다. The liquid air storage system using the cold heat of liquefied gas fuel of the present invention recovers the cold heat discarded while evaporating the liquefied gas fuel and uses it as a refrigerant for liquefying air, thereby reducing cold heat loss, air liquefaction efficiency and liquefied gas It can improve fuel supply efficiency.
또한, 액화가스를 기화시키기 위해 해수가 아닌 공기를 사용하므로, 액화가스의 냉열을 해상으로 버리지 않아도 되며, 따라서 환경오염의 우려가 없고, 버려지는 냉열을 회수하여 활용하므로, 공기 액화에 필요한 에너지 및 액화가스 연료를 기화시키는데 필요한 에너지를 절감할 수 있다. In addition, since air, not seawater, is used to vaporize the liquefied gas, there is no need to throw away the cold heat of the liquefied gas to the sea.Therefore, there is no concern of environmental pollution and the discarded cold heat is recovered and utilized. Energy required to vaporize liquefied gas fuel can be reduced.
또한, 잉여의 전력을 액체공기 형태로 저장하여, 필요 시 액체공기를 이용하여 전력을 생산할 수 있고, 따라서, 전력 수급의 불균형을 해소할 수 있다.In addition, by storing excess power in the form of liquid air, it is possible to generate power using liquid air when necessary, and thus, it is possible to solve the imbalance in power supply and demand.
또한, 액체공기를 이용하여 생산된 전력은 액화가스를 기화시키기 위해 필요한 전력이나 공기를 액화시키기 위해 필요한 전력으로 사용할 수 있고, 전력 생산 용량이 큰 경우에는 국가 전력 공급망(grid)으로도 활용할 수도 있으며, 전력 공급에 있어 친환경적이고 효율적으로 전력을 생산할 수 있다.In addition, the power produced using liquid air can be used as power required to vaporize liquefied gas or power required to liquefy air, and if the power production capacity is large, it can also be used as a national power supply network. In terms of power supply, it is environmentally friendly and can produce power efficiently.
특히, 계통 전력망과 연계하여, 전력 수요가 적은 시간대에는 잉여전력을 활용하여 공기를 액화시키는 방식으로 에너지를 저장하고, 전력 수요 피크 시간대에는 액화 공기를 재기화시켜 추가 전력을 생산함으로써, 잉여전력 활용 효율을 개선할 수 있다. In particular, in connection with the grid power grid, energy is stored by liquefying air by utilizing surplus power during times of low power demand, and by generating additional power by regasifying liquefied air during peak power demands. Efficiency can be improved.
또한, 냉매 사이클을 순환하는 열전달 매체를 이용하여 공기 액화 공정에서 회수한 온열을 재기화 공정에 활용하고, 재기화 공정에서 회수한 냉열은 공기 액화 공정에서 활용할 수 있다.In addition, the heat recovered in the air liquefaction process is utilized in the regasification process by using a heat transfer medium circulating in the refrigerant cycle, and the cold heat recovered in the regasification process can be utilized in the air liquefaction process.
도 1은 본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템의 공정 압축공기을 도시한 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템을 간략하게 도시한 구성도이다. 1 is a flow chart showing a process compressed air of a liquid air storage system using cold heat of liquefied gas fuel according to an embodiment of the present invention.
2 is a schematic diagram of a liquid air storage system using cold heat of liquefied gas fuel according to an embodiment of the present invention.
본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the operational advantages of the present invention and the object achieved by the implementation of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서 각 도면의 구성요소들에 대해 참조 부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다. 또한, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the configuration and operation of a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, in adding reference numerals to elements of each drawing, it should be noted that only the same elements are marked with the same numerals as possible, even if they are indicated on different drawings. In addition, the following examples may be modified in various forms, and the scope of the present invention is not limited to the following examples.
도 1은 본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템의 공정 압축공기을 도시한 흐름도이고, 도 2는 본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템을 간략하게 도시한 구성도이다. 이하, 도 1 내지 도 2를 참조하여, 본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템 및 액화가스 연료의 냉열을 이용한 액체공기 저장 방법을 설명하기로 한다. 1 is a flow chart showing a process compressed air of a liquid air storage system using cold heat of liquefied gas fuel according to an embodiment of the present invention, and FIG. 2 is a liquid using cold heat of liquefied gas fuel according to an embodiment of the present invention. It is a schematic diagram of an air storage system. Hereinafter, a liquid air storage system using cold heat of liquefied gas fuel and a liquid air storage method using cold heat of liquefied gas fuel according to an embodiment of the present invention will be described with reference to FIGS. 1 to 2.
후술하는 본 발명의 일 실시예에 있어서 액화가스는, 가스를 저온으로 액화시켜 수송할 수 있는 액화가스일 수 있으며, 예를 들어, LNG(Liquefied Natural Gas), LEG(Liquefied Ethane Gas), LPG(Liquefied Petroleum Gas), 액화에틸렌가스(Liquefied Ethylene Gas), 액화프로필렌가스(Liquefied Propylene Gas) 등과 같은 액화 석유화학 가스일 수 있다. 또는, 액화 이산화탄소, 액화 수소, 액화 암모니아 등의 액체 가스일 수도 있다. 다만, 후술하는 실시예에서는 대표적인 액화가스인 LNG 또는 LPG가 적용되는 것을 예로 들어 설명하기로 한다.In an embodiment of the present invention to be described later, the liquefied gas may be a liquefied gas that can be transported by liquefying the gas at a low temperature. For example, LNG (Liquefied Natural Gas), LEG (Liquefied Ethane Gas), LPG ( Liquefied petrochemical gas, such as Liquefied Petroleum Gas, Liquefied Ethylene Gas, Liquefied Propylene Gas, and the like. Alternatively, it may be a liquid gas such as liquefied carbon dioxide, liquefied hydrogen, or liquefied ammonia. However, in the embodiments to be described later, a typical liquefied gas such as LNG or LPG is applied as an example.
LNG는 메탄을 주성분으로 하며, 에탄, 프로판, 부탄 등을 포함할 수 있는데, 그 조성은 생산지에 따라 달라질 수 있다. LNG의 액화 온도는 상압에서 약 -161℃이며, 액화 시 가스 상태(즉, 천연가스)일 때보다 부피가 약 1/600로 감소하고 비중도 낮아지므로 수송에 용이하여 주로 액체 상태(즉, LNG)로 저장 및 운반된다. 또한, 천연가스는 황과 수분이 적게 포함되어 있고, 열량이 높아 청정 에너지로 각광받고 있다. LNG is mainly composed of methane, and may include ethane, propane, butane, and the like, and the composition may vary depending on the production site. The liquefaction temperature of LNG is about -161°C at normal pressure, and when liquefied, the volume is reduced to about 1/600 and the specific gravity is lower than when it is in the gaseous state (i.e., natural gas). ) To be stored and transported. In addition, natural gas contains less sulfur and moisture, and has a high amount of heat and is attracting attention as clean energy.
LPG는 부탄 및 프로판을 주성분으로 하며, 석유 또는 유전가스에서 추출할 수 있는데, 생산지에 따라 조성이 달라질 수 있다. 예를 들어, 유전가스에서 추출된 LPG는 탄화수소 비율이 상대적으로 높다. LPG의 액화 온도는 상압에서 약 -47℃이다. LPG는 비중이 높고 폭발의 위험성이 있으나, 가벼운 압력 용기에도 저장할 수 있으므로 휴대가 간편하다는 장점이 있다. LPG is mainly composed of butane and propane, and can be extracted from petroleum or oil field gas, and its composition may vary depending on the production site. For example, LPG extracted from oilfield gas has a relatively high proportion of hydrocarbons. The liquefaction temperature of LPG is about -47℃ at normal pressure. LPG has a high specific gravity and a risk of explosion, but has the advantage of being portable because it can be stored in a light pressure vessel.
또한, 후술하는 본 발명의 일 실시예에 있어서 엔진은, 액화가스를 연료로 사용할 수 있는 가스 엔진일 수 있으며, 연료의 연소에 의해 전력을 생산할 수 있는 발전기가 구비된 엔진 또는 발전용 엔진일 수 있다. In addition, in an embodiment of the present invention to be described later, the engine may be a gas engine capable of using liquefied gas as a fuel, and may be an engine or power generation engine equipped with a generator capable of generating power by combustion of fuel. have.
본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템은 도 1에 도시된 공정 압축공기을 따른다.The liquid air storage system using cold heat of liquefied gas fuel according to an embodiment of the present invention follows the process compressed air shown in FIG. 1.
본 실시예의 액화가스 연료의 냉열을 이용한 액체공기 저장 방법은, 기체 상태의 공기를 액화시키고, 액화된 액체공기를 저장하는 액화 및 저장 단계(S100);와 저장된 액체공기를 재기화시키고, 기체 상태의 재기화 공기를 이용하여 전력을 생산하는 재기화 및 발전 단계(S200);를 포함한다.The liquid air storage method using cold heat of the liquefied gas fuel of the present embodiment includes a liquefaction and storage step (S100) of liquefying gaseous air and storing the liquefied liquid air; and regasifying the stored liquid air, and Regasification and power generation step (S200) of generating power using the regasification air; includes.
본 실시예의 액화 및 저장 단계(S100)는, 외부로부터 기체 상태의 공기를 공급하고 압축하는 압축 단계; 압축공기를 냉각시키는 냉각 단계; 및 냉각된 압축공기를 감압시키는 감압 단계;와 압축, 냉각 및 감압 단계를 거치면서 액화된 공기를 액체 상태로 저장하는 저장 단계;를 포함한다. The liquefaction and storage step (S100) of this embodiment includes: a compression step of supplying and compressing gaseous air from the outside; A cooling step of cooling the compressed air; And a decompression step of decompressing the cooled compressed air; and a storage step of storing the liquefied air in a liquid state while passing through the compression, cooling, and decompression steps.
압축 단계는, 공기를 다단 압축할 수 있고, 각 압축단의 후단에서는, 압축에 의해 온도가 상승한 공기를 냉각시키는 중간 냉각 단계가 후속될 수 있다. In the compression step, the air may be compressed in multiple stages, and at the rear end of each compression stage, an intermediate cooling step of cooling the air whose temperature has risen by compression may be followed.
예를 들어, 본 실시예의 압축 단계는, 공기를 2단 압축할 수 있다. 즉, 첫번째 단 압축기(제1 공기압축기)에서 압축된 제1압축공기는 두번째 단 압축기(제2 공기압축기)로 공급하기 전에 중간 냉각시킨 후 두번째 단 압축기로 공급하고, 두번째 단 압축기에서 압축된 제2 압축공기는 냉각 단계로 도입하기 전에 중간 냉각시킬 수 있다.For example, in the compression step of this embodiment, air may be compressed in two stages. That is, the first compressed air compressed by the first stage compressor (the first air compressor) is intermediately cooled before being supplied to the second stage compressor (the second air compressor) and then supplied to the second stage compressor. 2 Compressed air can be cooled intermediately before entering the cooling stage.
또한, 본 실시예의 재기화 및 발전 단계(S200)는, 저장된 액체공기를 가압하는 가압 단계; 가압된 액체공기를 재기화시키는 기화 단계; 및 기화된 기체 상태의 공기를 가열하는 가열 단계; 및 가열된 기체 상태의 재기화 공기를 팽창시키고 팽창일에 의해 전력을 생산하는 팽창 단계;를 포함한다.In addition, the regasification and power generation step (S200) of the present embodiment, a pressurizing step of pressurizing the stored liquid air; A vaporization step of regasifying the pressurized liquid air; And a heating step of heating the vaporized gaseous air. And an expansion step of expanding the heated gaseous regasification air and generating electric power by the expansion day.
상술한 바와 같이, 액화 및 저장 단계(S100)에서는 공기를 액화시키기 위하여 공기에 냉열을 제공하는 저온열원을 필요로 하고, 재기화 및 발전 단계(S200)에서는 액체공기를 재기화시키기 위하여 액체공기에 온열을 제공하는 고온열원을 필요로 한다.As described above, in the liquefaction and storage step (S100), a low-temperature heat source that provides cold heat to the air is required to liquefy the air, and in the regasification and power generation step (S200), the liquid air is supplied with liquid air to regasify the liquid air. It requires a high-temperature heat source that provides heat.
본 실시예에 따르면, 액화 및 저장 단계(S100)에서 필요로 하는 냉열과 재기화 및 발전 단계(S200)에서 필요로 하는 온열을, 냉매 사이클을 순환하는 열전달 매체를 이용하여 제공한다. According to the present embodiment, the cold heat required in the liquefaction and storage step S100 and the warm heat required in the regasification and power generation step S200 are provided by using a heat transfer medium circulating in a refrigerant cycle.
냉매 사이클을 순환하는 열전달 매체는, 재기화 및 발전 단계(S200)에서 액체공기를 기화시키면서 액체공기로부터 냉열을 얻고, 액체공기로부터 얻은 냉열을 액화 및 저장 단계(S100)에서 공기를 액화시키기 위한 냉열로 활용하며, 액화 및 저장 단계(S100)에서 공기를 액화시키면서 기체 공기로부터 온열을 얻고, 기체 공기로부터 얻은 온열을 다시 재기화 및 발전 단계(S200)에서 액체공기를 재기화시키기 위한 온열로 활용한다. The heat transfer medium circulating in the refrigerant cycle is cold heat for obtaining cold heat from liquid air while vaporizing liquid air in the regasification and power generation step (S200), and liquefying the cold heat obtained from liquid air and liquefying the air in the storage step (S100). In the liquefaction and storage step (S100), heat is obtained from the gaseous air while liquefying the air, and the heat obtained from the gaseous air is used as heat to regasify the liquid air in the regasification and power generation step (S200). .
보다 구체적으로, 열전달 매체는, 냉각 단계에서 열교환에 의해 압축공기의 열을 빼앗아 압축공기를 액화시키면서 가열되고, 가열된 냉매는, 재기화시킬 액체공기와 열교환하면서 액체공기를 기화시킨다. More specifically, the heat transfer medium is heated while liquefying compressed air by taking heat from compressed air by heat exchange in the cooling step, and the heated refrigerant vaporizes liquid air while exchanging heat with liquid air to be regasified.
또한, 본 실시예에 따르면, 액화가스 연료를 공급하여 엔진을 구동시키는 연료 공급 단계(S400);를 더 포함한다. Further, according to the present embodiment, a fuel supply step (S400) of supplying liquefied gas fuel to drive the engine; further includes.
본 실시예에 따르면, 액화가스 연료를 엔진으로 공급함으로써 전력을 생산하고, 액화가스 연료의 냉열은 공기를 액화시키는데 활용하며, 엔진으로부터 배출되는 배기가스의 폐열은 재기화 및 발전 단계(S200)에서 활용할 수 있다.According to this embodiment, electric power is produced by supplying liquefied gas fuel to the engine, the cold heat of the liquefied gas fuel is used to liquefy the air, and the waste heat of the exhaust gas discharged from the engine is used in the regasification and power generation step (S200). Can be utilized.
본 실시예의 연료 공급 단계(S400)는, 액화가스를 기화시키는 기화 단계; 기화된 액화가스를 엔진의 연료로 공급하여 연소시키는 연소 단계; 및 연소에 의해 배출된 배기가스를 회수하는 배기 단계;를 포함할 수 있다.The fuel supply step (S400) of this embodiment includes a vaporization step of vaporizing liquefied gas; A combustion step of supplying and burning the vaporized liquefied gas as fuel of the engine; And an exhaust step of recovering exhaust gas discharged by combustion.
기화 단계는, 기화시킬 액화가스의 일부 또는 전부를 액화 및 저장 단계(S100)에서 공기를 액화시키기 위한 냉열로 활용함으로써 예열시키는 예열 단계;를 포함할 수 있다. 공기를 액화시키기 위한 냉열로 활용하면서 온도가 높아진 액화가스를 기화시켜 엔진의 연료로 공급함으로써, 기화 에너지를 절감할 수 있다. The vaporization step may include a preheating step of preheating a part or all of the liquefied gas to be vaporized as cold heat for liquefying air in the liquefaction and storage step (S100). Gasification energy can be saved by vaporizing the liquefied gas having a high temperature while using it as cooling heat to liquefy air and supplying it as fuel to the engine.
또한, 배기 단계는, 엔진으로부터 배출되는 배기가스 중 일부 또는 전부를 재기화 및 발전 단계(S200)에서 팽창시킬 재기화 공기를 가열시키는 열원으로 활용함으로써 가열시키는 재기화 공기 가열 단계;를 포함할 수 있다. In addition, the exhaust step may include a regasification air heating step of heating some or all of the exhaust gas discharged from the engine as a heat source for heating the regasification air to be expanded in the regasification and power generation step (S200). have.
이와 같이 본 실시예에 따르면, 엔진의 연료로서 공급되는 과정에서 버려지는 액화가스의 냉열을 회수하여 액체공기를 생성하는 데 활용함으로써, 액체공기의 생성량을 늘리고, 액체공기를 생성하는데 필요한 에너지를 절감할 수 있다. As described above, according to this embodiment, the cold heat of the liquefied gas discarded in the process of being supplied as fuel to the engine is recovered and utilized to generate liquid air, thereby increasing the amount of liquid air generated and reducing the energy required to generate liquid air. can do.
또한, 액화가스를 연료로 사용하여 전력을 생산하고 엔진으로부터 버려지는 폐열을 회수하여 액체공기를 기화시키는 데 활용함으로써, 재기화 공기의 온도를 높이고, 전력 생산용 팽창 수단, 예를 들어 터빈-발전기의 입구 온도를 높여줌으로써, 온도 구배를 크게 하여, 재기화 및 발전 단계(S200)에서 전력 생산 효율을 향상시킬 수 있다.In addition, by using liquefied gas as fuel to generate power and to recover waste heat discarded from the engine and use it to vaporize liquid air, the temperature of the regasification air is increased, and expansion means for power generation such as turbine-generators By increasing the inlet temperature of, it is possible to increase the temperature gradient, thereby improving power production efficiency in the regasification and power generation step (S200).
상술한 액화가스 연료의 냉열을 이용한 액체공기 저장 방법의 압축공기은, 후술하는 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템을 이용하여 실시될 수 있다. 이하, 도 2를 참조하여, 본 발명의 일 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템을 설명하기로 한다. Compressed air in the liquid air storage method using cold heat of liquefied gas fuel described above may be implemented using a liquid air storage system using cold heat of liquefied gas fuel to be described later. Hereinafter, a liquid air storage system using cold heat of liquefied gas fuel according to an embodiment of the present invention will be described with reference to FIG. 2.
본 실시예에 따른 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템은, 공기를 액화시키고, 액체공기를 저장하는 공기 액화부(100); 액체공기를 재기화시키고, 기체 상태의 재기화 공기를 이용하여 전력을 생산하는 재기화부(300); 엔진(402)으로 액화가스 연료를 공급하여 전력을 생산하는 연료 공급부(400); 및 공기 액화부(100), 재기화부(300) 및 연료 공급부(400)로부터 냉열 및 온열을 회수하고, 공급하며, 필요에 따라서는 열에너지를 저장할 수도 있는 냉/온열 순환부(200a, 200b);를 포함한다. A liquid air storage system using cold heat of liquefied gas fuel according to the present embodiment includes: an
냉/온열 순환부(200a, 200b)는 제1 열전달 매체가 순환하는 제1 냉매 사이클(200a); 및 제2 열전달 매체가 순환하는 제2 냉매 사이클(200b);을 포함한다. 제1 열전달 매체와 제2 열전달 매체는 서로 다른 유체이며, 각각 폐쇄 사이클인 제1 냉매 사이클(200a)과 제2 냉매 사이클(200b)을 순환할 수 있다. The cold/
또한, 공기 액화부(100)와 재기화부(300)는 제1 냉매 사이클(200a), 제2 냉매 사이클(200b) 및 연료 공급부(400)를 공유한다. In addition, the
공기 액화부(100)는 제1 냉매 사이클(200a)을 순환하는 제1 열전달 매체와, 연료 공급부(400)를 통해 엔진(402)으로 공급되는 액화가스와, 제2 냉매 사이클(200b)을 순환하는 제2 열전달 매체로부터 공기를 액화시키기 위한 냉열을 얻는다. The
또한, 재기화부(300)는 제1 냉매 사이클(200a)을 순환하는 제1 열전달 매체와, 제2 냉매 사이클(200b)을 순환하는 제2 열전달 매체와, 엔진(402)으로부터 배출되는 배기가스로부터 액체공기를 재기화 시키기 위한 온열을 얻는다. In addition, the
제1 열전달 매체는, 제1 냉매 사이클(200a)을 순환하면서, 재기화 시스템(300)에서 액체공기를 기화시키면서 액체공기로부터 냉열을 회수하고, 회수한 냉열은 공기 액화부(100)에서 공기를 액화시키기 위한 냉열로 제공한다. 또한, 제1 열전달 매체는, 제1 냉매 사이클(200a)을 순환하면서, 공기 액화부(100)에서 공기를 액화시키기 위한 냉열을 제공하면서 온열을 회수하고, 회수한 온열은 다시 재기화부(300)에서 액체공기를 기화시키기 위한 온열로 공급한다. The first heat transfer medium recovers cold heat from liquid air while circulating the
제2 열전달 매체는, 제2 냉매 사이클(200b)을 순환하면서, 재기화부(300)에서 액체공기를 기화시키면서 냉열을 회수하고, 회수한 냉열을 공기 액화부(100)에서 공기를 액화시키기 위한 냉열로 제공한다. 또한, 제2 열전달 매체는, 제2 냉매 사이클(200b)을 순환하면서, 공기 액화부(100)에서 공기를 액화시키기 위한 냉열을 제공하면서 온열을 회수하고, 회수한 온열은 다시 재기화부(300)에서 액체공기를 기화시키기 위한 온열로 공급한다.The second heat transfer medium, while circulating through the second
공기 액화부(100)로는, 제2 열전달 매체가 제1 열전달 매체보다 더 낮은 온도의 냉열을 제공할 수 있다. 따라서, 제1 열전달 매체가 제2 열전달 매체보다 전단에서 공기와 열교환하여, 냉열을 제공할 수 있다.With the
본 실시예의 공기 액화부(100)는, 공기 액화부(100)로 유입된 액화시킬 공기(air)를 압축시키는 공기 압축기(101, 103); 압축된 공기를 액화가스와의 열교환에 의해 냉각(액화)시키는 제1 열교환기(105); 제1 열교환기(105)에서 냉각된 공기를 액화가스 및/또는 제2 열전달 매체와의 열교환에 의해 냉각(액화)시키는 제2 열교환기(106); 제1 열교환기(105) 및 제2 열교환기(106)에 의해 냉각(액화)된 공기를 감압시키는 감압장치(107); 및 감압장치(107)에 의해 감압된 액체공기를 저장하는 액체공기 저장탱크(108);를 포함한다. The
도면에 도시되어 있지는 않지만, 공기로부터 산소와 나머지 성분들을 분리하여, 분리된 순산소를 공기 압축기(101, 103)로 공급하는 공기 분리기(미도시);를 더 포함할 수도 있다. 즉, 본 실시예에서 액화시킬 공기는, 공기 분리기에서 분리된 순산소일수 있다. 또한, 공기 분리기를 포함하는 경우, 공기 분리기에서 공기로부터 분리된 질소를 이용하여 터빈을 구동시킴으로써 전력을 생산하는 질소터빈(미도시);을 더 포함할 수도 있을 것이다. Although not shown in the drawing, an air separator (not shown) for separating oxygen and other components from air and supplying the separated pure oxygen to the
본 실시예의 공기 압축기(101, 103), 제1 열교환기(105), 제2 열교환기(106), 감압장치(107) 및 액체공기 저장탱크(108)는, 공기 액화라인(AL)에 의해 연결될 수 있으며, 공기 액화부(100)로 유입된 공기는, 공기 액화라인(AL)을 따라 유동하면서, 압축, 냉각 및 감압 공정을 거쳐 액화되고, 액체공기 저장탱크(108)에 저장된다.The air compressors 101 and 103, the
본 실시예의 공기 압축기(101, 103)는, 여러 단계에 걸쳐 공기를 압축시킬 수 있도록 다수개의 압축부를 포함하는 다단 압축기로 구성될 수 있다. The air compressors 101 and 103 according to the present embodiment may be configured as a multi-stage compressor including a plurality of compression units to compress air through several stages.
공기는 고압으로 압축할수록 액체공기의 수율(유입된 기체 상태의 공기량 대비 생산되는 액체 상태의 공기량)이 높아지는 경향이 있으나, 고압으로 압축할수록 압축일이 커지므로 전체 에너지 효율은 감소하게 된다. 따라서, 고압의 압축을 통해 많은 양의 전기 에너지를 소모하기보다는, 압축 단계 및 각 단계에서의 압축비와 액체공기 생산량과의 상관관계를 분석하여 다단 압축 정도와 적정 압축비를 결정하여 사이클을 최적화하는 것이 바람직하다.As air is compressed at high pressure, the yield of liquid air (the amount of liquid air produced relative to the amount of gaseous air introduced) tends to increase, but the higher the pressure is compressed, the larger the compression work, so the overall energy efficiency decreases. Therefore, rather than consuming a large amount of electrical energy through high-pressure compression, it is better to optimize the cycle by analyzing the correlation between the compression ratio at each stage and the amount of liquid air produced, and determining the degree of multistage compression and an appropriate compression ratio. desirable.
본 실시예에서는, 공기 압축기가, 제1 공기압축기(101); 및 제2 공기압축기(103)를 포함하여, 2단계에 걸쳐 기체 상태의 공기를 압축시키는 2단 압축기(101, 103)인 것을 예로 들어 설명하기로 한다. In this embodiment, the air compressor includes: a
다단으로 구성되는 공기 압축기의 각 단의 후단에는, 압축 공정에 의해 온도가 상승한 압축공기를 냉각시키는 중간 냉각기(intercooler, 102, 104)가 설치될 수 있다.
즉, 본 실시예와 같이, 공기 압축기가 2단 압축기로 구성되는 경우, 제1 공기 압축기(101)의 후단에 구비되며, 제1 공기 압축기(101)에서 압축되면서 온도가 상승한 제1 압축공기를 냉각시키는 제1 중간 냉각기(102); 및 제2 공기 압축기(103)의 후단에 구비되며, 제2 공기 압축기(103)에서 압축되면서 온도가 상승한 제2 압축공기를 냉각시키는 제2 중간 냉각기(104);를 포함할 수 있다. 여기서, 제2 중간 냉각기(104)는 공기 압축기의 가장 후단에 설치되는 애프터쿨러(after cooler)일 수 있다. 이하, 본 명세서에서 '공기 압축기(101, 103)'라 함은, 각 압축부(101, 103)의 후단에 설치되는 중간 냉각기(102, 104)를 포함하는 개념으로 이해될 수 있다.That is, as in the present embodiment, when the air compressor is composed of a two-stage compressor, it is provided at the rear end of the
본 실시예의 중간 냉각기(102, 104)에서 압축공기를 냉각시키는 냉열원은, 제1 냉매 사이클(200a)을 순환하는 제1 열전달 매체일 수 있다. The cooling heat source for cooling the compressed air in the
즉, 제1 중간 냉각기(102)에서는, 제1 공기 압축기(101)에서 압축된 제1 압축공기와 제1 열전달 매체가 열교환하여, 제1 압축공기는 냉각된 후 제2 공기 압축기(103)로 유입되고, 제1 열전달 매체는 가열된 후 제1 냉매 사이클(200a)을 순환할 수 있다. That is, in the first
또한, 제2 중간 냉각기(104)에서는, 제2 공기 압축기(103)에서 압축된 제2 압축공기와 제1 열전달 매체가 열교환하여, 제2 압축공기는 냉각된 후 제1 열교환기(105)로 유입되고, 제1 열전달 매체는 가열된 후 제1 냉매 사이클(200a)을 순환할 수 있다. In addition, in the second
제1 냉매 사이클(200a)을 순환하는 제1 열전달 매체가 제1 중간 냉각기(102) 및 제2 중간 냉각기(104)에서 열교환에 의해 회수한 압축열은, 후술하는 제1 가열기(303)에서 재기화 공기와 제1 열전달 매체를 열교환시킴으로써, 터빈-발전기(305)로 공급되는 재기화 공기를 가열시키는데 활용할 수 있다. 제1 가열기(303)에서 재기화 공기를 가열시키면서 제1 열전달 매체는 재기화 공기의 냉열을 회수하여 냉각된다. The compression heat recovered by the first heat transfer medium circulating in the
또한, 제1 가열기(303)에서 재기화 공기를 가열시키면서 제1 열전달 매체가 회수한 냉열은, 제1 중간 냉각기(102) 및 제2 중간 냉각기(104)에서 압축공기를 냉각시키는데 활용할 수 있다. In addition, the cold heat recovered by the first heat transfer medium while heating the regasification air in the
따라서, 본 실시예에 따르면, 중간 냉각기에서 해수 등 외부 열원을 활용하여 압축공기를 중간 냉각시키는 기존의 방식과 비교하여, 외부로부터 공급되는 열원을 최소화하고, 공정 내 잉여열을 활용함으로써, 적용 가능성을 확대시키고, 에너지 비용을 감소시키고 공정 효율은 개선할 수 있다. Therefore, according to this embodiment, compared with the conventional method of intermediate cooling compressed air using an external heat source such as seawater in an intermediate cooler, the heat source supplied from the outside is minimized and the excess heat in the process is utilized, thereby applicability Can expand the energy cost, reduce energy cost and improve process efficiency.
공기 압축기(101, 103)에서 압축된 압축공기는, 제1 열교환기(105)로 유입되며, 제1 열교환기(105)에서 열교환에 의해 냉각(또는 적어도 일부가 액화)된다. The compressed air compressed by the
본 실시예의 제1 열교환기(105)에서는, 공기 압축기(101, 103)에서 압축된 압축공기;와, 후술할 액화가스 저장탱크(401)로부터 엔진(402)으로 공급되는 액화가스;와, 액체공기 저장탱크(108)로부터 공기 압축기(101, 103)로 회수되는 기체 상태의 회수 공기;가 열교환하여, 압축공기는 냉각(액화)되고, 액화가스는 가열(기화)되며, 회수 공기는 가열된다. In the
제1 열교환기(105)를 통과하면서 냉각 또는 액화된 공기는, 제2 열교환기(106)로 유입되며, 제2 열교환기(106)에서는 열교환에 의해 공기가 완전 액화 또는 과냉각될 수 있다. The air cooled or liquefied while passing through the
본 실시예의 제2 열교환기(106)에서는, 제1 열교환기(105)에서 냉각된 공기;와, 액화가스 저장탱크(401)로부터 엔진(402)으로 공급되는 액화가스;와, 제2 냉매 사이클(200b)을 순환하는 제2 열전달 매체;와, 액체공기 저장탱크(108)로부터 공기 압축기(101, 103)로 회수되는 기체 상태의 회수 공기;가 열교환하여, 제1 열교환기(105)에서 냉각된 공기는 냉각(액화)되고, 액화가스는 가열(기화)되고, 제2 열전달 매체는 가열되며, 회수 공기는 가열된다.In the
제2 열교환기(106)로부터 배출되는 냉각된 공기는 감압장치(107)로 공급된다. 감압장치(107)는 공기를 액체공기 저장탱크(108)에서 요구하는 압력, 또는 상압 수준까지 감압시킬 수 있다. The cooled air discharged from the
본 실시예의 감압장치(107)는 공기를 단열팽창시킬 수 있고, 공기는 감압장치(107)를 통과하면서 단열팽창되어 압력 및 온도가 낮아질 수 있다.The
본 실시예의 감압장치(107)는 줄-톰슨 밸브(Joule-Thomson valve) 또는 팽창기일 수 있다. 감압장치(107)를 이용하여 공기 압축기(101. 103)에서 다단압축되고 제1 열교환기(105) 및 제2 열교환기(106)를 통과하면서 액화된 공기를 팽창시킴으로써, 줄-톰슨 효과에 의해 액화 공기의 온도는 더 낮아진다. 따라서, 공기 액화 수율을 높이고, 저장성을 높일 수 있다. The
감압장치(107)에 의해 감압된 액체공기는 액체공기 저장탱크(108)로 이송되며, 액체공기 저장탱크(108)에 액체 상태로 저장된다. The liquid air depressurized by the
본 실시예의 액체공기 저장탱크(108)는, 공기 액화부(100)를 통과하면서 액화된 액체공기를 저장하기 위한 것으로서, 액체공기가 극저온의 온도를 유지하며 액체 상태로 저장되어 있을 수 있도록 단열 처리될 수 있다.The liquid
도 2에는 하나의 액체공기 저장탱크(108)만을 도시하였으나, 액체공기 저장탱크(108)는 다수개 설치될 수 있다. Although only one liquid
또한, 액체공기 저장탱크(108)에는, 액체공기 저장탱크(108)에 저장된 액체 상태의 액체공기가 재기화부(300)로 이송되도록 연결되는 공기 기화라인(AL2); 및 액체공기 저장탱크(108)로부터 재액화되지 않은 기체 상태의 공기가 공기 압축기(101, 103) 전단의 공기 액화라인(AL)으로 합류되도록 연결되는 공기 회수라인(AL1);이 연결된다.In addition, the liquid
공기 기화라인(AL2)은 후술하는 재기화부(300)와 연결될 수 있으며, 액체공기 저장탱크(108)로부터 배출된 액체공기는, 공기 기화라인(AL2)을 따라 유동하며 재기화부(300)로 유입된다. The air vaporization line AL2 may be connected to the
공기 회수라인(AL1)은 공기 압축기(101, 103) 전단의 공기 액화라인(AL)으로 합류될 수 있으며, 기체 공기는 액체공기 저장탱크(108)로부터 공기 회수라인(AL1)을 따라 유동하여 공기 압축기(101, 103)로 재공급될 수 있다. The air recovery line AL1 may be joined to the air liquefaction line AL in front of the
공기 회수라인(AL1)은 액체공기 저장탱크(108)로부터 배출된 기체 공기의 압력과 가장 유사한 압력의 도입 압력을 갖는 제1 공기 압축기(101)의 전단으로 연결되는 것이 바람직하다. The air recovery line AL1 is preferably connected to the front end of the
따라서, 본 실시예의 제1 공기 압축기(101)로는, 공기 액화부(100)로 유입된 공기와 공기 회수라인(AL1)을 따라 재도입되는 기체 공기의 혼합공기가 유입될 수 있다. Accordingly, a mixed air of air introduced into the
공기 회수라인(AL1)을 통해 회수되는 기체 공기가 없는 경우에는 공기 액화 부(100)로 유입되는 공기만이 제1 공기 압축기(101)로 도입될 수 있음은 물론이고, 공기 회수라인(AL1)을 통해 회수되는 기체 공기의 유량이 많은 경우에는, 공기 회수라인(AL1)을 통해 회수되는 기체 공기만이 제1 공기 압축기(101)로 도입될 수도 있을 것이다. When there is no gaseous air recovered through the air recovery line AL1, only air flowing into the
공기 회수라인(AL1)은 제1 열교환기(105) 및 제2 열교환기(106)와도 연결된다. 즉, 공기 회수라인(AL1)을 따라 공기 압축기(101, 103)로 재공급되는 기체 공기는, 공기 압축기(101, 103)로 재도입되기 전에, 제2 열교환기(106) 및 제1 열교환기(105)에서 열교환에 의해 온도가 상승한 후, 공기 압축기(101, 103)로 재도입될 수 있다. The air recovery line AL1 is also connected to the
공기 회수라인(AL1)을 통해 회수되는 기체 공기는, 액체공기 저장탱크(108) 내에서 저장된 액체공기가 자연기화하여 생성된 증발가스(BOG; Boil-Off Gas)이거나, 제2 열교환기(106)로부터 감압장치(107)로 공급되는 액체공기가 감압장치(107)에 의해 감압되면서 생성된 플래시 가스(flash gas)이거나, 액화공정에서 액화되지 않은 미액화 공기 또는 이들의 혼합물일 수 있다.The gaseous air recovered through the air recovery line AL1 is boil-off gas (BOG) generated by natural vaporization of liquid air stored in the liquid
본 실시예의 재기화부(300)는, 액체공기 저장탱크(108)로부터 공기 기화라인(AL2)으로 유입된 액체공기를 가압하여 재기화기(302)로 이송하는 액체공기 펌프(301); 이송받은 액체공기를 제2 열전달 매체와의 열교환에 의해 가열(기화)시키는 재기화기(302); 재기화기(302)에 의해 가열된 공기를 제1 열전달 매체와의 열교환에 의해 가열(기화)시키는 제1 가열기(303); 및 제1 가열기(303)에 의해 가열된 공기를 엔진(402)의 폐열을 회수하여 더 가열시키는 제2 가열기(304); 및 기화 및 가열된 공기를 이용하여 터빈을 구동시킴으로써 전력을 생산하는 터빈-발전기(305);를 포함한다. The
터빈-발전기(305)의 전력 생산 효율은, 터빈 입구 압력을 높여 터빈 출구 압력과의 차압을 최대화함으로써 향상될 수 있다. 즉, 본 실시예에 따르면, 액체공기 펌프(301)는, 액체공기의 압력을 높여 터빈 입구 압력을 높임으로써, 터빈-발전기(305)의 입·출구 차압을 최대화시켜 전력 생산량을 증가시킬 수 있다. The power production efficiency of the turbine-
액체공기 펌프(301)에 의해 재기화시킬 액체공기를 가압함으로써, 터빈 입·출구 차압이 커지고 그에 따라 발전량은 증대되는 효과를 기대할 수 있다.By pressurizing the liquid air to be regasified by the
재기화기(302)에서는, 제2 냉매 사이클(200b)을 순환하는 제2 열전달 매체와 액체공기 펌프(301)에 의해 가압된 액체공기를 열교환시킨다. 재기화기(302)에서의 열교환에 의해, 제2 열전달 매체는 가압된 액체공기로부터 냉열을 얻어 냉각되고, 가압된 액체공기는 냉열이 회수되어 가열된다. 이 과정에서 제2 열전달 매체가 회수한 액체공기의 냉열은 상술한 제2 열교환기(106)에서 공기를 액화시키는 냉열로 활용된다.In the
재기화기(302)에서 제2 열전달 매체와의 열교환에 의해 액체공기는 기화될 수 있다. Liquid air may be vaporized by heat exchange with the second heat transfer medium in the
제1 가열기(303)에서는, 제2 냉매 사이클(200a)을 순환하는 제1 열전달 매체와 재기화기(302)에서 1차 가열된, 또는 적어도 일부가 기화된 공기(이하, '1차 가열공기'라 함.)를 열교환시킨다. 제1 가열기(303)에서의 열교환에 의해, 제1 열전달 매체는 1차 가열공기로부터 냉열을 얻어 냉각되고, 1차 가열공기는 냉열이 회수되어 더 가열된다. 이 과정에서 제1 열전달 매체가 회수한 1차 가열공기의 냉열은, 상술한 중간 냉각기(102, 104)에서 압축에 의해 온도가 상승한 공기를 냉각시키는 냉열로 활용된다. In the
재기화기(302)에서 가열(기화)된 1차 가열공기는 제1 가열기(303)에서 제1 열전달 매체와의 열교환에 의해 더 가열될 수 있으며, 재기화기(302)에서 기화되지 않은 액체 상태의 공기가 있다면 제1 가열기(303)에서 전량이 기체 상태로 기화될 수 있다.The primary heated air heated (vaporized) in the
제1 가열기(303)에서 기체 공기는 약 300℃ 이상으로 가열될 수 있다. The gaseous air in the
재기화기(302) 및 1차 가열기(303)를 통과하면서 기화 및 가열된 기체 공기는, 공기 기화라인(AL2)을 따라 제2 가열기(304)로 공급된다. The gaseous air vaporized and heated while passing through the
제2 가열기(304)에서는, 엔진(402)으로부터 배출되는 폐열을 이용하여 제1 가열기(303)에서 가열된 2차 가열공기를 더 가열시킬 수 있다. In the
제2 가열기(304)에서 2차 가열공기를 가열시키는 열원인 엔진(402)의 폐열은, 엔진(402)으로부터 배출되는 고온의 배기가스일 수 있고, 엔진(402)을 냉각시키면서 온도가 높아진 고온의 냉각수일 수도 있으며, 배기가스나 냉각수에 의해 가열된 별도의 열매체 또는 배기가스를 이용하여 생산된 스팀 등 일 수 있다. The waste heat of the
본 실시예에서는, 제2 가열기(304)에서 재기화 공기를 가열시키는 열원으로서, 엔진(402)으로부터 배출되는 약 450℃ 내지 500℃의 배기가스를 사용하는 것을 예로 들어 설명하기로 한다. In this embodiment, as a heat source for heating the regasification air in the
제2 가열기(304)에서 2차 가열공기는, 배기가스와의 열교환에 의해 약 400℃로 가열될 수 있다. In the
이는, 약 350℃ 내외의 압축열을 이용하는 기존의 공정에 비해, 열원 공급 온도를 상승시킬 수 있으므로, 전력 생산량을 극대화시킬 수 있다. This can increase the heat source supply temperature compared to the conventional process using compression heat of about 350° C., thereby maximizing the amount of power output.
제2 가열기(304)에서 3차 가열된 3차 가열공기는, 공기 기화라인(AL2)을 따라 터빈-발전기(305)로 공급된다. 터빈-발전기(305)는, 가열된 기체공기를 작동유체로하여 터빈을 구동시키고, 터빈의 구동력은 발전기에 의해 전력으로 전환된다. 터빈을 구동시킨 공기는 대기 중으로 방출된다. 터빈을 구동시킨 후의 공기는 터빈을 구동시키면서 압력 및 온도가 낮아지며, 일부는 응축될 수도 있다.The third heated air, which is thirdly heated in the
본 실시예의 제1 가열기(303)에서는, 재기화 공기를 가열시키는 열원으로서, 앞서 설명한 공기 액화부(100)에서 회수한 공기의 압축열, 더 구체적으로는, 중간 냉각기(102, 104)에서 회수한 공기의 압축열을 활용할 수 있다. In the
발전 터빈의 전력 생산 효율을 향상시키는 방법으로는, 상술한 바와 같이 터빈의 입구측 압력과 출구측 압력의 차압을 최대화하는 방법과 함께, 터빈으로 도입되는 유체의 온도를 높이는 방법도 고려할 수 있다. 본 실시예에 따르면, 제1 가열기(303) 및 제2 가열기(304)를 이용하여 재기화된 기체공기를 더 가열시킴으로써, 터빈 입구 온도를 높여 터빈-발전기(305)의 발전 효율을 향상시킬 수 있다.As a method of improving the power generation efficiency of the power generation turbine, a method of increasing the temperature of the fluid introduced into the turbine may be considered as well as a method of maximizing the differential pressure between the inlet pressure and the outlet pressure of the turbine as described above. According to the present embodiment, by further heating the regasified gas air using the
본 실시예의 제1 냉매 사이클(200a)은, 작동 유체로서 제1 열전달 매체가 순환한다. 제1 냉매 사이클(200a)을 순환하는 제1 열전달 매체가 중간 냉각기(102, 104)에서 회수한 공기의 압축열을 이용하여, 터빈-발전기(305)로 도입되는 재기화 공기의 온도를 높일 수 있다. In the
본 실시예의 제1 냉매 사이클(200a)은, 중간 냉각기(102, 104) 및 제1 가열기(303)를 연결하며, 제1 열전달 매체가 유동하는 오일 순환라인(OL, OL1, OL2);을 포함한다. The
본 실시예의 제1 열전달 매체는, 열매체유(thermal oil)일 수 있다. 열매체유는, 오일 순환라인(OL, OL1, OL2)을 따라 중간 냉각기(102, 104)와 제1 가열기(303)를 순환하면서 열교환하며, 중간 냉각기(102, 104)로부터 배출되어 제1 가열기(303)로 도입되는 열매체유는 고온이고, 제1 가열기(303)에서 배출되어 중간 냉각기(102, 104)로 도입되는 열매체유는 저온이다.The first heat transfer medium of the present embodiment may be thermal oil. The heat medium oil exchanges heat while circulating through the
오일 순환라인(OL, OL1, OL2)에는, 제1 가열기(303)로부터 배출되는 열매체유가 중간 냉각기(102, 104)의 열매체유 입구측으로 순환하도록 열매체유를 가압하는 제1 오일 순환펌프(202);가 구비될 수 있다.In the oil circulation lines OL, OL1, OL2, the first
본 실시예에 따르면, 공기 압축기(101, 103)는 제1 중간 냉각기(102) 및 제2 중간 냉각기(104)를 포함하여 2단으로 구성되므로, 오일 순환라인(OL)에는 제1 오일 순환펌프(202)에 의해 가압된 열매체유가 다수개의 중간 냉각기. 즉, 제1 중간 냉각기(102) 및 제2 중간 냉각기(104)로 각각 공급되도록, 개폐 제어에 의해 유로를 제어하는 오일 제어 밸브(도면부호 미부여);가 설치될 수 있다.According to this embodiment, since the
오일 순환라인(OL)은, 오일 제어 밸브를 기점으로, 제2 중간 냉각기(104)로 연결되는 제1 오일 순환라인(OL1);과 제1 중간 냉각기(102)로 연결되는 제2 오일 순환라인(OL2)으로 분기된다. The oil circulation line OL includes a first oil circulation line OL1 connected to the second
제1 오일 순환펌프(202)에 의해 가압된 열매체유는, 오일 제어 밸브의 개폐 제어에 의해, 제1 오일 순환라인(OL1)을 따라 제2 중간 냉각기(104)로 유입되거나, 제2 오일 순환라인(OL2)을 따라 제1 중간 냉각기(102)로 유입될 수 있다. The heat medium oil pressurized by the first
제1 중간 냉각기(102) 및 제2 중간 냉각기(104)에서 열교환에 의해 온도가 상승하여 배출되는 열매체유는 오일 순환라인(OL)으로 합류된다. The heat medium oil discharged from the first
또한, 제1 냉매 사이클(200a)은, 중간 냉각기(102, 104)로부터 온도가 상승한 열매체유를 제1 가열기(303)로 공급하는 제2 오일 순환펌프(204);를 더 포함할 수 있다. In addition, the
또한, 제1 냉매 사이클(200a)은, 오일 순환라인(OL, OL1, OL2)을 따라 유동하는 열매체유를 저장 또는 임시 저장하는 제1 오일 저장탱크(201); 및 제2 오일 저장탱크(203);를 더 포함할 수 있다.In addition, the
제1 오일 저장탱크(201) 및 제2 오일 저장탱크(203)는, 공기 액화부(100) 및 재기화부(300) 중 어느 하나의 공정만이 실시될 때 제1 열전달 매체의 열에너지를 저장하는 역할을 한다.The first
도 2에 도시된 바와 같이, 제1 오일 저장탱크(201)는 제1 오일 순환펌프(202)의 전단에 설치되고, 제2 오일 저장탱크(203)는 제2 오일 순환 펌프(204)의 전단에 설치될 수 있다.As shown in FIG. 2, the first
예를 들어, 공기 액화부(100)는 가동되지 않고, 재기화부(300)만이 가동될 경우, 제1 가열기(303)에서 제1 열전달 매체가 액체공기로부터 회수한 냉열을 중간 냉각기(102, 104)로 공급할 수 없기 때문에, 제1 가열기(303)에서 제1 열전달 매체가 회수한 냉열은 제1 오일 저장탱크(201) 및 제2 오일 저장탱크(203) 중 어느 하나 이상, 바람직하게는 제2 온열 저장탱크(203)에 저장할 수 있다. For example, when the
제1 오일 저장탱크(201) 및 제2 오일 저장탱크(203)에 저장된 냉열은, 재기화부(200)는 가동되지 않고 공기 액화부(100)만이 가동될 경우, 중간 냉각기(102, 104)로 공급하는 냉열로 활용된다. The cold heat stored in the first
반대로, 공기 액화부(100)만 가동되고 재기화부(300)는 가동되지 않을 경우, 제1 오일 저장탱크(201) 및 제2 오일 저장탱크(203)는 제1 열전달 매체가 중간 냉각기(102, 104)에서 회수한 압축열을 저장하는 수단으로 활용되고, 제1 오일 저장탱크(201) 및 제2 오일 저장탱크(203)에 저장된 온열은, 공기 액화부(100)는 가동되지 않고 재기화부(300)만 가동될 경우 저장된 압축열은 제1 가열기(303)로 공급하는 온열로 활용될 수도 있을 것이다. Conversely, when only the
중간 냉각기(102, 104)에서 압축공기를 냉각시킨 후 제1 오일 저장탱크(201)로 공급되는 제1 열전달 매체의 온도는 약 350℃ 내외일 수 있다. After cooling the compressed air in the
본 실시예의 제2 냉매 사이클(200b)에서는 작동 유체로서 제2 열전달 매체가 순환한다. 제2 열전달 매체는 냉매 순환라인(CL)을 따라 제2 냉매 사이클(200b)을 순환하면서, 제2 열교환기(106) 및 재기화기(302)에서 공기와 열교환한다.In the second
본 실시예의 제2 냉매 사이클(200b)은, 재기화기(302)에서 액체공기와 열교환하면서 액체공기로부터 냉열을 회수한 제2 열전달 매체가 재기화기(302)로부터 제2 열교환기(106)로 유동하도록 제2 열전달 매체를 가압하는 제1 냉매 순환 펌프(206); 및 제2 열교환기(106)에서 공기에 냉열을 공급하면서 액화시킬 공기로부터 온열을 회수한 제2 열전달 매체가 제2 열교환기(106)로부터 재기화기(302)로 유동하도록 제2 열전달 매체를 가압하는 제2 냉매 순환 펌프(208);를 포함한다. In the second
본 실시예의 제2 열전달 매체는 프로판(propane)일 수 있다. 그러나, 이에 한정되는 것은 아니다. The second heat transfer medium of this embodiment may be propane. However, it is not limited thereto.
제2 냉매 사이클(200b)에서 재기화기(302)는, 기체 상태의 제2 열전달 매체를 응축시키는 응축기로서의 역할을 하고, 제2 열교환기(106)는, 액체 상태의 제2 열전달 매체를 기화시키는 기화기로서의 역할을 할 수 있다.In the second
또한, 본 실시예의 제2 냉매 사이클(200b)은, 제2 냉매 사이클(200b)을 순환하는 제2 열전달 매체의 열에너지를 저장하는 제1 냉매 저장탱크(205); 및 제2 냉매 저장탱크(207);를 더 포함할 수 있다.In addition, the second
제1 냉매 사이클(200a)과 마찬가지로, 제1 냉매 저장탱크(205) 및 제2 냉매 저장탱크(207)는, 공기 액화부(100) 및 재기화부(300) 중 어느 하나의 공정만이 실시될 때 제1 열전달 매체의 열에너지를 저장하는 역할을 한다.Like the
냉열 또는 온열의 저장 원리는 상술한 제1 냉매 사이클(200a)의 제1 온열 저장탱크(201) 및 제2 온열 저장탱크(203)와 변경 가능한 범위 내에서 동일하게 적용되므로 자세한 설명은 생략하기로 한다. The storage principle of cold or hot heat is applied in the same manner as the first
제2 열교환기(106)로 공급되는 제2 열전달 매체의 온도는 약 -180℃ 내지 -170℃일 수 있다. The temperature of the second heat transfer medium supplied to the
본 실시예의 연료 공급부(400)는, 엔진(402)의 연료로 공급할 액화가스를 저장하는 액화가스 저장탱크(401); 및 액화가스 저장탱크(401)로부터 액화가스가 제2 열교환기(106) 및 제1 열교환기(105)를 순차적으로 통과하면서 기화되고, 엔진(402)에서 요구하는 연료 온도까지 가열되도록 액화가스 저장탱크(401)와 제2 열교환기(106), 제1 열교환기(105) 및 엔진(402)을 연결하는 연료 공급라인(LL);을 포함한다. The
또한, 엔진(402)으로부터 배출되는 폐열, 예를 들어 배기가스나 냉각수 또는 배기가스나 냉각수에 의해 가열된 열매체가 제2 가열기(304)로 공급되도록 연결되는 배기가스 라인(EL);을 포함할 수 있다. In addition, the waste heat discharged from the
도 2에는 액화가스 저장탱크(401)가 하나만 설치되는 것을 예로 들어 도시하였으나, 액화가스 저장탱크(401)는 하나 이상 설치될 수 있다. 또한, 액화가스 저장탱크(401)는, 액화가스, 예를 들어 LNG를 약 -163℃ 내외의 극저온으로 저장할 수 있도록 단열처리되어 있을 수 있다.2 shows an example that only one liquefied
또한, 도면에 도시되어 있지는 않지만, 본 실시예의 연료 공급부(400)는, 재기화시킬 LNG를 가압하여 제2 열교환기(106)로 공급하는 LNG 펌프(미도시);를 더 포함할 수 있고, LNG 펌프는, 재기화시킬 LNG를 엔진(402)에서 요구하는 압력으로 압축시킬 수 있다. In addition, although not shown in the drawings, the
이와 같이, 공정 내에서 열이 가장 많이 발생하는 공기 압축기(101, 103)의 각 후단에서 회수한 압축열과 엔진(402)으로부터 배출되는 폐열을, 재기화 공정의 기화열, 보다 구체적으로, 터빈-발전기(305)의 도입 온도(TIT; Turbine Inlet Temperature)를 높이는 가열원으로 활용함으로써, 재기화 공기의 온도를 높여주어 공정의 온도 구배를 크게하고, 따라서 기존 단일공정 시스템 대비 효율을 향상시킬 수 있다. As described above, the compressed heat recovered from each rear stage of the
또한, 엔진(402)으로 공급할 액화가스를 기화시키고 가열시키는 열원으로서 압축공기를 활용하고, 또한 압축공기를 액화시키는 냉열원으로서 액화가스를 활용하므로, 액체공기의 생산효율을 좋게 하고, 엔진(402)으로의 연료 공급을 원활하게 할 수 있다. In addition, since compressed air is used as a heat source to vaporize and heat the liquefied gas to be supplied to the
본 발명에 따르면, 공기를 압축, 냉각시켜 에너지 밀도가 높은 액체 상태의 공기를 저장하고, 필요 시 저장된 액체공기를 재기화시켜 전력을 생산하는 액체공기를 이용한 에너지 저장 시스템과, 액체상태의 액화가스를 기화시켜 연료로 공급하는 가스엔진을 연계함으로써, 액체공기의 생산량 증가와 함께 생산된 액체공기의 재기화시 출력을 증가시킬 수 있다. According to the present invention, an energy storage system using liquid air that compresses and cools air to store liquid air with high energy density and generates power by regasifying the stored liquid air when necessary, and liquid liquefied gas By linking a gas engine that vaporizes and supplies it as fuel, it is possible to increase the output of liquid air when the produced liquid air is regasified with an increase in the production amount of liquid air.
가스를 연료로 사용하는 엔진의 경우, 원활한 연료 공급을 위해 에너지 밀도가 높은 액체 상태로 연료를 저장하게 되는데, 연소를 위해서는 액체 연료를 기화시켜야 하고, 이 과정에서 냉열을 회수할 수 있는 수단이 필요하다. 본 발명에 따르면, 액화가스의 기화에 의해 버려지는 냉열을, 압축공기를 이용한 액체공기 저장 시스템과 연계하여, 냉열을 회수함으로서, 공기의 액화 생성율을 증가시킬 수 있다. In the case of an engine that uses gas as fuel, fuel is stored in a liquid state with high energy density for smooth fuel supply.The liquid fuel must be vaporized for combustion, and a means to recover cold heat is required during this process. Do. According to the present invention, the cold heat discarded by the evaporation of the liquefied gas is recovered by linking with the liquid air storage system using compressed air, thereby increasing the rate of liquefaction generation of air.
또한, 전력 생산을 위핸 액체공기의 재기화에 있어서는, 다단의 압축 공정 중 발생된 온열을 열매체유를 이용하여 회수하고, 가스를 연소한 엔진의 배기 열원을 추가로 연계하여, 생산 가능한 전력량을 증가시킬 수 잇다. In addition, in the regasification of liquid air for power generation, the heat generated during the multi-stage compression process is recovered using thermal oil, and the amount of power that can be produced is increased by additionally linking the exhaust heat source of the engine that burned the gas. I can make it.
따라서, 액체공기 저장 시스템과 액화가스 엔진으로의 연료 공급 시스템을 연계하여, 각 공정의 에너지 효율을 모두 증가시킬 수 있는 동시에, 동력 및 전력 생산이 가능하므로, 연계성을 극대화할 수 있다. Therefore, by linking the liquid air storage system and the fuel supply system to the liquefied gas engine, both energy efficiency of each process can be increased, and power and power can be produced, thereby maximizing connectivity.
또한, 공정의 연계를 통해, 액체공기의 생산량을 증대시키고 출력을 증가시킬 수 있으면서도 추가 이산화탄소 배출 혹은 대기오염 물질의 배출이 없으므로 환경적인 측면에서도 이점이 있다. In addition, there is an advantage in environmental aspects as there is no emission of additional carbon dioxide or air pollutants while increasing the production amount of liquid air and increasing the output through the connection of processes.
이상과 같이 본 발명에 따른 실시 예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로 상술한 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고, 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, the embodiments according to the present invention have been examined, and the fact that the present invention can be embodied in other specific forms without departing from its spirit or scope other than the above-described embodiments is understood by those of ordinary skill in the art. It is self-evident to Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and accordingly, the present invention is not limited to the above description, and may be modified within the scope of the appended claims and equivalents thereof.
100 : 공기 액화부 300 : 재기화부
101, 103 : 공기 압축기 301 : 액체공기 펌프
102, 104 : 중간 냉각기 302 : 재기화기
105 : 제1 열교환기 303 : 제1 가열기
106 : 제2 열교환기 304 : 제2 가열기
107 : 감압장치 305 : 터빈-발전기
108 : 액체공기 저장탱크
200a : 제1 냉매 사이클 200b : 제2 냉매 사이클
201 : 제1 오일 저장탱크 205 : 제1 냉매 저장탱크
202 : 제1 오일 순환펌프 206 : 제1 냉매 순환펌프
203 : 제2 오일 저장탱크 207 : 제2 냉매 저장탱크
204 : 제2 오일 순환펌프 208 : 제2 냉매 순환펌프
400 : 연료 공급부
401 : 액화가스 저장탱크
402 : 엔진
AL : 공기 액화라인
AL1 : 공기 회수라인
AL2 : 공기 기화라인
OL, OL1, OL2 : 오일 순환라인
CL : 냉매 순환라인
LL : 연료 공급라인
EL : 배기가스 라인100: air liquefaction unit 300: regasification unit
101, 103: air compressor 301: liquid air pump
102, 104: intermediate cooler 302: regasifier
105: first heat exchanger 303: first heater
106: second heat exchanger 304: second heater
107: decompression device 305: turbine-generator
108: liquid air storage tank
200a: first
201: first oil storage tank 205: first refrigerant storage tank
202: first oil circulation pump 206: first refrigerant circulation pump
203: second oil storage tank 207: second refrigerant storage tank
204: second oil circulation pump 208: second refrigerant circulation pump
400: fuel supply
401: liquefied gas storage tank
402: engine
AL: Air liquefaction line
AL1: Air recovery line
AL2: Air vaporization line
OL, OL1, OL2: Oil circulation line
CL: Refrigerant circulation line
LL: Fuel supply line
EL: Exhaust gas line
Claims (10)
공기를 액화시키는 공기 액화부;
상기 액화된 액체공기를 재기화시켜 전력을 생산하는 재기화부; 및
상기 공기 액화부와 재기화부를 연결하며 제1 열전달 매체가 순환하면서 상기 재기화부에서 상기 액체공기로부터 냉열을 회수하여 상기 공기 액화부에서 공기를 액화시키기 위한 냉열로 제공하는 제1 냉매 사이클;을 포함하고,
상기 공기 액화부는,
상기 액화가스와 액화시킬 공기를 열교환시켜 상기 엔진으로 공급할 액화가스는 기화시키고 상기 공기는 액화시키는 제1 열교환기;를 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.A fuel supply unit for supplying liquefied gas fuel to an engine using liquefied gas as fuel;
An air liquefaction unit for liquefying air;
A regasification unit generating electric power by regasifying the liquefied liquid air; And
And a first refrigerant cycle that connects the air liquefaction unit and the regasification unit, and recovers cold heat from the liquid air in the regasification unit while the first heat transfer medium circulates and provides cold heat for liquefying air in the air liquefaction unit. and,
The air liquefaction unit,
A liquid air storage system using cold heat of the liquefied gas fuel, including; a first heat exchanger for exchanging the liquefied gas and air to be liquefied to vaporize the liquefied gas to be supplied to the engine and liquefy the air.
상기 재기화부는,
상기 액체공기를 기화시키는 재기화기; 및
상기 재기화기에서 기화된 재기화 공기를 작동유체로 하여 전력을 생산하는 터빈-발전기;를 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method according to claim 1,
The regasification unit,
A regasifier for vaporizing the liquid air; And
A turbine-generator for generating electric power using the regasified air vaporized in the regasifier as a working fluid; comprising, a liquid air storage system using cold heat of liquefied gas fuel.
상기 재기화 공기를 터빈-발전기로 공급하기 전에, 상기 엔진의 폐열을 회수하여 상기 재기화 공기를 더 가열하여 상기 터빈-발전기의 온도 구배를 높이는 제2 가열기;를 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method according to claim 2,
Before supplying the regasified air to the turbine-generator, the second heater recovers waste heat from the engine and further heats the regasification air to increase the temperature gradient of the turbine-generator; including, cold heat of liquefied gas fuel Liquid air storage system using
상기 공기 액화부는,
액화시킬 공기를 압축시키는 공기 압축기; 및
상기 압축에 의해 온도가 높아진 압축공기를 냉각시키는 중간 냉각기;를 포함하고,
상기 중간 냉각기에서는, 상기 제1 냉매 사이클을 순환하는 제1 열전달 매체가 회수한 액체공기의 냉열로 상기 압축공기가 냉각되는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method according to claim 2,
The air liquefaction unit,
An air compressor for compressing air to be liquefied; And
Including; an intermediate cooler for cooling the compressed air temperature is increased by the compression,
In the intermediate cooler, the compressed air is cooled by cold heat of the liquid air recovered by the first heat transfer medium circulating in the first refrigerant cycle, wherein the liquid air storage system using cold heat of liquefied gas fuel.
상기 재기화부는,
상기 재기화 공기를 터빈-발전기로 공급하기 전에, 상기 중간 냉각기에서 압축공기를 냉각시키면서 압축열을 회수하여 온도가 상승한 제1 열전달 매체와 재기화 공기를 열교환시켜, 상기 재기화 공기를 더 가열하여 상기 터빈-발전기의 온도 구배를 높이는 제1 가열기;를 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method of claim 5,
The regasification unit,
Before supplying the regasified air to the turbine-generator, the intermediate cooler cools the compressed air and recovers the compressed heat to exchange heat between the first heat transfer medium and the regasified air whose temperature has risen, thereby further heating the regasified air. The turbine-a first heater for increasing the temperature gradient of the generator; containing, liquid air storage system using cold heat of liquefied gas fuel.
상기 공기 액화부와 재기화부를 연결하며 제2 열전달 매체가 순환하면서 상기 재기화부에서 상기 액체공기로부터 냉열을 회수하여 상기 공기 액화부에서 공기를 액화시키기 위한 냉열로 제공하는 제2 냉매 사이클;을 더 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method according to claim 2,
A second refrigerant cycle that connects the air liquefaction unit and the regasification unit and provides cold heat for liquefying air in the air liquefaction unit by recovering cold heat from the liquid air in the regasification unit while the second heat transfer medium circulates; Containing, liquid air storage system using cold heat of liquefied gas fuel.
상기 공기 액화부는,
액화시킬 공기를 압축시키는 공기 압축기; 및
상기 제2 냉매 사이클을 순환하는 제2 열전달 매체가 회수한 액체공기의 냉열로 상기 공기 압축기에 의해 압축된 압축공기를 액화시키는 제2 열교환기;를 포함하고,
상기 제2 열전달 매체는, 상기 재기화기에서 상기 액체공기의 냉열을 회수하여 상기 제2 열교환기로 공급하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method of claim 7,
The air liquefaction unit,
An air compressor for compressing air to be liquefied; And
A second heat exchanger for liquefying compressed air compressed by the air compressor with cooling heat of the liquid air recovered by the second heat transfer medium circulating in the second refrigerant cycle; and
The second heat transfer medium is a liquid air storage system using cold heat of liquefied gas fuel for recovering cold heat of the liquid air from the regasifier and supplying it to the second heat exchanger.
압축공기와 상기 가스엔진으로 공급할 액화가스를 열교환시켜 상기 액화가스는 기화시키고 상기 압축공기는 액화시키는 열교환기;
상기 액화된 공기를 상기 압축공기의 온열을 이용하여 기화시키는 재기화기; 및
상기 가스엔진으로부터 상기 압축공기에 의해 기화된 액화가스의 연소에 의해 배출되는 폐열을 회수하여 상기 재기화기에서 기화된 재기화 공기를 가열하는 제2 가열기; 및
상기 제2 가열기에 의해 가열된 재기화 공기를 작동유체로 하여 전력을 생산하는 터빈-발전기;를 포함하여,
상기 가스엔진의 폐열로 상기 터빈-발전기의 도입온도를 높이며,
제1 열전달 매체가 순환하면서 상기 액체공기로부터 냉열을 회수하여 상기 공기를 액화시키기 위한 냉열로 제공하는 제1 냉매 사이클;을 더 포함하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.A gas engine that vaporizes liquefied gas and uses it as fuel;
A heat exchanger for exchanging compressed air with liquefied gas to be supplied to the gas engine to vaporize the liquefied gas and liquefy the compressed air;
A regasifier for vaporizing the liquefied air by using the heat of the compressed air; And
A second heater for recovering waste heat discharged by combustion of the liquefied gas vaporized by the compressed air from the gas engine and heating the regasified air vaporized in the regasifier; And
Including; a turbine-generator for generating electric power using the regasification air heated by the second heater as a working fluid;
The waste heat of the gas engine increases the introduction temperature of the turbine-generator,
A liquid air storage system using cold heat of liquefied gas fuel further comprising; a first refrigerant cycle for recovering cold heat from the liquid air while circulating the first heat transfer medium and providing it as cold heat for liquefying the air.
상기 공기를 압축하여 압축공기를 생산하는 공기 압축기;를 더 포함하고,
상기 터빈-발전기에서 생산된 전력은, 공기 압축기를 구동시키는 동력으로 사용하는, 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템.The method of claim 9,
An air compressor for compressing the air to produce compressed air; further comprising,
The power generated by the turbine-generator is used as power to drive an air compressor, and a liquid air storage system using cold heat of liquefied gas fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190005187A KR102196751B1 (en) | 2019-01-15 | 2019-01-15 | System for Liquid Air Energy Storage using Liquefied Gas Fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190005187A KR102196751B1 (en) | 2019-01-15 | 2019-01-15 | System for Liquid Air Energy Storage using Liquefied Gas Fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200088645A KR20200088645A (en) | 2020-07-23 |
KR102196751B1 true KR102196751B1 (en) | 2020-12-30 |
Family
ID=71894228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190005187A KR102196751B1 (en) | 2019-01-15 | 2019-01-15 | System for Liquid Air Energy Storage using Liquefied Gas Fuel |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102196751B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220114881A (en) * | 2021-02-09 | 2022-08-17 | 고등기술연구원연구조합 | Hydrogen Supply System and Method |
KR102666186B1 (en) * | 2023-11-13 | 2024-05-17 | 주식회사 삼정이엔씨 | System for hydrogen heat exchange |
KR102684519B1 (en) * | 2023-12-14 | 2024-07-12 | 고등기술연구원연구조합 | Liquid air power generation system with long-distance cooling function and its control method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102379133B1 (en) * | 2020-08-13 | 2022-03-29 | 한국기계연구원 | Liquid hydrogen station |
KR102573889B1 (en) * | 2021-02-15 | 2023-09-04 | 한국과학기술원 | Liquid air energy storage system having carbon capture and storage function |
KR102550139B1 (en) * | 2021-03-30 | 2023-06-30 | 한국전력기술 주식회사 | Liquid air energy storage system linked to Spent nuclear fuel storage facility of nuclear power plant |
KR102622554B1 (en) * | 2021-08-18 | 2024-01-11 | 부산대학교 산학협력단 | Liquefaction system for natural gas, ship comprising the same, liquefaction process for natural gas and air |
GB2610219B (en) * | 2021-08-27 | 2023-10-18 | Highview Entpr Ltd | High-grade heat-of-compression storage system, and methods of use |
CN114060112B (en) * | 2021-11-09 | 2024-02-09 | 西安热工研究院有限公司 | Liquid compressed air energy storage method and system for utilizing exhaust waste heat of air cooling unit |
CN115451647B (en) * | 2022-08-29 | 2023-08-11 | 北京科技大学 | Hydrogen liquefaction system integrated with liquefied air energy storage system |
KR20240080844A (en) | 2022-11-30 | 2024-06-07 | 한국과학기술원 | Multi material thermal energy storage unit and liquid air energy storage system using the same |
CN117937775B (en) * | 2024-03-25 | 2024-06-18 | 浙江浙能技术研究院有限公司 | Energy storage power generation system operated in combination with LNG receiving and transferring station |
CN118623558B (en) * | 2024-08-12 | 2024-10-29 | 中科富海(杭州)气体工程科技有限公司 | Air separation system and air separation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001193483A (en) * | 2000-01-12 | 2001-07-17 | Hitachi Ltd | Gas turbine system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2631134A1 (en) * | 1976-07-10 | 1978-01-19 | Linde Ag | METHOD FOR LIQUIDIFYING AIR OR MAIN COMPONENTS |
-
2019
- 2019-01-15 KR KR1020190005187A patent/KR102196751B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001193483A (en) * | 2000-01-12 | 2001-07-17 | Hitachi Ltd | Gas turbine system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220114881A (en) * | 2021-02-09 | 2022-08-17 | 고등기술연구원연구조합 | Hydrogen Supply System and Method |
KR102575379B1 (en) * | 2021-02-09 | 2023-09-06 | 고등기술연구원연구조합 | Hydrogen Supply System and Method |
KR102666186B1 (en) * | 2023-11-13 | 2024-05-17 | 주식회사 삼정이엔씨 | System for hydrogen heat exchange |
KR102684519B1 (en) * | 2023-12-14 | 2024-07-12 | 고등기술연구원연구조합 | Liquid air power generation system with long-distance cooling function and its control method |
Also Published As
Publication number | Publication date |
---|---|
KR20200088645A (en) | 2020-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102196751B1 (en) | System for Liquid Air Energy Storage using Liquefied Gas Fuel | |
Kanbur et al. | Cold utilization systems of LNG: A review | |
Mehrpooya et al. | Thermodynamic analysis of integrated LNG regasification process configurations | |
CN109386316B (en) | LNG cold energy and BOG combustion energy combined utilization system and method | |
US10767921B2 (en) | Liquefied gas treatment system | |
KR102048844B1 (en) | System and Method for Liquid Air Evaporation using Carbon Capture System | |
US7493763B2 (en) | LNG-based power and regasification system | |
US20030005698A1 (en) | LNG regassification process and system | |
JP2018047900A (en) | Vessel | |
KR102061294B1 (en) | Liquefied Air Energy Storage System and Method | |
US20070163261A1 (en) | Dual thermodynamic cycle cryogenically fueled systems | |
US20100101231A1 (en) | Process for a high efficiency and low emission operation of power stations as well as for storage and conversion of energy | |
US20050223712A1 (en) | Vaporization of liquefied natural gas for increased efficiency in power cycles | |
CA2655313C (en) | Process and plant for the vaporization of liquefied natural gas and storage thereof | |
MX2007000341A (en) | Configurations and methods for power generation with integrated lng regasification. | |
GB2540080A (en) | Cold utilization system, energy system provided with cold utilization system, and method for utilizing cold utilization system | |
KR102062484B1 (en) | Hydrogen Re-liquefaction System | |
NO20121098A1 (en) | Flexible condensed natural gas plant | |
KR20150115126A (en) | A Treatment System of Liquefied Gas | |
KR101670872B1 (en) | Fuel Gas Supply System And Method For Ship Engine | |
US20110308275A1 (en) | Method and system for periodic cooling, storing, and heating of atmospheric gas | |
WO2021118470A1 (en) | Cryogenic energy system for cooling and powering an indoor environment | |
KR102005812B1 (en) | Air Liquefaction System and Method | |
JP6142360B2 (en) | Regasification plant | |
KR101864935B1 (en) | Cryogenic energy storage system using LNG gasification process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |