[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102167257B1 - 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법 - Google Patents

토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법 Download PDF

Info

Publication number
KR102167257B1
KR102167257B1 KR1020190062579A KR20190062579A KR102167257B1 KR 102167257 B1 KR102167257 B1 KR 102167257B1 KR 1020190062579 A KR1020190062579 A KR 1020190062579A KR 20190062579 A KR20190062579 A KR 20190062579A KR 102167257 B1 KR102167257 B1 KR 102167257B1
Authority
KR
South Korea
Prior art keywords
cardiomyocytes
tomatidine
differentiated
stem cells
composition
Prior art date
Application number
KR1020190062579A
Other languages
English (en)
Inventor
김재호
김예슬
윤정원
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020190062579A priority Critical patent/KR102167257B1/ko
Priority to PCT/KR2020/004841 priority patent/WO2020242045A1/ko
Priority to CN202080040203.7A priority patent/CN113924359A/zh
Application granted granted Critical
Publication of KR102167257B1 publication Critical patent/KR102167257B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Developmental Biology & Embryology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 토마티딘(tomatidine)을 처리하여 줄기세포에서 심근세포로의 분화와 성숙을 촉진하는 방법에 관한 것이다. 본 발명은 줄기세포가 심근세포로 분화하는 도중 토마티딘을 처리하여 심근세포의 분화 효율을 증가시키고, 이와 같이 토마티딘 처리를 통해 생산된 심근세포는 인간의 성숙 심근세포와 구조 및 기능이 유사한 현저한 효과를 나타낸다. 따라서, 본 발명은 심근경색 치료용 세포치료제, 심장독성검사 또는 심장질환 치료용 약물 개발을 위한 평가 플랫폼에 유용하게 활용될 것으로 기대된다.

Description

토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법{Method of promoting differentiation of stem cells into mature cardiomyocytes using tomatidine}
본 발명은 토마티딘(tomatidine)을 처리하여 줄기세포에서 심근세포로의 분화와 성숙을 촉진하는 방법에 관한 것이다.
인간 심근세포를 확보하기 어려운 제한점 때문에 심혈관 질환 신약 발굴 및 독성 검사를 위해 마우스 및 쥐 등 실험 동물에서 유래한 세포들을 주로 이용하여 왔다. 그러나, 동물 세포 및 동물 모델을 대상으로 한 신약에 대한 효능 및 독성 검사 결과는 종 간의 차이로 인해 인간 심근세포를 대상으로 한 효과와는 상이한 결과를 나타낼 수 있다. 이에, 최근 10년간 인간 배아줄기세포와 유도만능줄기세포를 포함한 줄기세포를 심근세포로 분화시키는 방법이 넓은 범위에서 계속 연구되어 왔다. 줄기세포에서 기능적인 심근세포로의 분화는 재생의학, 발달연구, 조직공학, 질병모델확립, 약물독성평가를 위한 플랫폼을 제공한다(Burridge et al. Cell stem cell.2012;10:16-28).
분화된 심근세포는 동시다발적으로 수축과 이완을 반복하며, 심장근육 근절 단백질(sarcomeric protein)을 발현하고 심장 세포의 활동전위를 가지며 일시적인 Ca2+ 농도의 증가와 감소(Calcium transients)를 보인다. 이는 수축이완작용과 신경호르몬으로 인한 신호전달로 인해 발달과정 중의 심근세포와 유사한 기능을 보이는 것으로 알려져 있다(Zhu WZ et al. PLoS one. 2009;4:e5407).
그러나, 이렇게 분화된 심근세포는 미성숙한 상태에 머물러 성인의 심근세포에 비하여 수축이완 기능이 떨어지고 형태학적으로 적절하지 않은 단백질 발현 양상을 보여, 분화된 심근세포로 질병을 치료하거나 신약 개발의 연구 목적으로 사용하는 데 한계가 있다. 이에, 분화된 심근세포를 별도로 성숙시키는 단계가 요구된다. 이와 관련된 대표적인 최근 연구로는 심장 형성에 최적의 성장호르몬인 T3(tri-iodo-L-thyronine)을 인간만능줄기세포로부터 유래한 심근세포에 처리 시, 심근세포의 크기 및 근절(sarcomere) 길이가 증가하고, 심장 구조 단백질의 발현이 증가된 것으로 보고된 바 있다(Yang et al. 2014;72:296-30).
한편, 토마티딘(tomatidine)은 포도당(D-glucose)의 2분자로부터 생성되는 α-토마틴(α-tomatine)이 화학적분해를 통해 만들어지는 스테로이드성 알칼로이드 계열에 속한다. 이와 같은 스테로이드성 알칼로이드 물질들은 식물계, 동물계, 곰팡이계에서 대부분 발견된다. 최근 골격근위축(skeletal muscle atrophy)에 있어서 토마티딘이 mTORC1 신호 전달을 증가시켜 골격근위축을 감소시키고, 골격근 강도 및 운동능력을 증가시킬 수 있고(Dyle MC et al. J Biol Chem;2014;289(21):14913-24), C. elegans에서 SKN-1/Nrf2 신호전달경로를 통하여 선택적 미토파지(mitophage)를 통해 수명과 건강을 증진시킬 수 있음이 보고된 바 있다(Evandro F.Fang et al. Sci rep.2017;7:46208). 그러나, 상기 토마티딘을 줄기세포에 처리하는 경우의 심근세포의 구조 및 기능 개선 효과에 대해서는 아직까지 보고된 바가 없다.
J Mol Cell Cardiol. 2014 Jul;72:296-304. Dyle MC et al. J Biol Chem;2014;289(21):14913-24. Evandro F.Fang et al. Sci rep.2017;7:46208.
본 발명자들은 줄기세포로부터 성인의 심근세포와 가까운 구조와 기능을 가지는 심근세포를 분화시키기 위해 노력한 결과, 토마티딘 처리 시 심근세포의 이온활성 채널과 관련된 단백질의 발현이 증가되고, 이를 통해 심근세포의 성숙화를 효율적으로 촉진시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 토마티딘을 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 조성물 및 상기 조성물을 이용한 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 토마티딘을 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 조성물을 제공한다.
또한, 본 발명은 상기 조성물을 포함하는 조성물을 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 배지 조성물을 제공한다.
또한, 본 발명은 토마티딘을 포함하는 배지에서 줄기세포 또는 분화된 심근세포를 배양하는 단계를 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도 방법을 제공한다.
또한, 본 발명은 상기 성숙화된 분화된 심근세포를 포함하는 심장질환 예방 또는 치료용 세포치료제를 제공한다.
본 발명은 줄기세포가 심근세포로 분화하는 도중 토마티딘을 처리하여 심근세포의 분화 효율을 증가시키고, 이와 같이 토마티딘 처리를 통해 생산된 심근세포는 인간의 성숙 심근세포와 구조 및 기능이 유사한 현저한 효과를 나타낸다. 따라서, 본 발명은 심근경색 치료용 세포치료제, 심장독성검사 또는 심장질환 치료용 약물 개발을 위한 평가 플랫폼에 유용하게 활용될 것으로 기대된다.
도 1은 토마티딘을 이용하여 인간배아줄기세포에서 심근세포로 분화 또는 성숙화시키는 실험 프로토콜을 도식화한 것이다.
도 2는 토마티딘의 농도에 따라 인간배아줄기세포에서 심근세포로의 분화에 미치는 효과를 확인한 것이다(One-way Anova; *p-value < 0.05, **p-value < 0.01, ***p-value < 0.005)
도 3은 토마티딘 1μM 처리 시 심근세포 마커별 발현량을 (A) 유세포 분석 및 (B) 웨스턴 블랏 수행을 통해 분석하여 토마티딘 처리에 따른 인간배아줄기세포에서 심근세포로의 분화효율을 확인한 것이다.
도 4는 토마티딘 1μM 처리 시 세포의 크기를 (A) 광학현미경 및 (B) 공초점레이저현미경을 통해 비교한 결과를 나타낸 것이다(student's t-test; **p-value < 0.01).
도 5는 토마티딘 1μM 처리 시 심근세포에서 근골격단백질을 코딩하는 유전자(MYL2(MLC2v), MYL7(MLC2a), MYH7(Beta myosin heavy chain, βMHC), MYH6(Alpha myosin heavy chain, αMHC), TNN I Type 1 및 TNN I Type 3)의 발현 변화를 인간배아줄기세포에서 분화된 심근세포를 분화일수 별로(14, 30 및 60일)로 회수하여 (A) 웨스턴 블랏으로 확인하고 (B) 이를 정량화한 것이다(unpaired student's t-test; * p-value < 0.05, **p-value < 0.01, ***p-value < 0.005).
도 6은 분화 후 30일째의 심근세포에 대하여 성숙한 심근세포에서 나타나는 cTnI의 발현 정도를 유세포분석기를 이용하여 분석한 결과를 나타낸 도이다.
도 7은 토마티딘을 처리하여 분화된 심근세포에서 질병관련 유전자(NPPA)의 발현량을 나타낸 도이다(unpaired student's t-test; ***p-value < 0.005).
도 8은 토마티딘을 처리하여 분화된 심근세포에서 t-tubule(횡문세관)의 구성요소인 BIN1의 발현을 BIN1 항체로 염색하여 공초점레이저현미경을 통해 비교, 확인한 것이다.
도 9는 토마티딘을 처리하여 분화된 심근세포에서 t-tubule(횡문세관)을 구성하는 단백질인 BIN1 및 JPH2의 발현량을 (A) 웨스턴 블랏으로 확인하고 (B) 이를 정량화한 것이다(unpaired student's t-test; *p-value < 0.05, **p-value < 0.01, *** p-value < 0.005).
도 10은 토마티딘을 처리하여 분화된 심근세포에서 Di-8-ANEPPS 염색을 통해 t-tubule(횡문세관)의 배열을 확인한 결과를 나타낸 도이다.
도 11은 토마티딘을 처리하여 분화된 심근세포에서 t-tubule(횡문세관)의 밀도를 정량화하여 나타낸 것이다(unpaired student's t-test; *p-value < 0.05, **p-value < 0.01, ***p-value < 0.005).
도 12는 토마티딘을 처리하여 분화된 심근세포의 성숙화 여부를 확인하기위해 다중 전극 배열 분석(multi-electrode array assay)을 수행한 결과를 나타낸 도이다(student's t-test; *p-value < 0.05, **p-value < 0.01, ***p-value < 0.005).
본 발명은 토마티딘을 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 조성물을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.
본 발명에 있어서, 상기 “토마티딘(Tomatidine)”은 본 발명이 속하는 기술분야에서 5 alpha,20 beta(F),22 alpha(F),25 beta(F),27- azaspirostan-3 beta-ol, {tomatidine, (3beta,5alpha,22alpha,25R)-isomer}, 77-59-8, Tomatidin, UNII-2B73S48786, (3beta,5alpha,22beta,25S)-Spirosolan-3-ol, EINECS 201-040-3, NSC 27592, NSC 226903, CHEBI:9629, 5alpha-Tomatidan-3beta-ol, (22S,25S)-5alpha-spirosolan-3beta-ol, 2B73S48786, {Spirosolan-3-ol, (3beta,5alpha,22beta,25S)-}, SMR001233234, 5alpha-Tomatidan-3beta-ol (8CI), SR-05000002324, (3beta,5alpha,25S)-spirosolan-3-ol, Prestwick_473, Prestwick3_000573, BSPBio_000386, MLS002153880, MLS002222215, SCHEMBL335093, AC1L23J5, BPBio1_000426, CHEMBL2165711, DTXSID0037102, HMS2096D08, HY-N2149, ZINC8143640, 8282AH, CCG-208279, CS-5821, SMP1_000126, NCGC00179576-01, LS-184563, C10826, SR-05000002324-3, 3β-Hydroxy-5α-tomatidane hydrochloride 또는 5α-Tomatidan-3β-ol hydrochlorid(Tomatidine hydrochloride, C27H45NO2*HCl) 등으로 표기되는 화합물일 수 있으며, 하기의 구조식을 갖는 것을 특징으로 한다.
Figure 112019054726389-pat00001
토마티딘은 스테로이드 알칼로이드계열 물질로, 토마토에서 추출된 토마틴(tomatine)에서 D-glucose 2분자와 -xylose, -galactose 각각 1분자가 화학적으로 분해되어 만들어진 화합물이다. 토마티딘은 일반적으로 미성숙한 토마토인 초록색을 띠는 토마토에 존재한다.
본 발명에 있어서, 상기 토마티딘은 0.01 내지 100μM의 농도로 포함되는 것을 특징으로 할 수 있다. 상기 토마티딘은 메탄올(CH3OH):클로로포름(CHCl3)=1:1 혼합용액에 용해시켜 사용할 수 있고, 분화 배양액에 처리 시에는 이를 DMSO((CH3)2SO) 또는 메탄올에 희석시켜 사용할 수 있다. 본 발명의 일 실시예에서는, 메탄올(CH3OH):클로로포름(CHCl3)=1:1 혼합용액에 10~50mM로 용해시킨 토마티딘을 DMSO에 1mM로 희석시켜 제조하여 최종 세포 처리 농도 1μM 또는 세포 배양 배지에 0.1%로 실험에 사용하였다.
본 명세서에서, 용어 “줄기세포(stem cell)”는 개체를 구성하는 세포나 조직의 근간이 되는 세포로서 그 특징은 반복 분열하여 자가 재생(self-renewal)할 수 있고, 환경에 따라 특정한 기능을 지닌 세포로 분화할 수 있는 다분화 능력을 갖는 세포를 의미한다.
본 발명에 있어서, 상기 줄기세포는 그 분화능에 따라 만능(pluripotency), 다분화능(multipotency) 및 단분화능(unipotency) 줄기세포로 나눌 수 있다. 만능줄기세포(pluripotent stem cells)는 모든 세포로 분화될 수 있는 잠재력(totiportent)을 지닌 전분화능(pluripotency)의 세포로서 배아줄기세포 (embryonic stem cell, ESC) 및 유도만능줄기세포(induced pluripotent stem cells, iPS) 등이 이에 해당된다. 본 발명에 있어서, 상기 줄기세포는 만능줄기세포일 수 있고, 바람직하게는 인간만능줄기세포일 수 있으나, 이에 제한되지 않는다. 본 발명의 일 실시예에서는 줄기세포 중에서도 인간 배아줄기세포를 사용하여 이로부터 심근세포를 분화 또는 성숙화시키는 방법을 개시하고 있다.
본 명세서에서, 용어 "심근세포"는 장래에 기능적인 심근세포가 될 수 있는 능력을 가진 심근 전구 세포, 또는 태아형 심근세포, 성체 심근세포의 모든 분화 단계의 세포를 제한 없이 포함하며, 이하에 기재된 적어도 하나, 바람직하게는 복수의 방법에 의하여 적어도 하나, 바람직하게는 복수의 마커나 기준으로 확인할 수 있는 세포를 의미한다. 심근세포 특이적인 각종 마커의 발현은, 공지의 생화학적 또는 면역화학적 방법으로 검출할 수 있으며, 이러한 방법은 제한 없이 사용할 수 있다. 이러한 방법에서, 심근 전구 세포 또는 심근세포에 결합하는 마커 특이적인 다클론성 항체 또는 단일 클론 항체를 사용할 수 있다. 개개의 특이적 마커를 표적으로 하는 항체는 시판용이나 공지의 방법에 의해 제조된 것을 제한 없이 사용할 수 있다. 심근 전구 세포 또는 심근세포에 특이적인 마커의 예로는 aSA(α-sarcomeric actinin), 미오신 중쇄/경쇄(MHC/MLC), cTnT(cardiac troponin- T), MLC2a(myosin light chain-2 atrium), MLC2v(myosin light chain-2 ventricle), MYH7(Beta myosin heavy chain, βMHC), MYH6(Alpha myosin heavy chain, αMHC), TNN I Type 1, TNN I Type 3, ANP, GATA4, Nkx2.5 및 MEF-2c 등을 들 수 있다.
본 발명은 상기 토마티딘을 줄기세포, 그 중에서도 인간배아줄기세포 또는 유도만능 줄기세포와 같은 인간만능줄기세포로부터 심근세포로의 분화율을 향상시키고, 인간배아줄기세포 또는 유도만능 줄기세포에서 성숙한 심근세포로의 분화를 촉진시키고, 분화된 심근세포의 근골격계, t-tubule(횡문세관)의 구조단백질 및 그 유전자의 발현을 증가시키는 용도로 사용한 것에 기술적 특징이 존재한다.
구체적으로, 상기 토마티딘은 분화된 심근세포에서 aSA(α-Sarcomeric Actinin), cTnT(cardiac troponin- T), MLC2a(myosin light chain-2 atrium 또는 MYL7), MLC2v(myosin light chain-2 ventricle 또는 MYL2), cTnI(cardiac troponin 1), MYH7(Beta myosin heavy chain), MYH6(Alpha myosin heavy chain), JPH2(Junctophilin-2) 및 BIN1(Bridging integrator 1)으로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질의 발현 정도를 증가시킬 수 있는 것을 특징으로 한다.
또한, 상기 토마티딘은 분화된 심근세포에서 NPPA(natriuretic peptide precursor type A) 유전자 또는 단백질의 발현 정도를 감소시키는 것을 특징으로 한다.
나아가, 상기 토마티딘은 분화된 심근세포에서 횡문세관(t-tubule)의 배열을 한 방향으로 정렬시키는 것을 특징으로 한다.
심근세포 특이적 마커의 발현은, 특정한 방법에 한정되지 않으나, 역전사 효소 매개 중합효소 연쇄 반응(RT-PCR)이나 혼성화 분석인, 임의의 마커 단백질을 코딩하는 mRNA를 증폭, 검출, 해석하기 위한 종래에 흔히 사용되는 분자생물학적 방법으로 확인할 수 있다. 심근세포에 특이적인 마커 단백질을 코딩하는 핵산 서열은 이미 공지되어 있어 유전자은행(GenBank)과 같은 공공 데이터베이스로부터 얻을 수 있으며, 프라이머 또는 프로브로 사용하기 위하여 필요한 마커 특이적 서열을 용이하게 결정할 수 있다.
또한, 분화된 심근세포의 성숙화 여부를 확인하기 위해, 심근세포 내 t-tubule(횡문세관)의 면역형광염색을 수행하거나 전기생리학적 기준을 추가적으로 사용할 수 있다.
또한, 본 발명은 조성물을 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 배지 조성물을 제공한다.
본 발명에 있어서, 상기 배지 조성물은 CHIR99021(6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile) 및 IWP2(N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide)를 더 포함할 수 있다.
한편, 본 발명에 있어서 상기 CHIR99021은 GSK(glycogen synthase kinase) 억제제/Wnt 신호전달 유도제로서 사용된 것으로, 상기 CHIR99021 외에도 GSK 신호전달과정에 관여하는 1-AKP(1-azakenpaullon)을 포함한 모든 GSK 억제제가 제한 없이 본 발명의 범주에 속할 수 있음은 당업자에게 자명하다고 할 것이다.
또한, 본 발명에 있어서 상기 IWP2는 Wnt 신호전달 억제제로 사용한 것으로, 상기 IWP2 외에 모든 Wnt 신호전달 억제제가 제한 없이 본 발명의 범주에 속할 수 있음은 당업자에게 자명하다고 할 것이다.
본 발명에 따른 배지 조성물에 포함되는 각 유도 물질은 시중에서 구입하여 사용하거나 제조하여 사용할 수 있으며, 배양액의 종류 및 배양방법 등 당분야에서 잘 알려진 요소에 따라 유효 농도를 조절하여 사용할 수 있다. 예를 들어, 상기 CHIR99021 및 IWP2는 각각 배지에 8~16μM 및 1~10μM의 농도로 첨가될 수 있고, 본 발명의 일 실시예에서는, CHIR99021 및 IWP2를 각각 10~14μM 및 5μM로 첨가하여 사용하였으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 배지 조성물은 본 발명이 속하는 기술분야에서 줄기세포 배양에 통상적으로 사용되는 배지 배양액을 모두 포함한다. 배양에 사용되는 배양액은 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다.
또한, 본 발명은 토마티딘을 포함하는 배지에서 줄기세포 또는 분화된 심근세포를 배양하는 단계를 포함하는 줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도 방법을 제공한다.
본 발명에 있어서, 상기 방법은 토마티딘을 포함하는 배지에서 줄기세포 또는 분화된 심근세포를 배양하기 전, (a) 줄기세포를 CHIR99021이 첨가되고 인슐린이 제거된 B27 보충제가 포함된 배지에서 20 내지 30시간 동안 배양하여 심근세포로 분화시키는 단계; (b) 상기 분화된 심근세포를 CHIR99021이 첨가되지 않은 배지에서 1일 내지 3일 동안 배양하는 단계; 및 (c) 상기 배양된 심근세포를 IWP2가 첨가된 배지에서 1일 내지 3일 동안 배양하는 단계;를 더 포함할 수 있다. 바람직하게는, 상기 방법은 토마티딘을 포함하는 배지에서 줄기세포 또는 분화된 심근세포를 배양하기 전, (a) 줄기세포를 CHIR99021이 첨가되고 인슐린이 제거된 B27 보충제가 포함된 배지에서 24시간 동안 배양하여 심근세포로 분화시키는 단계; (b) 상기 분화된 심근세포를 CHIR99021이 첨가되지 않은 배지에서 2일 동안 배양하는 단계; 및 (c) 상기 배양된 심근세포를 IWP2가 첨가된 배지에서 2일 동안 배양하는 단계를 더 포함할 수 있다.
본 발명에 있어서, 상기 방법은 분화된 심근세포에 토마티딘을 처리하여 성숙화시킨 후, 글루코스가 포함되지 않고, 락트산(lactate)을 첨가한 배지(Glucose-, Lactate)에서 배양하여 분화된 심근세포를 정제하는 단계를 더 포함할 수 있다. 상기 정제 단계는 배지에 토마티딘을 포함시키지 않는 것을 특징으로 한다.
나아가, 상기 방법은 분화된 심근세포를 정제하는 단계 후, 인슐린이 제거된 B27 보충제가 들어간 RPMI1640 배지(RBin)에 토마티딘을 첨가하여 배양하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에서는, CHIR99021에 따른 인간배아줄기세포의 분화 시작 20일째에 글루코스가 포함되지 않고, 락트산(lactate)을 첨가한 배지(Glucose-, Lactate)에서 4일간 배양하여 심근세포로 분화된 세포를 정제하고, 그 후 다시 인슐린이 제거된 B27 보충제가 들어간 RPMI1640 배지(RBin)에 토마티딘을 첨가하여 6일동안 계속 배양하여 성숙화된 분화된 심근세포를 제조하였다.
또한, 본 발명은 본 발명에 따른 방법에 의해 성숙화된 분화된 심근세포를 포함하는 심장질환 예방 또는 치료용 세포치료제를 제공한다.
본 발명에서 용어, "세포 치료제"는 사람으로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품 (미국 FDA규정)이며, 세포 혹은 조직의 기능을 복원시키기 위하여 살아 있는 자가, 동종 또는 이종 세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 말한다.
본 발명에서 사용되는 용어 "예방"은 본 발명에 따른 세포치료제의 투여로 심장질환을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용되는 용어 "치료"는 본 발명에 따른 세포치료제의 투여로 심장질환이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.
본 발명에 있어서, 상기 심장질환은 심근경색, 협심증, 허혈성 심근질환, 일차성 심근질환, 이차성 심근질환 및 심부전증으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 심근세포는 토마티딘 처리에 따라 기존 분화방법에 의해 분화된 심근세포에 비하여 인간 성체 심근세포와 형태적 및 기능적으로 매우 유사한 정도로 성숙화된 것을 특징으로 한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 통계적 유의성 여부는 One-way Anova, (unpaired) student's t-test를 통해 분석하였고, *는 p-value < 0.05, **는 p-value < 0.01, ***는 p-value < 0.005의 유의값을 나타낸다.
실시예 1. 인간배아줄기세포의 심근세포로의 분화과정에서 토마티딘의 처리
인간배아줄기세포에서 분화된 심근세포를 수득하기 위하여 다음과 같은 실험을 수행하였다. 인간배아줄기세포 H9(Wi cell research institute)는 mTeSR1 배지(stem cell technologies 社) 내에서 3~5일 정도 유지하되, 매트리겔(matrigel)이 코팅된 6-웰 플레이트(Nunc, 덴마크) 상에서 배양되었다(5% CO2, 37℃). 플레이트에 세포를 시딩(seeding)할 때는 세포 생존율을 높이기 위해 5μM ROCK inhibitor(Y27632)를 24시간 동안 처리하였다.
이후 인간배아줄기세포가 플레이트를 가득 채우면 GSK 억제제이면서 Wnt 신호전달 유도제인 CHIR99021(6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile) 10~14μM를 첨가하고 인슐린이 제거된 B27 보충제가 들어간 RPMI1640 배지(RBin)에서 24시간 동안 계속 배양하였다. 다음 날 GSK 억제제(CHIR99021)가 처리되지 않은 RBin에서 48시간 더 배양하였다. 그 후, Wnt 신호전달 경로를 억제하는 IWP2(N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide) 5μM을 RBin에 첨가하여 48시간 동안 배양한 후 배양액에 토마티딘(tomatidine) 1μM을 첨가하였다. GSK 억제제를 처리한 분화 8일째 되는 날부터는 B27 보충제가 들어간 RPMI1640 배지에서 토마티딘 1μM 존재 하에 배양하였다. 분화 시작 20일 째는 글루코스가 포함되지 않고, 락트산(lactate) 4mM을 첨가한 배지(Glucose-, Lactate)에서 4일간 배양하여 심근세포로 분화된 세포를 정제하였다. 이때, 배양배지는 48시간에 한 번 교체하였고, 상기 배양배지에는 토마티딘을 포함하지 않았다. 그 후에는 다시 인슐린을 포함하는 B27 보충제가 들어간 RPMI1640 배지(RB+)에 토마티딘을 첨가하여 분화 후 60일 되는 날까지 계속 배양하였다. 상기 실험과정을 도식화하여 도 1에 나타내었다.
실시예 2. 분화된 심근세포의 분화효율 확인
2-1. 분화효율을 최대로 하는 토마티딘의 농도 탐색
인간배아줄기세포로부터 분화된 심근세포의 분화 효율을 최대로 하는 토마티딘의 최적농도를 찾기 위하여 상기 실시예 1의 실험 프로토콜에 있어서 토마티딘의 농도를 0.1, 0.5, 1, 2 및 5μM로 처리하고, 인간배아줄기세포에서 분화된 심근세포에서 발현되는 심근골격 단백질 aSA(α-sarcomeric actinin)를 분화 20일 째에 웨스턴 블랏(western blot)으로 분석하였다. 그 결과를 도 2에 나타내었다.
도 2에 나타낸 바와 같이, 토마티딘 농도가 1μM일 때 심근세포로의 분화율이 가장 크게 증가됨을 확인하였다.
2-2. 심근세포 마커별 발현양상 분석
그 다음, 하나의 세포에서 심근세포 마커별 발현양상이 어떻게 다르게 나타나는지 비교하기 위하여 웨스턴 블랏(western blot)과 유세포 분석(flow cytometry)을 수행하였다. 심근세포로의 분화능력을 평가하기 위한 마커로는 심근세포 수축에 관여하는 근절(sarcomere) 단백질인 aSA, 심근세포의 구조 단백질로 심근 세포에서 특이적으로 나타나는 cTnT(cardiac troponin- T), MLC2a(myosin light chain-2 atrium) 및 MLC2v(myosin light chain-2 ventricle)를 사용하였고, 각 마커에 대하여 대조군인 DMSO 처리+분화된 심근세포와 토마티딘(1μM) 처리+분화된 심근세포에서 분화 20일째에 측정하였다. 그 결과를 도 3에 나타내었다.
도 3에 나타낸 바와 같이, 토마티딘 1μM 처리에 따라 대조군에 비하여 분화된 심근세포에서 심근세포 구조 단백질의 발현 비율이 현저히 높음을 확인하였다. 유세포 분석을 통하여도 이와 같은 발현양상을 확인하였다. 상기 결과를 통해, 토마티딘 처리를 통해 심근세포 특이적 단백질의 발현량이 현저히 증가하고, 인간배아줄기세포가 심근세포로 성공적으로 분화되었음을 확인하였다. 또한, 분화율을 최대로 하는 토마티딘의 농도는 1μM임을 확인하였다.
실시예 3. 토마티딘의 심근세포 성숙화 촉진 효과 규명
3-1. 심근세포의 크기 확인
인간배아줄기세포에서 분화된 심근세포에 락트산을 처리 후 0.1% 젤라틴이 코팅된 커버글라스에 얹고 4% 파라포름알데히드(paraformaldehyde, PFA)로 고정시킨 다음, 인산완충용액(PBS)으로 3회 세척하고, 5% 소혈청 알부민(BSA; sigma Aldrich)로 30분 동안 블로킹하였다. 다음으로, aSA, cTnT 및 MLC2v(abcam)에 대한 1차 항체를 4℃에서 밤새 반응시키고 alexa-fluro 488 또는 647가 연결된 2차 항체를 통하여 형광표지를 하였다. 이후, 핵 염색을 위해 DAPI(4',6-diamidino-2-phenylindole)가 포함된 Vectashield(Vector laboratories)를 사용하여 마운팅하였다. 마운팅 후, 면역형광염색된 세포 표본을 레이저 스캐닝 공초점 현미경(Olympus fluoview FV1000)을 사용하여 600배의 배율로 촬영하였다. 그 결과를 도 4에 나타내었다.
도 4의 A에 나타낸 바와 같이, 대조군에 비해 토마티딘 처리군에서 세포 크기가 현저히 크게 나타나는 형태학적 차이를 통해, 토마티딘 처리에 따라 분화된 심근세포의 성숙화가 유도됨을 확인하였다. 또한, 도 4의 B에 나타낸 바와 같이, 대조군에 비해 토마티딘 처리군에서 aSA, cTnT 및 MLC2v 염색의 패턴도 좀 더 뚜렷한 경향을 보이는 것이 관찰되었다. 상기 결과를 통해, 토마티딘 처리에 따라 분화된 심근세포의 성숙화가 촉진됨을 확인하였다.
3-2. 심근세포의 근골격구조 단백질 발현량 확인
토마티딘 처리 시간에 따라 심근세포를 구성하는 단백질의 발현 정도에 차이가 있는지 분석하기 위해서 하기와 같은 실험을 수행하였다. 먼저, 인간배아줄기세포에서 분화된 심근세포를 분화일수 별로(14, 30 및 60일)로 회수하고, 심근세포 표지 마커의 발현 정도를 항체를 이용하여 웨스턴 블랏으로 확인하였다. 또한, 토마티딘의 처리에 따라 분화된 심근세포에서 근골격단백질을 코딩하는 유전자(MYL2(MLC2v), MYL7(MLC2a), MYH7(Beta myosin heavy chain, βMHC), MYH6(Alpha myosin heavy chain, αMHC), TNN I Type 1 및 TNN I Type 3)의 발현이 증가하는지 확인하기 위하여 real-time PCR을 수행하였다. 그 결과를 도 5에 나타내었다.
도 5에 나타낸 바와 같이, 심근세포의 성숙화 정도에 따라 다르게 발현되는 cTnI(cardiac troponin 1)의 경우, 토마티딘 처리시간이 길어질수록 대조군에 비하여 발현이 더 증가함을 확인하였다. 반면, 심근세포 분화 초기에 발현되는 단백질로 심근골격을 구성하는 aSA, cTnT 및 MLC2a의 경우, 분화시작 후 14일 째에는 발현 정도의 차이가 나타났으나, 락트산을 이용한 정제 후(lactate selection), 남아있는 분화된 심근세포에서는 발현량에 차이가 없음을 확인하였다. 그러나, MYL2, MYL7, MYH7, MYH6, TNN I Type 1 및 TNN I Type 3의 발현은 토마티딘 처리시간이 길어질수록 증가하였다.
그 다음, 분화 후 30일째의 cTnI의 발현 정도를 유세포분석기를 이용하여 분석하고, 그 결과를 도 6에 나타내었다.
도 6에서 나타낸 바와 같이, 대조군에 비하여 토마티딘 처리군에서 cTnI가한 2배 이상 발현됨을 확인하였다. 상기 결과를 통해, 토마티딘 처리시 분화된 심근세포의 성숙화를 효율적으로 유도할 수 있음을 확인하였다.
나아가, 토마티딘이 처리된 분화된 심근세포에서 병적인 질환을 나타내는 유전자(NPPA)의 발현이 나타나는지 확인하기 위하여 위해서 real-time PCR을 수행하였다. 그 결과를 도 7에 나타내었다.
도 7에 나타낸 바와 같이, 토마티딘 처리군에서는 심장비대(hypertrophy) 관련 유전자인 NPPA(natriuretic peptide precursor type A)의 발현이 현저히 감소하였음을 확인하였다. 상기 결과를 통해, 토마티딘은 분화된 심근세포의 성숙화를 유도하면서도, NPPA 발현은 억제시켜 심근비대를 유발하지 않음을 확인하였다.
3-3. 심근세포 내 t-tubule의 구조확인
심근세포 내 소기관 중 하나인 t-tubule(transverse tubule, 횡문세관)은 이온 채널과 신호 분자가 풍부한 막 마이크로도메인을 포함한다. 토마티딘이 심근세포의 수축과 이완에 중요한 t-tubule의 형성을 유도하는지 확인하기 위하여 세포에 면역형광염색을 수행하였다. 분화 60일째의 세포를 0.1% 젤라틴이 코팅된 커버글라스에 얹고 RPMI1640과 20% 태아소혈청을 섞은 배지에서 2-3일 동안 배양한 후, 심근세포 생장배지인 B27 보충제가 들어간 RPMI1640 배지(RB+)에서 적응시켰다. 그 후, 4% 파라포름알데히드로 고정시킨 다음, PBS로 3회 세척하고 5% 소혈청알부민으로 30분 동안 블로킹하였다. T-tubule의 구성요소이자 칼슘 채널 통로이동(trafficking) 관련 유전자인 BIN1 및 심근세포의 표지자인 aSA의 발현량을 확인하기 위하여 BIN1(abcam) 1차 항체를 4℃에서 12시간 동안 반응시키고, alexa-fluor 488, 647가 연결된 2차 항체로 형광표지 하였다. 이후, 핵 염색을 위해 DAPI가 포함된 Vectashield를 사용하여 마운팅하였다. 마운팅 후, t-tubule의 구성단백질이 면역형광 염색된 세포표본을 레이저 스캐닝 공초점 현미경으로 600배의 배율로 촬영하였다. 그 결과를 도 8에 나타내었다.
또한, t-tubule 단백질 중 근육 세포에서 t-tubule 막과 근육세포질 세망(sarcoplasmic reticulum)의 막을 물리적으로 연결시키고, 칼슘 유도된 칼슘 방출에 관한 플라즈마레말(plasmalemmal) L-type 칼슘 채널 및 근소포체 리아도닌 수용체(sarcoplasmic reticulum ryanodine receptor)와 관련된 JPH2(Junctophilin-2) 및 BIN1(Bridging integrator 1)의 발현량을 확인하기 위하여 JPH2 및 BIN1 항체를 이용하여 웨스턴 블랏을 수행하였다. 그 결과를 도 9에 나타내었다.
도 8 및 도 9에 나타낸 바와 같이, 심근세포의 필수 구성요소인 t-tubule에서 BIN1과 JPH2의 발현이 토마티딘 처리에 따라 현저히 증가함을 확인하였다.
다음으로, t-tubule 내 이온 이동에 따라 형광표지가 되는 Di-8-ANEPPS로 분화된 심근세포를 염색하여 배열과 밀도를 확인하였다. 구체적으로, Di-8-ANEPPS(Thermo) 2μM을 심근세포 생장배지인 RB+에 섞어 반응시켰다(20분, 37℃). 반응이 끝난 심근세포는 시약이 들어있지 않은 배지로 2회 세척한 후 레이저 스캐닝 공초점 현미경을 사용하여 450, 510, 570nm에서 촬영하였다. 촬영 결과를 Image J 프로그램을 사용하여 분석하였다. 그 결과를 도 10, 11에 나타내었다.
성숙과정을 거친 심근세포는 t-tubule의 배열이 가지런하고, t-tubule의 밀도가 높을수록 심근세포의 수축과 이완이 동시다발적으로 넓은 면적에서 일어난다고 알려져 있다. 도 10에 나타낸 바와 같이, 대조군에 비하여 토마티딘 처리군의 t-tubule 배열이 현저히 가지런함을 확인하였다. 또한, 도 11에 나타낸 바와 같이, 대조군에 비하여 토마티딘 처리군이 심근세포에서 t-tubule이 심근세포 내 차지하는 면적에 비해 더 촘촘한 밀도를 가지고 있음을 확인하였다.
3-4. 심근세포의 전기생리학적 특성 확인
심근세포의 수축과 이완을 통해 나타나는 전기생리학적인 특성인 전도성을 측정하기 위하여 다중 전극 배열 분석(multi-electrode array assay)을 수행하였다. 분화 60일째의 심근세포를 HBSS로 2번 세척 후 0.05% trypsin-EDTA에 반응시키고(3분, 37℃), RPMI1640+20% FBS(R20) 배지로 불활성화 시킨 뒤 세포를 파이펫팅하여 떼어내었다. 상기 세포를 피브로넥틴이 코팅된 다중 전극 배열 플레이트(multi-electrode array plate)에 R20와 함께 넣고 배양하였다(48시간, 37℃). 그 후, 배지를 RB+로 교체해준 뒤 전도성을 측정하였다. 그 결과를 도 12에 나타내었다.
도 12에 나타낸 바와 같이, 토마티딘을 처리하여 분화된 심근세포는 스파이크 진폭 평균(spike amplitude mean)이 증가하는 것을 보아 수축을 유발하는 신호를 강하게 받아들이는 것을 확인하였다. BPM(beats per minute) 및 FPD(field potential duration, 장 전위 기간)이 현저히 증가하는 것을 관찰하였고 이는 세포내 신호전달속도가 빠르며 전기생리학적으로 더 규칙적인 움직임과 빠른 수축과 이완을 나타냄을 확인하였다. 한편, 심장 주기 평균(beat period mean) 및 심장 주기 변이도(beat period irregularity)는 현저히 낮음을 확인하였다.
상기 결과를 통해, 본 발명에 따른 토마티딘을 인간 만능줄기세포가 심근세포로 분화하는 도중 처리하면 심근세포의 분화 효율이 증가되고, 그 결과 생산된 심근세포는 인간의 성숙 심근세포와 구조 및 기능이 유사한 현저한 효과를 나타냄을 확인하였다. 따라서, 본 발명을 사용하여 제조한 성숙화된 심근세포를 신약 발굴 및 독성 평가를 위해 사용한다면, 성체 심근세포와 형태적 및 기능적으로 매우 유사한 성숙화된 인간 심근세포를 사용함에 따라, 종 간의 차이로 인해 발생할 수 있는 상이점을 해결할 수 있을 뿐만 아니라 임상 실험 전에 신약의 효능 및 독성을 미리 예측하고 평가할 수 있어 신약 개발에 필요한 막대한 비용의 감소와 검증 기간을 단축할 수 있을 것으로 기대된다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (11)

  1. 토마티딘을 포함하는 만능줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 조성물.
  2. 제1항에 있어서, 상기 토마티딘은 0.01 내지 100μM의 농도로 포함되는 것을 특징으로 하는, 조성물.
  3. 제1항에 있어서, 상기 토마티딘은 분화된 심근세포에서 aSA(α-Sarcomeric Actinin), cTnT(cardiac troponin- T), MLC2a(myosin light chain-2 atrium 또는 MYL7), MLC2v(myosin light chain-2 ventricle 또는 MYL2), cTnI(cardiac troponin 1), MYH7(Beta myosin heavy chain), MYH6(Alpha myosin heavy chain), JPH2(Junctophilin-2) 및 BIN1(Bridging integrator 1)으로 이루어진 군으로부터 선택되는 하나 이상의 유전자 또는 단백질의 발현 정도를 증가시키는 것을 특징으로 하는, 조성물.
  4. 제1항에 있어서, 상기 토마티딘은 분화된 심근세포에서 NPPA(natriuretic peptide precursor type A) 유전자 또는 단백질의 발현 정도를 감소시키는 것을 특징으로 하는, 조성물.
  5. 제1항에 있어서, 상기 토마티딘은 분화된 심근세포에서 횡문세관(t-tubule)의 배열을 한 방향으로 정렬시키는 것을 특징으로 하는, 조성물.
  6. 제1항 내지 제5항 중 어느 한 항의 조성물을 포함하는 만능줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도용 배지 조성물.
  7. 제6항에 있어서, 상기 배지 조성물은 CHIR99021(6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile) 및 IWP2(N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide)를 더 포함하는 것을 특징으로 하는, 배지 조성물.
  8. 토마티딘을 포함하는 배지에서 만능줄기세포 또는 분화된 심근세포를 배양하는 단계를 포함하는 만능줄기세포로부터 심근세포로의 분화 또는 분화된 심근세포의 성숙화 유도 방법.
  9. 제8항에 있어서, 상기 토마티딘은 0.01 내지 100μM의 농도로 포함되는 것을 특징으로 하는, 방법.
  10. 제8항에 있어서, 상기 방법은 토마티딘을 포함하는 배지에서 배양하기 전,
    (a) 만능줄기세포를 CHIR99021이 첨가되고 인슐린이 제거된 B27 보충제가 포함된 배지에서 20 내지 30시간 동안 배양하여 심근세포로 분화시키는 단계;
    (b) 상기 분화된 심근세포를 CHIR99021이 첨가되지 않은 배지에서 1일 내지 3일 동안 배양하는 단계; 및
    (c) 상기 배양된 심근세포를 IWP2가 첨가된 배지에서 1일 내지 3일 동안 배양하는 단계;를 더 포함하는 것을 특징으로 하는, 방법.
  11. 삭제
KR1020190062579A 2019-05-28 2019-05-28 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법 KR102167257B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190062579A KR102167257B1 (ko) 2019-05-28 2019-05-28 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법
PCT/KR2020/004841 WO2020242045A1 (ko) 2019-05-28 2020-04-09 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법
CN202080040203.7A CN113924359A (zh) 2019-05-28 2020-04-09 通过番茄次碱处理促进干细胞分化为成熟心肌细胞的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190062579A KR102167257B1 (ko) 2019-05-28 2019-05-28 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법

Publications (1)

Publication Number Publication Date
KR102167257B1 true KR102167257B1 (ko) 2020-10-19

Family

ID=73042827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190062579A KR102167257B1 (ko) 2019-05-28 2019-05-28 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법

Country Status (3)

Country Link
KR (1) KR102167257B1 (ko)
CN (1) CN113924359A (ko)
WO (1) WO2020242045A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230152192A (ko) 2022-04-21 2023-11-03 주식회사 스마트셀랩 커큐민에 의한 줄기세포의 심근전구세포로의 유도 및 심근세포로의 분화

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528705A (ja) * 2003-06-27 2007-10-18 エチコン、インコーポレイテッド 心臓及び循環器系疾患の治療において使用するための分娩後由来細胞
JP2013507135A (ja) * 2009-10-13 2013-03-04 ステムセル テクノロジーズ インコーポレーティッド 幹細胞を分化させるための重量オスモル濃度の操作法
WO2015002724A2 (en) * 2013-06-11 2015-01-08 President And Fellows Of Harvard College SC-β CELLS AND COMPOSITIONS AND METHODS FOR GENERATING THE SAME
KR20170051497A (ko) * 2014-09-08 2017-05-11 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 소뇌 선구체 조직의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100898A1 (en) * 2014-12-18 2016-06-23 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof
US11752176B2 (en) * 2017-03-15 2023-09-12 University Of Washington Methods and compositions for enhancing cardiomyocyte maturation and engraftment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528705A (ja) * 2003-06-27 2007-10-18 エチコン、インコーポレイテッド 心臓及び循環器系疾患の治療において使用するための分娩後由来細胞
JP2013507135A (ja) * 2009-10-13 2013-03-04 ステムセル テクノロジーズ インコーポレーティッド 幹細胞を分化させるための重量オスモル濃度の操作法
WO2015002724A2 (en) * 2013-06-11 2015-01-08 President And Fellows Of Harvard College SC-β CELLS AND COMPOSITIONS AND METHODS FOR GENERATING THE SAME
KR20170051497A (ko) * 2014-09-08 2017-05-11 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 소뇌 선구체 조직의 제조 방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Dyle MC et al. J Biol Chem;2014;289(21):14913-24.
Evandro F.Fang et al. Sci rep.2017;7:46208.
J Mol Cell Cardiol. 2014 Jul;72:296-304.
Stem Cell Res Ther. 9(1):30 (2018.02.05.)* *
Tissue Eng Part B Rev. 2015 Aug 1; 21(4): 377-392 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230152192A (ko) 2022-04-21 2023-11-03 주식회사 스마트셀랩 커큐민에 의한 줄기세포의 심근전구세포로의 유도 및 심근세포로의 분화

Also Published As

Publication number Publication date
CN113924359A (zh) 2022-01-11
WO2020242045A1 (ko) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102634265B1 (ko) 심근세포 성숙
Bhattacharya et al. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry
Ivashchenko et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype
Smits et al. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology
Yazawa et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome
EP1444329B1 (en) Stem cells that transform to beating cardiomyocytes
KR101966208B1 (ko) 환자로부터 유도 만능 줄기 세포들로부터의 심근 세포 및 그 사용 방법
JP7097814B2 (ja) ヒト心室前駆細胞の生着のための遺伝子マーカー
JP6548576B2 (ja) 角膜内皮細胞マーカー
WO2009036982A1 (en) Cardiomyocyte-like cell clusters derived from hbs cells
WO2013063305A2 (en) Directed cardiomyocyte differentiation of stem cells
KR100980005B1 (ko) 배아줄기세포를 심근세포로 분화 유도하는 방법
KR102167257B1 (ko) 토마티딘 처리를 통한 줄기세포의 성숙화된 심근세포로의 분화유도 촉진 방법
CN103237887A (zh) 胚胎干细胞来源的心肌细胞以及包含所述心肌细胞作为活性成分的细胞治疗剂
Zhou et al. Overexpression of KCNJ2 enhances maturation of human-induced pluripotent stem cell-derived cardiomyocytes
JP7285520B2 (ja) 皮膚由来多能性前駆細胞の作製方法
Liu et al. A net-shaped multicellular formation facilitates the maturation of hPSC-derived cardiomyocytes through mechanical and electrophysiological stimuli
WO2009151844A1 (en) Multipotent stem cell cultures
Barbuti et al. Mesoangioblasts from ventricular vessels can differentiate in vitro into cardiac myocytes with sinoatrial-like properties
Xue et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells
Potta et al. Functional characterization and gene expression profiling of α-smooth muscle actin expressing cardiomyocytes derived from murine induced pluripotent stem cells
JP5416895B2 (ja) 単球由来多能性細胞(momc)の効率的な作製法
Zhang et al. Cardiac stem cells differentiate into sinus node-like cells
WO2024029617A1 (ja) 心筋の製造方法
WO2015146697A1 (ja) 心筋細胞の細胞死抑制方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant