[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102075418B1 - Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby - Google Patents

Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby Download PDF

Info

Publication number
KR102075418B1
KR102075418B1 KR1020150052182A KR20150052182A KR102075418B1 KR 102075418 B1 KR102075418 B1 KR 102075418B1 KR 1020150052182 A KR1020150052182 A KR 1020150052182A KR 20150052182 A KR20150052182 A KR 20150052182A KR 102075418 B1 KR102075418 B1 KR 102075418B1
Authority
KR
South Korea
Prior art keywords
nickel
thin film
containing thin
substrate
deposition
Prior art date
Application number
KR1020150052182A
Other languages
Korean (ko)
Other versions
KR20160122396A (en
Inventor
김민성
조성우
석장현
신형수
김명운
이상익
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to KR1020150052182A priority Critical patent/KR102075418B1/en
Publication of KR20160122396A publication Critical patent/KR20160122396A/en
Application granted granted Critical
Publication of KR102075418B1 publication Critical patent/KR102075418B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L27/108
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 니켈 함유 박막의 제조방법 및 이에 따라 제조된 니켈 함유 박막을 제공하는 것으로, 상세하게 본 발명은 매우 경제적이고 간단한 공정의 니켈 함유 박막의 제조방법 및 이에 따라 제조된 내구성과 순도가 높은 양질의 니켈 함유 박막을 제공하는 것이다.The present invention provides a method for producing a nickel-containing thin film and the nickel-containing thin film prepared according to the present invention, in detail, the present invention provides a method for producing a nickel-containing thin film of a very economical and simple process, and high durability and high purity produced accordingly It is to provide a nickel-containing thin film.

Description

니켈 함유 박막의 제조방법 및 이에 따라 제조된 니켈 함유 박막{Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby}Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby

본 발명은 니켈 함유 박막의 제조방법과 이에 따라 제조된 니켈 함유 박막에 관한 것으로, 보다 상세하게는 휘발성이 높은 니켈 전구체를 이용하여 내구성과 순도가 높은 양질의 니켈 함유 박막의 제조방법 및 이에 따라 제조된 니켈 함유 박막에 관한 것이다.The present invention relates to a method for manufacturing a nickel-containing thin film and a nickel-containing thin film prepared according to the above, more specifically, a method for producing a high quality nickel-containing thin film with high durability and purity using a highly volatile nickel precursor and thus produced To a nickel-containing thin film.

반도체 메모리 소자는 회로 동작의 고속화와 기억용량의 대용량화를 위해 설계, 공정 기술 분야에서 눈부신 발전을 해왔으며 더욱더 가속화되고 있다. 국제 반도체 기술 로드맵(ITRS)에 따르면 2011년 DRAM의 하프피치(half pitch)가 40 nm정도로 미세화될 전망이다. 이러한 발전에 따라 소자의 집적도 증가를 위하여 소자의 구조를 미세화기 위한 노력을 진행하여 왔다. Semiconductor memory devices have made remarkable advances in the field of design and process technologies to speed circuit operation and increase capacity. According to the International Semiconductor Technology Roadmap (ITRS), the half pitch of DRAM is expected to shrink to about 40 nm in 2011. With this development, efforts have been made to refine the structure of the device in order to increase the degree of integration of the device.

소자의 구조를 미세화하기 위해, 금속 배선 공정(metallization)에 있어 높은 종횡비와 단차피복성을 얻기 위한 박막 증착에 있어 종래에는 물리기상증착법을 사용하였으나 공정 특성상 미세하고 굴곡이 있는 패턴 상에 균일한 두께로 박막을 형성하는 것은 매우 어려워, 상기 물리기상증착법의 대안으로서 널리 쓰이고 있는 박막 제조방법은 화학기상증착법 및 원자층증착법 등이 있다. 상기 화학기상증착법 또는 원자층증착법은 고집적소자에 있어서 필수적인 높은 종횡비와 우수한 단차피복성을 갖기 때문에, 더욱 미세화된 초고집적 반도체 제조공정에서는 더 높은 종횡비와 단차피복성을 얻기 위해서 이들을 적용하고 있다. 상기 화학기상증착법 또는 원자층증착법에 있어서 화합물이 갖추어야 할 조건으로는 높은 열적 안정성, 높은 휘발성, 낮은 독성, 화학적 안정성 등이 있다. 또한 기화하는 과정 및 기체상으로 이송하는 과정에서 자발적으로 분해되거나 다른 물질과 반응하는 부 반응이 없어야 하며, 특히 원자층증착법의 경우에는 특별한 반응가스와의 반응이 용이해야 한다는 조건을 만족해야 한다.In order to refine the structure of the device, physical vapor deposition was conventionally used for thin film deposition to obtain high aspect ratio and step coverage in metallization, but uniform thickness on fine and curved patterns due to process characteristics. It is very difficult to form a thin film, and the thin film manufacturing method widely used as an alternative to the physical vapor deposition method includes a chemical vapor deposition method and an atomic layer deposition method. Since the chemical vapor deposition method or the atomic layer deposition method has a high aspect ratio and excellent step coverage, which are essential for high-integration devices, they are applied in order to obtain higher aspect ratio and step coverage in a more sophisticated ultra-high density semiconductor manufacturing process. In the chemical vapor deposition method or atomic layer deposition method, the compound should have high thermal stability, high volatility, low toxicity, chemical stability, and the like. In addition, there should be no side reaction that spontaneously decomposes or reacts with other substances in the process of vaporization and transfer to the gas phase, and in particular, in the case of atomic layer deposition, the condition that the reaction with a special reaction gas should be easy.

또한 니켈 함유 박막은 이를 형성하여야 할 영역은 일반적으로 미세하고 굴곡이 있는 패턴 혹은 콘택홀의 표면이기 때문에, 상술한 높은 종횡비(high aspect ratio)와 우수한 단차피복성(step coverage)을 가질 뿐 아니라 미세하고 굴곡이 있는 패턴 상에 균일한 두께로 니켈 함유 박막을 형성하기 위해 많은 연구가 진행되고 있다.In addition, since the region where the nickel-containing thin film is to be formed is generally a fine and curved surface of a pattern or contact hole, the nickel-containing thin film not only has the high aspect ratio and the excellent step coverage described above, but also is fine. Much research is being conducted to form nickel-containing thin films with uniform thickness on curved patterns.

종래 사용되었던 니켈 함유 박막의 제조방법 중 하나로 아미디네이트 니켈 화합물을 이용한 원자층증착법을 들 수 있다. 그러나, 상기 아미디네이트 니켈 화합물은 휘발성이 높은 장점은 있으나, 일반적으로 높은 융점을(융점 >70℃) 갖는 고체화합물로 때때로 낮은 열적 안정성을 겪을 수 있는데, 이는 원자층증착법 또는 화학기상증착법의 공정을 진행하기에 불안정한 요소로 작용할 수 있다. 또한, 비스-시클로펜타디에닐 니켈 전구체[(RCp)2Ni]를 이용한 니켈 함유 박막의 제조방법은 시클로펜타디에닐 상 치환에 따라 액체 또는 높은 융점을 갖는 고체로 공지되어있으나[ex: (MeCp)2Ni:고체 mp=37℃, (EtCp)2Ni:액체, (iPrCp)2Ni:액체], 이러한 상기 비스-시클로펜타디에닐 니켈 전구체는 시클로펜타디에닐 리간드와 중심금속인 니켈 사이의 강한 결합력에 기인된 반응가스와의 낮은 반응성 및 낮은 환원력을 보여, 높은 증착 온도 및 높은 탄소 오염이 유발된다는 단점이 있다. One of the methods for producing a nickel-containing thin film, which has been conventionally used, is an atomic layer deposition method using an amidate nickel compound. However, the amidinated nickel compound has the advantage of high volatility, but is generally a solid compound having a high melting point (melting point > 70 DEG C), and may sometimes experience low thermal stability, which is a process of atomic layer deposition or chemical vapor deposition. It can act as an unstable factor to proceed. In addition, a method for preparing a nickel-containing thin film using bis-cyclopentadienyl nickel precursor [(RCp) 2 Ni] is known as a liquid or a solid having a high melting point depending on the cyclopentadienyl phase substitution [ex: (MeCp ) 2 Ni: solid mp = 37 ° C., (EtCp) 2 Ni: liquid, (iPrCp) 2 Ni: liquid], the bis-cyclopentadienyl nickel precursor is formed between the cyclopentadienyl ligand and the central metal nickel. The low reactivity with the reaction gas and the low reducing power due to the strong bonding force have the disadvantage of causing high deposition temperature and high carbon contamination.

이에, 본 출원인은 상기와 같은 문제점을 해결하기 위하여 열적·화학적으로 안정하고 상온에서 액체로 높은 휘발성을 가지는 니켈 전구체를 이용하여 화학증착법 또는 원자층증착법을 통하여, 미세하고 굴곡이 있는 패턴 혹은 콘택홀 상에 균일하고 높은 증착 효율을 갖는 고순도의 니켈 함유 박막의 제조방법을 제공하고자 본 발명을 완성하였다. In order to solve the above problems, the present applicant uses thermally or chemically stable nickel precursor having high volatility as a liquid at room temperature, using a chemical vapor deposition method or an atomic layer deposition method, to form a fine or curved pattern or contact hole. The present invention has been completed to provide a method for producing a high purity nickel-containing thin film having a uniform and high deposition efficiency on a phase.

본 발명의 목적은 높은 열적 안정성 및 높은 증기압을 갖는 니켈 전구체를 이용하여 화학증착법 또는 원자층증착법을 통하여 높은 증착 효율을 가지는 고순도 니켈 함유 박막의 제조방법 및 이에 따라 제조된 니켈 함유 박막을 제공하는 것이다. It is an object of the present invention to provide a method for preparing a high purity nickel-containing thin film having high deposition efficiency through chemical vapor deposition or atomic layer deposition using a nickel precursor having high thermal stability and high vapor pressure, and a nickel-containing thin film prepared accordingly. .

본 발명은 하기 화학식 1로 표시되는 니켈 전구체를 이용하여 니켈 함유 박막을 형성하는 방법을 제공한다.The present invention provides a method for forming a nickel-containing thin film using a nickel precursor represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112015036107210-pat00001
Figure 112015036107210-pat00001

[상기 화학식 1에서,[In Formula 1,

R1 내지 R5은 각각 독립적으로 수소 또는 (C1-C7)알킬이며;R 1 to R 5 are each independently hydrogen or (C 1 -C 7 ) alkyl;

R6는 수소, (C1-C7)알킬, 아미노(-NR11R12) 또는 실릴(-SiH3)이고, R11 및 R12는 각각 독립적으로 수소, (C1-C7)알킬 또는 (C1-C7)알콕시이며;R 6 is hydrogen, (C1-C7) alkyl, amino (-NR 11 R 12 ) or silyl (-SiH 3 ), and R 11 and R 12 are each independently hydrogen, (C1-C7) alkyl or (C1- C7) alkoxy;

상기

Figure 112015036107210-pat00002
은 단일결합 또는 이중결합이다]remind
Figure 112015036107210-pat00002
Is a single bond or a double bond]

본 발명의 일 실시예에 따른 니켈 함유 박막을 형성하는 방법에 있어, 상기 화학식 1로 표시되는 니켈 전구체의 R1 내지 R5는 각각 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, i-펜틸 또는 s-펜틸일 수 있다.In the method of forming a nickel-containing thin film according to an embodiment of the present invention, R 1 to R 5 of the nickel precursor represented by Formula 1 are each independently hydrogen, methyl, ethyl, n -propyl, i -propyl, n -butyl, i -butyl, s -butyl, t -butyl, n -pentyl, i -pentyl or s -pentyl.

본 발명의 일 실시예에 따른 니켈 함유 박막을 형성하는 방법에 있어, 상기 화학식 1로 표시되는 니켈 전구체의 R6은 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸 또는 t-부틸일 수 있다.In the method of forming a nickel-containing thin film according to an embodiment of the present invention, R 6 of the nickel precursor represented by Formula 1 is hydrogen, methyl, ethyl, n -propyl, i -propyl, n -butyl, i − Butyl, s -butyl or t -butyl.

본 발명의 일 실시예에 따른 니켈 함유 박막을 형성하는 방법에 있어, 상기 화학식 1로 표시되는 니켈 전구체는 하기 구조에서 선택되는 것일 수 있으나 이에 한정되는 것은 아니다.In the method of forming a nickel-containing thin film according to an embodiment of the present invention, the nickel precursor represented by Formula 1 may be selected from the following structures, but is not limited thereto.

Figure 112015036107210-pat00003
Figure 112015036107210-pat00003

본 발명의 일 실시예에 따른 니켈 함유 박막을 형성하는 방법은 기판을 세척하고 표면처리하는 1단계; 상기 기판을 챔버 내 장착하고, 상기 기판을 가열하는 2단계; 및 기판 상에 상기 화학식 1로 표시되는 니켈 전구체 이용하여, 상기 니켈 함유 박막을 증착하는 3단계; 를 포함하는 것 일 수 있다.Method for forming a nickel-containing thin film according to an embodiment of the present invention comprises the steps of washing the substrate and surface treatment; Mounting the substrate in a chamber and heating the substrate; And depositing the nickel-containing thin film on the substrate by using the nickel precursor represented by Chemical Formula 1; It may be to include.

본 발명의 일 실시예에 따른 니켈 함유 박막을 형성하는 방법에 있어, 상기 증착은 플라즈마 화학기상증착(Plasma chemical vapor deposition)공정, 열 화학기상증착(Thermal chemical vapor deposition) 공정, 플라즈마 원자층증착(plasma ALD, PEALD) 또는 열 원자층증착(Thermal ALD)으로 수행되는 것일 수 있다.In the method for forming a nickel-containing thin film according to an embodiment of the present invention, the deposition is a plasma chemical vapor deposition (Plasma chemical vapor deposition) process, thermal chemical vapor deposition (Thermal chemical vapor deposition) process, plasma atomic layer deposition ( plasma ALD, PEALD) or thermal atomic layer deposition (Thermal ALD).

본 발명의 일 실시예에 따른 니켈 함유 박막을 형성하는 방법에 있어, 상기 기판의 가열 온도는 50 내지 500 ℃일 수 있다.In the method of forming a nickel-containing thin film according to an embodiment of the present invention, the heating temperature of the substrate may be 50 to 500 ℃.

본 발명은 하기 화학식 1로 표시되는 니켈 전구체를 이용하여 제조된 니켈 함유 박막을 제공한다. The present invention provides a nickel-containing thin film prepared using a nickel precursor represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112015036107210-pat00004
Figure 112015036107210-pat00004

[상기 화학식 1에서,[In Formula 1,

R1 내지 R5은 각각 독립적으로 수소 또는 (C1-C7)알킬이며;R 1 to R 5 are each independently hydrogen or (C 1 -C 7 ) alkyl;

R6는 수소, (C1-C7)알킬, 아미노(-NR11R12) 또는 실릴(-SiH3)이고, R11 및 R12는 각각 독립적으로 수소, (C1-C7)알킬 또는 (C1-C7)알콕시이며;R 6 is hydrogen, (C1-C7) alkyl, amino (-NR 11 R 12 ) or silyl (-SiH 3 ), and R 11 and R 12 are each independently hydrogen, (C1-C7) alkyl or (C1- C7) alkoxy;

상기

Figure 112015036107210-pat00005
은 단일결합 또는 이중결합이다]remind
Figure 112015036107210-pat00005
Is a single bond or a double bond]

본 발명에 따른 상기 화학식 1로 표시되는 니켈 전구체는 수분에 덜 민감하고 장기간의 보관에 유리하며, 이를 이용하여 화학기상증착법 또는 원자층증착법에 따라 니켈 함유 박막을 제조하면 매우 균일한 두께로 니켈 함유 박막을 제조할 수 있다.Nickel precursor represented by the formula (1) according to the present invention is less sensitive to moisture and is advantageous for long-term storage, by using it to produce a nickel-containing thin film by chemical vapor deposition or atomic layer deposition method containing nickel in a very uniform thickness Thin films can be prepared.

또한 본 발명에 따른 제조방법은 미세하고 굴곡이 있는 패턴 상에 균일한 두께로 높은 증착율의 구현이 가능한 경제적이면서 공정이 단순하여 양질의 니켈 함유 박막의 제조가 용이한 효과가 있다.In addition, the manufacturing method according to the present invention is economical and simple to implement a high deposition rate in a uniform thickness on a fine and curved pattern is easy to manufacture a high quality nickel-containing thin film.

도 1은 실시예 1에서 제조된 니켈 함유 박막의 제조방법을 나타낸 도면이며,
도 2는 실시예 1에서 제조된 니켈 함유 박막의 증착률 및 면저항을 나타낸 도면이며,
도 3은 실시예 1에서 제조된 니켈 함유 박막의 두께를 관찰한 투과전자현미경 (TEM) 이미지이며,
도 4는 실시예 1에서 제조된 니켈 함유 박막의 조성을 나타낸 그래프이다.
1 is a view showing a method of manufacturing a nickel-containing thin film prepared in Example 1,
2 is a view showing the deposition rate and sheet resistance of the nickel-containing thin film prepared in Example 1,
3 is a transmission electron microscope (TEM) image of observing the thickness of the nickel-containing thin film prepared in Example 1,
Figure 4 is a graph showing the composition of the nickel-containing thin film prepared in Example 1.

본 발명에 따른 니켈 함유 박막의 제조방법 및 이에 따라 제조된 니켈 함유 박막에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.The method for manufacturing a nickel-containing thin film according to the present invention and the nickel-containing thin film manufactured according to the present invention will be described in detail below. However, unless otherwise defined in the technical and scientific terms used, common knowledge in the technical field to which the present invention pertains is known. The person having ordinary skill in the art has a meaning commonly understood, and a description of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.

본 발명은 하기 화학식 1로 표시되는 니켈 전구체를 이용하여 니켈 함유 박막을 형성하는 방법을 제공한다.The present invention provides a method for forming a nickel-containing thin film using a nickel precursor represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112015036107210-pat00006
Figure 112015036107210-pat00006

[상기 화학식 1에서,[In Formula 1,

R1 내지 R5은 각각 독립적으로 수소 또는 (C1-C7)알킬이며;R 1 to R 5 are each independently hydrogen or (C 1 -C 7 ) alkyl;

R6는 수소, (C1-C7)알킬, 아미노(-NR11R12) 또는 실릴(-SiH3)이고, R11 및 R12는 각각 독립적으로 수소, (C1-C7)알킬 또는 (C1-C7)알콕시이며;R 6 is hydrogen, (C1-C7) alkyl, amino (-NR 11 R 12 ) or silyl (-SiH 3 ), and R 11 and R 12 are each independently hydrogen, (C1-C7) alkyl or (C1- C7) alkoxy;

상기

Figure 112015036107210-pat00007
은 단일결합 또는 이중결합이다]remind
Figure 112015036107210-pat00007
Is a single bond or a double bond]

본 명세서에서 “알킬”은 직쇄 또는 분쇄 형태를 모두 포함한다.As used herein, "alkyl" includes both straight and pulverized forms.

본 발명에 따른 방법은 매우 경제적이고 간단한 공정으로 높은 종횡비와 우수한 단차피복성을 가지며, 미세하고 굴곡이 있는 패턴 상에 균일한 두께로 높은 증착율의 구현이 가능한 니켈 함유 박막을 제조할 수 있다.The method according to the present invention can produce a nickel-containing thin film having a high aspect ratio and excellent step coverage in a very economical and simple process, and can realize a high deposition rate with a uniform thickness on a fine and curved pattern.

상세하게, 본 발명의 일 실시예에 따른 니켈 함유 박막의 형성 방법은 기판을 세척하고 표면처리하는 1단계; 상기 기판을 챔버 내 장착하고, 상기 기판을 가열하는 2단계; 및 기판 상에 수송가스와 반응가스 하에서 상기 화학식 1로 표시되는 니켈 전구체 이용하여, 상기 니켈 함유 박막을 증착하는 3단계; 를 포함하는 것일 수 있다.Specifically, the method for forming a nickel-containing thin film according to an embodiment of the present invention comprises the steps of washing the substrate and surface treatment; Mounting the substrate in a chamber and heating the substrate; And depositing the nickel-containing thin film using a nickel precursor represented by Chemical Formula 1 under a transport gas and a reaction gas on a substrate. It may be to include.

본 발명의 일 실시예에 따른 상기 기판은 제한되지는 않으나, 비한정적인 일예로 실리콘 기판, 금(Au), 은(Ag), 구리(Cu), 주석(Sn), 알루미늄(Al), 니켈(Ni), 텅스텐(W), 크롬(Cr), 아연(Zn), 백금(Pt), 몰리브텐(Mo), 탄탈럼(Ta), 티탄(Ti), 하프늄(Hf), 지르코늄(Zr), 망간(Mn), 이리듐(Ir), 레늄(Re) 및 루테늄(Ru), 산화루테늄(RuO2), 질화티타늄(TiN), 질화탄탈럼(TaN), 질화텅스텐(WN), 질화하프늄(HfN), 질화지르코늄(ZrN), 질화탄탈실리콘(TaSiN), 질화티탄실리콘(TiSiN), 코발트실리사이드(CoSi2),니켈실리사이드(NiSi), 티타늄실리사이드(TiSi2), 실리콘산화물(SiO2), 티타늄산화물(TiO2), 지르코늄산화물(ZrO2), 하프늄산화물(HfO2), 알루미늄산화물(Al2O3), 나이오븀산화물(Nb2O5), 탄탈럼산화물(Ta2O5), SOI(Silicon on Insulator) 기판, 유리 기판, 사파이어 기판, 탄화규소(SiC) 기판, 질화알루미늄(AlN) 기판, 인듐주석산화물(Indium-Tin Oxide, ITO) 기판, 산화아연(ZnO) 기판, 인듐아연산화물(IZO) 기판 등에서 선택되는 것 일 수 있으며, 바람직하게는 실리콘 기판, SOI(Silicon on Insulator) 기판, 탄화규소(SiC) 기판 등의 실리콘 함유 기판이 좋다. 또한 상기 기판의 형태는 평판 형태, 롤 형태 등의 다양한 형태일 수 있다. The substrate according to an embodiment of the present invention is not limited, but is not limited to a silicon substrate, gold (Au), silver (Ag), copper (Cu), tin (Sn), aluminum (Al), nickel (Ni), tungsten (W), chromium (Cr), zinc (Zn), platinum (Pt), molybdenum (Mo), tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr ), Manganese (Mn), iridium (Ir), rhenium (Re) and ruthenium (Ru), ruthenium oxide (RuO 2 ), titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), hafnium nitride (HfN), zirconium nitride (ZrN), tantalum silicon nitride (TaSiN), titanium silicon nitride (TiSiN), cobalt silicide (CoSi 2 ), nickel silicide (NiSi), titanium silicide (TiSi 2 ), silicon oxide (SiO 2 ) , Titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ) Silicon on Insulator (SOI) substrates, glass substrates, sapphire substrates, silicon carbide (SiC) substrates, alumina nitride It may be selected from a aluminum (AlN) substrate, an indium tin oxide (ITO) substrate, a zinc oxide (ZnO) substrate, an indium zinc oxide (IZO) substrate, preferably a silicon substrate, SOI (Silicon) Silicon-containing substrates such as on insulator substrates and silicon carbide (SiC) substrates are preferred. In addition, the substrate may have various shapes such as a flat plate shape and a roll shape.

본 발명에 따른 방법은 다양한 형태의 기판에서도 우수한 단차피복성을 가지며, 증착 후 잔류물을 최소화 할 수 있어 양질의 니켈 함유 박막을 균일하게 증착할 수 있다는 장점을 가진다. The method according to the present invention has excellent step coverage even in various types of substrates, and has the advantage of uniformly depositing high quality nickel-containing thin films since the residue after deposition can be minimized.

상기 기판의 세척은 한정이 있는 것은 아니나 일례로 황산과 과산화수소가 혼합된 용액으로 세척하고 다시 불산으로 세척하여 상기 기판 상의 유기물과 산화막을 제거하기 위함이다. 세척한 상기 기판은 표면처리를 하는데, 이러한 표면처리는 세척한 기판을 챔버내에 장입하여 압력을 통상적으로 1 torr 이하에서 플라즈마를 생성하여 수소가스 하에서 30 초 내지 60 분 동안 수행될 수 있으나 이에 한정되는 것은 아니다.The cleaning of the substrate is not limited, but for example, to remove the organic material and the oxide film on the substrate by washing with a solution mixed with sulfuric acid and hydrogen peroxide and again with hydrofluoric acid. The cleaned substrate is subjected to a surface treatment, which may be performed for 30 seconds to 60 minutes under hydrogen gas by charging the cleaned substrate into a chamber to generate a plasma at a pressure of typically 1 torr or less. It is not.

다음으로 상기 기판을 챔버 내 장착하고, 상기 기판의 온도를 50 내지 500 ℃로 가열하여 증착준비를 한다. 본 발명에 따른 상기 니켈 전구체는 액상으로 높은 휘발성과 열적 안정성이 우수하여 상기 범위의 온도에서 화학기상증착법 또는 원자층증착법에 의해 빠른 증착 속도, 우수한 증착율을 구현할 수 있으며, 뛰어난 응집력과 우수한 스텝커버리지를 가져 고품질의 박막 증착이 가능하다. Next, the substrate is mounted in a chamber, and the temperature of the substrate is heated to 50 to 500 ° C. to prepare for deposition. The nickel precursor according to the present invention is excellent in high volatility and thermal stability in the liquid phase can realize a fast deposition rate, excellent deposition rate by chemical vapor deposition or atomic layer deposition method in the temperature of the above range, excellent cohesion and excellent step coverage High quality thin film deposition is possible.

다음으로 수송가스와 반응가스 하에서 상기 화학식 1로 표시되는 니켈 전구체 이용하여, 챔버 내 공정압력이 0.1 내지 20 torr에서 50 내지 500 ℃로 유지한 기판 상에 니켈 함유 박막을 증착한다. Next, a nickel-containing thin film is deposited on a substrate having a process pressure in the chamber maintained at 50 to 500 ° C. at 0.1 to 20 torr using a nickel precursor represented by Chemical Formula 1 under a transport gas and a reaction gas.

상기 니켈 함유 박막은 고휘발성의 상기 화학식 1로 표시되는 니켈 전구체를 사용하여, 높은 증착률로 균일하고 고함량의 니켈을 포함함 박막을 형성할 수 있다. The nickel-containing thin film may be formed using a high-volume nickel precursor represented by Chemical Formula 1 to form a uniform and high content of nickel at a high deposition rate.

본 발명의 일 실시예에 따른 제조방법에 있어, 상기 니켈 전구체는 액상으로 높은 휘발성 및 균일한 박막을 형성할 수 있는 측면에서 바람직하게, 상기 화학식 1로 표시되는 니켈 전구체의 R1, R2, R4 및 R5는 각각 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, i-펜틸 또는 s-펜틸이고, R4는 수소일 수 있다.In the manufacturing method according to an embodiment of the present invention, the nickel precursor is preferably in terms of a high volatility and a uniform thin film in the liquid phase, preferably R 1 , R 2 , of the nickel precursor represented by the formula (1) R 4 and R 5 are each independently hydrogen, methyl, ethyl, n -propyl, i -propyl, n -butyl, i -butyl, s -butyl, t -butyl, n -pentyl, i -pentyl or s -pentyl And R 4 may be hydrogen.

또한 화학기상증착법 또는 원자층증착법을 이용하여 높은 증착율 및 우수한 증착특성을 극대화하기 위한 측면에서 하기 구조에서 선택되는 니켈 전구체가 사용될 수 있으나 이에 한정되는 것은 아니다.In addition, a nickel precursor selected from the following structures may be used in terms of maximizing high deposition rate and excellent deposition characteristics using chemical vapor deposition or atomic layer deposition, but is not limited thereto.

Figure 112015036107210-pat00008
Figure 112015036107210-pat00008

상기 증착시, 수송가스는 200 내지 2000 sccm, 반응가스는 10 내지 1000 sccm 범위의 유량으로 공급되는 것이 바람직하며, 본 발명의 기술분야에서 통상적으로 사용되는 증착법인 플라즈마 화학기상증착(Plasma chemical vapor deposition)공정, 열 화학기상증착(Thermal chemical vapor deposition) 공정, 플라즈마 원자층증착(plasma ALD, PEALD) 및 열 원자층증착(Thermal ALD) 등을 통해 증착할 수 있으며, 바람직하게는 화학기상증착법 또는 원자층증착법등으로 수행될 수 있다.In the deposition, the transport gas is preferably supplied at a flow rate of 200 to 2000 sccm, the reaction gas is 10 to 1000 sccm, Plasma chemical vapor deposition (Plasma chemical vapor deposition) is a deposition method commonly used in the art of the present invention ), Thermal chemical vapor deposition, plasma ALD (PEALD) and thermal ALD (Thermal ALD) and the like, preferably chemical vapor deposition or atomic Layer deposition or the like.

또한 상기 증착 시간은 제한되지는 않으나 10 초 내지 10 분 동안 수행되는 것이 바람직하며, 목적하는 특성에 따라 상기 증착을 반복 수행하여 상기 니켈 함유 박막의 두께를 구현할 수 있음은 물론이다.In addition, the deposition time is not limited, but is preferably performed for 10 seconds to 10 minutes, and the thickness of the nickel-containing thin film may be realized by repeatedly performing the deposition according to desired characteristics.

본 발명의 일 실시예에 따른 니켈 함유 박막의 제조방법에 있어, 상기 수송가스는 질소(N2), 아르곤(Ar) 및 헬륨(He) 등에서 선택되는 하나 이상의 가스일 수 있으며, 바람직하게는 아르곤(Ar), 헬륨(He) 또는 이들의 혼합가스일 수 있다. 또한 상기 반응가스는 수소(H2), 히드라진(N2H4), 산소(O2), 오존(O3), 암모니아(NH3), 실란(SiH4), 디실란(Si2H6), 보란(BH3), 디보란(B2H6) 및 포스핀(PH3) 등에서 선택되는 하나 이상의 가스일 수 있으며, 바람직하게는 수소(H2), 히드라진(N2H4), 암모니아(NH3) 또는 이들의 혼합가스일 수 있으나 이에 한정되는 것은 아니다.In the method of manufacturing a nickel-containing thin film according to an embodiment of the present invention, the transport gas may be at least one gas selected from nitrogen (N 2 ), argon (Ar) and helium (He), preferably argon (Ar), helium (He), or a mixed gas thereof. In addition, the reaction gas is hydrogen (H 2 ), hydrazine (N 2 H 4 ), oxygen (O 2 ), ozone (O 3 ), ammonia (NH 3 ), silane (SiH 4 ), disilane (Si 2 H 6 ), Borane (BH 3 ), diborane (B 2 H 6 ), phosphine (PH 3 ) and the like may be one or more gases, preferably hydrogen (H 2 ), hydrazine (N 2 H 4 ), Ammonia (NH 3 ) or a mixture of these may be, but is not limited thereto.

본 발명의 일 실시예에 따른 상기 니켈 함유 박막의 제조방법은 상기 니켈 함유 박막을 표면처리 및 열처리 하는 4단계; 를 더 포함할 수 있다. 이는 증착 후 잔류하는 불순물을 제거하는 동시에 니켈 함유 박막의 내구성을 향상시키기 위한 것이다.The nickel-containing thin film manufacturing method according to an embodiment of the present invention comprises four steps of surface treatment and heat treatment of the nickel-containing thin film; It may further include. This is to remove impurities remaining after deposition and to improve durability of the nickel-containing thin film.

본 발명의 일 실시예에 따른 니켈 함유 박막의 제조방법에 있어, 상기 표면처리는 수소가스(H2) 하에서, RF 파워 300 내지 500 W를 인가하여 0.5 내지 30 분 동안 수행되는 것 일 수 있으나 이에 한정되는 것은 아니다. 또한 상기 열처리는 퍼니스(Furnace)에서 300 내지 700 ℃에서 1 내지 30 분 동안 수행될 수 있으며, 급속열처리(RTP) 방식으로도 진행될 수 있으나 이에 한정되는 것은 아니다.In the method of manufacturing a nickel-containing thin film according to an embodiment of the present invention, the surface treatment may be performed for 0.5 to 30 minutes by applying RF power 300 to 500 W under hydrogen gas (H 2 ). It is not limited. In addition, the heat treatment may be performed for 1 to 30 minutes at 300 to 700 ℃ in the furnace (Furnace), but may also be carried out by rapid heat treatment (RTP) method, but is not limited thereto.

본 발명의 일 실시예에 따른 니켈 함유 박막의 제조방법에 있어, 상기 니켈 함유 박막을 제조하는 단계 이후 진공펌프 또는 수송가스를 이용한 퍼징을 실시하여 챔버 내 잔류하는 가스와 니켈 전구체 및 반응으로 분해된 잔류물을 제거함으로써, 양질의 니켈 함유 박막을 형성할 수 있다. 상기 수송가스를 이용한 퍼징의 경우 제한되지는 않으나, 1 내지 60 초 동안 수행되는 것이 좋다.In the method for producing a nickel-containing thin film according to an embodiment of the present invention, after the step of preparing the nickel-containing thin film is purged by using a vacuum pump or a transport gas is decomposed by the gas remaining in the chamber and the nickel precursor and the reaction By removing the residue, a high quality nickel-containing thin film can be formed. In the case of purging using the transport gas is not limited, it is preferably performed for 1 to 60 seconds.

본 발명에 따른 상기 방법은 낮은 온도에서도 높은 휘발성을 가지는 상기 니켈 전구체를 이용하여 보다 높은 내구성을 가지면서도 순도가 높은 양질의 니켈 함유 박막의 제조가 가능한 매우 경제적이고 간단한 니켈 함유 박막을 형성하는 방법이다.The method according to the present invention is a method for forming a very economical and simple nickel-containing thin film capable of producing a high-quality nickel-containing thin film of high purity and high durability by using the nickel precursor having high volatility even at low temperature. .

본 발명은 하기 화학식 1로 표시되는 니켈 전구체를 이용하여 제조된 니켈 함유 박막을 제공한다.The present invention provides a nickel-containing thin film prepared using a nickel precursor represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112015036107210-pat00009
Figure 112015036107210-pat00009

[상기 화학식 1에서,[In Formula 1,

R1 내지 R5은 각각 독립적으로 수소 또는 (C1-C7)알킬이며;R 1 to R 5 are each independently hydrogen or (C 1 -C 7 ) alkyl;

R6는 수소, (C1-C7)알킬, 아미노(-NR11R12) 또는 실릴(-SiH3)이고, R11 및 R12는 각각 독립적으로 수소, (C1-C7)알킬 또는 (C1-C7)알콕시이며;R 6 is hydrogen, (C1-C7) alkyl, amino (-NR 11 R 12 ) or silyl (-SiH 3 ), and R 11 and R 12 are each independently hydrogen, (C1-C7) alkyl or (C1- C7) alkoxy;

상기

Figure 112015036107210-pat00010
은 단일결합 또는 이중결합이다]remind
Figure 112015036107210-pat00010
Is a single bond or a double bond]

본 발명에 따라 제조된 니켈 함유 박막은 상기 화학식 1로 표시되는 니켈 전구체를 이용함으로써 보다 낮은 온도에서 증착하였음에도 불구하고 높은 순도와 내구성을 가질 뿐 아니라 높은 응집력과 우수한 스텝커버리지를 가지는 니켈 함유 박막일 수 있다.
The nickel-containing thin film prepared according to the present invention may be a nickel-containing thin film having not only high purity and durability but also high cohesiveness and excellent step coverage, despite being deposited at a lower temperature by using the nickel precursor represented by Chemical Formula 1 above. have.

이하, 본 발명을 하기 실시예에 의해 더욱 구체적으로 설명한다. 그러나 이들 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들에 의해 제한되는 것은 아니다. 또한 하기 제조예는 글로브 박스 또는 슐랭크 관을 이용하여 무수 및 비활성 분위기하에서 수행하였으며, 생성물은 양성자 핵자기 공명 분광법(1H Nuclear Magnetic Resonance, NMR), 열무게 분석법(thermogravimetric analysis, TGA) 등을 이용하여 물성분석 하였으며, 증착한 박막은 JEOL LTD사의 FESEM(Field Emission Scanning Electron Microscope)을 통하여 두께를 측정하였다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only for the understanding of the present invention, and the scope of the present invention is not limited by them in any sense. In addition, the following preparation example was performed under anhydrous and inert atmosphere using a glove box or a Schlenk tube, and the product was subjected to proton nuclear magnetic resonance spectroscopy ( 1 H Nuclear Magnetic Resonance, NMR), thermogravimetric analysis (TGA), and the like. The deposited thin films were measured by JEOL LTD's FESEM (Field Emission Scanning Electron Microscope).

Auger electron spectroscopy(AES) 분석을 통하여 증착된 박막의 조성 분석
Composition analysis of deposited thin film by Auger electron spectroscopy (AES) analysis

(제조예 1)(Manufacture example 1)

니켈 시클로펜타디에닐 알릴 (η3-allyl)Ni(Cp)Nickel Cyclopentadienyl Allyl (η 3 -allyl) Ni (Cp)

불꽃 건조된 3000 mL 슐랭크 플라스크에 니켈클로라이드(NiCl2) 170g(1.31 mol, 1.00 당량)을 투입 후 10 ℃ 유지하며, THF 1000 ml를 투입하였다. 상기온도를 유지하며, NaCp(THF 중 3.0 M) 115 g(1.31 mol, 1.00 당량)을 약 2 시간에 걸쳐 투입한 후 25 ℃ 승온 및 6 시간 교반하였으며, 교반하는 동안 색이 천천히 진 보라색으로 변하였다. 교반 완료 후 온도를 0 ℃ 하강 후 allylMgBr(Et2O 중 2.0 M) 656 ml(1.31 mol, 1.00 당량)을 상기 온도 유지하며, 약 4 시간에 걸쳐 서서히 주입하고 상기온도에서 48 시간 동안 교반 후 반응을 종결 하였다.170 g (1.31 mol, 1.00 equiv) of nickel chloride (NiCl 2 ) was added to a flame-dried 3000 mL Schlenk flask, which was maintained at 10 ° C., and 1000 ml of THF was added thereto. Maintaining the above temperature, 115 g (1.31 mol, 1.00 equiv) of NaCp (3.0 M in THF) was added over about 2 hours, and then heated to 25 ° C. and stirred for 6 hours, and the color gradually changed to dark purple while stirring. It was. After completion of stirring, the temperature was lowered to 0 ° C., and 656 ml (1.31 mol, 1.00 equiv) of allylMgBr (2.0 M in Et 2 O) was maintained at the above temperature, and slowly injected over about 4 hours, followed by stirring at the temperature for 48 hours Terminated.

반응 종결 후 감압여과를 통하여 NaCl 및 MgClBr염을 분리하고, 여과액을 감압하여 용매를 완전 제거한다. 용매 제거 후 순도를 높이기 위하여 감압하에 증류하여 적 보라색 액체 표제 화합물 130 g을 수득하였다. (수율 60 %, 끓는점 36 ℃/0.77 mmHg)After completion of the reaction, the NaCl and MgClBr salts were separated by filtration under reduced pressure, and the filtrate was reduced under reduced pressure to completely remove the solvent. Distillation under reduced pressure to increase the purity after removal of the solvent gave 130 g of a red purple liquid title compound. (Yield 60%, Boiling Point 36 ° C / 0.77 mmHg)

1H-NMR (C6D6): δ 5.28(5H, s) , 5.14(1H, sept), 2.66(2H, d), 1.31(2H, d)
1 H-NMR (C 6 D 6 ): δ 5.28 (5H, s), 5.14 (1H, sept), 2.66 (2H, d), 1.31 (2H, d)

(실시예 1)(Example 1)

원자층증착(Atomic layer deposition, ALD) 챔버 내부의 평판 실리콘 기판의 온도를 400 ℃로 가열하고, 상기 제조예 1의 니켈 전구체의 온도를 40 ℃로 가열하였다. 이후 아르곤 가스를 이송가스로 하여 0.2 torr의 압력하에 2 초간 상기 제조예 1에서 제조된 니켈 전구체을 챔버 내부로 주입하였다. 이후 아르곤 가스를 이용하여 15 초간 1100 sccm 유량으로 퍼징한 후 60 초간 100 sccm 유량으로 수소가스를 주입하여 상기 기판 상에 흡착된 전구체와 반응시켜 니켈 함유 박막을 형성하였다. 이후 아르곤 가스를 이용하여 10 초간 1100 sccm 유량으로 상기 반응으로 분해된 잔류물을 퍼징을 실시하여 제거하였다. 이하 도 1에 구체적인 니켈 함유 박막의 제조방법을 나타내었다.The temperature of the flat silicon substrate in the atomic layer deposition (ALD) chamber was heated to 400 ° C., and the temperature of the nickel precursor of Preparation Example 1 was heated to 40 ° C. Thereafter, the nickel precursor prepared in Preparation Example 1 was injected into the chamber under argon gas for 2 seconds under a pressure of 0.2 torr. After purging at 1100 sccm flow rate for 15 seconds using argon gas, hydrogen gas was injected at 100 sccm flow rate for 60 seconds to react with the precursor adsorbed on the substrate to form a nickel-containing thin film. Thereafter, the residue decomposed by the reaction was purged and removed at a flow rate of 1100 sccm for 10 seconds using argon gas. Hereinafter, a method of manufacturing a specific nickel-containing thin film is shown in FIG. 1.

상기의 제조방법으로 형성된 박막의 두께를 측정한 결과, 도 2에 나타낸 바와 같이 0.28 Å/cycle 두께의 균일한 니켈 함유 박막이 형성되어 있는 것을 확인할 수 있었다.As a result of measuring the thickness of the thin film formed by the above production method, it was confirmed that a uniform nickel-containing thin film having a thickness of 0.28 Å / cycle was formed as shown in FIG. 2.

상기의 방법으로 증착횟수를 2000 사이클 진행하여 제조된 니켈 함유 박막의 Transmission Electron Microscopy (TEM) 단면 분석을 진행하였다. 도 3에 나타낸 바와 같이, 상기 방법으로 제조된 니켈 함유 박막은 기판 상에서 550Å 두께로 증착 되었음을 확인 할 수 있었다.Transmission Electron Microscopy (TEM) cross section analysis of the nickel-containing thin film manufactured by performing the deposition cycle 2000 cycles was performed. As shown in FIG. 3, it was confirmed that the nickel-containing thin film prepared by the above method was deposited at a thickness of 550 상에서 on a substrate.

또한, 상기 방법으로 제조된 니켈 함유 박막의 Auger electron spectroscopy(AES) 분석을 통하여 증착된 박막의 조성 분석을 진행하였다. 도 4에 나타낸 바와 같이, 상기 니켈 함유 박막의 조성은 니켈 93.7%, 탄소 6.3%, 산소 0%가 함유된 순수한 니켈 함유 박막이 형성되었음을 알 수 있었다.
In addition, the composition analysis of the deposited thin film was performed through Auger electron spectroscopy (AES) analysis of the nickel-containing thin film prepared by the above method. As shown in FIG. 4, it was found that the composition of the nickel-containing thin film was formed of a pure nickel-containing thin film containing 93.7% nickel, 6.3% carbon, and 0% oxygen.

상기 실시예의 결과, 본 발명에 따른 니켈 전구체를 이용하여 화학증착법 또는 원자층증착법을 이용한 니켈 함유 박막의 제조방법은 기판 상에 높은 증착율로 고순도의 니켈 함유 박막의 균일한 증착이 가능하여, 양질의 높은 증착율을 필요로 하는 니켈 함유 박막 응용 전 분야에 걸쳐 그 활용가치가 높을 것으로 기대된다.As a result of the above embodiment, the method for producing a nickel-containing thin film using a chemical vapor deposition method or an atomic layer deposition method using a nickel precursor according to the present invention is capable of uniform deposition of a high purity nickel-containing thin film at a high deposition rate on the substrate, Its value is expected to be high across all nickel-containing thin film applications that require high deposition rates.

Claims (8)

하기 화학식 1로 표시되는 니켈 전구체를 이용하여 니켈 함유 박막을 형성하는 방법.
[화학식 1]
Figure 112019101047726-pat00011

[상기 화학식 1에서,
R1 내지 R5은 각각 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, i-펜틸 또는 s-펜틸이며;
R6는 -NR11R12 또는 -SiH3이고, R11 및 R12는 각각 독립적으로 수소 또는 C1-C7의 알킬이며;
상기
Figure 112019101047726-pat00012
은 단일결합 또는 이중결합이다]
A method of forming a nickel-containing thin film using a nickel precursor represented by the formula (1).
[Formula 1]
Figure 112019101047726-pat00011

[In Formula 1,
R 1 to R 5 are each independently hydrogen, methyl, ethyl, n -propyl, i -propyl, n -butyl, i -butyl, s -butyl, t -butyl, n -pentyl, i -pentyl or s -pentyl Is;
R 6 is —NR 11 R 12 or —SiH 3 , and R 11 and R 12 are each independently hydrogen or alkyl of C 1 -C 7;
remind
Figure 112019101047726-pat00012
Is a single bond or a double bond]
삭제delete 삭제delete 삭제delete 제1항에 있어서,
기판을 세척하고 표면처리하는 1단계;
상기 기판을 챔버 내 장착하고, 상기 기판을 가열하는 2단계; 및
기판 상에 상기 화학식 1로 표시되는 니켈 전구체 이용하여, 상기 니켈 함유 박막을 증착하는 3단계; 를 포함하는 니켈 함유 박막을 형성하는 방법.
The method of claim 1,
1 step of cleaning and surface treatment of the substrate;
Mounting the substrate in a chamber and heating the substrate; And
Depositing the nickel-containing thin film using a nickel precursor represented by Chemical Formula 1 on a substrate; Method for forming a nickel-containing thin film comprising a.
제5항에 있어서,
상기 증착은 플라즈마 화학기상증착, 열 화학기상증착, 플라즈마 원자층증착 또는 열 원자층증착으로 수행되는 것인 니켈 함유 박막을 형성하는 방법.
The method of claim 5,
Wherein the deposition is performed by plasma chemical vapor deposition, thermal chemical vapor deposition, plasma atomic layer deposition, or thermal atomic layer deposition.
제5항에 있어서,
상기 기판의 가열 온도는 50 내지 500 ℃인 니켈 함유 박막을 형성하는 방법.
The method of claim 5,
And a heating temperature of the substrate is 50 to 500 ° C.
삭제delete
KR1020150052182A 2015-04-14 2015-04-14 Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby KR102075418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150052182A KR102075418B1 (en) 2015-04-14 2015-04-14 Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150052182A KR102075418B1 (en) 2015-04-14 2015-04-14 Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby

Publications (2)

Publication Number Publication Date
KR20160122396A KR20160122396A (en) 2016-10-24
KR102075418B1 true KR102075418B1 (en) 2020-02-11

Family

ID=57256803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150052182A KR102075418B1 (en) 2015-04-14 2015-04-14 Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby

Country Status (1)

Country Link
KR (1) KR102075418B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093732A (en) * 2003-09-17 2005-04-07 Tri Chemical Laboratory Inc Film formation material, film formation method, film, and element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030994A (en) * 2003-09-27 2005-04-01 삼성전자주식회사 Method for depositing nickel layer
US8252112B2 (en) * 2008-09-12 2012-08-28 Ovshinsky Innovation, Llc High speed thin film deposition via pre-selected intermediate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093732A (en) * 2003-09-17 2005-04-07 Tri Chemical Laboratory Inc Film formation material, film formation method, film, and element

Also Published As

Publication number Publication date
KR20160122396A (en) 2016-10-24

Similar Documents

Publication Publication Date Title
US11155919B2 (en) ALD of metal-containing films using cyclopentadienyl compounds
KR100891779B1 (en) Organometallic precursors and related intermediates for deposition processes, their production and methods of use
KR101521198B1 (en) Methods of forming thin metal-containing films by chemical phase deposition
TWI427080B (en) Deposition precursors for semiconductor applications
US20050238808A1 (en) Methods for producing ruthenium film and ruthenium oxide film
TWI795553B (en) Method for manufacturing thin film with the use of a raw material for forming thin film by atomic layer deposition method
TWI601736B (en) Aluminum compound, raw material for forming a thin film, and method for producing the thin film
KR20130043557A (en) Ruthenium compounds with good step coverage, and deposited film using them
TWI727091B (en) Metal complexes containing allyl ligands
JP2007023388A (en) Production method and use of zirconium nitride coating film
TWI677501B (en) Ruthenium compound, thin-film forming raw material and method for producing thin film
KR102075418B1 (en) Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby
US7834206B2 (en) Organic-metal precursor material and method of manufacturing metal thin film using the same
JP2002542397A (en) Organocopper (I) precursor for chemical vapor deposition of copper thin films
JP5732772B2 (en) Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof
KR102034602B1 (en) method of manufacturing a cobalt-containing thin film and a cobalt-containing thin film manufactured thereby
KR20160122399A (en) method of manufacturing a cobalt-containing thin film and a cobalt-containing thin film manufactured thereby
KR20210058289A (en) Tungsten Precursor, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
TWI848281B (en) Method for producing organometallic compound, method for fabricating a thin film and tungsten metal thin film
TW201026876A (en) Nickel-containing film-formation material, and nickel-containing film-fabrication method
TW202336030A (en) Raw material for forming thin film by atomic layer deposition method, thin film, method for manufacturing thin film, and ruthenium compound
JP2003277930A (en) Titanium complex-containing solution as raw material for organometallic chemical vapor deposition and titanium-containg thin film produced by using the same
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant