KR102031453B1 - Hot-rolled steel sheet and method for manufacturing the same - Google Patents
Hot-rolled steel sheet and method for manufacturing the same Download PDFInfo
- Publication number
- KR102031453B1 KR102031453B1 KR1020170178951A KR20170178951A KR102031453B1 KR 102031453 B1 KR102031453 B1 KR 102031453B1 KR 1020170178951 A KR1020170178951 A KR 1020170178951A KR 20170178951 A KR20170178951 A KR 20170178951A KR 102031453 B1 KR102031453 B1 KR 102031453B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- excluding
- steel sheet
- rolled steel
- hot rolled
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명의 바람직한 일 측면은 wt%로, 탄소(C): 0.03~0.08%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 1.3~1.9%, 알루미늄(Al): 0.1% 이하(0%는 제외), 인(P): 0.04% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 크롬(Cr): 0.5% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외), 니켈(Ni): 0.5% 이하, 몰리브덴(Mo): 0.3% 이하(0% 포함), 질소(N): 0.02%이하(0%는 제외), 니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03% 및 바나디움(V): 0.001~0.07%를 포함하고, 상기 Nb, Ti 및 V의 함량의 합은 하기 관계식 1을 만족하고, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고;
[관계식 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)
미세조직이 부피%로, 90% 이상의 구형 폴리고날 페라이트 및 나머지 퍼얼라이트 및 세멘타이트 중 1 종 이상을 포함하고 그리고 하기 관계식 2를 만족하는 (Nb,Ti,V)(C,N) 및(Fe,Mn,Cr)3C 의 석출물을 포함하고; 그리고
[관계식 2]
Vc/Vtot ≥ 0.80(여기서, Vc : 지름 20nm 초과의 석출물 부피분율, Vtot : 전체 석출물의 부피분율을 나타냄)
인장강도(TS) 가 400MPa 내지 550MPa인 열연강판 및 그 제조방법을 제공한다.One preferred aspect of the present invention is wt%, carbon (C): 0.03 ~ 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 ~ 1.9%, aluminum (Al) : 0.1% or less (excluding 0%), phosphorus (P): 0.04% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), chromium (Cr): 0.5% or less ( Copper (Cu): 0.5% or less (excluding 0%), Nickel (Ni): 0.5% or less, Molybdenum (Mo): 0.3% or less (including 0%), Nitrogen (N): 0.02 % Or less (excluding 0%), niobium (Nb): 0.03 to 0.07%, titanium (Ti): 0.001 to 0.03%, and vanadium (V): 0.001 to 0.07%, the Nb, Ti and The sum of the contents of V satisfies the following relation 1 and includes the balance iron (Fe) and other unavoidable impurities;
[Relationship 1]
0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
The microstructure comprises (Nb, Ti, V) (C, N) and (Fe in volume%, including at least 90% spherical polygonal ferrite and at least one of the remaining perlite and cementite and satisfying the following relation: , Mn, Cr) 3 C precipitates; And
[Relationship 2]
Vc / Vtot ≥ 0.80 (where Vc is the volume fraction of precipitates greater than 20 nm in diameter, Vtot is the volume fraction of total precipitates)
Provided is a hot rolled steel sheet having a tensile strength (TS) of 400 MPa to 550 MPa and a method of manufacturing the same.
Description
본 발명은 400MPa 내지 550MPa의 인장강도를 갖는 열연강판 및 그 제조방법에 관한 것이다. The present invention relates to a hot rolled steel sheet having a tensile strength of 400MPa to 550MPa and a manufacturing method thereof.
높은 경도를 갖는 강판은 내구성과 하중 지탱 능력이 우수하여 구조물, 강관 및 다양한 부품에 사용되고 있다. Steel plate with high hardness is used for structure, steel pipe and various parts because of its excellent durability and load bearing ability.
그러나, 이처럼 높은 강도가 요구되는 용도의 경우 동시에 엄격한 합금성분 제어를 요구하게 되는데, 설령 이러한 합금성분 제조기준을 일부 벗어나더라도 보다 낮은 강도 등급의 용도에 적용하기에는 아무런 문제가 없는 경우가 많다. However, the use of such high strength requires a strict alloy composition control at the same time, even if some deviation from the alloy component manufacturing standards, there is often no problem to apply to a lower strength grade applications.
또한, 본래의 수요처에 사용하기 위해 요구되는 단중 요건을 만족하지 못하는 고강도 슬라브는 높은 품질을 가짐에도 불구하고 종종 스크랩 처리되는데, 이 경우 생산성 및 사회환경적 측면에서도 손실이 발생하게 된다. In addition, high-strength slabs that do not meet the heavy-duty requirements required for their original demand are often scraped, despite their high quality, which results in losses in terms of productivity and socio-environment.
이에, 높은 강도를 얻을 수 있는 합금성분을 함유한 슬라브로부터 보다 강도가 낮은 범용의 열연 강판을 제조하는 기술을 확보함으로써 다양한 수요를 만족시킬 수 있고 전체적인 생산성도 높일 수 있는 기술이 필요하게 된다.Accordingly, by securing a technology for producing a general-purpose hot rolled steel sheet having a lower strength from slabs containing an alloy component capable of obtaining high strength, a technology for satisfying various demands and increasing overall productivity is required.
본 발명의 바람직한 일 측면은400MPa 내지 550MPa의 인장강도를 갖는 열연강판을 제공하고자 하는 것이다.One preferred aspect of the present invention is to provide a hot rolled steel sheet having a tensile strength of 400MPa to 550MPa.
본 발명의 바람직한 다른 일 측면은 400MPa 내지 550MPa의 인장강도를 갖는 열연강판의 제조방법을 제공하고자 하는 것이다.Another preferred aspect of the present invention is to provide a method for producing a hot rolled steel sheet having a tensile strength of 400MPa to 550MPa.
본 발명의 바람직한 일 측면에 의하면, wt%로, 탄소(C): 0.03~0.08%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 1.3~1.9%, 알루미늄(Al): 0.1% 이하(0%는 제외), 인(P): 0.04% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 크롬(Cr): 0.5% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외), 니켈(Ni): 0.5% 이하, 몰리브덴(Mo): 0.3% 이하(0% 포함), 질소(N): 0.02%이하(0%는 제외), 니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03% 및 바나디움(V): 0.001~0.07%를 포함하고, 상기 Nb, Ti 및 V의 함량의 합은 하기 관계식 1을 만족하고, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고;According to a preferred aspect of the present invention, in wt%, carbon (C): 0.03 ~ 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 ~ 1.9%, aluminum ( Al): 0.1% or less (excluding 0%), phosphorus (P): 0.04% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), chromium (Cr): 0.5% Or less (excluding 0%), copper (Cu): 0.5% or less (excluding 0%), nickel (Ni): 0.5% or less, molybdenum (Mo): 0.3% or less (including 0%), nitrogen (N) : 0.02% or less (excluding 0%), niobium (Nb): 0.03 to 0.07%, titanium (Ti): 0.001 to 0.03%, and vanadium (V): 0.001 to 0.07%, the Nb, The sum of the contents of Ti and V satisfies the following relational formula 1, and includes residual iron (Fe) and other unavoidable impurities;
[관계식 1][Relationship 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
미세조직이 부피%로, 90% 이상의 구형 폴리고날 페라이트 및 나머지 퍼얼라이트 및 세멘타이트 중 1 종 이상을 포함하고 그리고 하기 관계식 2를 만족하는 (Nb,Ti,V)(C,N) 및 (Fe,Mn,Cr)3C 의 석출물을 포함하고; 그리고 (Nb, Ti, V) (C, N) and (Fe) containing at least 90% spherical polygonal ferrite and at least one of the remaining pearlite and cementite, in volume percent, and satisfying Equation 2 below: , Mn, Cr) 3 C precipitates; And
[관계식 2][Relationship 2]
Vc/Vtot ≥ 0.80(여기서, Vc : 지름 20nm 초과의 석출물 부피분율, Vtot : 전체 석출물의 부피분율을 나타냄)Vc / Vtot ≥ 0.80 (where Vc is the volume fraction of precipitates greater than 20 nm in diameter, Vtot is the volume fraction of total precipitates)
인장강도(TS) 가 400MPa 내지 550MPa인 열연강판이 제공된다.A hot rolled steel sheet having a tensile strength TS of 400 MPa to 550 MPa is provided.
본 발명의 바람직한 다른 일 측면에 의하면, wt%로, 탄소(C): 0.03~0.08%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 1.3~1.9%, 알루미늄(Al): 0.1% 이하(0%는 제외), 인(P): 0.04% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 크롬(Cr): 0.5% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외), 니켈(Ni): 0.5% 이하, 몰리브덴(Mo): 0.3% 이하(0% 포함), 질소(N): 0.02%이하(0%는 제외), 니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03%, 및 바나디움(V): 0.001~0.07%를 포함하고, 상기 Nb, Ti 및 V의 함량의 합은 하기 관계식 1을 만족하고, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 준비하는 단계;According to another preferred aspect of the present invention, in wt%, carbon (C): 0.03 ~ 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 ~ 1.9%, aluminum (Al): 0.1% or less (excluding 0%), phosphorus (P): 0.04% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), chromium (Cr): 0.5 % Or less (excluding 0%), copper (Cu): 0.5% or less (excluding 0%), nickel (Ni): 0.5% or less, molybdenum (Mo): 0.3% or less (including 0%), nitrogen (N ): 0.02% or less (excluding 0%), niobium (Nb): 0.03 to 0.07%, titanium (Ti): 0.001 to 0.03%, and vanadium (V): 0.001 to 0.07% A sum of the contents of Nb, Ti, and V satisfies the following relation 1, preparing a slab including residual iron (Fe) and other unavoidable impurities;
[관계식 1][Relationship 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
상기 슬라브를 1100 ~ 1250℃ 의 온도로 가열하는 단계;Heating the slab to a temperature of 1100-1250 ° C .;
상기 가열된 슬라브를 (A3+30℃) 이상의 열간마무리압연 온도 조건으로 열간압연하여 열연강판을 얻는 단계;Hot rolling the heated slab to a hot finishing rolling temperature condition of (A 3 + 30 ° C.) or more to obtain a hot rolled steel sheet;
상기 열연강판을 30℃/초 이하의 평균 냉각속도로 냉각하는 단계; 및Cooling the hot rolled steel sheet at an average cooling rate of 30 ° C./sec or less; And
상기와 같이 냉각된 열연강판을 650℃ 이상의 온도영역에서 권취하는 단계를 포함하는 열연강판의 제조방법이 제공된다.Provided is a method for manufacturing a hot rolled steel sheet including winding the hot rolled steel sheet cooled as described above in a temperature range of 650 ° C. or higher.
본 발명의 바람직한 다른 일 측면에 따르면, 인장강도(TS) 400MPa 내지 550MPa의 인장강도(TS) 400MPa급 열연 강재를 얻을 수 있는 효과가 있다.According to another preferred aspect of the present invention, there is an effect that can obtain a tensile strength (TS) 400MPa grade hot rolled steel of tensile strength (TS) 400MPa to 550MPa.
이하, 본 발명에 대하여 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.
종래 기술은 합금성분을 최대한 활용하여 높은 강도를 얻는데 주력해 왔으나, 본 발명에서는 이처럼 합금원소가 충분하게 함유된 강판에 대해 적절한 열연공정을 부여함으로써 저강도 열연강판 및 그 제조방법을 제공하는 것이다. The prior art has focused on obtaining high strength by utilizing alloy components to the maximum, but the present invention provides a low-strength hot-rolled steel sheet and a method of manufacturing the same by applying an appropriate hot-rolling process to a steel sheet sufficiently containing alloying elements.
특히, 본 발명의 대상이 되는 열연강판은 석출경화를 발생시키는 원소인 Nb, Ti 및 V 이 함유된 성분계로서, 그 강도를 충분히 낮추어 제조하는 기술은 지금까지 제시된 바가 없다.In particular, the hot-rolled steel sheet of the present invention is a component system containing Nb, Ti, and V, which are elements that cause precipitation hardening, and a technique of sufficiently lowering the strength thereof has not been proposed until now.
먼저, 본 발명의 바람직한 일 측면에 따르는 열연강판에 대하여 설명한다.First, a hot rolled steel sheet according to one preferred aspect of the present invention will be described.
본 발명의 바람직한 일 측면에 따르는 열연강판은 wt%로, 탄소(C): 0.03~0.08%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 1.3~1.9%, 알루미늄(Al): 0.1% 이하(0%는 제외), 인(P): 0.04% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 크롬(Cr): 0.5% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외), 니켈(Ni): 0.5% 이하, 질소(N): 0.02%이하(0%는 제외), 몰리브덴(Mo): 0.3% 이하(0% 포함), 니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03% 및 바나디움(V): 0.001~0.07%를 포함하고, 상기 Nb, Ti 및 V의 함량의 합은 하기 관계식 1을 만족하고, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함한다.Hot-rolled steel sheet according to a preferred aspect of the present invention is wt%, carbon (C): 0.03 ~ 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 ~ 1.9%, Aluminum (Al): 0.1% or less (excluding 0%), Phosphorus (P): 0.04% or less (excluding 0%), Sulfur (S): 0.02% or less (excluding 0%), Chromium (Cr): 0.5% or less (except 0%), copper (Cu): 0.5% or less (except 0%), nickel (Ni): 0.5% or less, nitrogen (N): 0.02% or less (excluding 0%), molybdenum (Mo): 0.3% or less (including 0%), niobium (Nb): 0.03-0.07%, titanium (Ti): 0.001-0.03%, and vanadium (V): 0.001-0.07% The sum of the contents of Nb, Ti, and V satisfies the following relational formula 1, and includes residual iron (Fe) and other unavoidable impurities.
[관계식 1][Relationship 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
탄소(C): 0.03~0.08wt%(이하, "%"라고도 함)Carbon (C): 0.03-0.08 wt% (hereinafter also referred to as "%")
탄소의 함량이 0.03% 미만인 경우 Nb, Ti, V 등의 석출경화형 원소를 첨가하더라도 TS 400MPa급에 상당하는 강도를 얻기가 어렵다. 탄소는 고용강화 및 석출강화를 통해 강재의 강도를 지탱하는 기본적인 원소이기 때문이다. 또한, 탄소의 함량이 0.08%를 초과하는 경우에는 인장강도가 550MPa를 초과하게 되어 400MPa급 강재의 관리 범위를 벗어나게 된다. When the carbon content is less than 0.03%, it is difficult to obtain strength equivalent to TS 400MPa class even if precipitation hardening elements such as Nb, Ti, and V are added. This is because carbon is a basic element that supports the strength of steel through solid solution strengthening and precipitation strengthening. In addition, when the carbon content exceeds 0.08%, the tensile strength exceeds 550MPa is out of the management range of 400MPa grade steels.
규소(Si): 0.5%이하(0%는 제외)Silicon (Si): 0.5% or less (except 0%)
규소는 강재의 강도를 증가시키고 탈산 작용의 측면에서 선호되는 합금 원소이다. 다만 Si이 지나치게 첨가되면 강재의 표면 특성 및 도금성이 나빠지게 된다.Silicon is the preferred alloying element in terms of increasing the strength of the steel and deoxidizing. However, when too much Si is added, the surface properties and plating properties of the steel are deteriorated.
따라서, 규소(Si)의 함량은 0.5%이하(0%는 제외)로 한정하는 것이 바람직하다.Therefore, the content of silicon (Si) is preferably limited to 0.5% or less (excluding 0%).
망간(Mn): 1.3~1.9%Manganese (Mn): 1.3-1.9%
Mn은 탄소의 경우와 유사하며, 각각 Mn의 하한과 상한을 벗어나게 될 경우 목표하는 강도 범위를 벗어나게 된다. 따라서, 망간(Mn)의 함량은 1.3~1.9%로 제한하는 것이 바람직하다.Mn is similar to that of carbon, and if it falls outside the lower and upper limits of Mn, respectively, it is outside the target strength range. Therefore, the content of manganese (Mn) is preferably limited to 1.3 ~ 1.9%.
알루미늄(Al): 0.1% 이하(0%는 제외)Aluminum (Al): 0.1% or less (except 0%)
알루미늄은 강재의 탈산을 위해 첨가하고, 결정립을 작게 하는 작용이 있는 반면 지나치게 첨가할 경우 강재의 주조성을 해치기 때문에 그 상한을 0.1%로 제한한다. Aluminum is added for the deoxidation of the steel, and has a function of reducing the grain size, while if added too much, the upper limit is limited to 0.1% because it deteriorates the castability of the steel.
인(P): 0.04% 이하(0%는 제외)Phosphorus (P): 0.04% or less (except 0%)
P은 강 중에 불순물로 존재하거나, 강재의 강도를 높이기 위해 고의적으로 첨가하기도 한다. 하지만 본 발명의 경우 불순물의 수준으로서 과다하게 첨가될 경우 강재의 인성 악화를 방지하기 위해 상한을 0.04%로 제한한다. P is present as an impurity in the steel or may be added intentionally to increase the strength of the steel. However, in the present invention, the upper limit is limited to 0.04% to prevent deterioration of the toughness of the steel when added excessively as the level of impurities.
황(S): 0.02% 이하(0%는 제외)Sulfur (S): 0.02% or less (excluding 0%)
황(S) 역시 강중에 불순물로 존재하며, 강재의 연성과 충격특성을 나쁘게 하기 때문에 그 상한은 0.02%로 제한하는 것이 바람직하다. Sulfur (S) is also present as an impurity in the steel, and the upper limit thereof is preferably limited to 0.02% because it degrades the ductility and impact characteristics of the steel.
크롬(Cr): 0.5% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외), 니켈(Ni): 0.5% 이하, Chromium (Cr): 0.5% or less (excluding 0%), copper (Cu): 0.5% or less (excluding 0%), nickel (Ni): 0.5% or less,
크롬(Cr), 니켈(Ni)과 구리 (Cu)는 강재의 강도를 높이는 원소로서 본 발명에서는 각각의 원소 함량의 상한을 0.5%로 제한한다. Chromium (Cr), nickel (Ni), and copper (Cu) are elements that increase the strength of steel, and in the present invention, the upper limit of the content of each element is limited to 0.5%.
몰리브덴(Mo): 0.3%이하(0% 포함)Molybdenum (Mo): 0.3% or less (including 0%)
몰리브덴(Mo)은 강재의 경화능을 크게 높이는 원소이나 지나치게 많은 양을 첨가할 경우 목표하는 강도 등급을 초과할 수 있고 고가의 원소이기 때문에 경제적인 측면에서 그 함량의 상한은 0.3%로 제한한다. Molybdenum (Mo) is an element that greatly increases the hardenability of the steel material, but when added in an excessively large amount may exceed the target strength grade and is an expensive element, so the economic upper limit of the content is limited to 0.3%.
질소(N): 0.02%이하(0%는 제외)Nitrogen (N): 0.02% or less (excluding 0%)
질소(N)는 강도를 증가시키고, 과다하게 첨가시 다량의 AlN 석출물을 형성하여 압연성 및 인성에 악영향을 미치게 된다. 따라서, 질소(N)의 함량은 0.02%이하(0%는 제외)로 제한한다.Nitrogen (N) increases the strength, when excessively added to form a large amount of AlN precipitate adversely affects the rollability and toughness. Therefore, the content of nitrogen (N) is limited to 0.02% or less (excluding 0%).
니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03% 및 바나디움(V): 0.001~0.07%Niobium (Nb): 0.03 to 0.07%, Titanium (Ti): 0.001 to 0.03% and Vanadium (V): 0.001 to 0.07%
본 발명의 강재는 니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03%, 바나디움(V): 0.001~0.07%를 포함하고, 상기 Nb, Ti 및 V의 함량의 합은 하기 관계식 1을 만족하도록 한다.Steel of the present invention comprises niobium (Nb): 0.03 to 0.07%, titanium (Ti): 0.001 to 0.03%, vanadium (V): 0.001 to 0.07%, the content of the Nb, Ti and V The sum satisfies the following relational expression 1.
[관계식 1][Relationship 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
상기 Nb, Ti, V과 같은 석출경화형 원소들은 C 및 N와 결합하여 탄질화 석출물을 형성하게 되는데, 적절한 강도를 얻기 위해 반드시 첨가가 필요하다. Precipitation hardening elements such as Nb, Ti, and V are combined with C and N to form carbonitride precipitates, which are necessarily added to obtain appropriate strength.
이들의 각각의 함량 범위와 상기 관계식1의 범위를 벗어나게 될 경우 400MPa 내지 550MPa의 인장강도를 얻을 수 없게 된다. 즉, 만약 Nb+Ti+V의 합이 0.05 미만일 경우 석출량이 적어 애초에 550MPa 이상의 높은 강도를 가질 수 없거나, 권취온도에 따른 변화가 적게 된다. 만약 Nb+Ti+V의 합이 0.13을 초과하게 될 경우, 권취온도가 700℃ 이상이 되더라도 400MPa급의 강도를 초과하게 될 가능성이 크게 된다.If they fall outside of each of the content range and the range of the above equation 1 it is impossible to obtain a tensile strength of 400MPa to 550MPa. In other words, if the sum of Nb + Ti + V is less than 0.05, the amount of precipitation is small, so that it may not have a high strength of 550 MPa or more at first, or the change according to the winding temperature is small. If the sum of Nb + Ti + V exceeds 0.13, there is a high possibility that the strength of the 400MPa class will be exceeded even if the coiling temperature is 700 ° C or higher.
상기 강판은 나머지 철(Fe) 및 기타 불가피한 불순물을 포함한다.The steel sheet contains the remaining iron (Fe) and other unavoidable impurities.
본 발명의 바람직한 일 측면에 따르는 열연강판은 부피%로, 90% 이상의 구형 폴리고날 페라이트 및 나머지 퍼얼라이트 및 세멘타이트 중 1 종 이상을 포함하는 미세조직을 갖고, 그리고 하기 관계식 2를 만족하는 (Nb,Ti,V)(C,N) 및 (Fe,Mn,Cr)3C 의 석출물을 포함한다. Hot rolled steel sheet according to a preferred aspect of the present invention is a volume percent, having a microstructure comprising 90% or more of spherical polygonal ferrite and one or more of the remaining pearlite and cementite, and satisfies the following relation 2 (Nb , Ti, V) (C, N) and (Fe, Mn, Cr) 3 C precipitates.
[관계식 2][Relationship 2]
Vc/Vtot ≥ 0.80(여기서, Vc: 지름 20nm 초과의 석출물 부피분율, Vtot : 전체 석출물의 부피분율을 나타냄)Vc / Vtot ≥ 0.80, where Vc: volume fraction of precipitates greater than 20 nm in diameter, Vtot: volume fraction of total precipitates
상기 구형 폴리고날 페라이트는 상대적으로 낮은 강도를 확보하기 위하여 필요한 상으로서, 그 분율이 부피%로, 90%미만인 경우에는 본 발명에서 목표로 하는 강도확보가 어려울 수 있다. 따라서, 상기 구형 폴리고날 페라이트는 부피%로, 90% 이상으로 한정하는 것이 바람직하다.The spherical polygonal ferrite is a phase necessary to ensure a relatively low strength, when the fraction is less than 90% by volume, it may be difficult to secure the target strength of the present invention. Therefore, the spherical polygonal ferrite is preferably limited to 90% by volume.
보다 바람직한 구형 폴리고날 페라이트의 분율은 부피%로, 95% 이상이다.The fraction of more preferable spherical polygonal ferrite is 95% or more by volume.
상기 구형 폴리고날 페라이트의 입경은 5~100㎛ 가 바람직하다.As for the particle size of the said spherical polygonal ferrite, 5-100 micrometers is preferable.
상기 구형 폴리고날 페라이트의 입경이 5㎛미만인 경우에는 강도가 상승하며, 100㎛를 초과하는 경우에는 경화능이 커져 오히려 강도가 높아질 수 있고, 충격 인성도 나빠질 수 있다.When the particle diameter of the spherical polygonal ferrite is less than 5㎛, the strength is increased, and when it exceeds 100㎛, the curing ability may be increased, rather the strength may be increased, and the impact toughness may be worsened.
상기 퍼얼라이트 밴드 조직의 평균 간격은 t[강판두께(mm)]/50 ~ t [강판두께(mm)]/150의 값을 갖는 것이 바람직하다.The average spacing of the perlite band structure preferably has a value of t [steel thickness (mm)] / 50 to t [steel thickness (mm)] / 150.
상기와 같이 퍼얼라이트 밴드 조직의 평균 간격을 제어하면, 탄소가 밴드 조직으로 소모되어 페라이트 내 탄화물 석출량이 줄어들고, 또한 조직의 대부분인 페라이트 내부의 탄소 함량이 감소하여, 전체 강도를 낮게 얻는 것이 가능하다. As described above, by controlling the average spacing of the pearlite band structure, carbon is consumed as the band structure, and the amount of carbide precipitates in the ferrite is reduced, and the carbon content in the ferrite, which is the majority of the structure, is reduced, so that the overall strength can be lowered.
상기 Vc/Vtot의 값이 0.8 미만인 경우에는 미세한 석출물의 부피분율이 증가하여 높은 강도가 얻어질 수 있다.When the value of Vc / Vtot is less than 0.8, the volume fraction of the fine precipitates may be increased to obtain high strength.
따라서, 석출물의 분율은 하기 관계식 2를 만족하여야 한다.Therefore, the fraction of precipitate should satisfy the following relation.
[관계식 2][Relationship 2]
Vc/Vtot ≥ 0.80(여기서, Vc: 지름 20nm 초과의 석출물 부피분율, Vtot : 전체 석출물의 부피분율을 나타냄)Vc / Vtot ≥ 0.80, where Vc: volume fraction of precipitates greater than 20 nm in diameter, Vtot: volume fraction of total precipitates
보다 바람직한 Vc/Vtot의 값은 0.90이상이다.More preferable value of Vc / Vtot is 0.90 or more.
유효지름 20nm 이상의 조대 석출물이 1㎛2 당 평균 1개 이상 분포하는 것이 바람직하다. 이처럼 조대 석출물의 분율이 일정 수준 이상일 때 미세 석출물의 부피분율이 제한됨으로써 낮은 석출경화량, 즉 낮은 강도를 얻을 수 있게 된다.It is preferable that the coarse precipitate of 20 nm or more of effective diameter distribute | distributes at least 1 average per 1 micrometer <2> . As such, when the fraction of the coarse precipitate is above a certain level, the volume fraction of the fine precipitate is limited, so that a low precipitation hardening amount, that is, low strength can be obtained.
본 발명의 바람직한 일 측면에 따르는 열연강판은 400MPa 내지 550MPa의 인장강도(TS)[400MPa급의 인장강도]를 갖는다. Hot rolled steel sheet according to a preferred aspect of the present invention has a tensile strength (TS) [400MPa class tensile strength] of 400MPa to 550MPa.
이하, 본 발명의 바람직한 다른 일 측면에 따르는 열연강판의 제조방법에 대하여 설명한다.Hereinafter, a method of manufacturing a hot rolled steel sheet according to another preferred aspect of the present invention.
본 발명의 바람직한 다른 일 측면에 따르는 열연강판의 제조방법은 wt%로, 탄소(C): 0.03~0.08%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 1.3~1.9%, 알루미늄(Al): 0.1% 이하(0%는 제외), 인(P): 0.04% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 크롬(Cr): 0.5% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외), 니켈(Ni): 0.5% 이하, 몰리브덴(Mo): 0.3% 이하(0% 포함), 질소(N): 0.02%이하(0%는 제외), 니오비움(Nb): 0.03 ~ 0.07%, 타이타니움(Ti): 0.001 ~ 0.03%, 및 바나디움(V): 0.001~0.07%를 포함하고, 상기 Nb, Ti 및 V의 함량의 합은 하기 관계식 1을 만족하고, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 준비하는 단계;Method for producing a hot rolled steel sheet according to another preferred aspect of the present invention is wt%, carbon (C): 0.03 ~ 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 ~ 1.9%, Aluminum (Al): 0.1% or less (excluding 0%), Phosphorus (P): 0.04% or less (excluding 0%), Sulfur (S): 0.02% or less (excluding 0%), Chromium (Cr): 0.5% or less (excluding 0%), Copper (Cu): 0.5% or less (excluding 0%), Nickel (Ni): 0.5% or less, Molybdenum (Mo): 0.3% or less (including 0%) ), Nitrogen (N): 0.02% or less (excluding 0%), Niobium (Nb): 0.03 to 0.07%, Titanium (Ti): 0.001 to 0.03%, and Vanadium (V): 0.001 to 0.07% To include, wherein the sum of the contents of Nb, Ti and V satisfies the following relation 1, preparing a slab containing the balance iron (Fe) and other unavoidable impurities;
[관계식 1][Relationship 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
상기 슬라브를 1100 ~ 1250℃ 의 온도로 가열하는 단계;Heating the slab to a temperature of 1100-1250 ° C .;
상기 가열된 슬라브를 (A3+30℃) 이상의 열간마무리압연 온도 조건으로 열간압연하여 열연강판을 얻는 단계;Hot rolling the heated slab to a hot finishing rolling temperature condition of (A 3 + 30 ° C.) or more to obtain a hot rolled steel sheet;
상기 열연강판을 30℃/초 이하의 평균 냉각속도로 냉각하는 단계; 및Cooling the hot rolled steel sheet at an average cooling rate of 30 ° C./sec or less; And
상기와 같이 냉각된 열연강판을 650℃ 이상의 온도영역에서 권취하는 단계를 포함한다.Winding the hot rolled steel sheet cooled as described above in a temperature range of 650 ° C. or more.
슬라브 가열단계Slab heating stage
상기와 같이 조성되는 슬라브를 1100 ~ 1250℃ 의 온도로 가열한다.The slab formed as described above is heated to a temperature of 1100 ~ 1250 ℃.
슬라브 온도가 낮을 경우 열간압연 수행이 어렵게 되고 냉각 후 권취 온도도 낮아지게 되며, 1250℃를 초과할 경우 온도를 높이기 위해 많은 에너지가 불필요하게 소요되고 Ti, Nb, V 등이 많이 고용되어 강도가 높아지게 된다. 따라서, 슬라브의 가열온도는 1100 ~ 1250℃로 제한하는 것이 바람직하다.If the slab temperature is low, it is difficult to perform hot rolling and the winding temperature after cooling is lowered. If it exceeds 1250 ℃, a lot of energy is unnecessary to increase the temperature, and Ti, Nb, V, etc. are employed so that strength increases. do. Therefore, the heating temperature of the slab is preferably limited to 1100 ~ 1250 ℃.
열연강판을 얻는 단계Obtaining Hot Rolled Steel Sheets
상기와 같이 가열된 슬라브를 (A3+30℃) 이상의 열간마무리압연 온도 조건으로 열간압연하여 열연강판을 얻는다.The slab heated as described above is hot rolled under hot finishing rolling temperature conditions of (A 3 + 30 ° C.) or more to obtain a hot rolled steel sheet.
열간마무리압연 온도는 높은 것이 최종 강도를 낮게 얻는데 있어 유리하며, 열간마무리압연 온도가 A3+30℃이상일 때 페라이트 결정립의 평균 크기가 5㎛ 이상으로 충분히 조대하게 되며, 압연 중에 미세한 석출물이 형성되어 강도가 상승하는 것도 피할 수 있게 된다. 바람직한 열간마무리압연 온도의 상한은 1000℃이며, 이보다 높게 되면 표면품질이 열위하게 된다. The higher the hot finish rolling temperature is, the lower the final strength is, and the higher the hot finish rolling temperature is A 3 + 30 ° C. or more, the ferrite grains have an average size of 5 μm or more, and coarse precipitates are formed during rolling. The increase in strength can also be avoided. The upper limit of the preferred hot finish rolling temperature is 1000 DEG C, and higher than this results in inferior surface quality.
냉각하는 단계Cooling step
상기 열연강판을 30℃/초 이하의 평균 냉각속도로 냉각한다.The hot rolled steel sheet is cooled at an average cooling rate of 30 ° C./sec or less.
상기 냉각속도가 30℃/초를 넘게 되면 페라이트 조직이 침상으로 변하고 상변태가 저온에서 이루어짐에 의해 강도가 상승하게 된다. 냉각속도의 하한은 실제 열간압연 조업이 가능한 범위로 설정되며, 예를 들면, 5℃/초일 수 있으며, 5℃/초 미만의 느린 냉각속도로 연속 열간압연을 실시하기는 어려울 수 있다.When the cooling rate exceeds 30 ° C / sec, the ferrite structure is changed into a needle and the strength is increased by the phase transformation at a low temperature. The lower limit of the cooling rate is set to a range in which the actual hot rolling operation is possible, for example, may be 5 ° C./sec, and it may be difficult to perform continuous hot rolling at a slow cooling rate of less than 5 ° C./sec.
권취하는Coiled 단계 step
상기와 같이 냉각된 열연강판을 650℃ 이상의 온도영역에서 권취한다.The hot rolled steel sheet cooled as described above is wound in a temperature range of 650 ° C or higher.
권취온도가 높으면 석출물을 조대하게 만들고 페라이트 결정립도를 조대하게 할 수 있어, 강도를 낮추는데 유리하다. 권취온도가 650℃보다 낮게 되면 석출이 활발해져 오히려 높은 강도가 얻어질 수 있다. 권취온도가 700℃보다 낮게 되면 결정립이 작아지고 석출물도 미세하게 이루어져 강도가 높아지게 된다. 권취온도의 상한은 800℃정도로서, 이를 초과하게 되면 권취기의 온도가 상승하여 화재가 발생하는 등 조업상의 어려움이 크게 증가하게 될 수 있다.If the coiling temperature is high, the precipitates can be made coarse and the ferrite grains can be made coarse, which is advantageous for lowering the strength. If the coiling temperature is lower than 650 ° C, precipitation becomes active and a high strength can be obtained. If the coiling temperature is lower than 700 ℃ crystal grains are smaller and the precipitates are finer to increase the strength. The upper limit of the coiling temperature is about 800 ° C. If the upper limit of the coiling temperature is exceeded, an operation difficulty may be greatly increased, such as an increase in the temperature of the coiler and a fire.
따라서, 권취온도는 650℃이상, 바람직하게는 650~800℃일 수 있다. 보다 바람직한 권취온도는 700 ~ 800℃이다. Therefore, the coiling temperature may be 650 ° C or higher, preferably 650-800 ° C. More preferable winding temperature is 700-800 degreeC.
이하, 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 다만, 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for illustrating the present invention, the present invention is not limited thereto.
(실시예)(Example)
하기의 표 1의 조성을 갖는 250mm 두께의 슬라브를 하기 표 2의 조건으로 슬라브를 가열하고, 열연강판으로 열간압연하고, 열연강판을 냉각한 후, 권취하여 하기 표 2의 두께를 갖는 열연강판을 제조하였다. 하기 표 1의 성분 함량 단위는 중량%이다. 표 2에서 FDT는 마무리압연온도를 나타내고, CT는 권취온도를 나타낸다.A slab having a thickness of 250 mm having a composition of Table 1 below was heated to a slab under the conditions of Table 2, hot rolled with a hot rolled steel sheet, cooled, and then wound up to prepare a hot rolled steel sheet having a thickness of Table 2 below. It was. The component content units in Table 1 below are by weight. In Table 2, FDT represents the finish rolling temperature, and CT represents the coiling temperature.
상기와 같이 제조된 열연강판에 대하여, 항복강도(YS), 인장강도(TS), 연신율(EL), 권취온도 550℃에서 제조될 때의 인장강도(TS@550℃ CT), 페라이트 분율(Vferrite) 및 (Nb,Ti,V)(C,N) 및(Fe,Mn,Cr)3C 의 석출물 분율(Vc/Vtot)을 측정하고, 그 결과를 하기 표 3에 나타내었다.With respect to the hot rolled steel sheet manufactured as described above, yield strength (YS), tensile strength (TS), elongation (EL), tensile strength when manufactured at a coiling temperature of 550 ° C (TS @ 550 ° C CT), ferrite fraction (Vferrite) ) And the precipitate fraction (Vc / Vtot) of (Nb, Ti, V) (C, N) and (Fe, Mn, Cr) 3 C were measured and the results are shown in Table 3 below.
상기 권취온도(CT) 550℃에서 제조될 때의 인장강도(TS@550℃ CT)는 합금성분의 잠재력을 충분히 발휘할 수 있는 적정 권취온도(550℃)로 제조하였을 때의 인장강도를 나타낸다.The tensile strength (TS @ 550 ° C.) when manufactured at the winding temperature (CT) of 550 ° C. represents the tensile strength when produced at an appropriate winding temperature (550 ° C.) capable of sufficiently exhibiting the potential of the alloying component.
(℃)Heating temperature
(℃)
(℃)FDT
(℃)
(℃/초)Cooling rate
(° C / sec)
(℃)CT
(℃)
(MPa)YS
(MPa)
(MPa)TS
(MPa)
(%)EL
(%)
@550℃ CTTS (MPa)
@ 550 ℃ CT
(%)Vferrite
(%)
상기 표 1 내지 표 3에 나타난 바와 같이, 비교예 1 은 Ti+Nb+V의 합이 0.143으로 본 발명의 범위를 초과함에 의해 CT를 700℃ 이상으로 하더라도 TS 550MPa을 초과하는 강도가 얻어짐을 알 수 있다. 비교예 2는 합금성분은 발명의 범위를 만족하나 CT가 650℃ 미만이 됨에 의해 역시 TS 550MPa을 초과하는 강도를 나타내었다. 이처럼 권취온도가 낮아질 경우 폴리고날 페라이트의 상분율이 90%보다 아래로 내려가게 되며, 미세한 석출물의 비율이 증가하여 Vc/Vtot 비 역시 0.80 미만이 되게 된다. 비교예 3~6은 합금성분이 본 발명의 범위를 벗어난 경우로서, CT 550℃에서의 인장강도가 550MPa에 미치지 못하는 경우이다. 본 발명은 용이하게 550~700MPa 수준의 높은 강도를 얻을 수 있는 합금성분으로부터 TS 400급 (400~550MPa)으로 강도를 낮추어 얻는 것이 요지이다.As shown in Tables 1 to 3, Comparative Example 1 shows that the sum of Ti + Nb + V exceeds 0.143, so that the strength exceeding TS 550 MPa is obtained even if the CT is 700 ° C or higher. Can be. In Comparative Example 2, the alloy component satisfies the scope of the invention, but exhibited strength exceeding TS 550 MPa by CT of less than 650 ° C. As such, when the coiling temperature is lowered, the phase ratio of polygonal ferrite falls below 90%, and the proportion of fine precipitates is increased so that the Vc / Vtot ratio is also less than 0.80. Comparative Examples 3 to 6 are cases in which the alloy component is out of the range of the present invention, and the tensile strength at CT 550 ° C. does not reach 550 MPa. The present invention is to obtain a low strength to the TS 400 grade (400 ~ 550MPa) from the alloy components that can easily obtain a high strength of 550 ~ 700MPa level.
본 발명에 부합되는 발명예(1~6)은 본 발명의 합금성분과 강도 및 미세조직 인자를 모두 충족하고 있다.Inventive examples (1 to 6) according to the present invention satisfy all of the alloying components, strength and microstructure of the present invention.
본 발명을 앞서 기재한 바에 따라 설명하였지만, 다음에 기재하는 특허청구 범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.Although the present invention has been described above, it will be readily understood by those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the claims set out below.
Claims (8)
[관계식 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)
미세조직이 부피%로, 95% 이상이고 평균입경이 5~100㎛인 구형 폴리고날 페라이트 및 나머지 퍼얼라이트 및 세멘타이트 중 1 종 이상을 포함하고 그리고 하기 관계식 2를 만족하는 (Nb,Ti,V)(C,N) 및(Fe,Mn,Cr)3C 의 석출물을 포함하고; 그리고
[관계식 2]
Vc/Vtot ≥ 0.80(여기서, Vc : 지름 20nm 초과의 석출물 부피분율, Vtot : 전체 석출물의 부피분율을 나타냄)
인장강도(TS) 가 400MPa 내지 550MPa인 열연강판.
wt%, carbon (C): 0.03 to 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 to 1.9%, aluminum (Al): 0.1% or less (0% ), Phosphorus (P): 0.04% or less (except 0%), sulfur (S): 0.02% or less (except 0%), chromium (Cr): 0.5% or less (except 0%), copper (Cu): 0.5% or less (excluding 0%), nickel (Ni): 0.5% or less, molybdenum (Mo): 0.3% or less (including 0%), nitrogen (N): 0.02% or less (excluding 0%) ), Niobium (Nb): 0.03 to 0.07%, titanium (Ti): 0.001 to 0.03% and vanadium (V): 0.001 to 0.07%, the sum of the contents of the Nb, Ti and V is Satisfies relation 1 and includes balance iron (Fe) and other unavoidable impurities;
[Relationship 1]
0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
The microstructure is 95% or more by volume, and includes spherical polygonal ferrite having an average particle diameter of 5 to 100 µm and at least one of the remaining pearlite and cementite and satisfying the following relation (2). ) (C, N) and (Fe, Mn, Cr) 3 C precipitates; And
[Relationship 2]
Vc / Vtot ≥ 0.80 (where Vc is the volume fraction of precipitates greater than 20 nm in diameter, Vtot is the volume fraction of total precipitates)
Hot rolled steel sheet having a tensile strength (TS) of 400MPa to 550MPa.
The hot rolled steel sheet according to claim 1, wherein the value of Vc / Vtot is 0.90 or more.
The hot rolled steel sheet according to claim 1, wherein the average spacing of the perlite band structure has a value of t [steel thickness (mm)] / 50 to t [steel thickness (mm)] / 150.
The hot rolled steel sheet according to claim 1, wherein at least one coarse precipitate having an effective diameter of 20 nm or more is distributed per 1 µm 2 .
[관계식 1]
0.05 ≤ Nb+Ti+V ≤ 0.13 (wt.%)
상기 슬라브를 1100 ~ 1250℃의 온도로 가열하는 단계;
상기 가열된 슬라브를 (A3+30℃) 이상의 열간마무리압연 온도 조건으로 열간압연하여 열연강판을 얻는 단계;
상기 열연강판을 30℃/초 이하의 평균 냉각속도로 냉각하는 단계; 및
상기와 같이 냉각된 열연강판을 650~800℃의 온도영역에서 권취하는 단계를 포함하고,
상기 귄취된 열연강판은,
미세조직이 부피%로, 95% 이상이고 평균입경이 5~100㎛인 구형 폴리고날 페라이트 및 나머지 퍼얼라이트 및 세멘타이트 중 1 종 이상을 포함하고, 하기 관계식 2를 만족하는 (Nb,Ti,V)(C,N) 및(Fe,Mn,Cr)3C 의 석출물을 포함하고; 그리고
[관계식 2]
Vc/Vtot ≥ 0.80(여기서, Vc : 지름 20nm 초과의 석출물 부피분율, Vtot : 전체 석출물의 부피분율을 나타냄)
인장강도(TS) 가 400MPa 내지 550MPa인 것을 특징으로 하는 열연강판의 제조방법.
wt%, carbon (C): 0.03 to 0.08%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 1.3 to 1.9%, aluminum (Al): 0.1% or less (0% ), Phosphorus (P): 0.04% or less (except 0%), sulfur (S): 0.02% or less (except 0%), chromium (Cr): 0.5% or less (except 0%), copper (Cu): 0.5% or less (excluding 0%), nickel (Ni): 0.5% or less, molybdenum (Mo): 0.3% or less (including 0%), nitrogen (N): 0.02% or less (excluding 0%) ), Niobium (Nb): 0.03 to 0.07%, titanium (Ti): 0.001 to 0.03%, and vanadium (V): 0.001 to 0.07%, and the sum of the contents of Nb, Ti, and V is Preparing a slab that satisfies the following relation 1 and includes balance iron (Fe) and other unavoidable impurities;
[Relationship 1]
0.05 ≤ Nb + Ti + V ≤ 0.13 (wt.%)
Heating the slab to a temperature of 1100-1250 ° C .;
Hot rolling the heated slab to a hot finishing rolling temperature condition of (A 3 + 30 ° C.) or more to obtain a hot rolled steel sheet;
Cooling the hot rolled steel sheet at an average cooling rate of 30 ° C./sec or less; And
Winding the hot rolled steel sheet cooled as described above in a temperature range of 650 to 800 ° C.,
The hot rolled steel sheet,
Volumetric microstructure comprises 95% or more, spherical polygonal ferrite having an average particle diameter of 5 to 100 µm, and at least one of the remaining pearlite and cementite, and satisfying the following relational formula (Nb, Ti, V) ) (C, N) and (Fe, Mn, Cr) 3 C precipitates; And
[Relationship 2]
Vc / Vtot ≥ 0.80 (where Vc is the volume fraction of precipitates greater than 20 nm in diameter, Vtot is the volume fraction of total precipitates)
Tensile strength (TS) is a method for producing a hot rolled steel sheet, characterized in that 400MPa to 550MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170178951A KR102031453B1 (en) | 2017-12-24 | 2017-12-24 | Hot-rolled steel sheet and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170178951A KR102031453B1 (en) | 2017-12-24 | 2017-12-24 | Hot-rolled steel sheet and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190077198A KR20190077198A (en) | 2019-07-03 |
KR102031453B1 true KR102031453B1 (en) | 2019-10-11 |
Family
ID=67258812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170178951A KR102031453B1 (en) | 2017-12-24 | 2017-12-24 | Hot-rolled steel sheet and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102031453B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100833035B1 (en) | 2006-12-20 | 2008-05-27 | 주식회사 포스코 | High-strength and high-toughness steel plate for linepipe excellent in deformability and method for manufacturing the same |
KR101096866B1 (en) | 2007-03-19 | 2011-12-22 | 가부시키가이샤 고베 세이코쇼 | High tension steel material having excellent weldability and plastic deformability, and cold-formed steel tube |
JP2015203124A (en) | 2014-04-11 | 2015-11-16 | 新日鐵住金株式会社 | Hot rolled steel sheet and method for producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957962B1 (en) * | 2007-12-26 | 2010-05-17 | 주식회사 포스코 | Steel for a structure having excellent low temperature toughnetss and tensile strength of heat affected zone and manufacturing method for the same |
US9670569B2 (en) | 2011-03-28 | 2017-06-06 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and production method thereof |
-
2017
- 2017-12-24 KR KR1020170178951A patent/KR102031453B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100833035B1 (en) | 2006-12-20 | 2008-05-27 | 주식회사 포스코 | High-strength and high-toughness steel plate for linepipe excellent in deformability and method for manufacturing the same |
KR101096866B1 (en) | 2007-03-19 | 2011-12-22 | 가부시키가이샤 고베 세이코쇼 | High tension steel material having excellent weldability and plastic deformability, and cold-formed steel tube |
JP2015203124A (en) | 2014-04-11 | 2015-11-16 | 新日鐵住金株式会社 | Hot rolled steel sheet and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20190077198A (en) | 2019-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101271974B1 (en) | High-strength steel having excellent cryogenic toughness and method for production thereof | |
EP3561111B1 (en) | Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor | |
EP2217735A1 (en) | High strength and low yield ratio steel for structure having excellent low temperature toughness | |
KR101417231B1 (en) | Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same | |
KR101828713B1 (en) | Steel reinforcement and method of manufacturing the same | |
KR101746999B1 (en) | Steel having superior brittle crack arrestability and method for manufacturing the steel | |
KR102045646B1 (en) | Abrasion resistance steel having excellent homogeneous material properties and method for manufacturing the same | |
JP6691967B2 (en) | High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same | |
EP3395988B1 (en) | High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof | |
KR101726074B1 (en) | High carbon rolled steel sheet with excellent temper embrittlement resistance properties, and method for producing the same | |
KR101304822B1 (en) | Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same | |
KR101568504B1 (en) | Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same | |
KR101988760B1 (en) | Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof | |
KR101714929B1 (en) | Austenitic steel having excellent wear resistance and method for manufacturing the same | |
KR102031453B1 (en) | Hot-rolled steel sheet and method for manufacturing the same | |
KR20190035422A (en) | Method of manufacturing hot rolled steel sheet and hot rolled steel sheet manufactured thereby | |
KR101797367B1 (en) | High carbon hot-rolled steel sheet and method of manufacturing the same | |
KR100851176B1 (en) | Hot-rolled steel sheet for line pipe having low anisotropy of low temperature toughness and yield strength and the method for manufacturing the same | |
KR102503451B1 (en) | Hot rolled steel sheet having excellent earthquake-resistant property and method of manufacturing the same | |
KR101736602B1 (en) | Wire rod having excellent impact toughness and method for manafacturing the same | |
KR101543897B1 (en) | Hot rodled steel sheet having no strength reduction after pipe forming and method for manufacturing the same | |
KR100782761B1 (en) | Method for producing very thick steel plate having superior strength and toughness in the mid-thickness region | |
KR101572317B1 (en) | Shape steel and method of manufacturing the same | |
EP4438761A1 (en) | Hot-rolled steel sheet and method for manufacturing same | |
KR102366001B1 (en) | High strength hot rolled steel and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |