KR102138548B1 - Composition for Assaying Activity of Uridine 5'-diphosphoglucuronosyltransferase Comprising Licoricidin and Use Thereof - Google Patents
Composition for Assaying Activity of Uridine 5'-diphosphoglucuronosyltransferase Comprising Licoricidin and Use Thereof Download PDFInfo
- Publication number
- KR102138548B1 KR102138548B1 KR1020180146551A KR20180146551A KR102138548B1 KR 102138548 B1 KR102138548 B1 KR 102138548B1 KR 1020180146551 A KR1020180146551 A KR 1020180146551A KR 20180146551 A KR20180146551 A KR 20180146551A KR 102138548 B1 KR102138548 B1 KR 102138548B1
- Authority
- KR
- South Korea
- Prior art keywords
- uridine
- diphosphoglucuronosyltransferase
- ugt1a9
- glucose
- activity
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
- G01N30/7233—Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01049—Glucose-6-phosphate dehydrogenase (1.1.1.49)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01017—Glucuronosyltransferase (2.4.1.17)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/8813—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/02—Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 리코리시딘을 포함하는 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성 평가용 조성물 및 이를 이용한 신약 후보 물질의 상기 효소의 활성을 평가하는 방법에 관한 것이다. 본 발명의 일 실시예에 따른 조성물을 이용하면 신약 후보 물질 개발 과정 중 약물성 평가에 반드시 필요한 후보 물질의 2상 대사효소인 UGT1A9를 포함한 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성을 효과적으로 측정할 수 있어, 체내에서의 약물 상호 작용을 예측하는데 활용할 수 있다.The present invention relates to a composition for evaluating uridine 5`-diphosphoglucuronosyltransferase activity including lycoricidine and a method for evaluating the activity of the enzyme of a new drug candidate using the same. When the composition according to an embodiment of the present invention is used, uridine 5`-diphosphoglucuronosyltransferase activity including UGT1A9, a biphasic metabolic enzyme of a candidate substance necessary for drug evaluation during the course of developing a new drug candidate substance, It can be effectively measured and used to predict drug interactions in the body.
Description
본 발명은 리코리시딘을 포함하는 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성 평가용 조성물 및 이를 이용한 신약 후보 물질의 상기 효소의 활성을 평가하는 방법에 관한 것이다.The present invention relates to a composition for evaluating
감초 뿌리는 오래전부터 한방 의약 및 천연 감미료로 널리 사용되어 왔다[1]. 감초는 글리시리자(Glycyrrhiza) 종의 뿌리와 기는 줄기로부터 유래된 이름으로, 항암, 항돌연변이, 항바이러스, 항균 효능을 갖는 다양한 종류의 활성 성분을 포함한다[2-5]. 감초의 주요 구성 성분으로는 트리테르펜 사포닌(글리시리진), 플라보노이드(리코플라보놀, 리코리시딘 및 리코이소플라바논) 및 쿠마린(이소글리시쿠마린)이 있다[6]. 이들 중에서, 리코리시딘은 Glycyrrhiza uralensis Fisch.(Leguminosae)에 포함된 주요 프레닐화 이소플라본으로, 항전이, 항산화, 항유전독성 등의 약리학적 효능이 있음이 보고되었다[5, 7-9]. 리코리시딘(Licoricidin)의 약리학적 효과에 대해서는 많은 연구과 진행되어 왔으나, 인체 내에서 리코리시딘의 대사에 대한 연구는 많이 이루어지지 않았다.Licorice root has long been widely used as a herbal medicine and natural sweetener [1]. Licorice is a name derived from the roots and creeping stems of the Glycyrrhiza species, and contains various types of active ingredients with anti-cancer, anti-mutation, anti-viral and antibacterial effects [2-5]. The main components of licorice are triterpene saponins (glycyrrhizin), flavonoids (lycoflavonol, lycoricidine and lycoisoflavanone) and coumarin (isoglycicumaline) [6]. Among them, lycorisidine is a major prenylated isoflavone included in Glycyrrhiza uralensis Fisch. (Leguminosae), and has been reported to have pharmacological effects such as anti-transition, antioxidant and anti-genotoxicity [5, 7-9]. Although many studies have been conducted on the pharmacological effect of ricolithin, little research has been conducted on the metabolism of ricoritin in the human body.
우리딘 5'-디포스포글루쿠로노실트랜스퍼라제(Uridine 5'-diphosphoglucuronosyltransferase, UGT, EC 2.4.1.17)는 글루쿠론산을 친유성 화합물의 히드록실기, 카르복실기 또는 아미노기로 전달하여 친수성을 증가시키며, 약물 대사에서 중요한 역할을 하는 가장 주요한 비-P450 효소 중 하나로서 알려져 있다[10]. 또한, UGT는 다양한 내재적 또는 외재적 화합물의 생물학적 활성의 조절과 관련이 있다. 특히, 다수의 히드록실기를 갖는 플라보노이드는 UGT에 의해 글루쿠로닐기가 결합(conjugation)되는 가장 일반적인 기질이다. 대표적으로, 쿼세틴(quercetin)은 채소에 널리 분포하는 전형적인 항산화 플라보노이드로서 그의 약리학적 효과는 글루쿠로니드의 결합으로부터 유래된다[11-13]. Uridine 5'-diphosphoglucuronosyltransferase (UGT, EC 2.4.1.17) transfers glucuronic acid to a hydroxyl, carboxyl or amino group of a lipophilic compound to increase hydrophilicity. It is known to be one of the most important non-P450 enzymes that play an important role in drug metabolism [10]. In addition, UGT is involved in the regulation of biological activity of various intrinsic or extrinsic compounds. In particular, flavonoids having multiple hydroxyl groups are the most common substrates in which glucuronyl groups are conjugated by UGT. Representatively, quercetin is a typical antioxidant flavonoid widely distributed in vegetables, whose pharmacological effect is derived from the binding of glucuronide [11-13].
본 발명자들은 고해상도의 쿼드러폴-오비트랩(quadrupole-orbitrap) 질량 분석을 이용하여 pooled HLM에서 리코리시딘에 영향을 미치는 대사 경로를 연구하였다. UGT에 의한 플라보노이드 글루쿠론화는 생체 활성에 중요함에도 불구하고, 인체 내에서의 리코리시딘 결합은 이전에 보고된 바가 없다. 이에, 본 발명자들은 pooled HLM에서 리코리시딘의 대사 프로파일링에 대한 연구를 통해 리코리시딘이 인간 UGT1A9의 새로운 기질임을 밝힘으로써 본 발명을 완성하였다.The present inventors studied metabolic pathways affecting lycoricidine in pooled HLM using high resolution quadrupole-orbitrap mass spectrometry. Although flavonoid glucuronation by UGT is important for bioactivity, lycolicidin binding in the human body has not been previously reported. Accordingly, the present inventors completed the present invention by revealing that lycolycidine is a new substrate of human UGT1A9 through a study on the metabolic profiling of lycoricidine in pooled HLM.
본 발명의 일 양상은 리코리시딘을 포함하는 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성 평가용 조성물을 제공하는 것이다.One aspect of the present invention is to provide a composition for evaluating the activity of
본 발명의 다른 양상은 상기 조성물을 포함하는 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성 평가용 키트를 제공하는 것이다.Another aspect of the present invention is to provide a kit for evaluating
본 발명의 또 다른 양상은 상기 조성물을 이용하여 신약 후보 물질의 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성을 평가하는 방법을 제공하는 것이다.Another aspect of the present invention is to provide a method for evaluating
본 발명의 일 양상은 리코리시딘을 포함하는 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제(uridine 5'-diphosphoglucuronosyltransferase, UGT)의 활성을 평가하기 위한 조성물을 제공한다.One aspect of the present invention provides a composition for evaluating the activity of uridine 5'-diphosphoglucuronosyltransferase (UGT) containing uriricidine.
약물 대사(drug metabolism)는 거의 모든 장기(예를 들어, 장, 폐 및 신장 등)에서 일어날 수 있으나, 주요 약물 대사 효소는 간(liver)에서 높은 수준으로 발현되어 약물 대사에 있어 가장 중요한 장기는 간이라 할 수 있다. 대사 과정은 흡수된 외인성 물질의 수용성을 증가시켜 체외 배설이 용이한 형태로 전환시키는 과정으로 약물의 체내 축적을 막는 중요한 방어 체계라 할 수 있다. 그러나, 약물 대사 과정이 불완전한 경우도 존재하여, 대사 과정에서 독성이 증가하는 경우도 발생하게 되므로, 신약 후보 물질의 약물 대사 효소의 활성을 평가하는 것은 신약 개발에 있어서 중요한 부분을 차지한다.Drug metabolism can occur in almost all organs (eg, intestine, lungs, and kidneys), but major drug metabolizing enzymes are expressed at high levels in the liver, making the most important organs for drug metabolism It can be called liver. The metabolic process is a process of increasing the water solubility of absorbed exogenous substances and converting it into an easily excreted form, which is an important defense system that prevents the accumulation of drugs in the body. However, there are cases in which the drug metabolic process is incomplete, and the toxicity increases in the metabolic process, so evaluating the activity of the drug metabolizing enzyme of the new drug candidate is an important part in the development of new drugs.
일반적으로 약물 대사 반응은 1상(Phase I)과 2상(Phase II) 반응으로 나뉘며, 1상 반응은 전형적으로 관능기(functional group), 예를 들어, 히드록실기 등을 도입하여 물질의 극성(polarity)를 증가시키는 반응이고, 2상 반응은 모화합물 자체 또는 모화합물이 1상 반응을 통해 극성이 있는 관능기가 도입된 후 생성된 대사체(metabolite)에 일어나는 컨쥬게이션(conjugation) 반응으로 수용성을 증가시킨다.In general, the drug metabolic reaction is divided into a phase 1 (Phase I) and a phase 2 (Phase II) reaction, and the
특히, 2상 반응은 글루쿠로닐화(glucuronidation), 설폰화(sulfation), 글루타치온의 컨쥬게이션(glutathione conjugation), 아미노산 컨쥬게이션(amino acid conjugation), 메틸화(methylation) 및 아세틸화(acetylation) 반응이 있으며, 메틸화 및 아세틸화를 제외한 다른 반응은 모두 수용성을 증가시키는 반응이며, 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제(uridine 5'-diphosphoglucuronosyltransferase, UGT) 및 그의 동효소는 2상 대사의 대표 효소이다. In particular, two-phase reactions include glucuronidation, sulfonation, glutathione conjugation, amino acid conjugation, methylation and acetylation reactions. And all reactions other than methylation and acetylation are reactions to increase water solubility, and uridine 5'-diphosphoglucuronosyltransferase (UTG) and its enzymes are two-phase metabolites. It is a representative enzyme.
우리딘 5`-디포스포글루쿠로노실트랜스퍼라제는 세포질 내에 존재하는 글리코실트랜스퍼라제로서, UDP-글루쿠론산(UDP-glucuronic acid)의 글루쿠론산(glucuronic acid) 성분을 소수성 분자에 전달시키는 촉매 역할을 하는 효소로서, 글루쿠로닐화 반응(glucuronidation reaction)를 매개한다. 최근 개발되고 있는 신약 후보 물질들은 UGT에 의한 글루쿠론닐화 여부와 함께 관여하는 UGT의 동효소의 동정이 필수적으로 규명되어야 하며, 신약 후보 물질에 의한 UGT 효소와의 상호 작용을 평가하기 위해 각각의 UGT 동효소의 활성을 측정하기 위한 선택적 기질이 사용되어야 한다.
한편, 인간 UGT1A9 효소는 9종의 UGT1A 동효소 중 하나로서, 간과 신장에서 주로 발현된다[15, 16]. UGT1A9는 생리학적으로, 약리학적으로 중요한 UGT1A 동효소 중 하나로서, 식이 구성성분, 스테로이드 및 지방산과 같은 큰 페놀을 갖는 다양한 스펙트럼의 기질을 가지고 있다[17]. 게다가, UGT1A9는 프로포폴, 마이코페놀산, 페노피브릭산, 이리노테칸과 같은 피브린산 계열의 약물, 항암제, 비스테로이드성 항염제, 항부정맥제를 포함하는 다양한 처방 의약품들을 대사할 수 있다[18-22].On the other hand, the human UGT1A9 enzyme is one of nine UGT1A isozymes, and is mainly expressed in the liver and kidney [15, 16]. UGT1A9 is one of the physiologically and pharmacologically important UGT1A coenzymes and has a broad spectrum of substrates with large phenols such as dietary components, steroids and fatty acids [17]. In addition, UGT1A9 can metabolize various prescription drugs, including fibric acid-based drugs such as propofol, mycophenolic acid, fenofibric acid, and irinotecan, anticancer drugs, nonsteroidal anti-inflammatory drugs, and antiarrhythmic drugs [18-22].
본 발명의 일 구체예에 따르면, 상기 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제는 UGT1A9, UGT2B7 및 UGT1A3로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, UGT1A9인 것이 가장 바람직하다. 즉, 본 발명에서는 리코리시딘이 UGT1A9에 의해 선택적으로 글루쿠로닐화 됨을 확인하였고, 기존에 알려진 UGT1A9의 기질인 마이코페놀산(mycophenolic acid)에 비해서 더 높은 반응성이 관찰되었으며, UGT1A9 이외 다른 UGT 동효소의 활성을 감소시키지 않음을 확인하였다.According to one embodiment of the present invention, the
본 발명의 다른 양상은 리코리시딘, 글루코스-6-포스페이트(glucose-6-phosphate), β-NADP+ 및 글루코스-6-포스페이트 디하이드로게나제(glucose-6-phosphate dehydrogenase) 및 UDP-글루쿠론산(UDP-glucuronic acid)을 포함하는 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성 평가용 키트를 제공한다.Other aspects of the invention include lycolicidine, glucose-6-phosphate, β-NADP+ and glucose-6-phosphate dehydrogenase and UDP-glucuronic acid. (UDP-glucuronic acid) containing a
약물 대사에 안정한 신약 후보 물질을 발굴하기 위해서는 대사 안정성 시험을 수행하는데, 약물 대사는 주로 간에서 일어나므로, 본 발명의 일 구체예에 따른 조성물은 간으로부터 유래한 조직 분획물, 예를 들어, 마이크로좀(microsomes), 세포질(cytosol) 또는 S9 분획(fraction) 또는 1차 간세포(primary hepatocyte) 등을 더 포함하는 것이 바람직하다. 또한, 상기 조성물은 키트 형태로 제조될 수 있으며, 이때, 리코리시딘 이외에 UGT의 기질의 촉매 반응을 위한 환원력을 제공하기 위해 요구되는 NADPH를 발생시키기 위해, 상기 키트 내에서 NADPH를 발생시킬 수 있는 화합물 세트이면 어떠한 것이든 가능하나, 바람직하게는, 글루코스-6-포스페이트(glucose-6-phosphate), β-NADP+ 및 글루코스-6-포스페이트 디하이드로게나제(glucose-6-phosphate dehydrogenase)를 포함하는 것이 바람직하다. 또한, UGT의 글루쿠로닐화 반응(glucuronidation reaction)를 매개하기 위하여 UDP-글루쿠론산(UDP-glucuronic acid)이 포함될 수 있으며, 추가적으로 알라메티신(alamethicin) 및 β-글로쿠로니다제 저해제(β-glucuronidase inhibitor)를 더 포함할 수 있다.In order to discover new drug candidates that are stable in drug metabolism, a metabolic stability test is performed. Since drug metabolism mainly occurs in the liver, the composition according to an embodiment of the present invention is a tissue fraction derived from the liver, for example, microsomes. It is preferable to further include (microsomes), cytosol or S9 fraction or primary hepatocyte. In addition, the composition may be prepared in the form of a kit, wherein, in order to generate NADPH required to provide a reducing power for catalytic reaction of a substrate of UGT in addition to lyricidine, NADPH can be generated in the kit. Any set of compounds can be used, but preferably, they include glucose-6-phosphate, β-NADP+ and glucose-6-phosphate dehydrogenase. It is preferred. In addition, UDP-glucuronic acid may be included to mediate the glucuronidation reaction of UGT, and additionally, alamethicin and β-glucuronidase inhibitor ( β-glucuronidase inhibitor).
본 발명의 또 다른 양상은 Another aspect of the invention
a) 상기 리코리시딘을 포함하는 조성물에 신약 후보 물질을 접촉시키는 단계; a) contacting a new drug candidate substance to a composition comprising lycoridine;
b) 상기 a) 단계의 결과물에 글루코스-6-포스페이트(glucose-6-phosphate), β-NADP+ 및 글루코스-6-포스페이트 디하이드로게나제(glucose-6-phosphate dehydrogenase)를 첨가하여 배양하는 단계;b) incubating by adding glucose-6-phosphate, β-NADP+ and glucose-6-phosphate dehydrogenase to the result of step a);
c) 상기 b) 단계의 결과물에 UDP-글루쿠론산(UDP-glucuronic acid)를 첨가하여 배양하는 단계;c) culturing by adding UDP-glucuronic acid to the product of step b);
d) 상기 c) 단계의 배양 결과물의 질량 분석을 수행하는 단계; 및d) performing mass spectrometry of the culture result of step c); And
e) 상기 질량 분석 수행 결과로부터 모노글루쿠로니드 리코리시딘의 존재 여부를 확인하는 단계를 신약 후보 물질의 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제의 활성 평가 방법을 제공한다.e) It provides a method for evaluating the activity of
이하, 상기 방법을 상세히 설명한다.Hereinafter, the method will be described in detail.
본 발명의 일 실시예에 따른 방법은 먼저, a) 상기 리코리시딘을 포함하는 조성물에 신약 후보 물질을 접촉시키는 단계를 수행한다.The method according to an embodiment of the present invention first performs a step of contacting a new drug candidate substance with a composition comprising the lycolicidine.
리코리시딘은 2상 반응에서 UGT1A9, UGT2B7 및 UGT1A3로 이루어진 군으로부터 선택되는 하나 이상, 가장 바람직하게는 UGT19A의 활성을 평가하기 위한 조성물로서, 상기 조성물에 신약 후보 물질을 첨가하여 예비 배양을 수행하게 된다.Richoricidine is a composition for evaluating the activity of one or more, most preferably UGT19A selected from the group consisting of UGT1A9, UGT2B7 and UGT1A3 in a two-phase reaction, to which a new drug candidate is added to the composition to perform preliminary culture. do.
이후, 본 발명의 일 실시예에 따른 방법은 b) a) 단계의 결과물에 글루코스-6-포스페이트(glucose-6-phosphate), β-NADP+ 및 글루코스-6-포스페이트 디하이드로게나제(glucose-6-phosphate dehydrogenase)를 첨가하여 배양하는 단계; 상기 b) 단계의 결과물에 UDP-글루쿠론산(UDP-glucuronic acid)를 첨가하여 배양하는 단계를 수행한다.Then, the method according to an embodiment of the present invention b) glucose-6-phosphate (glucose-6-phosphate), β-NADP+ and glucose-6-phosphate dehydrogenase (glucose-6) -phosphate dehydrogenase) to incubate; The step of culturing by adding UDP-glucuronic acid to the product of step b) is performed.
일 구체예에 따르면, 상기 UGT 효소 기질의 촉매 반응을 위한 환원력을 제공하기 위해 NADPH가 요구되며, 상기 NADPH를 발생시키는 화합물 세트로서 글루코스-6-포스페이트(glucose-6-phosphate), β-NADP+ 및 글루코스-6-포스페이트 디하이드로게나제(glucose-6-phosphate dehydrogenase)를 첨가하며, UGT에 의한 글루쿠로닐화를 위해 UDP-글루쿠론산을 첨가한다.According to one embodiment, NADPH is required to provide a reducing power for the catalytic reaction of the UGT enzyme substrate, and as a set of compounds generating the NADPH, glucose-6-phosphate, β-NADP+, and Glucose-6-phosphate dehydrogenase is added, and UDP-glucuronic acid is added for glucuronylation by UGT.
이후, 본 발명의 일 실시예에 따른 방법은 d) 상기 c) 단계의 배양 결과물의 질량 분석을 수행하는 단계를 거치게 된다.Then, the method according to an embodiment of the present invention is subjected to a step of performing mass spectrometry of the culture result of step c).
상기 c) 단계의 배양 결과물은 효소 반응 종결 화합물, 예를 들어. 아세토나이트릴(acetonitrile)을 추가함으로써, 반응을 종결시키고, 원심분리를 통하여 수득한 상층액을 사용할 수 있다.The culture product of step c) is an enzyme reaction termination compound, for example. By adding acetonitrile, the reaction can be terminated and the supernatant obtained through centrifugation can be used.
마지막으로, 본 발명의 일 실시예에 따른 방법은, e) 상기 질량 분석 수행 결과로부터 모노글루쿠로니드 리코리시딘의 존재 여부를 확인하는 단계를 수행할 수 있다.Finally, the method according to an embodiment of the present invention, e) from the results of the mass spectrometry can be performed to determine the presence or absence of monoglucuronide lyricidine.
일 구체예에 따르면, 상기 질량 분석은 당업계에 알려진 다양한 질량 분석 방법을 통해 이루어질 수 있으나, LC-MS/MS에 의해 이루어지는 것이 가장 바람직하다. 상기 평가는 신약 후보 물질이 리코리시딘의 UGT1A9, UGT2B7 및 UGT1A3로 이루어진 군으로부터 선택되는 하나 이상, 가장 바람직하게는 UGT19A의 촉매 반응을 저해하는지 여부를 확인함으로서 결정된다.According to one embodiment, the mass spectrometry can be achieved by various mass spectrometry methods known in the art, but most preferably by LC-MS/MS. The evaluation is determined by confirming whether the new drug candidate substance inhibits the catalytic reaction of one or more, most preferably UGT19A, selected from the group consisting of UGT1A9, UGT2B7 and UGT1A3 of lyricidine.
본 발명의 일 실시예에 따른 조성물을 이용하면 신약 후보 물질 개발 과정 중 약물성 평가에 반드시 필요한 후보 물질의 2상 대사효소인 UGT1A9를 포함한 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성을 효과적으로 측정할 수 있어, 체내에서의 약물 상호 작용을 예측하는데 활용할 수 있다.When the composition according to an embodiment of the present invention is used,
도 1은 Glycyrrhiza uralensis의 뿌리로부터 리코리시딘을 분리하는 방법을 개시한 개략도이다.
도 2는 Phase I 및 Phase II 대사 시스템에서 리코리시딘의 글루쿠론화를 통한 리코리시딘의 대사 안정성을 보여주는 그래프이다.
도 3은 리코리시딘 및 M1의 EIC(Extracted ion chromatograms)결과를 나타낸다. NGS 존재 하에 50 μM의 리코리시딘을 37℃에서 1시간 동안 pooled HLM과 배양하였으며, (A)는 UDPGA를 포함하거나(위), 포함하지 않은 상태(아래)에서 확인한 결과, (B)는 UDPGA를 포함한 상태에서 확인한 결과이다.
도 4는 프로톤화(protonated) 리코리시딘의 CID 스펙트럼을 나타낸 그림이다.
도 5는 모노글루쿠로닐화에 대한 MS2 스펙트럼을 나타낸 그림이다.
도 6의 A는 시간 및 단백질 의존적인 M1의 생성을 나타내는 그래프이며, B는 인간 재조합 cDNA-발현된 UGT 동효소에서 M1의 상대적인 형성을 나타내는 그래프이다.1 is a schematic view showing a method of isolating lycoridine from the roots of Glycyrrhiza uralensis .
Figure 2 is a graph showing the metabolic stability of lyricidine through glucuronation of lyricidine in the Phase I and Phase II metabolic systems.
Figure 3 shows the results of the extracted ion chromatograms (EIC) of lyricidine and M1. In the presence of NGS, 50 μM of lycoricidine was incubated with pooled HLM at 37° C. for 1 hour, and (A) was confirmed with or without UDPGA (top) or (B) UDPGA. It is the result confirmed in the state including.
FIG. 4 is a diagram showing the CID spectrum of protonated lyricidine.
5 is a diagram showing the MS 2 spectrum for monoglucuronylation.
A in FIG. 6 is a graph showing the production of time- and protein-dependent M1, and B is a graph showing the relative formation of M1 in human recombinant cDNA-expressed UGT isoenzyme.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are intended to illustrate one or more embodiments by way of example, and the scope of the present invention is not limited to these examples.
1. 실험 방법1. Experimental method
1.1. 화합물 및 시약1.1. Compound and reagent
리코리시딘은 도 1에 개시된 방법으로 Glycyrrhiza uralensis의 뿌리로부터 분리하였다. 건조한 감초뿌리 10.0 kg을 60°C에서 3시간 동안 10 L의 메탄올로 3회 리플럭스 추출하였다. 이후, 진공농축하여 얻은 3.3kg 의 메탄올 분획을 증류수로 현탁하여 유기용매 분획, 즉, 노말헥산, 에틸아세테이트, 부탄올 분획 및 물층으로 차례로 분리하였다. 이 중, 에틸아세테이트 분획 1.1 kg을 메틸렌클로라이드와 메탄올 혼합액의 극성을 증가시켜 용리하는 실리카젤 컬럼크로마토그래피를 실시하여 8개의 분획(GU-1~GU-8)을 확보하였다. 이후, 151.7 g의 분획 GU-5를 다시 메틸렌클로라이드와 메탄올 혼합액(10% 내지 100%)으로 용리하는 실리카젤 컬럼크로마토그래피를 실시하여 4개의 분획(GU5-1~GU5-4)을 수득하고, 24.0 g의 분획 GU5-2을 40% 내지 80% 메탄올 용액으로 용리하는 역상컬럼크로마토그래피를 실시하여 최종적으로 3.2 g의 리코리시틴을 분리하였다. Lycorisidine is Glycyrrhiza by the method disclosed in FIG. It was isolated from the roots of uralensis . 10.0 kg of dried licorice root was refluxed 3 times with 10 L of methanol for 3 hours at 60°C. Thereafter, the methanol fraction of 3.3 kg obtained by vacuum concentration was suspended with distilled water, and separated into organic solvent fractions, that is, normal hexane, ethyl acetate, butanol fraction, and water layer. Among them, eight fractions (GU-1 to GU-8) were obtained by performing silica gel column chromatography, eluting 1.1 kg of ethyl acetate fraction by increasing the polarity of the mixed solution of methylene chloride and methanol. Thereafter, 151.7 g of fraction GU-5 was again subjected to silica gel column chromatography eluting with a mixture of methylene chloride and methanol (10% to 100%) to obtain four fractions (GU5-1 to GU5-4), A reverse phase column chromatography of 24.0 g of fraction GU5-2 eluting with a 40% to 80% methanol solution was performed to finally separate 3.2 g of lycolycitin.
Pooled Human Liver Microsomes, mixed gender, 20 ㎎/㎖, 이하 HLM)는 Xenotech LLC(Lenexa, Kansas, USA)에서 구입하였으며, 순화된 인간 재조합 cDNA-expressed UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 및 UGT2B7는 Corning Gentest(Woburn, MA, USA)에서 구입하였다. β-니코틴아미드 아데닌 디뉴클레오티드 포스페이트(β-Nicotinamide adenine dinucleotide phosphate)의 환원된 형태(β-NADPH), 글루코스 6-포스페이트(Glucose 6-phosphate), 글루코스 6-포스페이트 디히드로게나제(glucose 6-phosphate dehydrogenase), 우리딘 5'-디포스포글루쿠론산(uridine 5′-diphosphoglucuronic acid, UDPGA), 알라메티신(alamethicin), 및 1,4-사카로락톤(1,4-saccharolactone)은 각각 Sigma(St. Louis, Mo, USA)에서 구입하여 사용하였으며, 상기 화합물 이외에 본 실험에 사용된 모든 화합물은 분석용 등급(analytical grade)의 제품을 그대로 사용하였다. LCMS 등급의 물과 아세토니트릴(acetonitrile, ACN)은 Fischer Scientific(Pittsburgh, PA, USA) 제품을 사용하였다. Pooled Human Liver Microsomes, mixed gender, 20 mg/ml, hereinafter referred to as HLM) were purchased from Xenotech LLC (Lenexa, Kansas, USA), purified human recombinant cDNA-expressed UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7 Corning It was purchased from Gentest (Woburn, MA, USA). Reduced form of β-Nicotinamide adenine dinucleotide phosphate (β-NADPH), glucose 6-phosphate, glucose 6-phosphate dehydrogenase (glucose 6-phosphate dehydrogenase, uridine 5'-diphosphoglucuronic acid (UDPGA), alamethicin, and 1,4-saccharolactone, respectively, are Sigma ( St. Louis, Mo, USA), and all compounds used in this experiment in addition to the above compounds were used as products of analytical grade. For LCMS grade water and acetonitrile (ACN), Fischer Scientific (Pittsburgh, PA, USA) was used.
1.2. 대사1.2. script 안정성 연구 Stability study
리코리시딘의 대사 안정성 연구는 기존에 기재된 방법에 따라 Glycyrrhiza uralensis의 뿌리로부터 분리 리코리시딘을 분리하여 2가지 농도(10 μM 및 50 μM)에서 수행하였다[8]. 먼저, 0.5 ㎎/㎖의 알라메티신을 0.25 ㎎/㎖ HLM에 처리하고, 효소를 활성화시키기 위해 15분 동안 얼음에 보관하였다. 이후, 0.1 M의 포타슘 포스페이트 완충액(potassium phosphate buffer, pH 7.4)과 10 μM 또는 50 μM의 리코리시딘을 첨가하고, 37℃에서 5분 동안 예비 배양하였다. NADPH-generating system(이하, NGS) 용액(0.1 M glucose 6-phosphate, 10 ㎎/㎖ β-NADPH, 및 1.0 U/㎖ glucose-6-phosphate dehydrogenase)을 첨가하고 상기 반응 혼합물을 10 μM 우리딘 5'-디포스포글루쿠론산(uridine 5'-diphosphoglucuronic acid, UDPGA)의 존재 하에 60분 동안 37℃에서 배양하였다. 각 시간별로, 50 ㎕의 반응 혼합물을 0.1%의 포름산을 함유하는 50 ㎕의 아세토니트릴을 포함하는 새로운 튜브에 옮겨 반응을 종료시켰다. 이후, 상기 혼합물을 15초 동안 볼텍싱(voltexing)하고, 12,000 × g에서 10분 동안 원심분리한 다음, 상층액을 유리 바이알(glass vial)에 옮기고 LC-MS 분석을 수행하였다.The metabolic stability study of lycoricidine was performed at two concentrations (10 μM and 50 μM) by separating lycolicidine from the roots of Glycyrrhiza uralensis according to the previously described method [8]. First, 0.5 mg/ml alameticin was treated with 0.25 mg/ml HLM and stored on ice for 15 minutes to activate the enzyme. Then, 0.1 M of potassium phosphate buffer (potassium phosphate buffer, pH 7.4) and 10 μM or 50 μM of lycoricidine were added and pre-incubated at 37° C. for 5 minutes. NADPH-generating system (hereinafter, NGS) solution (0.1 M glucose 6-phosphate, 10 mg/ml β-NADPH, and 1.0 U/ml glucose-6-phosphate dehydrogenase) was added and the reaction mixture was added to 10
1.3. 사람 간 마이크로좀에서 리코리시딘의 1.3. In human liver microsomes, OO -글루쿠로닐-결합 확인-Glucuronyl-binding confirmation
HLM(1 ㎎/㎖)에서 알라메티신(0.5 ㎎/㎖)을 처리하여 효소를 활성화시킨 이후, 50 μM 리코리시딘을 0.1 M 포타슘 포스페이트 완충액(pH 7.4)과 함께 상기 혼합물에 첨가하여 37℃에서 5분 동안 예비 배양하였다. 여기에 10 μM UDPGA 및 NGS 용액을 첨가하여 반응을 개시하였고, 이후 37℃에서 60분 동안 추가로 배양한 다음, 400 μM의 100% ACN을 첨가하여 반응을 종료시켰다. 상기 반응 혼합물은 15초 동안 볼텍싱한 다음, 12,000 × g의 조건으로 10분 동안 원심분리하였다. 이후, 550 ㎕의 상층액을 취하고 SpeedVac을 이용하여 완전히 증발시킨 후 -80℃에 저장하였다. 잔여물을 0.1% 포름산이 포함된 100 ㎕의 20 % MeOH에 용해시키고, 볼텍싱 및 원심분리(12,000 × g, 10분, 4℃)한 다음, 10 ㎕의 상층액을 유리 바이알에 옮기고 LC-MS 분석을 위해 C18 컬럼에 주입하였다.After activating the enzyme by treating alameticin (0.5 mg/ml) in HLM (1 mg/ml), 50 μM lycoricidine was added to the mixture together with 0.1 M potassium phosphate buffer (pH 7.4) at 37° C. Pre-incubation for 5 minutes. The reaction was initiated by adding 10 μM UDPGA and NGS solution, and then further incubated at 37° C. for 60 minutes, and then the reaction was terminated by adding 400 μM of 100% ACN. The reaction mixture was vortexed for 15 seconds and then centrifuged for 10 minutes under conditions of 12,000 x g . Then, 550 μl of the supernatant was taken and completely evaporated using SpeedVac, and then stored at -80°C. The residue was dissolved in 100 μl of 20% MeOH with 0.1% formic acid, vortexed and centrifuged (12,000 × g , 10 min, 4° C.), then 10 μl of the supernatant was transferred to a glass vial and LC- Injection into C18 column for MS analysis.
1.4. 재조합 인간 UGT에서의 반응 표현형(Reaction phenotyping)1.4. Reaction phenotyping in recombinant human UGT
리코리시딘의 대사에 관여할 가능성이 있는 UGT 동효소(isoform)를 확인하기 위해, NGS 및 UDPGA의 존재 하에 200 ㎕의 반응 부피로 0.5 ㎎/㎖의 6종의 순화된 재조합 인간 간 UGT 동효소(UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 및 UGT2B7)를 10 μM의 리코리시딘과 각각 37℃에서 60분 동안 배양한 다음, 400 ㎕의 100% 차가운 ACN을 첨가하여 반응을 종료시켰다. 12,000 × g으로 10분 동안 원심분리한 후, SpeedVac을 이용하여 상층액 550 ㎕를 증발시켰다. 건조된 시료는 0.1% 포름산이 포함된 20% 메탄올에 혼합한 후, 12,000 × g으로 10분 동안 원심분리한 다음, 상층액을 수득하여 LC-MS/MS 분석을 위해 C18 컬럼에 주입하였다.To identify UGT isoenzymes likely to be involved in the metabolism of lycoricidine, six purified recombinant human liver UGT coenzymes at 0.5 mg/ml in a reaction volume of 200 μl in the presence of NGS and UDPGA (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) were incubated with 10 μM of lycolicidine at 37° C. for 60 minutes, respectively, and the reaction was terminated by adding 400 μl of 100% cold ACN. After centrifugation at 12,000× g for 10 minutes, 550 μl of the supernatant was evaporated using SpeedVac. The dried sample was mixed with 20% methanol containing 0.1% formic acid, centrifuged at 12,000 x g for 10 minutes, and then a supernatant was obtained and injected into a C18 column for LC-MS/MS analysis.
1.5. 사람 간 마이크로좀에서 리코리시딘에 의한 UGT의 저해 1.5. Inhibition of UGT by lycolicidine in human liver microsomes
6종의 UGT-특이적 기질(UGT1A1에 대하여 2.5 μM SN-38, UGT1A3에 대하여 5 μM 케노디옥시콜린산(chenodeoxycholic acid), UGT1A4에 대하여 5 μM 트리플루오페라진(trifluoperazine), UGT1A6에 대하여 2.5 μM N-아세틸세로토닌(N-acetylserotonin), UGT1A9에 대하여 1 μM 마이코페놀산(mycophenolic acid), UGT2B7에 대하여 5 μM 날록손(naloxone)의 대사에 대한 리코리시딘의 저해 효과를 실험하였다. 상기 6종 UGT의 활성에 대한 리코리시딘의 저해 효과를 확인하기 위해, 각 반응은 총 배양 부피 100 ㎕ 내 pooled HLM(0.5 ㎎/㎖)에서 수행하였다. 0.5 ㎎/㎖의 알라메티신을 0.1 M의 포타슘 포스페이트 완충액(pH 7.4)에 포함된 배양 혼합물에 처리하고, 효소를 활성화시키기 위해 15분 동안 얼음에 보관하였다. 5분 동안 예비 배양한 후, UGT 기질 칵테일과 NGS를 최종 농도 0-25 μM 리코리시딘에 첨가하고, 60분 동안 반응시켰다. 0.1%의 포름산을 포함하는 100 ㎕의 아세토니트릴을 첨가하여 반응을 종료시키고, 내부 표준(internal standard, IS)으로서 0.625 μM 레세르핀(reserpine)을 첨가하였다. 이를 혼합하고, 13,000 × g에서 10분 동안 원심분리한 다음, 10 ㎕ 씩 C18 컬럼에 주입하여 LC-MS/MS 분석을 수행하였다.6 types of UGT-specific substrates (2.5 μM SN-38 for UGT1A1, 5 μM kenodioxycholic acid for UGT1A3, chenodeoxycholic acid for UGT1A4, 5 μM trifluoperazine for UGT1A4, 2.5 for UGT1A6 μM N -. it was tested acetyl serotonin (N -acetylserotonin), 1 μM with respect to the UGT1A9 mycophenolic acid (mycophenolic acid), inhibition of Ricoh receiver Dean for metabolism of 5 μM naloxone (naloxone) with respect to the six kinds of effect UGT2B7 To confirm the inhibitory effect of lycoricidine on the activity of UGT, each reaction was performed in pooled HLM (0.5 mg/ml) in 100 μl of the total culture volume 0.5 mg/ml alameticin 0.1 M potassium phosphate The culture mixture contained in the buffer solution (pH 7.4) was treated and stored on ice for 15 minutes to activate the enzyme.After pre-incubation for 5 minutes, UGT substrate cocktail and NGS were final concentrations of 0-25 μM ricolithine. And reacted for 60 minutes, the reaction was terminated by adding 100 μl of acetonitrile containing 0.1% formic acid, and 0.625 μM reserpine was added as an internal standard (IS). This was mixed, centrifuged at 13,000 x g for 10 minutes, and then injected into a C18 column by 10 µl to perform LC-MS/MS analysis.
1.6. 사람 간 마이크로좀의 다양한 농도에서 M1 형성1.6. M1 formation at various concentrations of human microsomes
0.5 ㎎/㎖의 알라메티신을 HLM(0.5 ㎎/㎖ 또는 1 ㎎/㎖)에 처리하고, 효소를 활성화시키기 위해 15분 동안 얼음에 보관하였다. 이후, 0.1 M의 포타슘 포스페이트 완충액(pH 7.4)과 50 μM의 리코리시딘을 HLM에 첨가하고, 37℃에서 5분 동안 예비 배양하였다. 반응을 개시하기 위해 NGS 용액을 첨가하였으며, 10 μM UDPGA의 존재 하에 60분 동안 반응을 진행한 다음, 0.1%의 포름산을 포함하는 수백 ㎕의 아세토니트릴을 첨가하여 반응을 종료시켰다. 15초 동안 볼텍싱하고, 12,000 × g에서 10분 동안 원심분리한 다음, 상층액을 유리 바이알에 옮기고 LC-MS 분석을 수행하였다.0.5 mg/ml alameticin was treated with HLM (0.5 mg/ml or 1 mg/ml) and stored on ice for 15 minutes to activate the enzyme. Thereafter, 0.1 M of potassium phosphate buffer (pH 7.4) and 50 μM of lycoricidine were added to HLM and pre-incubated at 37° C. for 5 minutes. NGS solution was added to initiate the reaction, and the reaction was carried out for 60 minutes in the presence of 10 μM UDPGA, and then the reaction was terminated by adding several hundred μl of acetonitrile containing 0.1% formic acid. Vortex for 15 seconds, centrifuge for 10 minutes at 12,000 x g , then transfer the supernatant to a glass vial and perform LC-MS analysis.
1.7. LC-MS/MS 분석 방법1.7. LC-MS/MS analysis method
리코리시딘 및 그의 대사체 구조를 검출하고 밝히기 위해 Q Exactive Orbitrap Mass Spectrometer(Thermo Fisher Scientific Inc., MA, USA)와 결부된 Nexera X2 Ultra High-Performance Liquid Chromatograph(Shimadzu, Kyoto, Japan)를 사용하였으며, 분자 이온화(molecular ionization) 및 음이온(negative ions)이 적용된 Heated electrospray ionization(HESI)을 모니터링하였다. Nexera X2 Ultra High-Performance Liquid Chromatograph (Shimadzu, Kyoto, Japan) coupled with the Q Exactive Orbitrap Mass Spectrometer (Thermo Fisher Scientific Inc., MA, USA) was used to detect and reveal lyricidine and its metabolite structure. , Heated electrospray ionization (HESI) to which molecular ionization and negative ions were applied was monitored.
대사체의 확인을 위한 HESI 조건은 다음과 같다: 시스 기체 유속(sheath gas flow rate), 35(arbitrary unit); 보조 기체 유속(auxiliary gas flow rate), 10(arbitrary unit); 스프레이 전압(spray voltage), 4 kV; 및 히터 온도(heater temperature), 350℃. 질량 스펙트럼은 70,000의 해상도로 100 내지 1000의 m/z 범위에서 획득하였으며, 데이터-의존 MS2 스펙트럼은 23 및 28에서 정상화 충돌 에너지를 사용하여 35,000의 해상도에서 획득하였다. LC 방법은 0.3 ㎖/min의 유속에서 0.1 % 포름산을 포함하는 5% 메탄올(이동상 A, mobile phase A), 및 0.1% 포름산을 포함하는 95% 메탄올(이동상 B, mobile phase B)으로 구성하였다. 농도 구배 조건은, 0-0.5 분에서 10%의 이동상 B, 0.5-5.5분에서 10-90%의 이동상 B, 5.5-8분에서 90%의 이동상 B, 8-8.1분에서 90-10%의 이동상 B, 그리고 8.1-10분에서 10%의 이동상 B를 사용하였다. 상기 분석 물질은 40℃를 유지한 채 Halo C18 컬럼(100 mm Х 2.1 mm, 2.7 μm, Advanced Materials Technology, Wilmington, DE, USA)에서 분리하였다. MS 데이터를 획득한 후, Xcalibur software 3.0(Thermo Fisher Scientific, Inc.)를 사용하여 처리하였다.HESI conditions for identification of metabolites are as follows: sheath gas flow rate, 35 (arbitrary unit); Auxiliary gas flow rate, 10 (arbitrary unit); Spray voltage, 4 kV; And heater temperature, 350°C. Mass spectra were acquired at a resolution of 70,000 in the m/z range of 100 to 1000, and data-dependent MS 2 spectra were acquired at a resolution of 35,000 using normalized collision energy at 23 and 28. The LC method consisted of 5% methanol with 0.1% formic acid (mobile phase A, mobile phase A) at a flow rate of 0.3 ml/min, and 95% methanol with 0.1% formic acid (mobile phase B, mobile phase B). Concentration gradient conditions include 0-0.5 min to 10% mobile phase B, 0.5-5.5 min to 10-90% mobile phase B, 5.5-8 min to 90% mobile phase B, 8-8.1 min to 90-10% Mobile phase B and 10% of mobile phase B at 8.1-10 min were used. The analyte was separated on a Halo C18 column (100 mm Х 2.1 mm, 2.7 μm , Advanced Materials Technology, Wilmington, DE, USA) while maintaining 40° C. After obtaining the MS data, it was processed using Xcalibur software 3.0 (Thermo Fisher Scientific, Inc.).
정량화 연구는, Shimadzu HPLC(Shimadzu, Kyoto, Japan) 시스템과 연계된 HESI source를 포함하는 TSQ Vantage Mass Spectrometer(Thermo Fisher Scientific Inc., MA, USA)를 이용하여 수행하였다. HPLC system은 LC-20AD pump, SIL-20A autosampler 및 CTO-20A column oven으로 이루어져 있다. LC 분리에는 Shim-pack GIS 컬럼(3 μM ODS, 150 mm × 3 mm)(Shimadzu, Kyoto, Japan)을 사용하였다. 질량 분석기는 보조 가스 및 시스 가스 압력을 각각 10 및 35 psi으로 세팅된 질소로 양성 ESI 모드에서 작동하였다. ESI 스프레이 전압은 4,000 V로 조정하였으며, 증발기의 온도는 300℃로 세팅하였으며, 모세관의 온도는 350℃였다. 데이터는 Xcalibur software를 사용하여 획득하였다.Quantification studies were performed using a TSQ Vantage Mass Spectrometer (Thermo Fisher Scientific Inc., MA, USA) comprising a HESI source linked to a Shimadzu HPLC (Shimadzu, Kyoto, Japan) system. The HPLC system consists of an LC-20AD pump, a SIL-20A autosampler and a CTO-20A column oven. Shim-pack GIS column (3 μM ODS, 150 mm×3 mm) (Shimadzu, Kyoto, Japan) was used for LC separation. The mass spectrometer was operated in positive ESI mode with nitrogen set at 10 and 35 psi, respectively, for the auxiliary gas and sheath gas pressures. The ESI spray voltage was adjusted to 4,000 V, the temperature of the evaporator was set to 300°C, and the temperature of the capillary tube was 350°C. Data were obtained using Xcalibur software.
대사 안정성 연구는, 용매 A(0.1% 포름산이 포함된 물) 및 용매 B(0.1% 포름산이 포함된 100% ACN)를 혼합하여 500 ㎕/min의 유속에서 이동상에 농도 구배 프로그램을 적용시켰다. 적용된 농도 구배는 다음과 같다: 5-5% B(0-0.5분), 5-95% B(0.5-3.5분), 95-95% B(3.5-5분), 95-5% B(5-5.5분) 및 5-5% B(5.5-9분). 분석 동안, 상기 컬럼 오븐은 40℃로 유지하였다. UGT 효소 저해 어세이에서, 기울기 용출은 다음과 같이 수행하였다: 0-0.5분에서 5%의 B, 0.5-4분에서 5-95%의 B, 4-6분에서 95%의 B, 6-6.1분에서 95-5%의 B, 6.1-10분에서 5% B.In the metabolic stability study, solvent A (water with 0.1% formic acid) and solvent B (100% ACN with 0.1% formic acid) were mixed to apply a concentration gradient program to the mobile phase at a flow rate of 500 μl/min. Concentration gradients applied were: 5-5% B (0-0.5 min), 5-95% B (0.5-3.5 min), 95-95% B (3.5-5 min), 95-5% B ( 5-5.5 minutes) and 5-5% B (5.5-9 minutes). During the analysis, the column oven was maintained at 40°C. In the UGT enzyme inhibition assay, gradient elution was performed as follows: 0-0.5 min to 5% B, 0.5-4 min to 5-95% B, 4-6 min to 95% B, 6- B of 95-5% at 6.1 min, 5% B at 6.1-10 min.
2. 실험 결과2. Experimental results
2.1. 리코리시딘의 글루쿠론화 확인2.1. Confirmation of glucuronation of lyricidine
리코리시딘의 대사 안정성은 리코리시딘의 글루쿠론화가 HLM 내의 Phase I 대사에서 선호되는 대사 결과임을 보여준다(도 2). Phase II 대사에서 관찰된 바와 같이, 60분의 배양 후, 리코리시딘 레벨은 10 μM 및 50 μM에서 각각 약 7% 및 59%가 감소하였다(도 2의 A). 특히, 리코리시딘 레벨은 10 μM, 15분 배양에서 38%로 급격하게 감소함이 나타났다. 그러나, Phase I 대사 시스템에서, 라코리시딘의 안정성은 UDPGA가 존재하지 않을 때 감소하지 않았다(도 2의 B).The metabolic stability of ricolithidine shows that glucuronation of ricolithidine is the preferred metabolic result in Phase I metabolism in HLM (FIG. 2 ). As observed in Phase II metabolism, after 60 minutes of incubation, lyricidine levels decreased by about 7% and 59% at 10 μM and 50 μM, respectively (FIG. 2A). In particular, it was found that the level of lycoricidine decreased rapidly to 38% in 10 μM, 15 minute incubation. However, in the Phase I metabolic system, the stability of Lachoricidine did not decrease when UDPGA was not present (FIG. 2B ).
2.2. 리코리시딘 대사체 M1의 구조 해석2.2. Structural analysis of the lyricidine metabolite M1
리코리시딘 대사체 중 하나인 M1은 UDPGA 및 NGS를 첨가한 HLM과 함께 리코리시딘을 배양한 이후 6.1분의 체류 시간(retention time)에서 확인되었다(도 3의 B). M1 구조의 해석을 위해, 리코리시딘 및 M1의 MS2 스펙트럼을 고해상도 쿼드러폴-오비트랩 질량 분석기로 분석하였다(표 1). M1, one of the lycoricidine metabolites, was confirmed at a retention time of 6.1 minutes after culturing lycoricidine with HLM with UDPGA and NGS added (FIG. 3B). For the interpretation of the M1 structure, the MS 2 spectra of lycoricidine and M1 were analyzed with a high resolution quadrupole-orbitrap mass spectrometer (Table 1).
423.2181
C 26 H 31 O 5
3.5
599.2504
C 32 H 39 O 11
2.8
리코리시딘 및 M1의 전구체 이온은 음성 모드의 [M-H]- 423.2181(C26H31O5) 및 599.2254(C32H39O11)에서 각각 검출되었다. M1 이온은 리코리시딘과 비교하여 176.0076 Da 만큼 높았으며, 이는 모구조(parent structure) 내 히드록실기에서 모노글루쿠론화가 일어났을 가능성을 나타낸다. 리코리시딘의 MS2 스펙트럼은 도 4에 나타내었으며, 이는 음성 모드(negative mode)에서 고 에너지 충돌-유도 분열(high energy collision-induced dissociation) 이후에 획득하였다.Precursor ion of Ricoh receiver Dean and M1 is in the voice mode [MH] - was detected in each 423.2181 (C 26 H 31 O 5 ) and 599.2254 (C 32 H 39 O 11 ). The M1 ion was as high as 176.0076 Da compared to lycoricidine, indicating the possibility of monoglucuronation in the hydroxyl group in the parent structure. The MS 2 spectrum of lycoricidine is shown in Figure 4, which was obtained after high energy collision-induced dissociation in negative mode.
M1 이온은 모노글루쿠론화에 대응되는 m/z 599.2254에서 관찰되었으며, MS2 스펙트럼을 도 5에 나타내었다. 2.8 ppm의 오류와 함께 m/z 423.2178(C26H31O5)은 글루쿠로니드기의 손실 이후에 검출되었으며(표 1), 또한, 절단된 글루쿠론산은 -0.01 ppm의 오류와 함께 m/z 175.0237(C6H7O6)에서 검출되었다. 본 발명에서 M1은 모노-글루쿠로닐 리코리시딘으로 정의하였다.The M1 ion was observed at m/z 599.2254 corresponding to monoglucuronation, and the MS 2 spectrum is shown in FIG. 5. M/z 423.2178 (C 26 H 31 O 5 ) with an error of 2.8 ppm was detected after the loss of the glucuronide group (Table 1), and also the truncated glucuronic acid with an error of -0.01 ppm. m/z 175.0237 (C 6 H 7 O 6 ). In the present invention, M1 is defined as mono-glucuronyl lyricidine.
2.3. 리코리시딘 글루쿠론화의 반응 표현형2.3. Reactive phenotype of lyricidine glucuronation
리코리시딘의 글루쿠로니드 결합은 배양 시간 및 마이크로좀 단백질 양에 의존적임을 확인할 수 있다(도 6의 A). 리코리시딘을 재조합 인간 UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 및 UGT2B7와 함께 배양하였을 때, UGT1A9가 가장 현저하게 M1을 생성하였으며, UGT2B7 및 UGT1A3은 M1의 형성에 어느 정도 기여함을 확인할 수 있었다(도 2의 B). 다른 UGT 동효소에서는 대사체가 관찰되지 않았다. 본 발명자들은 인간 재조합 UGT1A9과 함께 배양하였을 때, 수용된 UGT1A9 기질인 리코리시딘 레벨이 마이코페놀산과 비교할 때 급격히 감소함을 관찰하였는데, 이는 리코리시딘이 마이코페놀산과 비교할 때, UGT1A9에 대하여 더욱 강하고 특이적인 기질임을 나타내는 것이다(도 6의 B). 게다가, 리코리시딘은 46.8 ± 3.0 μM의 IC50 로 UGT1A9-촉매 마이코페놀산 글루쿠론화에 대해 다소 저해 효과를 나타내었다. 또한, 리코리시딘은 UGT1A3-촉매 케노디옥시콜릭 글루쿠론화(IC50 = 24.7 ± 6.9) 및 UGT2B7-촉매 날록손 글루쿠론화(IC50 = 28.6 ± 4.4 μM)에 대하여 뚜렷한 저해 효과를 나타내었다(표 2).It can be seen that the glucuronide binding of lyricidine is dependent on the culture time and the amount of microsome protein (FIG. 6A ). When lycoccidin was incubated with recombinant human UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7, it was confirmed that UGT1A9 produced M1 most remarkably, and UGT2B7 and UGT1A3 contributed somewhat to the formation of M1 ( 2B). No metabolites were observed in other UGT isozymes. The inventors observed that when incubated with human recombinant UGT1A9, the level of lycolicidine, the accepted UGT1A9 substrate, decreased rapidly compared to mycophenolic acid, which was stronger and more specific to UGT1A9 when lycoricidine was compared to mycophenolic acid. It indicates that it is a natural substrate (B in Fig. 6). In addition, lycoridine showed a somewhat inhibitory effect on UGT1A9-catalyzed mycophenolic acid glucuronation with an IC 50 of 46.8±3.0 μM. In addition, lycoricidine showed a pronounced inhibitory effect on UGT1A3-catalyst kenodioxycholic glucuronation (IC 50 = 24.7 ± 6.9) and UGT2B7-catalyzed naloxone glucuronation (IC 50 = 28.6 ± 4.4 μM) ( Table 2).
이러한 결과로부터, UGT1A9는 모노글루쿠로니드 리코리시딘을 생성하는 주요 효소임을 확인하였다. 리코리시딘은 NADPH와 UDPGA의 존재하에 마이코페놀산에 비해 재조합 인간 UGT1A9와 높은 대사율을 나타내었다. 리코리시딘 글루쿠로니드화에 대한 UGT1A9의 선택적인 대사 활성으로부터, 본 발명자들은 리코리시딘이 인간 UGT1A9 활성을 결정하는 새로운 UGT1A9의 기질로 사용될 수 있음을 확인할 수 있었다. 이러한 결과는 생물활성 천연물의 대사를 연구하는데 유용한 정보를 제공할 수 있다.From these results, it was confirmed that UGT1A9 is a major enzyme that produces monoglucuronide lyricidine. Lycoricidine showed higher metabolic rate with recombinant human UGT1A9 compared to mycophenolic acid in the presence of NADPH and UDPGA. From the selective metabolic activity of UGT1A9 to lycoricidine glucuronidation, the present inventors have confirmed that lyricidine can be used as a substrate for new UGT1A9 to determine human UGT1A9 activity. These results can provide useful information for studying metabolism of bioactive natural products.
3. 참고문헌3. References
1. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22: 709-724. 1. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22: 709-724.
2. Messier C, Epifano F, Genovese S, Grenier D. Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis 2012; 18: 32-39. 2.Messier C, Epifano F, Genovese S, Grenier D. Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis 2012; 18: 32-39.
3. Ji S, Tang S, Li K, Li Z, Liang W, Qiao X, Wang Q, Yu S, Ye M. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy. Toxicol Appl Pharmacol 2017; 326: 25-33. 3.Ji S, Tang S, Li K, Li Z, Liang W, Qiao X, Wang Q, Yu S, Ye M. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy. Toxicol Appl Pharmacol 2017; 326: 25-33.
4. Tanabe S, Desjardins J, Bergeron C, Gafner S, Villinski JR, Grenier D. Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice. J Breath Res 2012; 6: 016006. 4. Tanabe S, Desjardins J, Bergeron C, Gafner S, Villinski JR, Grenier D. Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice. J Breath Res 2012; 6: 016006.
5. Inami K, Mine Y, Tatsuzaki J, Mori C, Mochizuki M. Isolation and characterization of antimutagenic components of Glycyrrhiza aspera against N-methyl-N-nitrosourea. Genes Environ 2017; 39: 5. 5.Inami K, Mine Y, Tatsuzaki J, Mori C, Mochizuki M. Isolation and characterization of antimutagenic components of Glycyrrhiza aspera against N-methyl-N-nitrosourea. Genes Environ 2017; 39: 5.
6. Wang Q, Qian Y, Wang Q, Yang YF, Ji S, Song W, Qiao X, Guo DA, Liang H, Ye M. Metabolites identification of bioactive licorice compounds in rats. J Pharm Biomed Anal 2015; 115: 515-522. 6. Wang Q, Qian Y, Wang Q, Yang YF, Ji S, Song W, Qiao X, Guo DA, Liang H, Ye M. Metabolites identification of bioactive licorice compounds in rats. J Pharm Biomed Anal 2015; 115: 515-522.
7. Park SY, Lim SS, Kim JK, Kang IJ, Kim JS, Lee C, Kim J, Park JH. Hexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cells. Br J Nutr 2010; 104: 1272-1282. 7.Park SY, Lim SS, Kim JK, Kang IJ, Kim JS, Lee C, Kim J, Park JH. Hexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cells. Br J Nutr 2010; 104: 1272-1282.
8. Park SY, Kwon SJ, Lim SS, Kim JK, Lee KW, Park JH. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells. Int J Mol Sci 2016; 17. 8. Park SY, Kwon SJ, Lim SS, Kim JK, Lee KW, Park JH. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells. Int J Mol Sci 2016; 17.
9. Kim KJ, Xuan SH, Park SN. Licoricidin, an isoflavonoid isolated from Glycyrrhiza uralensis Fisher, prevents UVA-induced photoaging of human dermal fibroblasts. Int J Cosmet Sci 2017; 39: 133-140. 9. Kim KJ, Xuan SH, Park SN. Licoricidin, an isoflavonoid isolated from Glycyrrhiza uralensis Fisher, prevents UVA-induced photoaging of human dermal fibroblasts. Int J Cosmet Sci 2017; 39: 133-140.
10. Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30: 30-51. 10.Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30: 30-51.
11. Terao J, Murota K, Kawai Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct 2011; 2: 11-17. 11. Terao J, Murota K, Kawai Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct 2011; 2: 11-17.
12. O'Leary KA, Day AJ, Needs PW, Sly WS, O'Brien NM, Williamson G. Flavonoid glucuronides are substrates for human liver beta-glucuronidase. FEBS Lett 2001; 503: 103-106.12.O'Leary KA, Day AJ, Needs PW, Sly WS, O'Brien NM, Williamson G. Flavonoid glucuronides are substrates for human liver beta-glucuronidase. FEBS Lett 2001; 503: 103-106.
13. Terao J. Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Invest 1999; 46: 159-168.13. Terao J. Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Invest 1999; 46: 159-168.
14. Ji S, Liang W-F, Li Z-W, Feng J, Wang Q, Qiao X, Ye M. Efficient and selective glucosylation of prenylated phenolic compounds by Mucor hiemalis. RSC Advances 2016; 6: 20791-20799.14. Ji S, Liang W-F, Li Z-W, Feng J, Wang Q, Qiao X, Ye M. Efficient and selective glucosylation of prenylated phenolic compounds by Mucor hiemalis. RSC Advances 2016; 6: 20791-20799.
15. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45: 1121-1132. 15. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45: 1121-1132.
16. Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 2012; 42: 266-277. 16.Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 2012; 42: 266-277.
17. Ritter JK. Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 2000; 129: 171-193.17. Ritter JK. Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 2000; 129: 171-193.
18. Oda S, Nakajima M, Hatakeyama M, Fukami T, Yokoi T. Preparation of a specific monoclonal antibody against human UDP-glucuronosyltransferase (UGT) 1A9 and evaluation of UGT1A9 protein levels in human tissues. Drug Metab Dispos 2012; 40: 1620-1627. 18.Oda S, Nakajima M, Hatakeyama M, Fukami T, Yokoi T. Preparation of a specific monoclonal antibody against human UDP-glucuronosyltransferase (UGT) 1A9 and evaluation of UGT1A9 protein levels in human tissues. Drug Metab Dispos 2012; 40: 1620-1627.
19. Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P, Knights KM. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab Dispos 2011; 39: 644-652. 19.Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P, Knights KM. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab Dispos 2011; 39: 644-652.
20. Smith NF, Figg WD, Sparreboom A. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro 2006; 20: 163-175. 20.Smith NF, Figg WD, Sparreboom A. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro 2006; 20: 163-175.
21. Prueksaritanont T, Tang C, Qiu Y, Mu L, Subramanian R, Lin JH. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 2002; 30: 1280-1287.21. Prueksaritanont T, Tang C, Qiu Y, Mu L, Subramanian R, Lin JH. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 2002; 30: 1280-1287.
22. Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005; 33: 139-146.22.Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005; 33: 139-146.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.So far, the present invention has been focused on the preferred embodiments. Those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered in terms of explanation, not limitation. The scope of the present invention is indicated by the following claims rather than the above detailed description, and it is interpreted that all modifications or variations derived from the meaning and scope of the claims and equivalent concepts are included in the scope of the present invention. Should be.
Claims (6)
Uridine 5`-diphosphoglucuronosyltransferase (UGT) activity evaluation composition containing lycoricidine.
The composition according to claim 1, wherein the uridine 5`-diphosphoglucuronosyltransferase is at least one selected from the group consisting of UGT1A9, UGT2B7 and UGT1A3.
Licoricedin, glucose-6-phosphate, β-NADP+ and glucose-6-phosphate dehydrogenase and UDP-glucuronic acid Uridine 5`-diphosphoglucuronosyltransferase activity evaluation kit comprising a.
b) 상기 a) 단계의 결과물에 글루코스-6-포스페이트(glucose-6-phosphate), β-NADP+ 및 글루코스-6-포스페이트 디하이드로게나제(glucose-6-phosphate dehydrogenase)를 첨가하여 배양하는 단계;
c) 상기 b) 단계의 결과물에 UDP-글루쿠론산(UDP-glucuronic acid)를 첨가하여 배양하는 단계;
d) 상기 c) 단계의 배양 결과물의 질량 분석을 수행하는 단계; 및
e) 상기 질량 분석 수행 결과로부터 모노글루쿠로니드 리코리시딘의 존재 여부를 확인하는 단계를 포함하는 신약 후보 물질의 우리딘 5`-디포스포글루쿠로노실트랜스퍼라제 활성 평가 방법.
a) contacting the composition of claim 1 with a new drug candidate;
b) incubating by adding glucose-6-phosphate, β-NADP+ and glucose-6-phosphate dehydrogenase to the result of step a);
c) culturing by adding UDP-glucuronic acid to the product of step b);
d) performing mass spectrometry of the culture result of step c); And
e) Method for evaluating the activity of uridine 5`-diphosphoglucuronosyltransferase of a new drug candidate substance comprising the step of confirming the presence or absence of monoglucuronide lyricidine from the results of the mass spectrometry.
The method of claim 4, wherein the uridine 5`-diphosphoglucuronosyltransferase is at least one selected from the group consisting of UGT1A9, UGT2B7 and UGT1A3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180146551A KR102138548B1 (en) | 2018-11-23 | 2018-11-23 | Composition for Assaying Activity of Uridine 5'-diphosphoglucuronosyltransferase Comprising Licoricidin and Use Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180146551A KR102138548B1 (en) | 2018-11-23 | 2018-11-23 | Composition for Assaying Activity of Uridine 5'-diphosphoglucuronosyltransferase Comprising Licoricidin and Use Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200061140A KR20200061140A (en) | 2020-06-02 |
KR102138548B1 true KR102138548B1 (en) | 2020-07-28 |
Family
ID=71090425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180146551A KR102138548B1 (en) | 2018-11-23 | 2018-11-23 | Composition for Assaying Activity of Uridine 5'-diphosphoglucuronosyltransferase Comprising Licoricidin and Use Thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102138548B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102403210B1 (en) * | 2020-05-08 | 2022-05-27 | 경북대학교 산학협력단 | Cytochrome P450 Activity Inhibitor and use thereof |
CN112725408B (en) * | 2021-01-21 | 2024-01-26 | 上海中医药大学 | UGT enzyme activity detection method and application thereof |
CN115290774B (en) * | 2022-07-21 | 2023-07-21 | 重庆医科大学 | Application of uridine diphosphate glucuronic acid in preparation of reagent for detecting liver cancer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006016395A1 (en) | 2004-08-09 | 2006-02-16 | National University Corporation Tohoku University | Udp-glucuronyl transferase and gene encoding the same |
KR101495860B1 (en) | 2014-01-08 | 2015-02-25 | 경북대학교 산학협력단 | Cocktail incubation solution for screening activity of phase Ⅱ metabolizing enzyme and drug-drug interactions, and method for high-throuphput screening activity of phase Ⅱ metabolizing enzymeof using the same |
KR101735185B1 (en) | 2015-06-15 | 2017-05-24 | 경북대학교 산학협력단 | Composition and Method for Evaluating Activity of Metabolizing Enzyme of New Drug Candidates |
-
2018
- 2018-11-23 KR KR1020180146551A patent/KR102138548B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006016395A1 (en) | 2004-08-09 | 2006-02-16 | National University Corporation Tohoku University | Udp-glucuronyl transferase and gene encoding the same |
KR101495860B1 (en) | 2014-01-08 | 2015-02-25 | 경북대학교 산학협력단 | Cocktail incubation solution for screening activity of phase Ⅱ metabolizing enzyme and drug-drug interactions, and method for high-throuphput screening activity of phase Ⅱ metabolizing enzymeof using the same |
KR101735185B1 (en) | 2015-06-15 | 2017-05-24 | 경북대학교 산학협력단 | Composition and Method for Evaluating Activity of Metabolizing Enzyme of New Drug Candidates |
Non-Patent Citations (2)
Title |
---|
Oda et al., A comprehensive review of UDP-glucuronosyltransferase and esterases for furg development. Drug Metabolism and Pharmacokinetics. 2015, Vol.30, pp. 30-51 |
Wang et al., Metabolites identification of bioactive licorice compounds in rats. Journal of Pharmaceutical and Biomedical Analysis, 2015, Vol.115, pp. 515-522 |
Also Published As
Publication number | Publication date |
---|---|
KR20200061140A (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wittig et al. | Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography–tandem mass spectrometry | |
Zeng et al. | Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS | |
KR102138548B1 (en) | Composition for Assaying Activity of Uridine 5'-diphosphoglucuronosyltransferase Comprising Licoricidin and Use Thereof | |
Hosoda et al. | Plasma profiling of intact isoflavone metabolites by high-performance liquid chromatography and mass spectrometric identification of flavone glycosides daidzin and genistin in human plasma after administration of kinako | |
Chen et al. | Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9 | |
Yang et al. | Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila | |
Irmisch et al. | Complete biosynthesis of the anti-diabetic plant metabolite montbretin A | |
Poon et al. | Identification and characterization of limonene metabolites in patients with advanced cancer by liquid chromatography/mass spectrometry. | |
Berman et al. | Parallel evolution of cannabinoid biosynthesis | |
Cao et al. | Characterization of chemical constituents and rats metabolites of an alkaloidal extract of Alstonia scholaris leaves by liquid chromatography coupled with mass spectrometry | |
Duan et al. | Functional characterization of a cycloartenol synthase and four glycosyltransferases in the biosynthesis of cycloastragenol-type astragalosides from Astragalus membranaceus | |
Tang et al. | Identification of two UDP-glycosyltransferases involved in the main oleanane-type ginsenosides in Panax japonicus var. major | |
Irmisch et al. | Biosynthesis of the anti‐diabetic metabolite montbretin A: glucosylation of the central intermediate mini‐MbA | |
Sun et al. | Cytochrome P450 mediated metabolic activation of chrysophanol | |
Liu et al. | A new abietane diterpenoid from Ajuga ovalifolia var. calantha induces human lung epithelial A549 cell apoptosis by inhibiting SHP2 | |
Zhan et al. | Bioactive compounds induced in Physalis angulata L. by methyl-jasmonate: an investigation of compound accumulation patterns and biosynthesis-related candidate genes | |
Qin et al. | Metabolic profiling of corylin in vivo and in vitro | |
Lou et al. | Metabolites characterization of chamaechromone in vivo and in vitro by using ultra-performance liquid chromatography/Xevo G2 quadrupole time-of-flight tandem mass spectrometry | |
Jiamboonsri et al. | In vitro glucuronidation of methyl gallate and pentagalloyl glucopyranose by liver microsomes | |
Zhang et al. | Functional characterization of a flavonol 3-O-rhamnosyltransferase and two UDP-rhamnose synthases from Hypericum monogynum | |
Adolfo et al. | Evaluation of pathways to the C‐glycosyl isoflavone puerarin in roots of kudzu (Pueraria montana lobata) | |
Xia et al. | Stable isotope labeling and 2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside biosynthetic pathway characterization in Fallopia multiflora | |
Chen et al. | Integrative analysis of transcriptome and metabolome reveals the sesquiterpenoids and polyacetylenes biosynthesis regulation in Atractylodes lancea (Thunb.) DC. | |
Murai et al. | Human UDP-glucuronosyltransferase, UGT1A8, glucuronidates dihydrotestosterone to a monoglucuronide and further to a structurally novel diglucuronide | |
Kuang et al. | Glabrone as a specific UGT1A9 probe substrate and its application in discovering the inhibitor glycycoumarin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |