[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102103225B1 - Refrigeration unit - Google Patents

Refrigeration unit Download PDF

Info

Publication number
KR102103225B1
KR102103225B1 KR1020187022111A KR20187022111A KR102103225B1 KR 102103225 B1 KR102103225 B1 KR 102103225B1 KR 1020187022111 A KR1020187022111 A KR 1020187022111A KR 20187022111 A KR20187022111 A KR 20187022111A KR 102103225 B1 KR102103225 B1 KR 102103225B1
Authority
KR
South Korea
Prior art keywords
refrigerant
weight
oil
compressor
hfo
Prior art date
Application number
KR1020187022111A
Other languages
Korean (ko)
Other versions
KR20180099850A (en
Inventor
칸이치로 스기우라
Original Assignee
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤 filed Critical 미쓰비시덴키 가부시키가이샤
Publication of KR20180099850A publication Critical patent/KR20180099850A/en
Application granted granted Critical
Publication of KR102103225B1 publication Critical patent/KR102103225B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

냉동 장치는, 압축기, 응축기, 팽창기구 및 증발기를 냉매 배관으로 접속하여 냉매를 순환시키는 냉매 회로를 구비하고 있다. 냉매는, HFO계 냉매를 적어도 10중량% 이상과, HFC계 냉매를 적어도 50중량% 이상을 포함하고, 압축기의 활주부를 윤활하는 냉동기유에는, 첨가량이 0.1중량%부터 1.0중량%인 산포착제(酸捕捉劑)가 배합되어 있다.The refrigeration apparatus is equipped with a refrigerant circuit that circulates the refrigerant by connecting a compressor, a condenser, an expansion mechanism, and an evaporator through a refrigerant pipe. The refrigerant contains at least 10% by weight of the HFO-based refrigerant, and at least 50% by weight of the HFC-based refrigerant, and the refrigerating agent oil that lubricates the sliding portion of the compressor has an additive amount of 0.1 to 1.0% by weight. (酸 捕捉 劑) is blended.

Description

냉동 장치Refrigeration unit

본 발명은, 냉동 사이클을 순환하는 냉매를 프로필렌계 불화탄화수소, 또는 프로필렌계 불화탄화수소를 포함하는 혼합물로 한 냉동 장치에 관한 것이다.The present invention relates to a refrigeration device in which a refrigerant circulating in a refrigeration cycle is a propylene-based hydrocarbon or a mixture containing propylene-based fluorocarbons.

종래, 공기 조화 장치 등의 냉동 장치에 사용되는 냉동기유에는, 냉매의 분해에 의해 발생하는 불산 등의 산에 의한 냉동기유의 열화 및 팽창밸브의 부식을 억제하기 위한 물질이 함유되어 있다. 예를 들면, 하기 특허 문헌 1에는, 냉동기유에 첨가량이 0.005∼10.0중량%인 산포착제(酸捕捉劑)를 배합한 냉동기용 윤활유 조성물이 개시되어 있다.Background Art Conventionally, a refrigerating machine oil used in a refrigerating apparatus such as an air conditioner contains a substance for suppressing the deterioration of the refrigerating machine oil and corrosion of the expansion valve by acid such as hydrofluoric acid generated by decomposition of the refrigerant. For example, Patent Document 1 below discloses a lubricating oil composition for a refrigerator, in which an amount of an acid-adhesive agent (0.005 to 10.0% by weight) added to the refrigerator oil is blended.

또한, 종래, 공기 조화 장치 등의 냉동 장치의 냉동 사이클을 순환하는 냉매는, 단일 냉매인 R32, 혼합 냉매인 R410A 및 R407C 등의 불소계 냉매가 사용되고 있다. 그러나, 이들의 불소계 냉매는, 염소를 포함하지 않기 때문에 오존층을 파괴하는 영향은 작지만, 온실 효과에 의해 지구 온난화에의 영향이 큰 문제가 있다. 그래서, 근래, 지구 온난화 계수가 작게 지구 온난화에의 영향이 작은 프로필렌계 불화탄화수소 냉매로서, HFO-1234yf 냉매, HFO-1234ze(E) 냉매 등이 주목되고 있다.In addition, fluorine-based refrigerants such as R32 as a single refrigerant and R410A and R407C as a mixed refrigerant are conventionally used as a refrigerant circulating the refrigeration cycle of a refrigeration apparatus such as an air conditioner. However, since these fluorine-based refrigerants do not contain chlorine, the effect of destroying the ozone layer is small, but there is a problem that the effect on global warming is large due to the greenhouse effect. Thus, in recent years, HFO-1234yf refrigerants, HFO-1234ze (E) refrigerants, and the like have been noted as propylene-based fluorohydrocarbon refrigerants having a small global warming coefficient and a small effect on global warming.

특허 문헌 1 : 일본국 특개2011-202031호 공보Patent Document 1: Japanese Patent Application Publication No. 2011-202031

프로필렌계 불화탄화수소 냉매는, R32, R410A 등의 다른 불소계 냉매에 비하여, 안정성이 낮고, 고온 환경하에 놓여지거나, 공기 및 물이 혼입되거나 함으로써 분해되기 쉽고, 분해에 의한 불산 등의 산의 발생량도 많다. 냉매의 분해에 의해 발생하는 산은, 냉동 장치에 사용되는 냉동기유를 열화시키고, 팽창밸브 등의 부품을 부식시킬 우려나, 냉동기유 열화물과 공기 조화 장치 내를 구성하는 압축기의 활주 마모분(磨耗粉)이 결합하여 협잡물(이하, 슬러지라고 한다)이 되어, 팽창밸브 등의 냉매 회로부품이 막혀질 우려가 있다. 또한, 상기 특허 문헌 1에 개시된 냉동기용 윤활유 조성물에 의거하여, 산포착제를 10중량% 첨가한 경우에는, 불소의 발생량을 억제할 수는 있지만, 슬러지의 이상(異常) 발생을 억제할 수는 없다.Propylene-based fluorinated hydrocarbon refrigerants have lower stability than other fluorine-based refrigerants such as R32 and R410A, and are easily decomposed by being placed in a high-temperature environment or mixed with air and water, and also generate a large amount of acid such as hydrofluoric acid due to decomposition. . Acid generated by the decomposition of the refrigerant deteriorates the refrigerating machine oil used in the refrigeration apparatus and corrodes components such as expansion valves, but the sliding wear and tear of the compressor constituting the refrigerating machine oil cargo and the air conditioner (磨耗)粉) Combines to become a contaminant (hereinafter referred to as sludge), and there is a concern that refrigerant circuit components such as expansion valves may be blocked. Further, based on the lubricating oil composition for a freezer disclosed in Patent Document 1, when 10% by weight of an acid scavenger is added, the amount of fluorine can be suppressed, but the occurrence of abnormal sludge can be suppressed. none.

또한, 프로필렌계 불화탄화수소 냉매는, 다른 불소계 냉매에 비하여, 냉동기유와의 상용성(相溶性)이 좋고, 압축기의 활주부에 냉매가 녹아들어가 점도가 낮은 냉동기유가 공급됨에 의해, 압축기의 활주부가 금속 접촉하여 이상 발열하여, 냉매의 분해에 의한 산의 발생이 촉진된다.In addition, the propylene-based fluorohydrocarbon refrigerant has better compatibility with the refrigerating machine oil than other fluorine-based refrigerants, and the refrigerant is melted in the sliding portion of the compressor to supply the refrigerating machine oil having a low viscosity, thereby providing the sliding portion of the compressor. Abnormal heat generation is caused by metal contact, and acid generation by decomposition of the refrigerant is promoted.

본 발명은, 상술한 바와 같은 과제를 해결하기 위해 이루어진 것으로, 냉동기유의 열화 및 팽창밸브의 부식 및 슬러지 이상 발생을 억제하고, 신뢰성이 높은 냉동 장치를 제공하는 것을 목적으로 한다.The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a highly reliable refrigeration device by suppressing deterioration of refrigeration oil, corrosion of a expansion valve, and occurrence of sludge abnormality.

본 발명에 관한 냉동 장치는, 압축기, 응축기, 팽창기구 및 증발기를 냉매 배관으로 접속하여 냉매를 순환시키는 냉매 회로를 구비한 냉동 장치로서, 상기 냉매는, HFO계 냉매를 적어도 10중량% 이상과, HFC계 냉매를 적어도 50중량% 이상을 포함하고, 상기 압축기의 활주부를 윤활하는 냉동기유에는, 첨가량이 0.1중량%부터 1.0중량%인 산포착제가 배합되어 있는 것이다.A refrigerating device according to the present invention is a refrigerating device having a refrigerant circuit that circulates refrigerant by connecting a compressor, a condenser, an expansion mechanism, and an evaporator to a refrigerant pipe, wherein the refrigerant comprises at least 10% by weight of HFO-based refrigerant, The refrigerating machine oil containing at least 50% by weight of HFC-based refrigerant and lubricating the sliding portion of the compressor contains an additive amount of 0.1 to 1.0% by weight.

본 발명의 냉동 장치는, 냉매로서, 프로필렌계 불화탄화수소, 또는 프로필렌계 불화탄화수소를 포함하는 혼합물을 사용하고, 압축 요소내에 봉입된 냉동기유에, 냉매 분해에 의한 불산 등의 산을 포착하는데도 효과적인 양의 산포착제를 배합한 구성이어서, 냉동기유의 열화 및 팽창밸브의 부식, 슬러지의 이상 발생을 억제할 수 있다.The refrigerating device of the present invention uses a propylene-based hydrocarbon or a mixture containing propylene-based fluorohydrocarbons as a refrigerant, and is also effective in capturing an acid such as hydrofluoric acid by refrigerant decomposition in a refrigerant oil enclosed in a compression element. Since it is a composition in which a scattering agent is blended, it is possible to suppress deterioration of the refrigerator oil, corrosion of the expansion valve, and abnormal occurrence of sludge.

도 1은 본 발명의 실시의 형태에 관한 냉동 장치의 냉매 회로를 개략적으로 도시한 모식도.1 is a schematic diagram schematically showing a refrigerant circuit of a refrigerating device according to an embodiment of the present invention.

실시의 형태.Embodiment.

이하에, 본 발명에 관한 냉동 장치의 구성 및 동작을 도시한 실시의 형태에 의거하여 설명한다. 도 1은, 본 발명의 실시의 형태에 관한 냉동 장치의 냉매 회로를 개략적으로 도시한 모식도이다. 본 실시의 형태의 냉동 장치(1)는, 도 1에 도시하는 바와 같이, 압축기(2), 4방전환밸브(3), 실외 열교환기(4), 팽창기구(5) 및 실내 열교환기(6)를, 순차적으로 냉매 배관으로 접속되어 냉매를 순환시키는 냉매 회로를 구비하고 있고, 증기 압축식의 냉동 사이클 운전을 행함에 의해, 옥내의 냉난방에 사용된다.Below, the structure and operation | movement of the refrigerating apparatus which concerns on this invention are demonstrated based on embodiment shown. 1 is a schematic diagram schematically showing a refrigerant circuit of a refrigerating device according to an embodiment of the present invention. As shown in Fig. 1, the refrigeration device 1 of the present embodiment includes a compressor 2, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion mechanism 5, and an indoor heat exchanger ( 6) is sequentially connected to the refrigerant pipe, and is provided with a refrigerant circuit circulating the refrigerant, and is used for indoor air conditioning by performing a vapor compression type refrigeration cycle operation.

압축기(2)는, 흡입한 냉매를 압축하여, 고온 고압의 상태로 하여 토출하는 것이고, 냉매 토출측이 4방전환밸브(3)에 접속되고, 냉매 흡입측이 어큐뮬레이터(9)에 접속되어 있다. 압축기(2)는, 한 예로서, 운전 용량(주파수)을 가변시키는 것이 가능하게 한 구성이고, 예를 들면 인버터에 의해 제어된 모터(도시하는 것은 생략)에 의해 구동되는 용적식 압축기를 사용한다.The compressor 2 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state, the refrigerant discharge side is connected to the four-way switching valve 3, and the refrigerant suction side is connected to the accumulator 9. The compressor 2 is, as an example, a configuration that enables variable operation capacity (frequency), and uses, for example, a positive displacement compressor driven by a motor (not shown) controlled by an inverter. .

4방전환밸브(3)는, 냉매의 유로를 전환하는 기능을 갖는 것이다. 4방전환밸브(3)는, 냉방 운전시에는, 도 1의 실선의 화살표로 도시하는 바와 같이, 압축기(2)의 냉매 토출측과 실외 열교환기(4)의 가스측을 접속함과 함께, 압축기(2)의 냉매 흡입측과 실내 열교환기(6)의 가스측을 접속하도록 냉매 유로를 전환한다. 한편, 4방전환밸브(3)는, 난방 운전시에는, 도 1의 파선의 화살표로 도시하는 바와 같이, 압축기(2)의 냉매 토출측과 실내 열교환기(6)의 가스측을 접속함과 함께, 압축기(2)의 냉매 흡입측과 실외 열교환기(4)의 가스측을 접속하도록 냉매 유로를 전환한다.The four-way switching valve 3 has a function of switching the flow path of the refrigerant. The four-way switching valve (3) connects the refrigerant discharge side of the compressor (2) and the gas side of the outdoor heat exchanger (4) as shown by the solid arrow in FIG. 1 during cooling operation. The refrigerant flow path is switched to connect the refrigerant suction side of (2) and the gas side of the indoor heat exchanger (6). On the other hand, during the heating operation, the four-way switching valve 3 connects the refrigerant discharge side of the compressor 2 and the gas side of the indoor heat exchanger 6, as shown by the broken arrow in FIG. 1. , The refrigerant flow path is switched to connect the refrigerant suction side of the compressor 2 and the gas side of the outdoor heat exchanger 4.

실외 열교환기(4)는, 냉방 운전시에는 응축기로서 기능하여, 압축기(2)로부터 토출된 냉매와 공기와의 사이에서 열교환을 행하게 하는 것이다. 또한, 실외 열교환기(4)는, 난방 운전시에는 증발기로서 기능하여, 팽창기구(5)로부터 유출된 냉매와 공기와의 사이에서 열교환을 행하게 하는 것이다. 실외 열교환기(4)는, 실외 송풍기(7)에 의해 실외 공기를 흡입하고, 냉매와의 사이에서 열교환한 공기를 실외로 배출한다. 실외 열교환기(4)는, 가스측이 4방전환밸브(3)에 접속되고, 액측이 팽창기구(5)에 접속되어 있다.The outdoor heat exchanger (4) functions as a condenser during cooling operation, and performs heat exchange between the refrigerant discharged from the compressor (2) and air. In addition, the outdoor heat exchanger 4 functions as an evaporator during the heating operation, so as to exchange heat between the refrigerant flowing out from the expansion mechanism 5 and air. The outdoor heat exchanger (4) sucks outdoor air by the outdoor blower (7), and discharges the heat exchanged between the refrigerant to the outdoors. In the outdoor heat exchanger (4), the gas side is connected to the four-way switching valve (3), and the liquid side is connected to the expansion mechanism (5).

팽창기구(5)는, 냉매 회로 내를 흐르는 냉매를 감압하여 팽창시키는 것이고, 한 예로서 개방도가 가변으로 제어되는 전자 팽창밸브로 구성된다. 팽창기구(5)는, 일방이 실외 열교환기(4)에 접속되고, 타방이 실내 열교환기(6)에 접속되어 있다.The expansion mechanism 5 expands by reducing the refrigerant flowing in the refrigerant circuit under reduced pressure, and as an example, is composed of an electromagnetic expansion valve in which the opening degree is variably controlled. One of the expansion mechanisms 5 is connected to the outdoor heat exchanger 4 and the other is connected to the indoor heat exchanger 6.

실내 열교환기(6)는, 냉방 운전시에는 증발기로서 기능하여, 팽창기구(5)로부터 유출된 냉매와 공기와의 사이에서 열교환을 행하게 하는 것이다. 또한, 실내 열교환기(6)는, 난방 운전시에는 응축기로서 기능하여, 압축기(2)로부터 토출된 냉매와 공기와의 사이에서 열교환을 행하게 하는 것이다. 실내 열교환기(6)는, 실내 송풍기(8)에 의해 실내 공기를 흡입하고, 냉매와의 사이에서 열교환한 공기를 실내로 공급한다. 실내 열교환기(6)는, 가스측이 4방전환밸브(3)에 접속되고, 액측이 팽창기구(5)에 접속되어 있다.The indoor heat exchanger (6) functions as an evaporator during cooling operation, and performs heat exchange between the refrigerant flowing out from the expansion mechanism (5) and air. In addition, the indoor heat exchanger 6 functions as a condenser during heating operation, so as to exchange heat between the refrigerant discharged from the compressor 2 and air. The indoor heat exchanger (6) sucks indoor air by the indoor blower (8), and supplies the air heat exchanged with the refrigerant to the indoor. In the indoor heat exchanger (6), the gas side is connected to the four-way switching valve (3), and the liquid side is connected to the expansion mechanism (5).

다음에, 냉방 운전시에 있어서의 냉동 장치(1)의 동작에 관해 설명한다.Next, the operation of the refrigerating device 1 during cooling operation will be described.

압축기(2)는, 저압의 가스 냉매를 압축하여, 고온, 고압의 가스 냉매를 토출한다. 압축기(2)로부터 토출된 냉매는, 4방전환밸브(3)를 통과하여, 실외 열교환기(4)에 공급된다. 실외 열교환기(4)를 냉매가 통과함으로써, 고온, 고압의 가스 냉매가 응축되어, 고압의 액냉매가 된다. 실외 열교환기(4)를 통과한 액냉매는, 팽창기구(5)의 팽창밸브를 통과하여 저압의 기액(氣液) 혼합 냉매가 되어, 실내 열교환기(6)에 공급된다. 실내 열교환기(6)를 통과한 냉매는, 저압의 기액 혼합 상태로부터, 저온, 저압의 가스 냉매가 된다. 실내 열교환기(6)를 통과한 냉매는, 압축기(2)에 공급된다.The compressor 2 compresses the low-pressure gas refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The refrigerant discharged from the compressor (2) passes through the four-way switching valve (3) and is supplied to the outdoor heat exchanger (4). As the refrigerant passes through the outdoor heat exchanger (4), the high-temperature, high-pressure gas refrigerant condenses and becomes a high-pressure liquid refrigerant. The liquid refrigerant passing through the outdoor heat exchanger (4) passes through the expansion valve of the expansion mechanism (5) to become a low-pressure gas-liquid mixed refrigerant, and is supplied to the indoor heat exchanger (6). The refrigerant that has passed through the indoor heat exchanger (6) becomes a low-temperature, low-pressure gas refrigerant from a low-pressure gas-liquid mixed state. The refrigerant that has passed through the indoor heat exchanger (6) is supplied to the compressor (2).

냉방 운전시에서는, 실외 열교환기(4)는 응축기로서 기능하고, 실내 열교환기(6)는 증발기로서 기능한다. 즉, 실내 열교환기(6)에서 발생하는 냉매의 증발 잠열에 의해, 실내가 냉각된다. 한편, 난방 운전시에서는, 4방전환밸브(3)를 전환함으로써, 실외 열교환기(4)는 증발기로서 기능하고, 실내 열교환기(6)는 응축기로서 기능한다. 즉, 실외 열교환기(4)에서 발생하는 냉매의 응축 잠열에 의해, 실내가 과열된다.In the cooling operation, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator. That is, the room is cooled by latent heat of evaporation of the refrigerant generated in the indoor heat exchanger (6). On the other hand, during the heating operation, by switching the four-way switching valve 3, the outdoor heat exchanger 4 functions as an evaporator, and the indoor heat exchanger 6 functions as a condenser. That is, the latent heat of condensation of the refrigerant generated in the outdoor heat exchanger (4) causes the room to overheat.

본 실시의 형태에서는, 냉동 장치(1)의 냉매 회로를 순환하는 냉매로서, 프로필렌계 불화탄화수소 냉매인 HFO계 냉매가 사용된다. 구체적으로는, HFO계 냉매는, HFO 단체(單體), 또는, R32를 포함하는 혼합 냉매이다. HFO 냉매를 포함하는 혼합 냉매는, HFO 냉매를 적어도 10중량% 이상 포함하고, HFC계 냉매로서 R32 냉매를 적어도 50중량% 이상 포함하는 혼합 냉매이다. HFO 냉매는, HFO-1234yf 및 HFO-1234ze(E) 등이 바람직하다. 또한, 혼합 냉매로서의 지구 온난화 계수는, 바람직하게는 1000 이하이고, 보다 바람직하게는, 500 이하이다.In the present embodiment, as the refrigerant circulating through the refrigerant circuit of the refrigerating device 1, an HFO-based refrigerant that is a propylene-based fluorohydrocarbon refrigerant is used. Specifically, the HFO-based refrigerant is a HFO single substance or a mixed refrigerant containing R32. The mixed refrigerant containing the HFO refrigerant is a mixed refrigerant containing at least 10% by weight of the HFO refrigerant and at least 50% by weight of the R32 refrigerant as the HFC-based refrigerant. The HFO refrigerant is preferably HFO-1234yf and HFO-1234ze (E). Moreover, the global warming coefficient as a mixed refrigerant is preferably 1000 or less, and more preferably 500 or less.

HFO계 냉매는, 다른 단일 냉매인 R32, 혼합 냉매인 R410A 및 R407C 등의 불소계 냉매에 비하여, 지구 온난화에 주는 영향이 작지만, 안정성이 낮기 때문에, 분해에 의한 불화수소(불산), 포름산 및 아세트산 등의 산의 발생량이 많다. 냉매의 분해에 의해 발생하는 산은, 냉매 및 냉동기유에 포함되는 물에 용해하여 냉매 회로를 순환하고, 냉동기유를 열화시키고, 또한 팽창기구(5)의 팽창밸브에 산이 부착하면, 팽창밸브의 금속 부품이 부식되어, 팽창기구(5)의 이상의 원인이 된다. 또한, 산에 의해 열화된 냉동기유와 압축기(2)의 활주 마모분이 결합하고 슬러지가 되어, 팽창밸브 등의 냉매 회로부품을 막히게 할 우려가 있다.The HFO-based refrigerant has a smaller influence on global warming than fluorine-based refrigerants such as R32, which is a single refrigerant, and R410A and R407C, which are mixed refrigerants. However, since the stability is low, hydrogen fluoride (hydrofluoric acid) by decomposition, formic acid, acetic acid, etc. The amount of acid generated is large. The acid generated by the decomposition of the refrigerant is dissolved in water contained in the refrigerant and the refrigerant oil, circulates the refrigerant circuit, degrades the refrigerant oil, and when acid is attached to the expansion valve of the expansion mechanism 5, metal parts of the expansion valve This corrosion causes abnormality of the expansion mechanism 5. In addition, there is a fear that the refrigerant oil deteriorated by the acid and the sliding wear powder of the compressor 2 are combined and become sludge, clogging refrigerant circuit components such as an expansion valve.

다음에, HFO 냉매의 분해가 발생하기 쉬운, 냉동 장치(1)의 운전 모드의 예를 든다. 압축기(2)로부터 토출되는 고압의 가스 냉매의 온도가, 예를 들면 120℃를 초과하는 운전인 경우, 압축기(2) 내부의 활주부의 온도가, 국부적으로 고온이 되는 일이 있어서, HFO 냉매가 열분해할 우려가 있다. 또한, 냉동 장치(1)의 기동시에 대량의 액냉매가 압축기(2)에 되돌아온 경우, 압축기(2)의 냉동기유에 액냉매가 용해하여, 저점도의 냉동기유가 압축기(2)의 활주부에 공급된 상태에서 행해지는 운전이 있다. 이 경우, 압축기(2)의 활주부가 금속 접촉을 일으켜서, 활주부의 이상한 발열에 의해 HFO 냉매가 열분해할 우려가 있다.Next, an example of an operation mode of the refrigerating device 1, in which decomposition of the HFO refrigerant is likely to occur, is given. When the temperature of the high-pressure gas refrigerant discharged from the compressor 2 is, for example, an operation exceeding 120 ° C., the temperature of the sliding portion inside the compressor 2 may be locally high, resulting in HFO refrigerant. May decompose. In addition, when a large amount of liquid refrigerant is returned to the compressor 2 when the refrigerating device 1 is started, the liquid refrigerant is dissolved in the refrigerating machine oil of the compressor 2, and the low-viscosity refrigerator oil is supplied to the sliding portion of the compressor 2 There is driving that is done in the state of being. In this case, the sliding portion of the compressor 2 causes metal contact, and there is a fear that the HFO refrigerant is thermally decomposed by abnormal heat generation of the sliding portion.

그래서, 본 실시의 형태의 냉동 장치(1)에서 사용되는 냉동기유에는, 산포착제가 0.1중량%부터 1.0중량% 배합되어 있다. 냉동기유는, 압축기(2)의 활주부에서의 마모 및 눌어붙음(燒き付き)의 방지를 위해 사용되는 윤활유이다. 압축기(2)의 활주부는, 예를 들면, 압축기(2)가 로터리 압축기인 경우, 베인과 롤러 사이의 활주면, 및, 크랭크축과 축받이 사이의 활주면 등이다. 산포착제는, HFO계 냉매의 분해에 의해 발생하는 불산 등의 산을 포착하기 위해 사용되는 첨가제이다.Thus, the freezer oil used in the refrigerating device 1 of the present embodiment contains 0.1 to 1.0% by weight of an acid scavenger. Refrigerator oil is a lubricant used to prevent wear and sticking at the sliding portion of the compressor 2. The sliding portion of the compressor 2 is, for example, when the compressor 2 is a rotary compressor, a sliding surface between a vane and a roller, and a sliding surface between a crankshaft and a shaft. The acid scavenger is an additive used to capture acids such as hydrofluoric acid generated by decomposition of the HFO-based refrigerant.

다음에, 본 실시의 형태에서 사용되는 냉동기유의 조성에 관해 설명한다. 냉동기유는, 주로, 기유(基油), 산포착제, 극압제(極壓劑) 및 산화 방지제로 이루어진다.Next, the composition of the refrigerating machine oil used in the present embodiment will be described. Refrigerator oil is mainly composed of a base oil, a scattering agent, an extreme pressure agent, and an antioxidant.

기유는, 광유 또는 합성유가 사용된다. 기유는, 냉동 장치(1)에 사용되는 HFO계 냉매와의 상용성이 좋지만, 압축기(2)의 활주부에서 유체(流體) 윤활 가능해지는 점도의 냉동기유가 적절하게 선택된다. 광유는, 예를 들면, 나프텐계 광유, 파라핀계 광유이다. 합성유는, 예를 들면, 폴리비닐에테르, 폴리올에스테르, 폴리알킬렌글리콜, 알킬벤젠 등을 들 수 있다. 본 실시의 형태에서는, 기유로서, 폴리비닐에테르, 폴리올에스테르 등의 합성유를 사용하는 것이 바람직하다. 또한, 기유로서, 상기한 광유 또는 합성유를 2종 이상 조합시킨 혼합물을 사용하여도 좋다.As the base oil, mineral oil or synthetic oil is used. Although the base oil has good compatibility with the HFO-based refrigerant used in the refrigeration apparatus 1, a refrigerating machine oil having a viscosity that enables fluid lubrication at the sliding portion of the compressor 2 is appropriately selected. Mineral oils are, for example, naphthenic mineral oils and paraffinic mineral oils. Synthetic oils include, for example, polyvinyl ether, polyol esters, polyalkylene glycols, and alkylbenzenes. In this embodiment, it is preferable to use synthetic oils such as polyvinyl ether and polyol ester as the base oil. Moreover, as a base oil, you may use the mixture which combined 2 or more types of said mineral oil or synthetic oil.

산포착제는, HFO계 냉매의 분해에 의해 발생하는 불산 등의 산과 반응함에 의해, 산에 의한 냉동기유의 열화를 억제하기 위해 사용되는 첨가제이다. 산포착제는, 냉동기유에 0.1중량%부터 1.0중량% 포함되어 있다. 산포착제는, 예를 들면, 에폭시 화합물, 카르보디이미드 화합물, 테르펜계 화합물이다.The acid scavenger is an additive used to suppress deterioration of the refrigerating machine oil by the acid by reacting with an acid such as hydrofluoric acid generated by decomposition of the HFO-based refrigerant. The scattering agent is contained in the freezer oil from 0.1% by weight to 1.0% by weight. Acid scavengers are, for example, epoxy compounds, carbodiimide compounds, and terpene-based compounds.

극압제는, 압축기(2) 등의 활주부에서 마모 및 눌어붙음을 방지하기 위해 사용되는 첨가제이다. 냉동기유는, 활주부에서 서로 활주하는 부재 표면의 사이에 유막을 형성함으로써, 활주 부재끼리의 접촉을 방지한다. 그러나, 냉동기유는, 기유 점도가 낮은 경우나, 냉매가 대량으로 용해하여 저점도화한 경우, 또는 활주 부재에 걸리는 압력이 높은 경우에는, 활주 부재끼리가 금속 접촉하기 쉬워진다. 극압제는, 상기한 경우라도, 활주부에서 서로 활주한 부재 표면과 반응하고 피막을 형성함으로써, 마모 및 눌어붙음의 발생을 억제한다. 극압제는, 예를 들면, 인산에스테르, 아인산에스테르, 티오인산염, 황화에스테르 등이고, 구체례로서는, 트리크레질포스페이트(TCP), 트리페닐포스페이트(TPP), 트리페닐포스포로티오에이트(TPPT) 등을 들 수 있다.The extreme pressure agent is an additive used to prevent abrasion and sticking in sliding parts such as the compressor 2. The refrigerating machine oil prevents contact between the sliding members by forming an oil film between the surfaces of the members sliding from each other in the sliding portion. However, when the base oil viscosity is low, the refrigerant oil is melted in large quantities to lower viscosity, or the pressure applied to the slide member is high, the refrigerating machine oil is liable to make metal contact between the slide members. Even in the case of the above, the extreme pressure agent suppresses the occurrence of abrasion and sticking by reacting with the surface of the member sliding from each other in the sliding portion and forming a coating film. The extreme pressure agent is, for example, phosphate ester, phosphorous acid ester, thiophosphate, sulfide ester, and the like, and specific examples thereof include tricresyl phosphate (TCP), triphenyl phosphate (TPP), and triphenylphosphorothioate (TPPT). Can be mentioned.

산화 방지제는, 냉동기유의 산화를 방지하기 위해 사용되는 첨가제이다. 산화 방지제의 구체례로서는, 디티오인산아연, 유기 유황 화합물, 2,6-디-tert-부틸-4-메틸페놀, 2,6-디-tert-부틸-4-에틸페놀, 2,2'-메틸렌비스(4-메틸-6-tert-부틸페놀) 등의 페놀계, 페닐-α-나프틸아민, N,N'-디-페닐-p-페닐렌디아민 등의 아민계의 산화 방지제, N N'-디살리실리덴-1 2-아미노프로판 등을 들 수 있다.Antioxidants are additives used to prevent oxidation of the refrigerating machine oil. Specific examples of antioxidants include dithiozinc phosphate, organic sulfur compounds, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2 ' Phenolic antioxidants such as methylenebis (4-methyl-6-tert-butylphenol), amine antioxidants such as phenyl-α-naphthylamine, N, N'-di-phenyl-p-phenylenediamine, And N N'-disalicylidene-1 2-aminopropane.

다음에, 본 실시의 형태의 냉동 장치에 사용하는 냉동기유가, 냉동 장치(1)에 주는 영향에 관해, 하기한 표 1에 의거하여 설명한다. 본 출원인은, 제품 실기(實機) 시험을 행하여, 냉동기유가 냉동 장치(1)에 주는 영향을 분석하였다.Next, the effect of the refrigerating machine oil used in the refrigerating device of this embodiment on the refrigerating device 1 will be described based on Table 1 below. The applicant conducted an actual product test, and analyzed the effect of the refrigerating machine oil on the refrigerating device (1).

제품 실기 시험의 시험 조건은, 압축기(2)로부터 토출되는 냉매 가스의 온도가 140℃이고, 냉동 장치(1)의 운전시간이 500시간이고, 냉동 장치(1)의 운전 압력이 적절히 설정된 값이었다. 냉동기유의 기유로서, 폴리비닐에테르유를 사용하였다. 냉동기유에, 산포착제의 첨가량을 0.005중량%, 0.05중량%, 0.1중량%, 1.0중량%, 6.0중량%, 10.0중량%로 변경시켜서 배합하고, 냉동 장치(1)를 가동시켜서, 냉동 장치(1)의 팽창기구(5)의 팽창밸브의 상태를 확인하였다. 구체적으로는, 시험 후의 팽창밸브를 X선 장치로 원소 분석하여, 냉매 분해물인 불소의 양과, 팽창밸브에 부착한 슬러지량을 확인하였다. 하기한 표 1은, 제품 실기 시험의 시험 결과를 표시하고 있다.The test conditions for the product practical test were the temperature of the refrigerant gas discharged from the compressor 2, 140 ° C, the operating time of the refrigerating device 1 was 500 hours, and the operating pressure of the refrigerating device 1 was set appropriately. . As the base oil of the refrigerating machine oil, polyvinyl ether oil was used. The amount of the scattering agent added to the refrigerating machine oil was changed to 0.005% by weight, 0.05% by weight, 0.1% by weight, 1.0% by weight, 6.0% by weight, and 10.0% by weight. The condition of the expansion valve of the expansion mechanism 5 of 1) was confirmed. Specifically, the expansion valve after the test was elementally analyzed with an X-ray apparatus to confirm the amount of fluorine as a refrigerant decomposition product and the amount of sludge attached to the expansion valve. Table 1 below shows the test results of the product practical test.

[표 1][Table 1]

Figure 112018075577105-pct00001
Figure 112018075577105-pct00001

냉동기유가, 합격인지 불합격인지 여부의 판정 기준으로서, R410A 냉매에서의 평가 결과를 참고로 하고, 불소 검출량 5중량% 이하, 또한, 슬러지 발생량 1중량% 이하인 경우를 합격, 그 이외를 불합격으로 하였다.As a criterion for determining whether the refrigerating machine oil passed or failed, the evaluation result of the R410A refrigerant was referred to, and the case where the fluorine detection amount was 5% by weight or less and the sludge generation amount was 1% by weight or less was considered to be rejected.

표 1에서, 산포착제의 첨가량이 0.005∼0.05중량%인 「I」, 「Ⅱ」의 케이스에서는, 불소 검출량이 5중량%보다도 높고, 팽창밸브의 부식이 확인되었기 때문에 불합격으로 판정하였다. 또한, 산포착제의 첨가량이 6∼10중량%인 「V」, 「Ⅵ」의 케이스에서는, 슬러지의 발생량이 1중량% 이상이고, 슬러지의 대량 발생이 확인되었기 때문에 불합격으로 판정하였다. 한편, 산포착제의 첨가량이 0.1∼1.0중량%인 「Ⅲ」, 「Ⅳ」의 케이스에서, 불소 검출량 , 및 슬러지의 발생량은, 함께 문제 없는 것이 확인되었기 때문에 합격으로 판정하였다.In Table 1, in the cases of "I" and "II", in which the amount of the scattering agent added was 0.005 to 0.05% by weight, the fluorine detection amount was higher than 5% by weight, and corrosion of the expansion valve was confirmed, so it was judged as rejected. In addition, in the cases of "V" and "VI" in which the amount of the scattering agent added was 6 to 10% by weight, the amount of sludge generated was 1% by weight or more, and mass generation of sludge was confirmed, so it was judged as unsuccessful. On the other hand, in the cases of "III" and "IV" in which the amount of the acid-adhesive agent added was 0.1 to 1.0% by weight, the amount of fluorine detected and the amount of sludge generated were determined to pass because it was confirmed that there was no problem.

표 1로부터, HFO계 냉매를 사용하는 냉동 장치에서는, 냉동기유의 산포착제의 첨가량이 0.1부터 1.0중량%인 경우에, 팽창밸브의 부식 및 슬러지 이상 발생이 억제되었다.From Table 1, in the refrigeration apparatus using HFO-based refrigerant, corrosion and sludge abnormality of the expansion valve were suppressed when the amount of the acid-removing agent added to the refrigerating machine oil was 0.1 to 1.0% by weight.

또한, 산포착제의 첨가량이 0.2부터 1.0중량%인 경우에, 불소 검출량이 현저하게 저하되고, 팽창밸브의 내부식(耐腐食) 효과가 향상하는 것을 확인할 수 있었다.In addition, when the amount of the acid-adhesive agent added was 0.2 to 1.0% by weight, it was confirmed that the fluorine detection amount was significantly lowered, and the corrosion resistance effect of the expansion valve was improved.

따라서 본 실시의 형태의 냉동 장치(1)에서는, HFO계 냉매의 분해에 의해 발생하는 불산 등의 산은, 냉동기유에 0.1중량%부터 1.0중량% 포함되는 산포착제에 의해, 보다 바람직하게는 0.2중량%부터 1.0중량% 포함되는 산포착제에 의해 포착된다. 이에 의해, HFO계 냉매의 분해에 의해 발생하는 산에 기인하는 냉동기유의 열화 및 팽창기구(5)의 팽창밸브의 부식 및 슬러지의 이상 발생이 억제된다. 따라서, 냉동 장치(1)의 신뢰성을 향상시킬 수 있다.Therefore, in the refrigeration device 1 of the present embodiment, acids such as hydrofluoric acid generated by decomposition of the HFO-based refrigerant are more preferably 0.2 wt. % To 1.0% by weight. Thereby, deterioration of the refrigerating machine oil due to acid generated by decomposition of the HFO-based refrigerant and corrosion of the expansion valve of the expansion mechanism 5 and abnormal occurrence of sludge are suppressed. Therefore, the reliability of the refrigerating device 1 can be improved.

이상으로 본 발명을 실시의 형태에 의거하여 설명하였지만, 본 발명은 상술한 실시의 형태의 구성으로 한정되는 것이 아니다. 예를 들면, 냉매의 유로 구성(배관 접속), 압축기(2), 4방전환밸브(3), 실외 열교환기(4), 팽창기구(5), 실내 열교환기(6) 등의 냉매 회로 요소의 구성 등의 내용은, 실시의 형태에서 설명한 내용으로 한정되는 것이 아니고, 본 발명의 기술의 범위 내에서 적절히 변경이 가능하다. 요컨대, 이른바 당업자가 필요에 응하여 이루는 다양한 변경, 응용, 이용의 범위도 본 발명의 요지(기술적 범위)에 포함하는 것을 만약을 위해 첨언한다.Although the present invention has been described above based on the embodiments, the present invention is not limited to the configuration of the above-described embodiments. For example, refrigerant circuit elements such as a flow path configuration (pipe connection) of a refrigerant, a compressor 2, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion mechanism 5, and an indoor heat exchanger 6 The contents of the configuration and the like are not limited to those described in the embodiments, and can be appropriately changed within the scope of the technology of the present invention. In short, it is noted that the scope of the present invention (technical scope) also includes various changes, applications, and ranges of use made by a person skilled in the art according to needs.

1 : 냉동 장치
2 : 압축기
3 : 4방전환밸브
4 : 실외 열교환기
5 : 팽창기구
6 : 실내 열교환기
7 : 실외 송풍기
8 : 실내 송풍기
9 : 어큐뮬레이터
1: Refrigeration unit
2: Compressor
3: 4-way switching valve
4: outdoor heat exchanger
5: expansion mechanism
6: Indoor heat exchanger
7: outdoor blower
8: Indoor blower
9: accumulator

Claims (10)

압축기, 응축기, 팽창기구 및 증발기를 냉매 배관으로 접속하여 냉매를 순환시키는 냉매 회로를 구비한 냉동 장치로서,
상기 냉매는, HFO계 냉매를 적어도 10중량% 이상과, HFC계 냉매를 적어도 50중량% 이상을 포함하고,
상기 압축기의 활주부를 윤활하는 냉동기유에는, 첨가량이 0.1중량%부터 1.0중량%인 산포착제가 배합되어 있는 것을 특징으로 하는 냉동 장치.
A refrigeration system having a refrigerant circuit that circulates refrigerant by connecting a compressor, a condenser, an expansion mechanism, and an evaporator to a refrigerant pipe,
The refrigerant includes at least 10% by weight of HFO-based refrigerant and at least 50% by weight of HFC-based refrigerant,
The refrigerating device, characterized in that the refrigerating machine oil lubricating the sliding portion of the compressor contains an acid scavenger having an added amount of 0.1% to 1.0% by weight.
제1항에 있어서,
상기 산포착제는, 첨가량이 0.2중량% 이상인 것을 특징으로 하는 냉동 장치.
According to claim 1,
The scavenger is a refrigeration device, characterized in that the addition amount is 0.2% by weight or more.
제1항 또는 제2항에 있어서,
상기 냉동기유에는, 극압제가 배합되어 있는 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
A refrigerating device, characterized in that an extreme pressure agent is mixed with the refrigerating machine oil.
제1항 또는 제2항에 있어서,
상기 냉동기유에는, 산화 방지제가 배합되어 있는 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
The refrigerating machine is characterized in that an antioxidant is blended in the refrigerating machine oil.
제1항 또는 제2항에 있어서,
상기 냉동기유에는, 폴리비닐에테르유가 포함되어 있는 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
The refrigerating machine comprises a polyvinyl ether oil.
제1항 또는 제2항에 있어서,
상기 냉동기유에는, 폴리올에스테르류가 포함되어 있는 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
Refrigerating apparatus, characterized in that the freezer oil contains polyol esters.
제1항 또는 제2항에 있어서,
상기 냉동기유에는, 알킬벤젠유가 포함되어 있는 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
The refrigerating machine comprises an alkylbenzene oil.
제1항 또는 제2항에 있어서,
상기 HFO계 냉매는, 적어도 HFO-1234yf, 또는 HFO-1234ze(E)인 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
The HFO-based refrigerant, at least HFO-1234yf, or HFO-1234ze (E), characterized in that the refrigeration apparatus.
제1항 또는 제2항에 있어서,
상기 HFC계 냉매는, R32인 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
The HFC refrigerant is a refrigeration device, characterized in that R32.
제1항 또는 제2항에 있어서,
상기 냉매는, 지구 온난화 계수가 1000 이하인 것을 특징으로 하는 냉동 장치.
The method according to claim 1 or 2,
The refrigerant is a refrigeration device, characterized in that the global warming coefficient is 1000 or less.
KR1020187022111A 2016-02-24 2016-02-24 Refrigeration unit KR102103225B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055350 WO2017145278A1 (en) 2016-02-24 2016-02-24 Refrigeration device

Publications (2)

Publication Number Publication Date
KR20180099850A KR20180099850A (en) 2018-09-05
KR102103225B1 true KR102103225B1 (en) 2020-04-22

Family

ID=59684881

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187022111A KR102103225B1 (en) 2016-02-24 2016-02-24 Refrigeration unit

Country Status (5)

Country Link
JP (1) JPWO2017145278A1 (en)
KR (1) KR102103225B1 (en)
CN (1) CN108700339A (en)
CZ (1) CZ309434B6 (en)
WO (1) WO2017145278A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019221178A1 (en) * 2018-05-18 2021-07-08 ダイキン工業株式会社 Refrigeration cycle equipment
WO2020039692A1 (en) * 2018-08-20 2020-02-27 ダイキン工業株式会社 Refrigeration cycle device
WO2021153137A1 (en) * 2020-01-31 2021-08-05 ダイキン工業株式会社 Method for replacing refrigerant in refrigeration device, refrigerator oil, and container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052032A (en) * 2009-08-31 2011-03-17 Hitachi Appliances Inc Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2015061926A (en) * 2012-10-31 2015-04-02 ダイキン工業株式会社 Refrigeration device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129179A (en) * 2000-10-24 2002-05-09 Mitsubishi Electric Corp Refrigerator
JP2009222361A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
JP5248960B2 (en) * 2008-09-12 2013-07-31 Jx日鉱日石エネルギー株式会社 Refrigerator oil, working fluid for refrigerator, and refrigerator
WO2010029704A1 (en) * 2008-09-09 2010-03-18 株式会社ジャパンエナジー Refrigerator oil for refrigerant 2,3,3,3-tetrafluoro-1-propene
JP2010203759A (en) * 2009-02-04 2010-09-16 Panasonic Corp Freezer
JP5466555B2 (en) 2010-03-25 2014-04-09 出光興産株式会社 Lubricating oil composition for refrigerator
JP5577831B2 (en) * 2010-05-10 2014-08-27 株式会社ブリヂストン Lubricating oil composition for refrigerator
JP2012031239A (en) * 2010-07-29 2012-02-16 Hitachi Appliances Inc Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus
JP2012057812A (en) * 2010-09-06 2012-03-22 Hitachi Appliances Inc Refrigerant compressor and freezing cycle
JP5562920B2 (en) * 2011-09-30 2014-07-30 日立アプライアンス株式会社 Compressor for refrigeration and air-conditioning equipment
JP5989989B2 (en) * 2011-12-27 2016-09-07 日本サン石油株式会社 Refrigerator oil composition
CN104039939A (en) * 2011-12-27 2014-09-10 日本太阳石油株式会社 Refrigerator oil composition
PL3425018T3 (en) * 2012-02-13 2020-06-01 The Chemours Company Fc, Llc Refrigerant mixtures comprising tetrafluoropropene, difluoromethane, pentafluoroethane, and tetrafluoroethane and uses thereof
JP2015014395A (en) * 2013-07-04 2015-01-22 日立アプライアンス株式会社 Air conditioner
JP6224965B2 (en) * 2013-09-12 2017-11-01 出光興産株式会社 Mixing composition for refrigerator
JP2015117923A (en) * 2013-12-20 2015-06-25 日立アプライアンス株式会社 Air conditioner
EP3109302B1 (en) * 2014-02-20 2020-08-05 AGC Inc. Composition for heat cycle system, and heat cycle system
JP2016027296A (en) * 2014-07-02 2016-02-18 旭硝子株式会社 Heat cycle system
JP2016033426A (en) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 Air conditioner
CN105331422A (en) * 2014-08-08 2016-02-17 百达精密化学股份有限公司 High-performance refrigeration lubricating oil composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052032A (en) * 2009-08-31 2011-03-17 Hitachi Appliances Inc Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2015061926A (en) * 2012-10-31 2015-04-02 ダイキン工業株式会社 Refrigeration device

Also Published As

Publication number Publication date
CZ2018419A3 (en) 2018-10-24
CZ309434B6 (en) 2023-01-11
CN108700339A (en) 2018-10-23
WO2017145278A1 (en) 2017-08-31
JPWO2017145278A1 (en) 2018-10-11
KR20180099850A (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP7029095B2 (en) Refrigeration equipment
CN114659288B (en) Refrigeration cycle device
KR102103225B1 (en) Refrigeration unit
JP6736910B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant