[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102064105B1 - Dielectric ceramic composition and electronic device using the same - Google Patents

Dielectric ceramic composition and electronic device using the same Download PDF

Info

Publication number
KR102064105B1
KR102064105B1 KR1020190011660A KR20190011660A KR102064105B1 KR 102064105 B1 KR102064105 B1 KR 102064105B1 KR 1020190011660 A KR1020190011660 A KR 1020190011660A KR 20190011660 A KR20190011660 A KR 20190011660A KR 102064105 B1 KR102064105 B1 KR 102064105B1
Authority
KR
South Korea
Prior art keywords
dielectric
electronic device
composition
temperature
content
Prior art date
Application number
KR1020190011660A
Other languages
Korean (ko)
Other versions
KR20190015434A (en
Inventor
윤석현
박연정
김두영
김창훈
전송제
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020190011660A priority Critical patent/KR102064105B1/en
Publication of KR20190015434A publication Critical patent/KR20190015434A/en
Application granted granted Critical
Publication of KR102064105B1 publication Critical patent/KR102064105B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

본 발명은 유전체 자기조성물 및 이를 적용한 전자소자에 관한 것으로서, 보다 상세하게는 EIA 규격에서 명시한 X5R, X7R, 그리고 X8R 특성을 만족하는 유전체 자기조성물 및 이를 적용한 전자소자에 관한 것이다. 본 발명에 따르면, 모재 파우더에 환경에 유해한 납 (Pb)을 사용하지 않으면서도, 큐리온도 상승 및 고온부 유전율이 평탄해지는 특성을 구현할 수 있고, X8R 온도 특성 및 양호한 고온내전압 특성을 만족시킬 수 있다.The present invention is a dielectric Self-composition and This The present invention relates to an applied electronic device, and more particularly, to a dielectric magnetic composition satisfying X5R, X7R, and X8R characteristics specified in an EIA standard, and an electronic device using the same. According to the present invention, it is possible to realize a characteristic that the Curie temperature rise and the high-temperature dielectric constant becomes flat, without using lead (Pb) harmful to the environment in the base material powder, and can satisfy the X8R temperature characteristics and good high temperature withstand voltage characteristics.

Description

유전체 자기조성물 및 이를 적용한 전자소자{DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC DEVICE USING THE SAME}Dielectric self-composition and electronic device using the same {DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC DEVICE USING THE SAME}

본 발명은 유전체 자기조성물 및 이를 적용한 전자소자에 관한 것으로서, 보다 상세하게는 EIA 규격에서 명시한 X5R, X7R, 그리고 X8R 특성을 만족하는 유전체 자기조성물 및 이를 적용한 전자소자에 관한 것이다.
The present invention is a dielectric Self-composition and This The present invention relates to an applied electronic device, and more particularly, to a dielectric magnetic composition satisfying X5R, X7R, and X8R characteristics specified in an EIA standard, and an electronic device using the same.

기존의 X5R, X7R 혹은 X8R등의 고용량 BME 적층세라믹캐패시터의 유전체재료의 조성 시스템은 주성분 재료인 BaTiO3 혹은 (Ba1 - xCax)(Ti1 - yCay)O3, 등의 모재에 대략 4부류 이상의 첨가제 부성분들을 필수적으로 포함한다. 첨가제 부성분 중에서 가장 큰 비율을 차지하는 것은 원자가고정 억셉터 (fixed-valence acceptor)인 Mg 등과 희토류 원소 (rare-earth elements)이며, 그 외에 원자가가변 억셉터 (variable-valence acceptor)가 이들 양보다 소량 첨가되고, 소결성 증진을 위해 소결조제(sintering aids)가 포함되게 된다. 이와 같은 기존의 조성시스템은 공통적으로 희토류원소 (rare-earth element) 및 원자가고정 억셉터 (fixed-valence acceptor)인 Mg 등이 BaTiO3와 반응하여 코어-쉘 구조를 형성하며, 이는 정상적인 적층세라믹캐패시터의 특성구현을 위해 필요하다. BaTiO3 모재를 적용하여 큐리온도를 상승시키기 위해서는 CaZrO3를 첨가하거나 과량의 희토류 원소를 첨가하여 큐리온도 이상에서 유전율의 감소정도를 완화시키는 방법이 알려져 있다.
The composition system of the dielectric material of the conventional high capacity BME multilayer ceramic capacitors such as X5R, X7R or X8R is applied to the base material such as BaTiO 3 or (Ba 1 - x Ca x ) (Ti 1 - y Ca y ) O 3 , which is the main component material. And essentially four or more additive subcomponents. The largest proportion of additive additives is Mg, a fixed-valence acceptor, and rare-earth elements, and a small amount of the variable-valence acceptor is added below these amounts. And sintering aids are included to enhance the sinterability. In the conventional composition system, a rare-earth element and a fixed-valence acceptor Mg react with BaTiO 3 to form a core-shell structure, which is a normal multilayer ceramic capacitor. It is necessary to implement the characteristics of In order to increase the Curie temperature by applying the BaTiO 3 base material, it is known to add CaZrO 3 or to add an excessive rare earth element to mitigate the decrease in dielectric constant above the Curie temperature.

일본공개특허 2008-011254Japanese Laid-Open Patent 2008-011254

Yoon et al., J. Mater. Res., 22[9] 2539 (2007)Yoon et al., J. Mater. Res., 22 [9] 2539 (2007)

본 발명은 EIA 규격에서 명시한 X5R, X7R, 그리고 X8R 특성을 만족하는 유전체 자기조성물로서, 니켈을 내부전극으로 사용하고 1300℃ 이하에서 상기 니켈이 산화되지 않는 환원분위기에서 소성이 가능한 유전체 자기조성물과 이를 이용한 전자소자를 제공하는데 그 목적이 있다.
The present invention is a dielectric magnetic composition that satisfies the X5R, X7R, and X8R characteristics specified in the EIA standard, and uses a nickel as an internal electrode and is capable of baking in a reducing atmosphere in which the nickel is not oxidized at 1300 ° C. or below, and the same. The purpose is to provide an electronic device used.

본 발명에서는 BaTiO3와 (Na,K)NbO3를 적정비율로 혼합하거나, 고용체를 형성하도록 하고, SiO2 및 MnO2를 소량 첨가하여 소결체를 제작함으로써 상온에서 1500 이상의 비교적 높은 유전율을 유지할 수 있도록 하고, 동시에 X8R 온도특성을 충족시킬 수 있도록 한다.
In the present invention, BaTiO 3 and (Na, K) NbO 3 are mixed at an appropriate ratio, or a solid solution is formed, and a small amount of SiO 2 and MnO 2 are added to prepare a sintered body to maintain a relatively high dielectric constant of 1500 or more at room temperature. And at the same time ensure that the X8R temperature characteristics are met.

본 발명에 따르면, 모재 파우더에 환경에 유해한 납 (Pb)을 사용하지 않으면서도, 큐리온도 상승 및 고온부 유전율이 평탄해지는 특성을 구현할 수 있고, X8R 온도 특성 및 양호한 고온내전압 특성을 만족시킬 수 있다.
According to the present invention, it is possible to realize a characteristic that the Curie temperature rise and the high-temperature dielectric constant becomes flat, without using lead (Pb) harmful to the environment in the base material powder, and can satisfy the X8R temperature characteristics and good high temperature withstand voltage characteristics.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 150도까지 온도 특성 및 신뢰성이 보증되는 X8R 특성을 충족시키는 신규 유전체 자기조성물에 관한 것이다. The present invention relates to a novel dielectric self-composition that satisfies the X8R properties, with guaranteed temperature and reliability up to 150 degrees.

고용량 Ni-MLCC의 주 재료인 BaTiO3의 경우 큐리온도 (TC)가 125도 부근이며, 이 온도이상에서는 유전율이 급격하게 낮아지는 현상이 있으므로, 150도까지 용량 온도특성을 X8R 규격 ±15% 이내로 맞추기 위해서는 이에 맞는 조성이 요구된다. BaTiO 3 , the main material of high-capacity Ni-MLCC, has a Curie temperature (TC) of around 125 degrees, and the dielectric constant drops rapidly above this temperature. Therefore, the capacity temperature characteristics up to 150 degrees are within ± 15% of the X8R standard. In order to fit, a composition suitable for this is required.

예를 들면, BaTiO3 모재에 희토류 원소를 과량 첨가하여 큐리온도 이상에서 유전율 감소정도를 완화시키거나, CaZrO3를 적정량 첨가하면 큐리온도가 상승하여 고온부 TCC (Temperature Coefficient of Capacitance)가 개선될 수 있다는 보고가 있다 (일본공개특허 2001-279534, 2004-73856 등). 그러나 희토류를 과량 첨가하는 경우 Pyrochlore라는 이차상이 생성되어 신뢰성이 저하되는 문제가 있으며 (Yoon et al., J. Mater. Res., 22[9] 2539 (2007)), 큐리온도가 125도인 BaTiO3 모재에 희토류를 과량으로 첨가하거나, CaZrO3를 첨가하는 경우, X8R 특성을 만족한다고 하더라도 우수한 고온부 TCC 특성을 얻는데 한계가 있다.For example, by adding an excessive amount of rare earth elements to BaTiO 3 base material to alleviate the reduction of dielectric constant above Curie temperature, or by adding an appropriate amount of CaZrO 3 , the Curie temperature can be increased to improve the high temperature coefficient TCC (Temperature Coefficient of Capacitance). There is a report (Japanese Patent Laid-Open No. 2001-279534, 2004-73856, etc.). However, when excessive amounts of rare earths are added, a secondary phase called Pyrochlore is generated and reliability is deteriorated (Yoon et al., J. Mater. Res., 22 [9] 2539 (2007)), and BaTiO 3 having a Curie temperature of 125 degrees. When an excessive amount of rare earth is added to the base material or when CaZrO 3 is added, there is a limit in obtaining excellent high temperature part TCC characteristics even if the X8R characteristics are satisfied.

또 다른 방법으로, 큐리 온도가 높은 파우더를 적용하여 고온부 TCC를 개선할 수 있다. Ca이 ABO3 Perovskite 구조의 A-site에 고용이 되면 큐리 온도가 올라가는 것으로 알려져 있으며, 이러한 Ca이 고용된 BaTiO3 (BCT) 파우더를 적용하면 고온부 TCC 특성을 향상시킬 수 있어 X8R 재료로서의 가능성이 제시된 바가 있다. (Yoon et al., J. Mater. Res., 25[11] 2135 (2010)). 고상법으로 공기 중에서 하소하여 BaTiO3를 합성하는 경우, 큐리온도를 높일 수 있는 원소로 현재까지 알려진 것은 앞서 말한 Ca 이외에 Pb도 있다. 그런데 Pb의 경우 유해물질로 분류되어 있고, Ni-적층세라믹 캐패시터와 같이 환원분위기에서 소성하는 경우 쉽게 휘발하는 문제가 발생하여 공정상 적용하기가 곤란하다.In another method, a high Curie temperature may be applied to improve the hot portion TCC. It is known that the Curie temperature increases when Ca is dissolved in the A-site of ABO 3 Perovskite structure. The application of BaTiO 3 (BCT) powder in which Ca is employed can improve the TCC characteristics of the hot part, suggesting the possibility of X8R material. There is a bar. Yoon et al., J. Mater. Res., 25 [11] 2135 (2010). In the case of synthesizing BaTiO 3 by calcination in air by the solid phase method, Pb, in addition to Ca mentioned above, is known as an element capable of increasing the Curie temperature. However, Pb is classified as a hazardous substance, and when fired in a reducing atmosphere such as a Ni-laminated ceramic capacitor, it easily becomes volatilized and thus difficult to apply in the process.

본 발명은 BaTiO3와 (Na,K)NbO3를 적정 비율로 혼합하거나 고용체를 형성하고, SiO2 및 MnO2를 소량 첨가하여 소결체를 제작함으로써, 유전율이 1500 이상이고 절연저항이 우수하며 X8R 온도특성을 구현할 수 있는 자기조성물을 제시한다. 즉, CaZrO3나 과량의 희토류 원소를 첨가하지 않아도 X8R 특성 구현이 가능하며 기존의 BaTiO3 모재를 적용한 경우에 비해 보다 양호한 고온부 TCC 특성 구현이 가능하다. According to the present invention, BaTiO 3 and (Na, K) NbO 3 are mixed at an appropriate ratio or a solid solution is formed, and a small amount of SiO 2 and MnO 2 are added to prepare a sintered body. We present self-composition that can realize characteristics. In other words, X8R characteristics can be realized without adding CaZrO 3 or excessive rare earth elements, and better TCC characteristics can be realized than the existing BaTiO 3 base material.

본 발명의 일 측면에 따르면, 제1 주성분 BaTiO3와 제2 주성분 (Na1-yKy)NbO3의 고용체인 (1-x)BaTiO3-x(Na1 - yKy)NbO3(0.005≤x≤0.5, 0.3≤y≤1.0)를 주성분으로 하고, Mn, V, Cr, Fe, Ni, Co, Cu 및 Zn로 이루어진 군에서 선택되는 원소를 포함하는 제1 부성분, 및 SiO2 또는 이를 포함하는 유리 형성 물질을 제2 부성분으로 포함하는 유전체 자기조성물이 제공된다. According to an aspect of the invention, first the main component BaTiO 3 and the second main component (Na1-yKy) NbO 3 employs chains (1-x) of the BaTiO 3 -x (Na 1 - y K y) NbO 3 (0.005≤x ≤ 0.5, 0.3 ≤ y ≤ 1.0), the first subcomponent comprising an element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu and Zn, and SiO 2 or A dielectric self composition is provided that includes a glass forming material as a second accessory ingredient.

상기에서 x 및 y의 범위는 상기 조성 및 본 발명의 실시예에 따라 도출된 표 1과 표 2의 실험결과를 바탕으로 하고 있다.The range of x and y is based on the composition and the experimental results of Table 1 and Table 2 derived according to the embodiment of the present invention.

유전체 자기 조성물은, 제1주성분 BaTiO3와 제2주성분 (Na,K)NbO3를 혼합 고용하여 모재를 구성하고, 첨가제로는 제1부성분인 원자가가변 억셉터 (variable-valence acceptor) 원소 산화물 혹은 탄산염, 제2부성분인 SiO2를 포함한다. 상기 합성된 모재는 파우더의 형태로서, 그 입자크기는 1.0㎛ 이하가 바람직하다.The dielectric ceramic composition is composed of a solid solution of the first main component BaTiO 3 and the second main component (Na, K) NbO 3 to form a base material, and the additive is a variable-valence acceptor element oxide or and a carbonate, a SiO 2 second subcomponent. The synthesized base material is in the form of a powder, the particle size of which is preferably 1.0 μm or less.

일 실시예에 있어서, 상기 제1 부성분은 Mn, V, Cr, Fe, Ni, Co, Cu 및 Zn로 이루어진 군에서 선택되는 원소의 산화물 또는 탄산염일 수 있다.In one embodiment, the first accessory ingredient may be an oxide or carbonate of an element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn.

일 실시예에 있어서, 상기 제1 부성분은 MnO2 또는 MnCO3일 수 있다.In one embodiment, the first accessory ingredient is MnO 2 Or MnCO 3 .

일 실시예에 있어서, 상기 제1 부성분의 함량은 0.1~5.0at%일 수 있다.In one embodiment, the content of the first accessory ingredient may be 0.1 to 5.0 at%.

일 실시예에 있어서, 상기 제2 부성분 중 SiO2의 함량이 0.1~5.0at%일 수 있다.In one embodiment, the content of SiO 2 in the second subcomponent may be 0.1 to 5.0 at%.

상기에서 각 성분의 함량 범위는 하기 표 1 및 표 2의 실험결과를 바탕으로 한 것이다.The content range of each component in the above is based on the experimental results of Table 1 and Table 2.

본 발명의 다른 측면에 따르면, 상기 유전체 자기조성물을 이용하여 형성된 유전체를 포함하는 전자소자가 제공될 수 있다.According to another aspect of the present invention, an electronic device including a dielectric formed by using the dielectric magnetic composition may be provided.

일 실시예에 있어서, 상기 전자소자는 적층세라믹 캐패시터, 압전 소자, 칩인덕터, 칩 배리스터, 칩저항 및 PTCR (Positive Temperature Coefficient Resistor) 로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one embodiment, the electronic device may be at least one selected from the group consisting of a multilayer ceramic capacitor, a piezoelectric element, a chip inductor, a chip varistor, a chip resistor, and a PTCT (Positive Temperature Coefficient Resistor).

특히 본 발명의 유전체 자기조성물은 적층형 유전체 제품, 내부 전극층, 예를 들면, Ni 내부 전극층과 유전체층이 교대로 적층되어진 제품에 사용이 가능하다. 너무 얇은 두께의 유전체층은 한층 내에 존재하는 결정립 수가 작아 신뢰성에 나쁜 영향을 미칠 수 있으므로, 유전체 층의 두께는 소성 후, 0.1㎛ 이상의 범위에서 사용하는 것이 바람직하다.
In particular, the dielectric magnetic composition of the present invention can be used in a laminated dielectric product, an internal electrode layer, for example, a product in which Ni internal electrode layers and dielectric layers are alternately laminated. Too thin a dielectric layer has a small number of grains present in one layer, which may adversely affect reliability. Therefore, the thickness of the dielectric layer is preferably used in a range of 0.1 mu m or more after firing.

[실시예]EXAMPLE

모재파우더인 주성분 (1-x)BaTiO3-x(Na1 - yKy)NbO3 혼합 고용체 파우더는 다음과 같이 고상법을 적용하여 제조하였다. 출발원료는 BaCO3, TiO2, Na2O, K2O, Nb2O5 이다. 먼저 BaCO3와 TiO2를 볼밀로 혼합하고 900~1000℃ 범위에 하소하여 평균입자 크기 300nm의 BaTiO3 파우더를 준비하였다. 유사한 방법으로 Na2O, K2O, 그리고 Nb2O5 볼밀 혼합하고 800~900℃ 범위에서 하소하여 평균입자 크기 300nm의 (Na0.5K0.5)NbO3 파우더를 준비하였다. 하기 표 1에 명시된 조성비에 맞게 이들을 에탄올에 분산 및 혼합시켰다. 이 혼합된 파우더들을 공기 중 950~1050℃ 범위에서 하소하여 평균입자 크기 300 nm 정도의 모재파우더를 제작하였다. 이와 같은 주성분 모재파우더에 부성분 첨가제 MnO2와 SiO2 파우더를 표 1에 명시된 조성비에 맞게 첨가한 후, 주성분과 부성분이 포함된 원료 분말을 지르코니아 볼을 혼합/분산 메디아로 사용하고 에탄올/톨루엔과 분산제 및 바인더를 혼합한 후, 20 시간 동안 볼밀링 하였다. 제조된 슬러리는 닥터 블레이드 방식의 코터를 이용하여 10 ㎛의 두께로 성형시트를 제조하였다.The main component powder (1-x) BaTiO 3 -x (Na 1 - y K y ) NbO 3 mixed solid solution powder was prepared by applying the solid phase method as follows. Starting materials are BaCO 3 , TiO 2 , Na 2 O, K 2 O, Nb 2 O 5 . First, BaCO 3 and TiO 2 were mixed in a ball mill and calcined at 900 to 1000 ° C. to prepare BaTiO 3 powder having an average particle size of 300 nm. In a similar manner, Na 2 O, K 2 O, and Nb 2 O 5 ball mills were mixed and calcined at 800 to 900 ° C. to prepare (Na 0.5 K 0.5 ) NbO 3 powder with an average particle size of 300 nm. These were dispersed and mixed in ethanol in accordance with the composition ratios specified in Table 1 below. The mixed powder was calcined in the range of 950 ~ 1050 ℃ in air to prepare a base material powder with an average particle size of about 300 nm. After adding the subsidiary additives MnO 2 and SiO 2 powder to the main component base powder according to the composition ratio specified in Table 1, the raw powder containing the main component and the subcomponent was used as a mixing / dispersing media of zirconia balls and ethanol / toluene and dispersant. And the binder were mixed and ball milled for 20 hours. The prepared slurry was manufactured into a sheet having a thickness of 10 μm using a doctor blade coater.

상기 제조된 성형시트에는 Ni 내부전극을 인쇄하였다. 상하 커버는 커버용 시트를 25 층으로 적층하여 제작하였고, 21 층의 인쇄된 활성시트를 가압하며 적층하여 바(bar)를 제작하였다. 압착바는 절단기를 이용하여 3.2mm x 1.6mm 크기의 칩으로 절단하였다. 제작이 완료된 3216 크기의 적층세라믹 캐패시터 (MLCC) 칩은 가소를 행한 후 환원분위기 0.1%H2/99.9%N2 (H2O/H2/N2 분위기)에서 1200 ~ 1300℃의 온도에서 2 시간 소성 뒤, 1000℃에서 N2 분위기에서 재산화를 3 시간 동안 열처리하였다. 소성된 칩에 대해 Cu 페이스트로 터미네이션 공정 및 전극 소성을 거쳐 외부전극을 완성하였다. The prepared internal sheet was printed with Ni internal electrodes. The upper and lower covers were manufactured by stacking 25 sheets of cover sheets, and by pressing and stacking 21 layers of printed active sheets, a bar was manufactured. The pressing bar was cut into chips having a size of 3.2 mm x 1.6 mm using a cutter. After fabrication, the 3216 laminated ceramic capacitor (MLCC) chip was calcined for 2 hours at a temperature of 1200 to 1300 ° C in a reducing atmosphere of 0.1% H2 / 99.9% N2 (H 2 O / H 2 / N 2 atmosphere). Thereafter, the reoxidation was heat treated for 3 hours at 1000 ° C. in an N 2 atmosphere. The external electrode was completed through a termination process and electrode firing with Cu paste on the fired chip.

실시예Example 모재 각 성분 몰비율
(1-x)BaTiO3 + x(Na1 - yKy)NbO3
Base material molar ratio
(1-x) BaTiO 3 + x (Na 1 - y K y ) NbO 3
모재 BT-NKN 100 몰 당 
각 첨가제의 몰 수
Base material BT-NKN per 100 mol
Molar number of each additive
제1주성분Primary ingredient 제2주성분Second ingredient 1부성분1 part 2부성분Part 2 Ingredients BaTiO3
(1-x)
BaTiO 3
(1-x)
(Na1 - yKy)NbO3
(x)
(Na 1 - y K y ) NbO 3
(x)
yy MnO2 MnO 2 SiO2 SiO 2
1One 1.0001.000 0.0000.000 0.5000.500 0.500.50 0.500.50 22 0.9950.995 0.0050.005 0.5000.500 0.500.50 0.500.50 33 0.9900.990 0.0100.010 0.5000.500 0.500.50 0.500.50 44 0.9800.980 0.0200.020 0.5000.500 0.500.50 0.500.50 55 0.9700.970 0.0300.030 0.5000.500 0.500.50 0.500.50 66 0.9500.950 0.0500.050 0.5000.500 0.500.50 0.500.50 77 0.9000.900 0.1000.100 0.5000.500 0.500.50 0.500.50 88 0.8000.800 0.2000.200 0.5000.500 0.500.50 0.500.50 99 0.7000.700 0.3000.300 0.5000.500 0.500.50 0.500.50 1010 0.6000.600 0.4000.400 0.5000.500 0.500.50 0.500.50 1111 0.5000.500 0.5000.500 0.5000.500 0.500.50 0.500.50 1212 0.4000.400 0.6000.600 0.5000.500 0.500.50 0.500.50 1313 0.9500.950 0.0500.050 0.5000.500 0.000.00 0.500.50 1414 0.9500.950 0.0500.050 0.5000.500 0.100.10 0.500.50 1515 0.9500.950 0.0500.050 0.5000.500 0.300.30 0.500.50 1616 0.9500.950 0.0500.050 0.5000.500 1.001.00 0.500.50 1717 0.9500.950 0.0500.050 0.5000.500 2.002.00 0.500.50 1818 0.9500.950 0.0500.050 0.5000.500 5.005.00 0.500.50 1919 0.9500.950 0.0500.050 0.5000.500 7.007.00 0.500.50 2020 0.9500.950 0.0500.050 0.5000.500 0.500.50 0.000.00 2121 0.9500.950 0.0500.050 0.5000.500 0.500.50 0.100.10 2222 0.9500.950 0.0500.050 0.5000.500 0.500.50 1.001.00 2323 0.9500.950 0.0500.050 0.5000.500 0.500.50 2.002.00 2424 0.9500.950 0.0500.050 0.5000.500 0.500.50 5.005.00 2525 0.9500.950 0.0500.050 0.5000.500 0.000.00 7.007.00 2626 0.9500.950 0.0500.050 0.2000.200 0.500.50 0.500.50 2727 0.9500.950 0.0500.050 0.3000.300 0.500.50 0.500.50 2828 0.9500.950 0.0500.050 0.7000.700 0.500.50 0.500.50 2929 0.9500.950 0.0500.050 1.0001.000 0.500.50 0.500.50

상기 표 1과 같이 완성된 프로토타입 적층세라믹 캐패시터 시편에 대해 용량, DF, 절연저항, TCC, 고온 150℃에서 전압 스텝 (step) 증가에 따른 저항열화 거동 등을 평가하였다. 적층세라믹 캐패시터 칩의 상온 정전용량 및 유전손실은 LCR 미터를 이용하여 1 kHz, AC 0.2V/㎛ 조건에서 용량을 측정하였다. Capacity, DF, insulation resistance, TCC, resistance degradation behavior with increasing voltage step at high temperature 150 ° C. were evaluated for the prototype laminated ceramic capacitor specimens as shown in Table 1 above. The room temperature capacitance and dielectric loss of the multilayer ceramic chip were measured at 1 kHz, AC 0.2V / μm using an LCR meter.

정전용량과 적층세라믹 캐패시터 칩의 유전체 두께, 내부전극 면적, 적층수로부터 적층세라믹 캐패시터 칩 유전체의 유전율을 계산하였다. The dielectric constant of the laminated ceramic capacitor chip dielectric was calculated from the capacitance, the dielectric thickness of the multilayer ceramic chip, the internal electrode area, and the number of stacked layers.

상온 절연저항 (IR)은 10 개씩 샘플을 취하여 DC 10V/㎛ 을 인가한 상태에서 60 초 경과 후 측정하였다. 온도에 따른 정전용량의 변화는 -55℃에서 150℃의 온도 범위에서 측정되었다. The room temperature insulation resistance (IR) was measured after 60 seconds in a state in which 10 samples were taken and DC 10V / µm was applied. The change in capacitance with temperature was measured in the temperature range of -55 ° C to 150 ° C.

고온 IR 승압 실험은 150℃에서 전압 단계를 5V/㎛씩 증가시키면서 저항 열화거동을 측정하였는데, 각 단계의 시간은 10분이며 5초 간격으로 저항값을 측정하였다. 고온 IR 승압 실험으로부터 고온 내전압을 도출하였는데, 이는 소성 후 7㎛ 두께의 20층의 유전체를 가지는 3216 크기 칩에서 150℃에서 전압 스텝 (voltage step) dc 5V/㎛를 10분간 인가하고 이 전압 스텝을 계속 증가시키면서 측정할 때, IR이 105Ω 이상을 견디는 전압을 의미한다. In the high temperature IR boost test, the resistance degradation behavior was measured by increasing the voltage step by 5V / μm at 150 ° C. The time of each step was 10 minutes and the resistance value was measured at 5 second intervals. The high temperature withstand voltage was derived from the high temperature IR boost test, which applied a voltage step dc 5V / μm at 150 ° C. for 10 minutes on a 3216 size chip with a 20-layer dielectric having a thickness of 7 μm after firing. When measured in continuous increments, it refers to the voltage at which the IR withstands more than 105Ω.

표 2는 표 1 에 명시된 조성에 해당하는 프로토타입 적층세라믹 캐패시터 칩의 특성을 나타낸다.Table 2 shows the characteristics of the prototype multilayer ceramic capacitor chips corresponding to the compositions specified in Table 1.



room
city
Yes
Ni-적층세라믹 캐패시터 프로토타입 SPL특성
(유전율/DF 측정조건: AC 0.2V/um, 1kHz)
(상온비저항: DC 10V/um)
Ni-Laminated Ceramic Capacitor Prototype SPL Characteristics
Dielectric constant / DF measurement condition: AC 0.2V / um, 1kHz
(Room Specific Resistance: DC 10V / um)
소성온도
(℃)
Firing temperature
(℃)
상온
유전율
Room temperature
permittivity
DF(%)DF (%) 상온비저항
(Ohm-cm)
Room temperature resistivity
(Ohm-cm)
TCC(%)
(-55℃)
TCC (%)
(-55 ℃)
TCC(%)
(125℃)
TCC (%)
(125 ℃)
TCC(%)
(150℃)
TCC (%)
(150 ℃)
고온
(150℃)
내전압(V/um)*
High temperature
(150 ℃)
Withstand voltage (V / um) *
판정Judgment
1One 1250.01250.0 3156.03156.0 3.5203.520 8.221E+128.221E + 12 -11.7%-11.7% -12.4%-12.4% -35.2%-35.2% 7070 XX 22 1250.01250.0 2766.02766.0 3.6853.685 8.564E+128.564E + 12 -12.2%-12.2% -11.2%-11.2% -15.0%-15.0% 7070 OO 33 1250.01250.0 2751.02751.0 3.5803.580 8.623E+128.623E + 12 -12.4%-12.4% -10.4%-10.4% -14.5%-14.5% 7070 OO 44 1250.01250.0 2548.02548.0 3.4703.470 9.630E+129.630E + 12 -12.5%-12.5% -9.5%-9.5% -13.5%-13.5% 7575 OO 55 1250.01250.0 2477.02477.0 3.4103.410 1.023E+131.023E + 13 -12.8%-12.8% -9.1%-9.1% -12.8%-12.8% 7070 OO 66 1250.01250.0 2348.02348.0 3.2603.260 1.174E+131.174E + 13 -13.2%-13.2% -8.8%-8.8% -11.8%-11.8% 6565 OO 77 1250.01250.0 2247.02247.0 3.1003.100 1.210E+131.210E + 13 -13.4%-13.4% -8.5%-8.5% -10.6%-10.6% 6565 OO 88 1250.01250.0 2197.02197.0 2.9802.980 1.256E+131.256E + 13 -13.5%-13.5% -8.8%-8.8% -10.2%-10.2% 6565 OO 99 1250.01250.0 1948.01948.0 2.8402.840 1.326E+131.326E + 13 -9.5%-9.5% -6.2%-6.2% -9.8%-9.8% 6565 OO 1010 1250.01250.0 1757.01757.0 2.6402.640 1.335E+131.335E + 13 -9.2%-9.2% -5.8%-5.8% -9.6%-9.6% 6060 OO 1111 1250.01250.0 1548.01548.0 2.4802.480 1.458E+131.458E + 13 -8.8%-8.8% -5.6%-5.6% -9.5%-9.5% 5555 OO 1212 1250.01250.0 1284.01284.0 1.8201.820 4.568E+134.568E + 13 -7.8%-7.8% -5.1%-5.1% -9.2%-9.2% 5555 XX 1313 1250.01250.0 21868.021868.0 126.500126.500 8.480E+078.480E + 07 -- -- -- 55 XX 1414 1250.01250.0 2568.02568.0 4.2804.280 5.120E+115.120E + 11 -13.1%-13.1% -9.5%-9.5% -12.5%-12.5% 5050 OO 1515 1250.01250.0 2437.02437.0 4.0204.020 7.480E+127.480E + 12 -12.9%-12.9% -9.4%-9.4% -11.7%-11.7% 5555 OO 1616 1250.01250.0 2296.02296.0 2.3502.350 8.308E+128.308E + 12 -12.8%-12.8% -2.4%-2.4% -9.8%-9.8% 6565 OO 1717 1250.01250.0 1868.01868.0 2.2602.260 6.335E+116.335E + 11 -11.6%-11.6% -2.3%-2.3% -8.5%-8.5% 6565 OO 1818 1250.01250.0 1567.01567.0 2.1702.170 2.407E+112.407E + 11 -11.2%-11.2% -2.1%-2.1% -8.4%-8.4% 6060 OO 1919 1250.01250.0 1365.01365.0 1.9301.930 7.408E+107.408E + 10 -10.4%-10.4% -1.9%-1.9% -7.7%-7.7% 5555 XX 2020 1300.01300.0 2532.02532.0 3.9903.990 5.688E+125.688E + 12 -13.7%-13.7% -7.9%-7.9% -10.1%-10.1% 4545 XX 2121 1270.01270.0 2417.02417.0 3.8403.840 6.408E+126.408E + 12 -13.6%-13.6% -7.8%-7.8% -11.5%-11.5% 5555 OO 2222 1240.01240.0 2323.02323.0 3.1203.120 1.245E+131.245E + 13 -12.8%-12.8% -8.4%-8.4% -11.7%-11.7% 6060 OO 2323 1250.01250.0 2284.02284.0 2.9902.990 1.070E+131.070E + 13 -11.8%-11.8% -8.6%-8.6% -12.2%-12.2% 5555 OO 2424 1270.01270.0 2187.02187.0 2.9702.970 1.123E+131.123E + 13 -11.7%-11.7% -7.4%-7.4% -11.7%-11.7% 5050 OO 2525 1290.01290.0 2048.02048.0 2.8802.880 8.887E+128.887E + 12 -11.4%-11.4% -7.6%-7.6% -11.6%-11.6% 4040 XX 2626 1250.01250.0 1645.01645.0 2.8302.830 6.208E+126.208E + 12 -11.8%-11.8% -12.5%-12.5% -9.9%-9.9% 3535 XX 2727 1250.01250.0 1948.01948.0 3.0303.030 8.450E+128.450E + 12 -12.3%-12.3% -11.1%-11.1% -12.7%-12.7% 5555 OO 2828 1250.01250.0 2046.02046.0 1.8701.870 8.550E+128.550E + 12 -10.7%-10.7% -10.5%-10.5% -15.0%-15.0% 5555 OO 2929 1250.01250.0 1852.01852.0 1.81.8 9.523E+129.523E + 12 -9.7%-9.7% -6.2%-6.2% -9.9%-9.9% 5050 OO

표 1의 실시예 1~12는 제2 주성분 (Na1 - yKy)NbO3에서 y=0.5 이고 제1 부성분 MnO2 및 제2 부성분 SiO2의 함량이 모재 파우더 (1-x)BaTiO3-x(Na1 - yKy)NbO3 대비 각각 0.5 at% 및 0.5 at% 일 때, 제1 주성분 BT의 함량 1-x 및 제2 주성분 (Na1 -yKy)NbO3의 함량 x 변화에 따른 프로토타입 칩의 특성을 나타낸다. x의 함량이 0 (실시예1)에서 0.6 (실시예12)으로 점점 증가함에 따라 유전율은 점점 감소하게 되는데, x가 0인 경우에는 (실시예1) 유전율이 3156으로 매우 높으나 TCC(150도)가 -35.2%로 ±15% X8R 규격을 벗어나는 문제가 있으며, x가 0.6인 경우에는 (실시예12) 상온유전율이 1500 미만으로 지나치게 낮아지는 문제가 있다. Carried out in Table 1 Examples 1 to 12 is the second main component (Na 1 - y K y) y = 0.5 , and the first subcomponent MnO 2 and the content of the second subcomponent SiO 2 base material powder (1-x) BaTiO 3 in NbO 3 Contents of the first main component BT 1-x and the second main component (Na 1 -y K y ) NbO 3 at 0.5 at% and 0.5 at% relative to -x (Na 1 - y K y ) NbO 3 , respectively The characteristics of the prototype chip according to the change are shown. As the content of x gradually increases from 0 (Example 1) to 0.6 (Example 12), the dielectric constant decreases gradually. When x is 0 (Example 1), the dielectric constant is very high as 3156, but the TCC (150 degrees) ) Is outside the ± 15% X8R standard at -35.2%, and if x is 0.6 (Example 12), the room temperature dielectric constant is too low to less than 1500.

실시예 2~11의 시편에서 상온유전율 1500 이상, 고온내전압 50V/um 이상, TCC(150도)≤±15% 의 X8R 온도특성을 만족하므로 적정 x의 범위는 0.005≤x≤0.5라고 기술할 수 있다.
In the specimens of Examples 2 to 11, X8R temperature characteristics of 1500 or higher at room temperature dielectric constant, 50 V / um at high temperature, and TCC (150 degrees) ≤ ± 15% are satisfied. Therefore, the range of proper x can be described as 0.005≤x≤0.5. have.

표 1의 실시예 13~19는 제2 주성분 (Na1 - yKy)NbO3에서 y=0.5 이고 이것의 함량 x=0.05 이고, 제2 부성분 SiO2의 함량이 모재 파우더 대비 0.5at% 일 때, 제1 부성분 MnO2 함량 변화에 따른 프로토타입 칩의 특성을 나타낸다. Mn의 함량이 0인 경우 (실시예13) 상온 비저항값이 8.480E7으로 매우 낮으며, Mn 함량이 0.1at% (실시예14) 이상부터는 1E11 이상의 절연특성이 구현됨을 확인할 수 있다. Mn의 함량이 증가함에 따라 유전율 및 상온비저항은 계속 감소하여 Mn 함량이 7at% 로 커지는 경우(실시예19), 유전율은 1365로 감소하여, 1500 미만이 되며, 상온비저항이 1E11 미만이 되는 문제가 발생한다.
Examples 13 to 19 of Table 1 are y = 0.5 in the second main component (Na 1 - y K y ) NbO 3 and its content x = 0.05, and the content of the second sub ingredient SiO 2 is 0.5at% relative to the base powder. When the first accessory component MnO 2 content is changed, the prototype chip is characterized. When the Mn content is 0 (Example 13), the specific resistance value of the room temperature is very low as 8.480E7, and from the Mn content of 0.1at% (Example 14) or more, it can be confirmed that insulation characteristics of 1E11 or more are realized. As the Mn content increases, the dielectric constant and room temperature resistivity continue to decrease so that the Mn content increases to 7at% (Example 19). The dielectric constant decreases to 1365, which is less than 1500, and the room temperature resistivity becomes less than 1E11. Occurs.

실시예 14~18의 시편에서 유전율, 고온내전압, TCC 특성이 본 발명의 목표특성을 만족하므로 Mn의 함량은 0.1 ~ 5.0at% 범위로 선정할 수 있다.In the specimens of Examples 14 to 18, the dielectric constant, high temperature withstand voltage, and TCC characteristics satisfy the target characteristics of the present invention, so that the Mn content may be selected in the range of 0.1 to 5.0 at%.

표 1의 실시예 20~25는 제2 주성분 (Na1 - yKy)NbO3에서 y=0.5, x=0.05이고, 제1 부성분 MnO2의 함량이 모재 파우더 대비 0.5at% 일 때, 제2 부성분 SiO2 함량 변화에 따른 프로토타입 칩의 특성을 나타낸다. SiO2의 함량이 0인 경우(실시예20), 적정 소성온도가 1300도 정도로 소성온도가 올라가고, SiO2가 첨가된 경우 (실시예 21~24) 소결성이 개선되는 효과가 있다. SiO2 함량이 7at% 인 경우(실시예25), 소결성 개선효과가 거의 없어지고 고온내전압 특성이 50V/um 미만으로 나빠지게 된다. 따라서, 실시예 20~25의 결과로부터 유전율, 고온내전압, TCC 특성, 그리고 소결성을 고려시 바람직한 SiO2의 함량은 0.1 ~ 5. 0 at% 범위로 선정할 수 있다.Examples 20 to 25 of Table 1 are obtained when y = 0.5 and x = 0.05 in the second main component (Na 1 - y K y ) NbO 3 , and the content of the first minor component MnO 2 is 0.5at% relative to the base powder. The characteristics of the prototype chip according to the variation of the content of two subsidiary components SiO 2 are shown. When the content of SiO 2 is 0 (Example 20), when the appropriate firing temperature is increased to about 1300 degrees, and when SiO 2 is added (Examples 21 to 24), the sinterability is improved. When the SiO 2 content is 7at% (Example 25), the effect of improving the sinterability is almost eliminated, and the high temperature withstand voltage property is deteriorated to less than 50 V / um. Therefore, from the results of Examples 20 to 25, the preferable SiO 2 content in consideration of dielectric constant, high temperature withstand voltage, TCC characteristics, and sintering properties may be selected in the range of 0.1 to 5.0 at%.

표 1의 실시예 26~29는 제2 주성분 (Na1 - yKy)NbO3 함량 x=0.05 이고, 제1 부성분 MnO2 및 제2 부성분 SiO2의 함량이 모재 파우더 대비 각각 0.5at% 및 0.5at% 일 때, 제2 주성분 (Na1 - yKy)NbO3 에서 K 함량 y 및 Na 함량 1-y에 따른 프로토타입 칩의 특성을 나타낸다. 제2 주성분 (Na1 - yKy)NbO3 에서 K 함량인 y=0.5를 기준으로 0.3 (실시예27) 내지 0.2 (실시예26)으로 감소함에 따라 유전율이 감소하고 고온내전압 특성이 나빠지게 됨을 알 수 있고, y=0.2 (실시예26) 인 경우에는 고온내전압 특성이 50V/um 미만인 문제가 발생함을 알 수 있다. K 함량 y=0.5를 기준으로 0.7 (실시예28) 내지 1.0 (실시예29)으로 증가함에 따라 유전율 및 고온내전압 특성이 다소 낮아지기는 하지만 유전율, 고온내전압, TCC 특성이 본 발명의 목표특성을 만족한다. 따라서 실시예 26~29의 결과로부터 유전율, 고온내전압, 상온비저항값을 고려시 바람직한 K의 함량 y의 범위는 0.3≤y≤1.0로 선정할 수 있다.Examples 26 to 29 of Table 1 have a second main component (Na 1 - y K y ) NbO 3 content x = 0.05, and the content of the first subcomponent MnO 2 and the second subcomponent SiO 2 is 0.5at% and the base powder, respectively. when 0.5at%, the second principal component (Na 1 - y Ky) the properties of the prototype chip according to the content of K y and 1-y Na content in NbO 3. The dielectric constant decreases and the high temperature withstand voltage property decreases as the second main component (Na 1 - y K y ) NbO 3 decreases from 0.3 (Example 27) to 0.2 (Example 26) based on the K content y = 0.5. In the case of y = 0.2 (Example 26), it can be seen that a problem occurs that the high temperature withstand voltage characteristic is less than 50 V / um. Although the dielectric constant and high temperature withstand voltage characteristics are slightly lowered with increasing from 0.7 (Example 28) to 1.0 (Example 29) based on the K content y = 0.5, the dielectric constant, high temperature withstand voltage, and TCC characteristics satisfy the target characteristics of the present invention. do. Therefore, in consideration of the permittivity, high temperature withstand voltage, and room temperature resistivity, the preferred range of K content y can be selected from 0.3≤y≤1.0.

본 발명은 유전체 자기조성물 및 이를 적용한 전자소자에 관한 것으로서, 보다 상세하게는 EIA 규격에서 명시한 X5R, X7R, 그리고 X8R 특성을 만족하는 유전체 자기조성물 및 이를 적용한 전자소자에 관한 것이다. 본 발명에 따르면, 모재 파우더에 환경에 유해한 납(Pb)을 사용하지 않으면서도, 큐리온도 상승 및 고온부 유전율이 평탄해지는 특성을 구현할 수 있고, X8R 온도 특성 및 양호한 고온내전압 특성을 만족시킬 수 있다.
The present invention is a dielectric Self-composition and This The present invention relates to an applied electronic device, and more particularly, to a dielectric magnetic composition satisfying X5R, X7R, and X8R characteristics specified in an EIA standard, and an electronic device using the same. According to the present invention, it is possible to realize a characteristic that the Curie temperature rise and the high-temperature dielectric constant becomes flat, without using lead (Pb) harmful to the environment in the base material powder, and can satisfy the X8R temperature characteristics and good high temperature withstand voltage characteristics.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

제1 주성분 BaTiO3와 제2 주성분 (Na1-yKy)NbO3의 고용체인 (1-x)BaTiO3-x(Na1-yKy)NbO3(0.005≤x≤0.3, 0.3≤y≤1.0)를 포함하고,
Mn, V, Cr, Fe, Ni, Co, Cu 및 Zn로 이루어진 군에서 선택되는 원소의 산화물 또는 탄산염인 제1 부성분, 및
SiO2 또는 이를 포함하는 유리 형성 물질을 제2 부성분으로 포함하는 유전체 자기조성물.
(1-x) BaTiO 3 -x (Na 1-y K y ) NbO 3 (0.005≤x≤0.3, 0.3≤, which is a solid solution of the first main component BaTiO 3 and the second main component (Na 1-y K y ) NbO 3 ) y≤1.0),
A first subcomponent which is an oxide or carbonate of an element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu and Zn, and
A dielectric self-composition comprising SiO 2 or a glass forming material comprising the same as a second accessory ingredient.
삭제delete 제1항에 있어서, 상기 제1 부성분은 MnO2 또는 MnCO3인 유전체 자기조성물.
The method of claim 1, wherein the first subcomponent is MnO 2 Or MnCO 3 dielectric self-composition.
제1항에 있어서, 상기 제1 부성분의 함량이 상기 고용체 100몰당 0.1-5.0몰인 유전체 자기조성물.
The dielectric magnetic composition of claim 1, wherein the content of the first accessory ingredient is 0.1-5.0 moles per 100 moles of the solid solution.
제1항에 있어서, 상기 제2 부성분 중 SiO2의 함량이 상기 고용체 100몰당 0.1-5.0몰인 유전체 자기조성물.
The dielectric ceramic composition of claim 1, wherein the content of SiO 2 in the second subcomponent is 0.1-5.0 mol per 100 mol of the solid solution.
제1항, 제3항 내지 제5항 중 어느 한 항에 따른 유전체 자기조성물을 이용하여 형성된 유전체를 포함하는 전자소자.
An electronic device comprising a dielectric formed by using the dielectric magnetic composition according to claim 1.
제6항에 있어서, 상기 전자소자는 적층세라믹 캐패시터, 압전 소자, 칩인덕터, 칩 배리스터, 칩저항 및 PTCR (Positive Temperature Coefficient Resistor)로 이루어진 군에서 선택되는 하나 이상인 전자소자.The electronic device of claim 6, wherein the electronic device is at least one selected from the group consisting of a multilayer ceramic capacitor, a piezoelectric device, a chip inductor, a chip varistor, a chip resistor, and a PTCT (Positive Temperature Coefficient Resistor).
KR1020190011660A 2019-01-30 2019-01-30 Dielectric ceramic composition and electronic device using the same KR102064105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190011660A KR102064105B1 (en) 2019-01-30 2019-01-30 Dielectric ceramic composition and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190011660A KR102064105B1 (en) 2019-01-30 2019-01-30 Dielectric ceramic composition and electronic device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140164758A Division KR101973421B1 (en) 2014-11-24 2014-11-24 Dielectric ceramic composition and electronic device using the same

Publications (2)

Publication Number Publication Date
KR20190015434A KR20190015434A (en) 2019-02-13
KR102064105B1 true KR102064105B1 (en) 2020-01-08

Family

ID=65366801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190011660A KR102064105B1 (en) 2019-01-30 2019-01-30 Dielectric ceramic composition and electronic device using the same

Country Status (1)

Country Link
KR (1) KR102064105B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028478A (en) * 2011-07-27 2013-02-07 Tdk Corp Dielectric ceramic composition and electronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011254A (en) 2006-06-29 2008-01-17 Sanyo Electric Co Ltd Terrestrial digital broadcasting receiver
KR101994709B1 (en) * 2013-04-17 2019-07-01 삼성전기주식회사 Dielectric composition, multilayer ceramic capacitor using the same, and method for preparing multilayer ceramic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028478A (en) * 2011-07-27 2013-02-07 Tdk Corp Dielectric ceramic composition and electronic component

Also Published As

Publication number Publication date
KR20190015434A (en) 2019-02-13

Similar Documents

Publication Publication Date Title
KR100631995B1 (en) Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same
KR102115523B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101883027B1 (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
US8492301B2 (en) Dielectric ceramic composition and ceramic electronic component
US20130083450A1 (en) Dielectric composition and ceramic electronic component including the same
JP6988039B2 (en) Dielectric porcelain compositions, dielectric materials and multilayer ceramic capacitors containing them
KR20130036595A (en) Dielectric composition and ceramic electronic component comprising the same
KR102183423B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101973421B1 (en) Dielectric ceramic composition and electronic device using the same
KR101983171B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101994760B1 (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
KR101659143B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20170081979A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
US8492302B2 (en) Dielectric ceramic composition and ceramic electronic component
JP2019129283A (en) Ceramic capacitor and production method thereof
KR102149788B1 (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
KR102064105B1 (en) Dielectric ceramic composition and electronic device using the same
KR102048840B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR102262901B1 (en) Dielectric ceramic composition and multi-layer ceramic electronic component using the same
KR102109638B1 (en) Dielectric Composition and Ceramic Electronic Component Comprising the Same
KR101588977B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
US9601275B1 (en) Dielectric ceramic composition and electronic device using the same
KR20240078013A (en) Ceramic compostion having high temperature stability and ceramic capacitor including the same
KR20240080885A (en) Ceramic compostion having high temperature stability and ceramic capacitor including the same
KR20240095807A (en) Ceramic compostion having high temperature stability and ceramic capacitor including the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant