KR102086053B1 - 고흡수성 수지 및 이의 제조 방법 - Google Patents
고흡수성 수지 및 이의 제조 방법 Download PDFInfo
- Publication number
- KR102086053B1 KR102086053B1 KR1020160169387A KR20160169387A KR102086053B1 KR 102086053 B1 KR102086053 B1 KR 102086053B1 KR 1020160169387 A KR1020160169387 A KR 1020160169387A KR 20160169387 A KR20160169387 A KR 20160169387A KR 102086053 B1 KR102086053 B1 KR 102086053B1
- Authority
- KR
- South Korea
- Prior art keywords
- polymer
- super absorbent
- weight
- absorbent polymer
- peo
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/245—Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3021—Milling, crushing or grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
- B01J20/3064—Addition of pore forming agents, e.g. pore inducing or porogenic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/06—Ethers; Acetals; Ketals; Ortho-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/14—Water soluble or water swellable polymers, e.g. aqueous gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
본 발명에 따른 고흡수성 수지는, 높은 투수성과 흡인력을 가지면서도, 흡수 속도가 빠르므로, 기저귀 등 위생재에 사용되어 우수한 성능을 발현할 수 있다.
Description
본 발명은 높은 투수성과 흡인력을 가지면서도, 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생용품 외에 원예용 토양 보수재, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지재, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재 내에서, 상기 고흡수성 수지는 펄프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 펄프리스(pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다.
이와 같이, 펄프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되며, 이러한 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능 및 흡수 속도를 나타낼 필요가 있다.
이를 위하여, 종래 고흡수성 수지는 내부 가교도를 낮게 하고 표면 가교도를 높이는 방법을 사용하고 있다. 그러나, 상기 방법은 흡수 속도가 증가하는 측면이 있으나, 흡수된 액체로 고흡수성 수지가 팽윤한 이후에, 고흡수성 수지의 표면에 액체가 존재하게 되어, 착용감이 저하되고 피부 발진 등의 한 원인이 된다.
이와 같이, 고흡수성 수지가 액체를 흡수한 이후에 표면에 액체가 존재하지 않는 정도를 건조도(dryness)라고 하며, 따라서 고흡수성 수지의 흡수 성능 및 흡수 속도를 저해하지 않으면서 건조도가 우수한 고흡수성 수지의 개발이 요구되고 있다.
본 발명은 높은 투수성과 흡인력을 가지면서도, 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기의 고흡수성 수지를 제공한다:
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및
상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,
투수성(permeability)이 55초 이하이고,
흡인력(suction power)이 15 g/g 이상이고,
흡수 속도(vortex)가 40초 이하인,
고흡수성 수지.
상기와 같이, 본 발명에 따른 고흡수성 수지는 높은 투수성과 흡인력을 가지면서도, 흡수 속도가 빠르다는 특징이 있다. 상기와 같은 고흡수성 수지는 후술할 바와 같이, 고흡수성 수지의 제조 조건을 조절함으로써 가능하다.
이하 본 발명을 상세히 설명한다.
고흡수성 수지
상기 제1 가교 중합체를 구성하는 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
R1-COOM1
상기 화학식 1에서,
R1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
바람직하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산 또는 2-(메타)아크릴아미드-2-메틸 프로판 술폰산, (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트, 폴리에틸렌 글리콜 (메트)아크릴레이트, (N,N)-디메틸아미노에틸 (메트)아크릴레이트, (N,N)-디메틸아미노프로필 (메트)아크릴아미드 등이 사용될 수 있다.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.
이때, 상기 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
상기 제2 가교 중합체는 상기 베이스 수지 분말의 표면이 표면 가교제를 매개로 추가 가교된 것으로, 표면 가교제 및 표면 가교 방법은 후술하기로 한다.
한편, 본 발명에 따른 고흡수성 수지는, 투수성(permeability)이 55초 이하이다. 상기 투수성은 고흡수성 수지 표면에 흡수된 액체가 고흡수성 수지의 내부 또는 다른 고흡수성 수지에 이동되는 정도를 의미한다. 상기 투수성의 측정 방법은, 이하 실시예에서 보다 구체화한다. 바람직하게는, 상기 투수성은 54초 이하, 53초 이하, 52초 이하, 51초 이하, 또는 50초 이하이다. 또한, 상기 투수성은 그 값이 작을수록 우수하여, 하한의 이론적인 값은 0초이나, 일례로 20초 이상, 21초 이상, 22초 이상, 23초 이상, 24초 이상, 또는 25초 이상이다.
또한, 본 발명에 따른 고흡수성 수지는, 흡인력(suction power)이 15 g/g 이상이다. 상기 흡인력은 고흡수성 수지가 수분을 끌어오는 능력을 의미한다. 상기 흡인력의 측정 방법은, 이하 실시예에서 보다 구체화한다. 바람직하게는, 상기 흡인력은 16 g/g 이상, 또는 17 g/g 이상이다. 또한, 상기 흡인력은 그 값이 클수록 우수하여, 실질적인 상한의 제한은 없으나, 25 g/g 이하, 24 g/g 이하, 23 g/g 이하, 22 g/g 이하, 21 g/g 이하, 또는 20 g/g 이하이다.
또한, 본 발명에 따른 고흡수성 수지는, 흡수 속도(vortex)가 40초 이하이다. 상기 흡수 속도는 생리 식염수에 고흡수성 수지를 가하여 교반시켰을 때, 빠른 흡수에 의해 액체의 소용돌이(vortex)가 없어지는 시간을 의미하는 것으로서, 상기 고흡수성 수지의 빠른 흡수 속도를 정의할 수 있다. 상기 흡수 속도의 측정 방법은, 이하 실시예에서 보다 구체화한다. 바람직하게는, 상기 흡수 속도가 39초 이하, 38초 이하, 37초 이하, 36초 이하, 또는 35초 이하이다. 또한, 그 값이 작을수록 우수하여 상기 흡수 속도의 하한은 이론상 0초이나, 일례로 10초 이상, 20초 이상, 21초 이상, 22초 이상, 23초 이상, 24초 이상, 또는 25초 이상이다.
또한, 본 발명에 따른 고흡수성 수지는, 원심분리 보수능(CRC)가 30 g/g 이상이다. 상기 원심분리 보수능은 고흡수성 수지가 흡수할 수 있는 액체의 양을 의미한다. 상기 원심분리 보수능의 측정 방법은, 이하 실시예에서 보다 구체화 한다. 바람직하게는, 상기 원심분리 보수능은 31 g/g 이상, 32 g/g 이상, 또는 33 g/g 이상이다. 또한, 그 값이 높을수록 우수하여 실질적인 상한의 제한은 없으나, 일례로 40 g/g 이하, 39 g/g 이하, 또는 38 g/g 이하이다.
또한, 바람직하게는, 본 발명에 따른 고흡수성 수지는, 0.7 psi 하에서 1시간 동안의 가압 흡수능(0.7 AUP)이 25 g/g 이상이다. 상기 가압 흡수능은 고흡수성 수지에 일정한 압력이 가하여진 상태에서 흡수할 수 있는 액체의 양을 의미한다. 상기 가압 흡수능의 측정 방법은, 이하 실시예에서 보다 구체화한다. 바람직하게는, 상기 0.7 AUP는 16 g/g 이상, 또는 17 g/g 이상이다. 또한, 그 값이 높을수록 우수하여 실질적인 상한의 제한은 없으나, 일례로 30 g/g 이하, 29 g/g 이하, 28 g/g 이하, 27 g/g 이하, 26 g/g 이하, 또는 25 g/g 이하이다.
고흡수성 수지의 제조 방법
본 발명은 상술한 고흡수성 수지의 제조 방법으로, 하기의 단계를 포함하는 제조 방법을 제공한다:
발포제, 기포 안정제, 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하여 고흡수성 수지 입자를 형성하는 단계를 포함하고,
상기 기포 안정제는 슈가 에스터(sugar ester) 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드(PEO-PPO-PEO)를 포함하는,
고흡수성 수지의 제조 방법.
이하, 각 단계 별로 상기의 제조 방법을 상세히 설명한다.
(단계 1)
상기 단계 1은, 함수겔 중합체를 형성하는 단계로서, 발포제, 기포 안정제, 및 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하는 단량체 조성물을 가교 중합하는 단계이다.
이때 상기 수용성 에틸렌계 불포화 단량체는 앞서 설명한 바와 같다. 또한, 상기 단량체 조성물 중 상기 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 20 내지 90 중량%, 또는 40 내지 65 중량%일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반응에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다.
또한, 상기 발포제는 중합시 발포가 일어나 함수겔 중합체 내 기공을 형성하여 표면적을 늘리는 역할을 한다. 상기 발포제는 탄산염을 사용할 수 있으며, 일례로 소디움 비카보네이트(sodium bicarbonate), 소디움 카보네이트(sodium carbonate), 포타슘 비카보네이트(potassium bicarbonate), 포타슘 카보네이트(potassium carbonate), 칼슘 비카보네이트(calcium bicarbonate), 칼슘 카보네이트(calcium bicarbonate), 마그네슘 비카보네이트(magnesiumbicarbonate) 또는 마그네슘 카보네이트(magnesium carbonate)를 사용할 수 있다.
또한, 상기 발포제는 상기 수용성 에틸렌계 불포화 단량체 중량 대비 1500 ppmw 이하로 사용하는 것이 바람직하다. 상기 발포제의 사용량이 1500 ppmw를 초과할 경우에는 기공이 너무 많아져 고흡수성 수지의 겔 강도가 떨어지고 밀도가 작아져 유통과 보관에 문제를 초래할 수 있다. 또한, 상기 발포제는 상기 수용성 에틸렌계 불포화 단량체 중량 대비 500 ppmw 이상, 또는 1000 ppmw 이상으로 사용하는 것이 바람직하다.
또한, 상기 기포 안정제는 발포제로 인하여 형성된 기포의 형태를 유지하면서 동시에 중합체 전 영역에 기포를 균일하게 분포시키는 역할을 하는 것으로 중합체의 표면적을 늘리는 역할을 한다.
바람직하게는, 상기 기포 안정제로 슈가 에스터(sugar ester) 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드(PEO-PPO-PEO)를 사용한다. 상기 슈가 에스터로는 수크로스 스테아레이트(sucrose stearate), 또는 수크로스 이소부티레이트(sucrose isobutylate)를 사용할 수 있다.
또한, 상기 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드(PEO-PPO-PEO)는 삼원블록 공중합체로서, 바람직하게는 중량평균분자량이 1,000 내지 10,000인 것을 사용한다.
또한, 상기 슈가 에스터(sugar ester) 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드(PEO-PPO-PEO)는 1:1 내지 1:20의 중량비로 사용하는 것이 바람직하다. 또한, 상기 기포 안정제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다.
또한, 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 내부 가교제는 N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜(메트)아크릴레이트, 프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜(메트)아크릴레이트, 부탄다이올다이(메트)아크릴레이트, 부틸렌글리콜다이(메트)아크릴레이트, 다이에틸렌글리콜 다이(메트)아크릴레이트, 헥산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다. 바람직하게는, 분자량이 서로 상이한 폴리에틸렌글리콜 디아크릴레이트 2종을 사용한다.
이러한 내부 가교제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다.
또한, 상기 단계 1에서, 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 포함될 수 있다. 비제한적인 예로, 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있으며, 특히 열 중합 개시제가 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 열 중합 개시제가 추가로 포함될 수 있다.
상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등을 예로 들 수 있다. 또한, 아조(Azo)계 개시제로는 2,2-아조비스-(2-아미디노프로판)이염산염(2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. 바람직하게는, 상기 열 중합 개시제로 과산화수소, 아스코르빈산, 및 과황산칼륨을 사용한다.
상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)"의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다.
이러한 중합 개시제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 상기 범위 보다 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.
이 밖에도, 상기 단량체 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.
그리고, 이러한 단량체 조성물은 전술한 단량체 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일렌, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트, N,N-디메틸아세트아미드, 또는 이들의 혼합물 등이 사용될 수 있다.
그리고, 상기 단량체 조성물의 중합을 통한 함수겔상 중합체의 형성은 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반응기에서 진행될 수 있다.
일 예로, 교반축이 구비된 니더와 같은 반응기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔상 중합체는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 2 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다.
그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반응기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔상 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 5 cm의 두께로 조절되는 것이 바람직하다.
이때 이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 40 내지 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.
(단계 2)
상기 단계 2는, 상기 단계 1에서 제조한 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계로서, 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지는 150 내지 850 ㎛의 입경을 갖도록 제조 및 제공됨이 적절하다. 보다 구체적으로, 상기 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지의 적어도 95 중량% 이상이 150 내지 850 ㎛의 입경을 가지며, 150 ㎛ 미만의 입경을 갖는 미분이 3 중량% 미만으로 될 수 있다. 이와 같이 상기 베이스 수지 분말 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 최종 제조된 고흡수성 수지가 이미 상술한 물성을 보다 잘 발현할 수 있다.
한편, 상기 건조, 분쇄 및 분급의 진행 방법에 대해 보다 구체적으로 설명하면 다음과 같다.
먼저, 함수겔상 중합체를 건조함에 있어서는, 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다. 이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 조분쇄 단계는 함수겔 중합체의 입경이 약 2 mm 내지 약 10 mm로 되도록 분쇄할 수 있다. 입경이 2 mm 미만으로 분쇄하는 것은 함수겔 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10 mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 50 내지 250℃일 수 있다. 건조 온도가 50℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 보다 바람직하게 상기 건조는 150 내지 200℃의 온도에서, 더욱 바람직하게는 160 내지 190℃의 온도에서 진행될 수 있다. 한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 20분 내지 15시간 동안 진행될 수 있으나, 이에 한정되지는 않는다.
상기 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 0.05 내지 10 중량%일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850 ㎛일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 볼 밀(ball mill), 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 150 내지 850 ㎛인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 후술할 표면 가교 반응 단계를 거쳐 제품화할 수 있다.
또한, 상기 제조되는 베이스 수지 분말의 원심분리 보수능(CRC)이 39 내지 45 g/g이고, 흡수 속도(vortex)가 30 내지 40초인 것이 바람직하다.
(단계 3)
상기 단계 3은, 상기 단계 2에서 제조한 베이스 수지의 표면을 가교하는 단계로서, 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하여 고흡수성 수지 입자를 형성하는 단계이다.
여기서, 상기 표면 가교액에 포함되는 표면 가교제의 종류는 특별히 제한되지 않는다. 비제한적인 예로, 상기 표면 가교제는 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세롤 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 및 폴리프로필렌 글리콜 디글리시딜 에테르 선택된 1종 이상의 화합물일 수 있다. 바람직하게는, 상기 표면가교제로 에틸렌글리콜 디글리시딜에테르를 사용한다.
이때, 상기 표면 가교제의 함량은, 상기 베이스 수지 100 중량부에 대하여 3.5 중량부 이하로 사용하는 것이 바람직하다. 상기 표면 가교제의 함량이 3.5 중량부를 초과하게 되면 과도한 표면 가교가 진행되어, 고흡수성 수지가 물을 흡수할 경우 표면에 수분이 많이 존재하게 되어 건조도가 낮아지는 문제가 있다. 또한, 상기 표면 가교제의 함량은, 상기 베이스 수지 100 중량부에 대하여 0.01 중량부 이상, 0.02 중량부 이상, 0.03 중량부 이상, 0.04 중량부 이상, 또는 0.05 중량부 이상 사용하는 것이 바람직하다.
또한, 상기 표면 가교액은 물을 포함하며, 이때 물의 함량은 상기 베이스 수지 분말 100 중량부 대비 0.5 내지 10 중량부로 사용한다.
또한, 상기 표면 가교액은 무기 충전제를 포함할 수 있다. 상기 무기 충전제로는 실리카, 알루미늄 옥사이드, 또는 실리케이트를 포함할 수 있다. 상기 무기 충전제는 상기 베이스 수지 분말의 100 중량부를 기준으로, 0.01 내지 0.5 중량부로 포함될 수 있다.
또한, 상기 표면 가교액은 증점제를 추가로 포함할 수 있다. 이렇게 증점제 존재 하에 베이스 수지 분말의 표면을 추가로 가교하면 분쇄 후에도 물성 저하를 최소화할 수 있다. 구체적으로, 상기 증점제로는 다당류 및 히드록시 함유 고분자 중 선택된 1 종 이상이 사용될 수 있다. 상기 다당류로는 검 계열 증점제와 셀룰로오스 계열 증점제 등이 사용될 수 있다. 상기 검 계열 증점제의 구체적인 예로는, 잔탄 검(xanthan gum), 아라빅 검(arabic gum), 카라야 검(karaya gum), 트래거캔스 검(tragacanth gum), 가티 검(ghatti gum), 구아 검(guar gum), 로커스트 빈 검(locust bean gum) 및 사일리움 씨드 검(psyllium seed gum) 등을 들 수 있고, 상기 셀룰로오스 계열 증점제의 구체적인 예로는, 히드록시프로필메틸셀룰로오스, 카르복시메틸셀룰로오스, 메틸셀룰로오스, 히드록시메틸셀룰로오스, 히드록시에틸셀룰로오스, 히드록시프로필셀룰로오스, 히드록시에틸메틸셀룰로오스, 히드록시메틸프로필셀룰로오스, 히드록시에틸히드록시프로필셀룰로오스, 에틸히드록시에틸셀룰로오스 및 메틸히드록시프로필셀룰로오스 등을 들 수 있다. 한편, 상기 히드록시 함유 고분자의 구체적인 예로는 폴리에틸렌글리콜 및 폴리비닐알코올 등을 들 수 있다.
한편, 상기 표면 가교를 수행하기 위해서는, 상기 표면 가교액과 상기 베이스 수지를 반응조에 넣고 혼합하는 방법, 상기 베이스 수지에 표면 가교 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 상기 베이스 수지와 표면 가교액을 연속적으로 공급하여 혼합하는 방법 등이 이용될 수 있다.
그리고, 상기 표면 가교는 175 내지 200℃의 온도 하에서 진행될 수 있으며, 비교적 고온으로 진행되는 상기 건조 및 분쇄 단계 이후에 연속적으로 이루어질 수 있다. 보다 바람직하게는, 180 내지 195℃의 온도 하에서 진행될 수 있다.
이때. 상기 표면 가교 반응은 1 내지 120분, 또는 1 내지 100분, 또는 10 내지 60분 동안 진행될 수 있다. 즉, 최소 한도의 표면 가교 반응을 유도하면서도 과도한 반응시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반응의 조건으로 진행될 수 있다.
상술한 바와 같이, 본 발명에 따른 고흡수성 수지는, 높은 투수성과 흡인력을 가지면서도, 흡수 속도가 빠르므로, 기저귀 등 위생재에 사용되어 우수한 성능을 발현할 수 있다.
도 1은, 본 발명의 일 구현예에 따른 흡인력(suction power)의 측정 장치의 일례를 나타낸 것이다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
실시예
1
(1) 베이스 수지의 제조
아크릴산 100 중량부, 50% 가성소다(NaOH) 83.3 중량부, 물 89.8 중량부, 및 하기의 성분들을 혼합하여 모노머 수용액을 제조하였다.
- 가교제: 폴리에틸렌글리콜디아크릴레이트(PEGDA; Mw=400) 0.27 중량부(2700 ppmw) 및 폴리에틸렌글리콜디아크릴레이트(PEGDA; Mw=200) 0.054 중량부(540 ppmw)
- 중합 개시제: 과산화수소(H202) 0.02 중량부(300 ppmw), 아스코르브산 0.05 중량부(500 ppmw), 과황산칼륨(KPS) 0.2 중량부(2000 ppmw)
- 발포제: 소디움 비카보네이트(SBC) 0.1 중량부(1000 ppmw)
- 계면 활성제: 수크로스 스테아레이트(S1670) 0.032 중량부(320 ppmw), 및 LPE(PEO-PPO-PEO, Mw: 2550) 0.16 중량부(1600 ppmw)
상기 모노머 수용액으로 열중합 반응을 진행하여 중합된 시트를 얻었다. 중합된 시트를 꺼내어 3 cm × 3 cm의 크기로 자른 후, 미트 쵸퍼(meat chopper)를 이용하여 다지기 공정(chopping)을 실시하여 가루(crumb)를 제조하였다. 상기 가루(crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 180℃의 핫 에어(hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하게 되도록 하였다. 건조 후, 분쇄기로 분쇄한 다음 분급하여 입경이 150 내지 850 ㎛인 것을 선별하여 베이스 수지를 제조하였다.
(2) 고흡수성 수지의 제조
상기 제조한 베이스 수지 100 중량부에 대하여, 물 4 중량부, 메탄올 4 중량부, 에틸렌글리콜 디글리시딜 에테르(ethyleneglycol diglycidyl ether) 0.3 중량부, 실리카(Aerosil 200) 0.06 중량부, 및 옥살산 0.2 중량부를 첨가하여 혼합한 다음, 표면가교 온도로 180℃에서 40분 동안 반응시키고, 분쇄 후 시브(sieve)를 이용하여 입경이 150 내지 850 ㎛의 표면 처리된 고흡수성 수지를 얻었다.
실시예
2
상기 실시예 1과 동일한 방법으로 제조하되, 고흡수성 수지 제조시 표면가교 온도를 195℃로 하여, 고흡수성 수지를 얻었다.
비교예
1
상기 실시예 1과 동일한 방법으로 제조하되, 고흡수성 수지 제조시 표면가교 온도를 140℃로 하여, 고흡수성 수지를 얻었다.
비교예
2
상기 실시예 1과 동일한 방법으로 제조하되, 고흡수성 수지 제조시 표면가교 온도를 160℃로 하여, 고흡수성 수지를 얻었다.
비교예
3
상기 실시예 1과 동일한 방법으로 제조하되, 상기 베이스 수지 제조시 계면활성제로 수크로스 스테아레이트(S1670) 0.032 중량부(320 ppmw)를 사용하고(LPE 미사용), 고흡수성 수지 제조시 표면가교 온도를 140℃로 하여, 고흡수성 수지를 얻었다.
실험예
: 고흡수성 수지의 물성 평가
상기 실시예 및 비교예에서 제조한 고흡수성 수지의 물성을 이하의 방법으로 평가하였다.
(1) 흡수 속도(Vortex)
100 mL 비커에, 0.9 중량%의 NaCl 용액 50 mL를 넣은 후, 교반기를 이용하여 600 rpm로 교반하면서, 상기 실시예 및 비교예에서 제조한 고흡수성 수지 2 g를 각각 첨가하였다. 그리고, 교반에 의해 생기는 액체의 소용돌이(vortex)가 없어져, 매끄러운 표면이 생길 때까지의 시간을 측정하고, 그 결과를 볼텍스 제거 시간(흡수 속도; vortex)으로 나타내었다.
또한, 실시예 및 비교예 제조 과정에서 각 제조되는 베이스 수지에 대해서도 상기와 동일한 방법으로 흡수속도(BR Vortex)를 측정하였다.
(2) 흡인력(Suction Power;
SP
)
도 1과 같은 측정 기구로 흡인력을 측정하였다. 구체적으로, 측정 기구의 오른편에 내경 20 mm의 유리관 0 mL 눈금까지 염수(0.9% NaCl)를 채웠다. 측정 기구의 왼편에 내경 50 mm 원기둥형 깔대기 바닥에는 100 마이크로미터 glass filter를 장착하고, 23℃, 상대 습도 50%의 조건 하에서 glass filter상에 고흡수성 수지 1.0 g을 균일하게 살포하였다. 고흡수성 수지를 살포함과 동시에 측정 기구의 뷰렛의 콕을 열고 5분간 고흡수성 수지 1 g이 흡수한 염수량(g)을 측정하였다.
(3) 원심분리
보수능
(Centrifuge Retention Capacity,
CRC
)
유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 실시예 및 비교예의 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능(CRC)을 측정하였다.
구체적으로, 실시예 및 비교예의 수지 W0(g, 약 0.2 g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후에, 상온에 0.9 중량%의 염화 나트륨 수용액으로 되는 생리 식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정하였다. 또한 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정했다.
이렇게 얻어진 각 질량을 이용하여 하기 수학식 1에 따라 CRC(g/g)를 산출하였다.
[수학식 1]
CRC(g/g) = {[W2(g) - W1(g) - W0(g)]/W0(g)}
상기 수학식 1에서,
W0(g)는 고흡수성 수지의 초기 무게(g)이고, W1(g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다.
또한, 실시예 및 비교예 제조 과정에서 각 제조되는 베이스 수지에 대해서도 상기와 동일한 방법으로 CRC(BR CRC)를 측정하였다.
(4) 가압
흡수능
(Absorbing under Pressure,
AUP
)
유럽부직포산업협회(European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3의 방법에 따라, 실시예 및 비교예의 고흡수성 수지의 가압 흡수능(AUP: Absorbency under Pressure)을 측정하였다.
구체적으로, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23±2℃의 온도 및 45%의 상대 습도 조건하에서 철망상에 실시예 및 비교예에서 얻어진 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 0.7 psi의 하중을 균일하게 더 부여할 수 있는 피스톤(piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 120 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
이렇게 얻어진 각 질량을 이용하여 하기 수학식 2에 따라 AUP(g/g)를 산출하였다.
[수학식 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g)
상기 수학식 2에서,
W0(g)는 고흡수성 수지의 초기 무게(g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중(0.9 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(5) 투수성(Permeability)
크로마토그래피 관(F20mm)에 피스톤을 넣은 상태에서의 액량 20 mL 및 40 mL의 액면에 선을 표시하였다. 이후, 크로마토그래피 관 하부 glass 필터와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10 mL를 채우고 염수로 2~3회 세척하고, 40 mL 이상까지 0.9% 염수를 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부 밸브를 열어 액면이 40 mL에서 20 mL 표시선까지 줄어드는 시간(B)을 기록하였다.
크로마토그래피 관에 염수를 10 mL 남기고, 분급(30# ~ 50#)된 시료 0.2±0.0005 g을 넣고 염수를 가하여 염수 부피가 50 mL가 되게 한 후, 30분 간 방치하였다. 그 후, 크로마토그래피 관 내에 추가 달린 피스톤(0.3 psi = 106.26 g)을 넣고 1분 간 방치 후, 크로마토그래피 관 하부 밸브를 열어 액면이 40 mL에서 20 mL 표시선까지 줄어드는 시간(T1)을 기록하여, 투수성(T1 - B의 시간)을 측정하였다.
상기 측정한 결과를 하기 표 1에 나타내었다.
계면활성제 | 베이스 수지 물성 | 표면가교온도 (℃) |
고흡수성 수지 물성 | |||||||
S1670 (ppmw) |
LPE (ppmw) |
CRC (g/g) |
Vortex (sec) |
Vortex (sec) |
SP (g) |
CRC (g/g) |
AUP (g/g) |
투수성 (sec) |
||
실시예 1 | 160 | 1600 | 40.4 | 35 | 180 | 31 | 17 | 35 | 17 | 49 |
실시예 2 | 160 | 1600 | 40.4 | 35 | 195 | 30 | 18 | 34 | 20 | 47 |
비교예 1 | 160 | 1600 | 40.4 | 35 | 140 | 35 | 14 | 36 | 12 | 50 |
비교예 2 | 160 | 1600 | 40.4 | 35 | 160 | 34 | 17 | 36 | 16 | 52 |
비교예 3 | 320 | - | 38.6 | 43 | 140 | 35 | 13 | 33 | 15 | 65 |
상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예의 경우 높은 투수성과 흡인력을 가지면서도, 흡수 속도가 빠름을 확인할 수 있었다. 반면, 비교예 1 및 2와 같이 동일한 베이스 수지를 사용한 경우에도 표면가교 온도가 낮아 실시예 수준의 물성을 나타내지 못하였다. 또한, 비교예 3과 같이, 계면활성제 사용량의 차이로 인하여 투수성과 흡인력이 매우 낮게 나타났음을 확인할 수 있었다.
Claims (11)
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 발포제, 기포 안정제, 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하여 고흡수성 수지 입자를 형성하는 단계를 포함하고,
상기 기포 안정제는 슈가 에스터(sugar ester) 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드(PEO-PPO-PEO)를 포함하는,
고흡수성 수지의 제조 방법.
- 제7항에 있어서,
상기 슈가 에스터는 수크로스 스테아레이트(sucrose stearate), 또는 수크로스 이소부티레이트(sucrose isobutylate)인,
고흡수성 수지의 제조 방법.
- 제7항에 있어서,
상기 슈가 에스터(sugar ester) 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드(PEO-PPO-PEO)는 1:1 내지 1:20의 중량비로 사용하는,
고흡수성 수지의 제조 방법.
- 제7항에 있어서,
상기 표면 가교액은 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세롤 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 및 폴리프로필렌 글리콜 디글리시딜 에테르로 이루어진 군으로부터 선택된 1종 이상의 표면 가교제를 포함하는,
고흡수성 수지의 제조 방법.
- 제7항에 있어서,
상기 열처리 온도는 175 내지 200℃인,
고흡수성 수지의 제조 방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160169387A KR102086053B1 (ko) | 2016-12-13 | 2016-12-13 | 고흡수성 수지 및 이의 제조 방법 |
PCT/KR2016/015415 WO2018110759A1 (ko) | 2016-12-13 | 2016-12-28 | 고흡수성 수지 및 이의 제조 방법 |
CN201680084403.6A CN108884235B (zh) | 2016-12-13 | 2016-12-28 | 超吸收性聚合物和用于制造其的方法 |
EP16923926.6A EP3412709B1 (en) | 2016-12-13 | 2016-12-28 | Method for manufacturing a superabsorbent poylmer |
US16/091,197 US10814307B2 (en) | 2016-12-13 | 2016-12-28 | Super absorbent polymer and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160169387A KR102086053B1 (ko) | 2016-12-13 | 2016-12-13 | 고흡수성 수지 및 이의 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180067942A KR20180067942A (ko) | 2018-06-21 |
KR102086053B1 true KR102086053B1 (ko) | 2020-03-06 |
Family
ID=62558727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160169387A KR102086053B1 (ko) | 2016-12-13 | 2016-12-13 | 고흡수성 수지 및 이의 제조 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10814307B2 (ko) |
EP (1) | EP3412709B1 (ko) |
KR (1) | KR102086053B1 (ko) |
CN (1) | CN108884235B (ko) |
WO (1) | WO2018110759A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102086053B1 (ko) | 2016-12-13 | 2020-03-06 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
KR102102459B1 (ko) * | 2016-12-20 | 2020-04-20 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
KR102086050B1 (ko) | 2016-12-20 | 2020-03-06 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
KR102418591B1 (ko) * | 2018-11-13 | 2022-07-07 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
EP3753976B1 (en) * | 2018-11-13 | 2023-08-30 | Lg Chem, Ltd. | Method for preparing super absorbent polymer |
KR102648697B1 (ko) * | 2018-12-17 | 2024-03-15 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 및 고흡수성 수지 |
KR102680697B1 (ko) * | 2018-12-20 | 2024-07-01 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
KR102457690B1 (ko) * | 2019-01-17 | 2022-10-21 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006342306A (ja) | 2005-06-10 | 2006-12-21 | Sumitomo Seika Chem Co Ltd | 多孔質吸水性ポリマー粒子の製造法 |
JP2013511610A (ja) * | 2009-11-23 | 2013-04-04 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー発泡体の製造方法 |
US20160354757A1 (en) | 2014-11-27 | 2016-12-08 | Lg Chem, Ltd. | Superabsorbent polymer having high absorption rate under load and preparation method thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930007272B1 (ko) | 1988-06-28 | 1993-08-04 | 닙본 쇼쿠바이 가브시기 가이샤 | 흡수성 수지 및 그 제법 |
US6271278B1 (en) | 1997-05-13 | 2001-08-07 | Purdue Research Foundation | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties |
US7163966B2 (en) * | 2003-12-19 | 2007-01-16 | Stockhausen, Inc. | Superabsorbent polymer having increased rate of water absorption |
JP2009061063A (ja) | 2007-09-05 | 2009-03-26 | Kao Corp | 吸収性物品 |
DE102008030712A1 (de) | 2008-06-27 | 2009-12-31 | Construction Research & Technology Gmbh | Zeitverzögerte superabsorbierende Polymere |
FR2983071B1 (fr) * | 2011-11-25 | 2014-03-21 | Oreal | Composition comprenant un polymere superabsorbant et un homo- ou copolymere d'acide acrylique non superabsorbant et au moins partiellement neutralise |
JP6013729B2 (ja) | 2011-12-27 | 2016-10-25 | 株式会社リブドゥコーポレーション | 吸水性樹脂粉末およびこれを用いた吸収体、吸収性物品 |
US10646612B2 (en) | 2013-12-20 | 2020-05-12 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water absorbent, and method for producing same |
EP2930191B1 (en) | 2014-04-07 | 2020-09-16 | Evonik Corporation | Superabsorbent polymer having fast absorption |
KR102011926B1 (ko) | 2014-12-22 | 2019-08-20 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
KR101960041B1 (ko) | 2015-04-28 | 2019-03-19 | 주식회사 엘지화학 | 고흡수성 수지의 제조방법 |
KR101871968B1 (ko) * | 2015-06-01 | 2018-06-27 | 주식회사 엘지화학 | 고흡수성 수지 |
KR101949454B1 (ko) | 2015-06-15 | 2019-02-18 | 주식회사 엘지화학 | 고흡수성 수지 |
KR101949996B1 (ko) * | 2016-01-28 | 2019-02-19 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
KR101958014B1 (ko) * | 2016-03-14 | 2019-03-13 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
KR102086053B1 (ko) | 2016-12-13 | 2020-03-06 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
-
2016
- 2016-12-13 KR KR1020160169387A patent/KR102086053B1/ko active IP Right Grant
- 2016-12-28 US US16/091,197 patent/US10814307B2/en active Active
- 2016-12-28 EP EP16923926.6A patent/EP3412709B1/en active Active
- 2016-12-28 WO PCT/KR2016/015415 patent/WO2018110759A1/ko active Application Filing
- 2016-12-28 CN CN201680084403.6A patent/CN108884235B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006342306A (ja) | 2005-06-10 | 2006-12-21 | Sumitomo Seika Chem Co Ltd | 多孔質吸水性ポリマー粒子の製造法 |
JP2013511610A (ja) * | 2009-11-23 | 2013-04-04 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー発泡体の製造方法 |
US20160354757A1 (en) | 2014-11-27 | 2016-12-08 | Lg Chem, Ltd. | Superabsorbent polymer having high absorption rate under load and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20180067942A (ko) | 2018-06-21 |
EP3412709B1 (en) | 2020-05-13 |
CN108884235A (zh) | 2018-11-23 |
WO2018110759A1 (ko) | 2018-06-21 |
EP3412709A4 (en) | 2019-04-03 |
EP3412709A1 (en) | 2018-12-12 |
US10814307B2 (en) | 2020-10-27 |
CN108884235B (zh) | 2021-01-01 |
US20190308170A1 (en) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102086053B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR102566942B1 (ko) | 고흡수성 수지의 제조 방법 | |
US11845837B2 (en) | Super absorbent polymer | |
US10653812B2 (en) | Method of preparing superabsorbent polymer | |
KR102102459B1 (ko) | 고흡수성 수지의 제조 방법 | |
KR102167661B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR102075733B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR102162500B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR102086052B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR102316433B1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
KR102075738B1 (ko) | 고흡수성 수지 | |
KR20200072644A (ko) | 고흡수성 수지의 제조 방법 | |
KR102620072B1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
KR102093352B1 (ko) | 고흡수성 수지의 제조 방법 | |
KR102251794B1 (ko) | 고흡수성 수지의 제조 방법 | |
KR102616889B1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2019083211A9 (ko) | 고흡수성 수지의 제조 방법 | |
KR102614036B1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
KR20210038246A (ko) | 고흡수성 수지 조성물 및 이의 제조 방법 | |
KR20220112009A (ko) | 고흡수성 수지의 제조 방법 | |
KR20200059023A (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |