KR102020381B1 - Steel having excellent wear resistnat properties and method for manufacturing the same - Google Patents
Steel having excellent wear resistnat properties and method for manufacturing the same Download PDFInfo
- Publication number
- KR102020381B1 KR102020381B1 KR1020170178865A KR20170178865A KR102020381B1 KR 102020381 B1 KR102020381 B1 KR 102020381B1 KR 1020170178865 A KR1020170178865 A KR 1020170178865A KR 20170178865 A KR20170178865 A KR 20170178865A KR 102020381 B1 KR102020381 B1 KR 102020381B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- component
- steel
- excluding
- molten steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 강도, 연신율 및 충격인성이 우수할 뿐만 아니라 내부 품질 및 내마모성이 우수한 강재 및 그 제조방법을 제공하고자 하는 것이다.
본 발명에 의하면, 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si:1.0%이하(0%는 제외), S:0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함하는 내마모성이 우수한 강재 및 그 제조방법이 제공된다. It is an object of the present invention to provide a steel and a method of manufacturing the same, which are excellent in strength, elongation and impact toughness, as well as excellent in internal quality and wear resistance.
According to the present invention, in weight%, carbon (C): 0.55 to 1.4%, manganese (Mn): 12 to 23%, chromium (Cr): 5% or less (excluding 0%), copper (Cu): 5 % Or less (excluding 0%), Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (including 0%), phosphorus (P): 0.04 Steels containing less than% (including 0%), residual Fe and unavoidable impurities, and having a fine structure and abrasion resistance containing less than 10% (including 0%) of carbides and residual austenite in an area%, and a manufacturing method thereof Is provided.
Description
본 발명은 산업기계, 구조재료, 그리고 슬러리 파이프용 강재, 내sour 강재 등 오일 및 가스 산업 (Oil and Gas Industries)에서 채굴, 수송, 저장 분야 등의 강재에 사용되는 오스테나이트계 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 내부품질 및 내마모성이 우수한 오스테나이트계 강재 및 그 제조방법에 관한 것이다.The present invention relates to austenitic steels used in industrial machinery, structural materials, steel for slurry pipes, sour steels, etc. in the oil and gas industries such as mining, transportation, and storage, and manufacturing methods thereof. In more detail, the present invention relates to an austenitic steel having excellent internal quality and wear resistance and a method of manufacturing the same.
오스테나이트계 강재는 그 자체가 가지고 있는 우수한 가공경화능, 저온인성 및 비자성 등의 성질로 인하여 다양한 용도로 사용되고 있다. 특히, 기존에 주로 사용되던 페라이트 혹은 마르텐사이트를 주 조직으로 하는 탄소강이 그 특성에 한계를 나타냄에 따라 이들의 단점을 극복하는 대체재로 최근 그 적용이 증가하고 있는 추세이다.Austenitic steels are used for various purposes due to their excellent work hardening properties, low temperature toughness and nonmagnetic properties. Particularly, as carbon steel mainly composed of ferrite or martensite, which has been mainly used, shows its limitation in its characteristics, its application is increasing as an alternative material to overcome these disadvantages.
특히, 광산 산업, 오일 및 가스 산업 (Oil and Gas Industries)의 성장에 따라 채굴, 수송, 정제 및 저장 과정에서 사용 강재의 마모가 큰 문제점으로 대두되고 있다. 특히 최근 석유를 대체할 화석 연료로 오일 샌드 (Oil Sands)에 대한 개발이 본격화 됨에 따라 오일, 암석, 자갈, 모래 등이 포함된 슬러리에 의한 강재 마모는 생산 비용의 증가를 일으키는 중요한 원인으로 지적되고 있으며, 이에 따라 내마모성이 우수한 강재의 개발 및 적용에 대한 수요가 크게 증가하고 있다. In particular, with the growth of the mining industry, oil and gas industries (Oil and Gas Industries), wear of the steel used in the mining, transportation, refining and storage process is a major problem. In particular, with the recent development of oil sands as a fossil fuel to replace petroleum, steel wear caused by slurry containing oil, rock, gravel, sand, etc. is pointed out as an important cause of the increase in production cost. Accordingly, the demand for the development and application of steel having excellent wear resistance is increasing.
기존의 광산 및 기계산업용 부품 산업에서는 내마모성이 우수한 해드필드강 (Hadfield)이 주로 사용되어 왔으며, 강재의 내마모성을 높이기 위해 높은 함량의 탄소를 함유시키고 망간을 다량 포함시켜 오스테나이트 조직 및 마모 저항성을 증가시키려는 노력이 꾸준히 진행되어 왔다. 그러나, 해드필드강의 경우 높은 탄소 함량은 오스테나이트 입계를 따라 네트웍 형태의 탄화물을 고온에서 생성시켜 강재의 물성, 특히 연성을 급격히 저하시킨다.In the existing mining and machinery parts industry, the hard-wearing Hadfield steel has been mainly used.In order to increase the abrasion resistance of the steel, a high content of carbon and a large amount of manganese are added to increase austenite structure and wear resistance. Efforts have been made steadily. However, in the case of the headfield steel, the high carbon content rapidly generates network-shaped carbides along the austenite grain boundaries at high temperatures, thereby drastically lowering the properties of the steel, particularly the ductility.
이러한 네트웍 형태의 탄화물 석출을 억제하기 위해 고온에서 용체화 처리를 하거나 혹은 열간가공 후 상온으로 급냉시켜 고망간강을 제조하는 방법이 제시되었다. 그러나, 강재의 두께가 두꺼운 경우 또는 용접이 필수적으로 수반되는 경우와 같이 제조조건의 변화가 용이하지 않은 경우 이러한 네트웍 형태의 탄화물 석출을 억제하기 힘들며, 이로 인해 강재의 물성이 급격히 열화되는 문제점이 발생하게 된다. In order to suppress the precipitation of network type carbide, a method of manufacturing high manganese steel by solution treatment at high temperature or by quenching to room temperature after hot processing has been proposed. However, when the thickness of the steel is thick, or when the manufacturing conditions are not easily changed, such as when welding is essential, it is difficult to suppress the precipitation of the network type carbide, which causes a problem of rapid deterioration of the properties of the steel. Done.
또한, 고망간강의 잉곳 또는 주편은 응고 중 망간 및 탄소 등과 같은 합금원소 외에도 P, S 등과 같은 불순물 원소에 의한 편석이 필연적으로 발생하고 이는 열간압연 등의 후 가공시 더욱 악화되어 결국 최종제품에서 심화된 편석대를 따라 조대한 탄화물이 형성되며 결국 미세조직의 불균일성을 조장하고 물성 열화가 발생한다. In addition, ingots or slabs of high manganese steel inevitably generate segregation due to impurity elements such as P and S in addition to alloying elements such as manganese and carbon during solidification. Coarse carbides are formed along the segregated sedimentary zones, which leads to non-uniformity of microstructures and deterioration of physical properties.
또한, 가공 중에 발생하는 열이나 응력에 의한 중심부 크랙을 발생시키는 결과를 가져오기도 한다.In addition, there may be a result of generating a center crack caused by heat or stress generated during processing.
내마모성 향상을 위해서는 탄소의 함량을 증가시키는 것이 필수적이며, 이로 인한 탄화물 석출에 의한 물성 열화를 방지하기 위해 망간 함량을 증가시키는 것이 일반적인 방법이 될 수 있으나 이는 결국 합금 량과 제조단가의 상승을 초래하게 된다.In order to improve the wear resistance, it is necessary to increase the carbon content, and to increase the manganese content in order to prevent the deterioration of the property due to carbide precipitation, it may be a general method, but this leads to an increase in the amount of alloy and manufacturing cost. do.
이를 해결하기 위해 망간 대비 탄화물 형성 억제에 효과적인 원소의 첨가에 대한 연구도 요구되고 있다. 또한, 고합금 제품에서 흔히 발생하는 편석에 의한 취성 문제에 대한 연구도 지속적으로 요구되고 있다.In order to solve this problem, research on addition of an element effective in suppressing carbide formation compared to manganese is required. In addition, research on brittleness problems caused by segregation, which is common in high-alloy products, is continuously required.
본 발명의 바람직한 일 측면은 강도, 연신율 및 충격인성이 우수할 뿐만 아니라 내부 품질 및 내마모성이 우수한 강재를 제공하고자 하는 것이다.One preferred aspect of the present invention is to provide a steel having excellent strength, elongation and impact toughness as well as excellent internal quality and wear resistance.
본 발명의 바람직한 다른 일 측면은 강도, 연신율 및 충격인성이 우수할 뿐만 아니라 내부 품질 및 내마모성이 우수한 강재의 제조방법을 제공하고자 하는 것이다.Another preferred aspect of the present invention is to provide a method for producing a steel having excellent strength, elongation and impact toughness as well as excellent internal quality and wear resistance.
본 발명의 바람직한 일 측면에 의하면, 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si:1.0%이하(0%는 제외), S:0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로, 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함하는 내마모성이 우수한 강재가 제공된다. According to a preferred aspect of the present invention, in weight%, carbon (C): 0.55 ~ 1.4%, manganese (Mn): 12-23%, chromium (Cr): 5% or less (excluding 0%), copper ( Cu): 5% or less (excluding 0%), Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (including 0%), phosphorus ( P): less than 0.04% (including 0%), remainder Fe and unavoidable impurities; fine structure, abrasion resistant steels containing up to 10% (including 0%) carbides and residual austenite in area% Is provided.
상기 강재는 하기 식(1)로 표현되는 성분 편석지수(S)가 3.0 이하일 수 있다.The steel material may have a component segregation index (S) represented by the following Formula (1) of 3.0 or less.
[관계식 1][Relationship 1]
성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0Component segregation index (S) = (rolling material center C component / molten steel C component) / 1.25 + (rolling material center Mn component / molten steel Mn component) / 1.15 + (rolling material center P component / molten steel P component) / 3.0
(여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다) (In this case, the central component means a component in the range of 50 µm or less in the upper and lower portions of the portion where the highest component is measured in the microstructure analysis at the 1/2 thickness position of the rolled material )
상기 강재는 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 가질 수 있다. The steel may have a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and an impact toughness of 40 J or more .
본 발명의 바람직한 다른 일 측면에 의하면, 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0%포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 준비하는 단계;According to another preferred aspect of the present invention, in weight%, carbon (C): 0.55 ~ 1.4%, manganese (Mn): 12-23%, chromium (Cr): 5% or less (excluding 0%), copper (Cu): 5% or less (excluding 0%), Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (including 0%), phosphorus (P): preparing molten steel containing 0.04% or less (including 0%), residual Fe and inevitable impurities;
상기 용강을 하기 식(2)를 만족시키는 용강온도(TC)와 하기 식(3)을 만족시키는 주조속도(V)의 조건으로 연속주조하여 슬라브를 얻는 연속주조단계;A continuous casting step of obtaining slabs by continuously casting the molten steel under conditions of a molten steel temperature (T C ) satisfying the following formula (2) and a casting speed (V) satisfying the following formula (3);
[관계식 2][Relationship 2]
K≤TC≤K+60K≤T C ≤K + 60
(상기 식(2)에서 K 값은 하기 식(4)에 의해 결정되는 값을 나타낸다.)(K value in said Formula (2) shows the value determined by following formula (4).)
[관계식 4][Relationship 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
[관계식 3][Relationship 3]
V (m/min) ≥ 0.025[TC-K]V (m / min) ≥ 0.025 [T C -K]
(상기 식(3)에서 K 값은 하기 식(4)에 의해 결정되는 값을 나타낸다.)(K value in said Formula (3) shows the value determined by following formula (4).)
[관계식 4][Relationship 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
상기 슬라브를 하기 식(5)에 의해 구해지는 재가열온도(TR)이하에서 재가열하는 단계; Reheating the slab below a reheating temperature (T R ) obtained by the following equation (5);
[관계식 5][Relationship 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]T R = 1453-165 [C]-4.5 [Mn]-414 [P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함][T R: reheat temperature (° C.); [C] and [Mn] each means the content (% by weight) of the element.]
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는 단계; 및 Hot-rolling the slab reheated as described above to have a finish rolling temperature of 850 to 1050 ° C. to obtain a hot rolled steel; And
상기 열연강재를 5℃/sec이상으로 600℃ 이하까지 냉각하는 단계를 포함하는 내마모성이 우수한 강재의 제조방법이 제공된다.Provided is a method for producing steel having excellent wear resistance, including cooling the hot rolled steel to 600 ° C. or less at 5 ° C./sec or more.
본 발명에 의하면, 내마모성이 우수하여 마모가 다량 발생하는 오일 및 가스 산업에서 채굴, 수송, 저장 분야 또는 산업기계 분야 전반의 내마모성이 요구되는 분야에 적용 가능하며, 특히 생산공정 중 발생할 수 있는 내부 결함 발생율을 획기적으로 감소시킬 수 있어 내부품질이 요구되는 분야로 적용 범위를 확대시킬 수 있는 강재를 제공할 수 있다.According to the present invention, in the oil and gas industry where the wear resistance is high due to the high wear resistance, it can be applied to the field where the wear resistance is required in the mining, transportation, storage, or industrial machinery fields in general, and internal defects that may occur during the production process It can dramatically reduce the incidence rate and can provide steel materials that can extend the scope of application to areas requiring internal quality.
도 1은 비교강 4의 강판 두께 중심부 결함을 나타내는 사진이다1 is a photograph showing a defect in the thickness of the steel sheet in Comparative Steel 4;
본 발명자들은 내마모성이 요구되는 기술분야에 사용되던 기존 강재 대비 우수한 강도와 내마모성을 갖는 강재에 대해 연구하던 중, 고 망간 강의 경우 오스테나이트계 강재 특유의 우수한 강도 및 연신율을 확보할 수 있을 뿐만 아니라, 가공경화율을 향상시키는 경우, 마모환경에서 소재자체의 가공경화로 인해 오히려 경도가 높아져 우수한 내마모성을 확보할 수 있음을 인식하고 본 발명을 완성하게 되었다. The inventors of the present invention while studying the steel having excellent strength and wear resistance compared to the existing steel used in the technical field requiring wear resistance, in the case of high manganese steel can not only secure the excellent strength and elongation peculiar to the austenitic steel, In the case of improving the work hardening rate, the present invention has been completed by recognizing that hardness is increased due to work hardening of the material itself in a wear environment, thereby ensuring excellent wear resistance.
본 발명은 오스테나이트계 강재 특유의 우수한 강도 및 연신율을 가질 뿐만 아니라, 마모환경에서 소재자체의 가공경화로 인해 오히려 경도가 높아져 우수한 내마모성도 갖는 오스테나이트계 강재 및 그 제조방법을 제공한다.The present invention not only has excellent strength and elongation characteristic of austenitic steels, but also provides austenitic steels having excellent abrasion resistance due to work hardening of the material itself in abrasion environment, and a method of manufacturing the same.
더 나아가, 본 발명은 주조 조건 및 재가열 조건을 최적화하여 기존의 오스테나이트계 내마모 강재의 문제점인 다량의 탄소 및 망간 함유와 P등과 같은 불순물에 따른 중심부 취화 문제를 제어함으로써 내부품질(중심부 품질)이 향상된 오스테나이트계 내마모 강재 및 그 제조방법을 제공한다Furthermore, the present invention optimizes the casting conditions and reheating conditions to control the internal embrittlement problems caused by impurities such as P and a large amount of carbon and manganese, which are problems of conventional austenitic abrasion resistant steels. Provided is an improved austenitic wear resistant steel and a method of manufacturing the same.
이하, 본 발명의 바람직한 일 측면에 따르는 내마모성이 우수한 강재에 대하여 설명한다.Hereinafter, the steel material excellent in the wear resistance which concerns on one preferable aspect of this invention is demonstrated.
본 발명의 바람직한 일 측면에 따르는 내마모성이 우수한 강재는 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 10%이하(0% 포함)의 탄화물과 잔부 오스테나이트를 포함한다.According to the preferred aspect of the present invention, the steel having excellent wear resistance is% by weight, carbon (C): 0.55 to 1.4%, manganese (Mn): 12 to 23%, and chromium (Cr): 5% or less (excluding 0%). ), Copper (Cu): 5% or less (excluding 0%), Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (including 0%) ), Phosphorus (P): contains 0.04% or less (including 0%), residual Fe and inevitable impurities, and contains 10% or less (including 0%) of carbides and residual austenite in a microstructure.
이하, 성분 및 성분범위에 대하여 설명한다.Hereinafter, the component and the component range will be described.
C: 0.55~1.4중량%(이하, "%"라고도 함)C: 0.55-1.4 wt% (hereinafter also referred to as "%")
탄소(C)는 오스테나이트 안정화 원소로서 균일 연신율을 향상시키는 역할을 할 뿐만 아니라 강도 향상 및 가공경화율을 높이는데 매우 유리한 원소이다. 이러한 탄소의 함량이 0.55% 미만이면 상온에서 안정한 오스테나이트를 형성하기 어렵고, 충분한 강도 및 가공경화율을 확보하기 어려운 문제가 있다. 반면, 그 함량이 1.4%를 초과하게 되면 탄화물이 다량 석출되어 균일 연신율을 저감시켜 우수한 연신율을 확보하기 곤란할 수 있으며, 내마모성 하락 및 조기 파단을 야기할 수 있다.Carbon (C) is an austenite stabilizing element that not only plays a role of improving the uniform elongation, but is also an element that is very advantageous for improving the strength and the work hardening rate. If the content of such carbon is less than 0.55%, it is difficult to form stable austenite at room temperature, and it is difficult to secure sufficient strength and work hardening rate. On the other hand, if the content exceeds 1.4%, carbides may be precipitated in large quantities, thereby reducing uniform elongation, which may make it difficult to obtain excellent elongation, and may cause wear resistance and premature fracture.
따라서, 상기 C의 함량은 0.55~1.4%로 제한함이 바람직하다. Therefore, the content of C is preferably limited to 0.55 ~ 1.4%.
Mn: 12~23%Mn: 12-23%
망간(Mn)은 오스테나이트를 안정화시키는 역할을 하는 매우 중요한 원소로서, 균일 연신율을 향상시킨다. 본 발명에서 주 조직으로 오스테나이트를 얻기 위해서는 Mn이 12% 이상 포함되는 것이 바람직하다.Manganese (Mn) is a very important element that plays a role of stabilizing austenite, and improves uniform elongation. In the present invention, in order to obtain austenite as the main tissue, Mn is preferably contained 12% or more.
만일, Mn의 함량이 12% 미만일 경우에는 오스테나이트 안정도가 저하되어 마르텐사이트 조직이 형성될 수 있고, 이로 인해 오스테나이트 조직을 충분히 확보하지 못하면 충분한 균일연신율 확보가 어렵다. 반면, Mn의 함량이 23%를 초과하게 되면 제조비용이 상승할 뿐만 아니라, 망간첨가로 인한 내식성 저하 및 제조 공정상의 어려움 등의 문제점이 있다If the Mn content is less than 12%, the austenite stability may be lowered to form martensite structure, which may make it difficult to secure sufficient uniform elongation if the austenite structure is not sufficiently secured. On the other hand, if the Mn content exceeds 23%, not only the manufacturing cost increases, but also the problems such as deterioration of corrosion resistance and difficulty in the manufacturing process due to the addition of manganese.
따라서, 상기 Mn의 함량은 12~23%로 제한함이 바람직하다.Therefore, the content of Mn is preferably limited to 12 to 23%.
Cr: 5% 이하(0%는 제외)Cr: 5% or less (except 0%)
크롬(Cr)은 적정한 첨가량의 범위까지는 오스테나이트를 안정화시켜 저온에서의 충격 인성을 향상시키고 오스테나이트 내에 고용되어 강재의 강도를 증가시키는 역할을 한다. 또한, 크롬은 강재의 내식성을 향상시키는 원소이기도 하다. 다만, 이러한 Cr의 함량이 5%를 초과하게 되면 오스테나이트 입계에 탄화물을 과다 형성하여 강재의 인성을 크게 저하시킬 우려가 있으므로, 바람직하지 못하다.Chromium (Cr) stabilizes austenite up to the range of an appropriate amount of addition, thereby improving impact toughness at low temperatures, and solid-solution in austenite increases the strength of steel. In addition, chromium is also an element for improving the corrosion resistance of steel materials. However, when the Cr content exceeds 5%, carbides are excessively formed at the austenite grain boundary, which may greatly reduce the toughness of the steel, which is not preferable.
Cu: 5% 이하(0%는 제외)Cu: 5% or less (except 0%)
구리(Cu)는 탄화물 내 고용도가 매우 낮고 오스테나이트 내 확산이 느려서 오스테나이트와 핵생성된 탄화물 계면에 농축되고, 이에 따라 탄소의 확산을 방해함으로써 탄화물 성장을 효과적으로 늦추게 되고, 결국 탄화물 생성을 억제하는 효과가 있다. 다만, Cu의 함량이 5%를 초과하는 경우에는 강재의 열간가공성을 저하시키는 문제점이 있으므로, 그 함량의 상한은 5%로 제한하는 것이 바람직하다.Copper (Cu) has a very low solid solubility in carbides and a slow diffusion in austenite, concentrating at the austenite and nucleated carbide interface, thereby interfering with the diffusion of carbon, which effectively slows carbide growth, eventually leading to carbide production. It has a suppressing effect. However, when the content of Cu exceeds 5%, there is a problem of lowering the hot workability of the steel, so the upper limit of the content is preferably limited to 5%.
Al: 0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외)Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%)
알루미늄(Al) 및 실리콘(Si)은 제강공정 중 탈산제로 첨가되는 성분으로, 알루미늄(Al) 함량의 상한은 0.5%로 한정하고, 실리콘(Si) 함량의 상한은 1.0%로 한정하는 것이 바람직하다. Aluminum (Al) and silicon (Si) are added to the deoxidizer during the steelmaking process, the upper limit of the aluminum (Al) content is preferably limited to 0.5%, the upper limit of the silicon (Si) content is preferably limited to 1.0%. .
S: 0.02%이하(0% 포함)S: 0.02% or less (including 0%)
S는 불순물로서 가능한 한 억제하는 것이 바람직하며, 그 상한은 0.02%로 관리하는 것이 바람직하다.It is preferable to suppress S as an impurity as much as possible, and it is preferable to manage the upper limit to 0.02%.
P: 0.04%이하(0% 포함)P: 0.04% or less (including 0%)
일반적으로, P는 입계에 편석(segregation)하여 고온취성을 유발하는 원소로 잘 알려져 있으며, 특히 본 발명강재와 같이 C, Mn이 다량 함유되는 고합금 강종은 P 편석까지 더해질 경우 슬라브 및 제품에 심각한 취성을 유발할 수 있다. 더욱이 P는 일정 함량을 초과할 경우 편석도가 급격히 상승하게 되므로, 그 함량은 0.04%이하로 제한하는 것이 바람직하다.In general, P is well known as an element causing segregation at grain boundaries and causing high temperature embrittlement. Especially, high alloy steels containing a large amount of C and Mn, such as the steel of the present invention, are severe in slabs and products when added to P segregation. May cause brittleness. Moreover, since the segregation rate is sharply increased when P exceeds a certain content, the content is preferably limited to 0.04% or less.
이외에 잔부 Fe 및 불가피한 불순물을 포함한다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.In addition to the balance Fe and unavoidable impurities. However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, not all of them are specifically mentioned in the present specification. In addition, addition of an effective component other than the said composition is not excluded.
본 발명의 바람직한 일 측면에 따르는 내마모성이 우수한 강재는 미세조직으로, 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함한다.Steel having excellent abrasion resistance according to a preferred aspect of the present invention is a microstructure, including an area%, less than 10% (including 0%) of carbide and the remainder austenite.
상기 탄화물의 분율이 면적%로, 10%를 초과하는 경우에는 급격한 충격인성 열화를 유발할 수 있다. 상기 오스테나이트는 연성 및 인성을 개선시킨다.If the fraction of the carbide is 10% by area, it may cause rapid impact toughness deterioration. The austenite improves ductility and toughness.
상기 강재는 하기 식(1)로 표현되는 성분 편석지수(S)가 3.0 이하인 것이 바람직하다.It is preferable that the component segregation index (S) of the said steel material represented by following formula (1) is 3.0 or less.
[관계식 1][Relationship 1]
성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0Component segregation index (S) = (rolling material center C component / molten steel C component) / 1.25 + (rolling material center Mn component / molten steel Mn component) / 1.15 + (rolling material center P component / molten steel P component) / 3.0
(여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다)(In this case, the central component means a component in the range of 50 µm or less in the upper and lower portions of the portion where the highest component is measured in the microstructure analysis at the 1/2 thickness position of the rolled material)
상기 식(1)로 표현되는 성분 편석지수(S)가 3.0을 초과하는 경우에는 가공중, 예를 들면 절단 가공중 1/2t(t: 강재두께) 위치에서 편석대를 따라 균열이 발생할 확률이 급격히 상승하게 될 수 있다.If the component segregation index (S) represented by the above formula (1) exceeds 3.0, the probability of cracking along the segregation zone at the 1 / 2t (t: steel thickness) position during machining, for example, during cutting, is high. It can rise sharply.
상기 강재는 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 가질 수 있다. The steel may have a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and an impact toughness of 40 J or more.
이하, 본 발명의 바람직한 다른 일 측면에 따르는 내마모성이 우수한 강재의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method for producing steel having excellent wear resistance according to another preferred aspect of the present invention will be described in detail.
본 발명의 바람직한 다른 일 측면에 따르는 내마모성이 우수한 강재의 제조방법은 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al: 0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 준비하는 단계;According to another preferred aspect of the present invention, a method for producing steel having excellent wear resistance is% by weight, carbon (C): 0.55 to 1.4%, manganese (Mn): 12 to 23%, and chromium (Cr): 5% or less ( 0% excluding), Copper (Cu): 5% or less (excluding 0%), Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (Including 0%), phosphorus (P): preparing molten steel containing 0.04% or less (including 0%), balance Fe and inevitable impurities;
상기 용강을 하기 식(2)를 만족시키는 용강온도(TC)와 하기 식(3)을 만족시키는 주조속도(V)의 조건으로 연속주조하여 슬라브를 얻는 연속주조단계;A continuous casting step of obtaining slabs by continuously casting the molten steel under conditions of a molten steel temperature (T C ) satisfying the following formula (2) and a casting speed (V) satisfying the following formula (3);
[관계식 2][Relationship 2]
K≤TC≤K+60K≤T C ≤K + 60
(상기 식(2)에서 K 값은 하기 식(4)에 의해 결정되는 값을 나타낸다.)(K value in said Formula (2) shows the value determined by following formula (4).)
[관계식 4][Relationship 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
[관계식 3][Relationship 3]
V (m/min) ≥ 0.025[TC-K]V (m / min) ≥ 0.025 [T C -K]
(상기 식(3)에서 K 값은 상기 식(4)에 의해 결정되는 값을 나타낸다.)(K value in said Formula (3) shows the value determined by said Formula (4).)
[관계식 4][Relationship 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
상기 슬라브를 하기 식(5)에 의해 구해지는 재가열온도(TR)이하에서 재가열하는 단계; Reheating the slab below a reheating temperature (T R ) obtained by the following equation (5);
[관계식 5][Relationship 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]T R = 1453-165 [C]-4.5 [Mn]-414 [P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함][T R: reheat temperature (° C.); [C] and [Mn] each means the content (% by weight) of the element.]
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는 단계; 및 Hot-rolling the slab reheated as described above to have a finish rolling temperature of 850 to 1050 ° C. to obtain a hot rolled steel; And
상기 열연강재를 5℃/sec이상으로 600℃ 이하까지 냉각하는 단계를 포함한다.Cooling the hot rolled steel to 600 ° C or less at 5 ° C / sec or more.
연속주조단계Continuous casting stage
상기와 같이 조성되는 용강을 하기 식(2)를 만족시키는 용강온도(TC)와 하기 식(3)을 만족시키는 주조속도(V)의 조건으로 연속주조하여 강 슬라브를 얻는다.The molten steel formed as described above is continuously cast under the conditions of the molten steel temperature (T C ) satisfying the following formula (2) and the casting speed (V) satisfying the following formula (3) to obtain a steel slab.
[관계식 2][Relationship 2]
K≤TC≤K+60K≤T C ≤K + 60
(상기 식(2)에서 K 값은 하기 식(4)에 의해 결정되는 값을 나타낸다.)(K value in said Formula (2) shows the value determined by following formula (4).)
[관계식 4][Relationship 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
[관계식 3][Relationship 3]
V (m/min) ≥ 0.025[TC-K]V (m / min) ≥ 0.025 [T C -K]
(상기 식(3)에서 K 값은 상기 식(4)에 의해 결정되는 값을 나타낸다.)(K value in said Formula (3) shows the value determined by said Formula (4).)
본 발명에서는 고탄소 고망간 내마모강에서 용이하게 발생할 수 있는 슬라브 조직내 과편석을 억제하기 위하여, 상기 식(2)~(4)와 같은 성분변화에 따른 주조조건을 도출한 것이다. 이를 통해 최종 강재에서 빈번히 발생하는 내부품질(중심부 품질) 불량을 억제할 수 있다. In the present invention, in order to suppress excessive segregation in the slab structure that can easily occur in high-carbon high-manganese wear-resistant steel, casting conditions according to the component change, such as the formula (2) ~ (4) is derived. This can suppress the internal quality (center quality) defects that occur frequently in the final steel.
상기와 같은 주조조건으로 슬라브를 제조하지 않을 경우 슬라브 내에 과도한 편석대가 형성되어 슬라브 취성이 발생할 수 있으며, 재가열 및 압연 후에도 과도한 편석대가 잔존하여 품질결함을 유발할 수 있다.If the slab is not manufactured under the above casting conditions, excessive segregation zone may be formed in the slab, and the slab brittleness may occur, and excessive segregation zone may remain even after reheating and rolling, causing quality defects.
슬라브 재가열 단계Slab reheating stage
상기와 같이 연속주조하여 얻어진 슬라브를 재가열한다. The slab obtained by continuous casting as described above is reheated.
상기 슬라브 재가열은 하기 식(5)에 의해 구해지는 재가열온도(TR)이하에서 실시하는 것이 바람직하다.The slab reheating is preferably performed at a reheating temperature (T R ) or less obtained by the following formula (5).
[관계식 5][Relationship 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]T R = 1453-165 [C]-4.5 [Mn]-414 [P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함][T R: reheat temperature (° C.); [C] and [Mn] each means the content (% by weight) of the element.]
본 발명에서는 고탄소 고망간 내마모강에서 용이하게 발생할 수 있는 재가열 시 편석대 부분용융에 의한 중심부 취화를 억제하기 위하여, 상기 식(5)와 같은 성분변화에 따른 재가열 온도 제한 조건을 도출한 것이다. 이를 통해 최종 강재에서 빈번히 발생하는 내부품질(중심부 품질) 불량을 억제할 수 있다. In the present invention, in order to suppress the central embrittlement due to partial melting of the segregation zone during reheating that can easily occur in high carbon high manganese wear-resistant steel, the reheating temperature limitation condition according to the component change as shown in Equation (5) . This can suppress the internal quality (center quality) defects that occur frequently in the final steel.
슬라브 재가열 온도가 TR온도을 초과할 경우 슬라브 내 편석대에서 부분 용융이 발생할 수 있으며, 이로 인해 발생한 중심부 취화는 제품까지 연결되어, 압연재 중심부 성분 편석지수가 3.0을 초과하여 중심부 불량을 야기시킨다.If the slab reheating temperature exceeds the T R temperature, partial melting may occur in the segregation zone in the slab, which results in core embrittlement leading to the product, causing the core segregation index of the rolled material to exceed 3.0, causing core failure.
열연강재를Hot rolled steel 얻는 단계 Getting steps
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는다.The slab reheated as above is hot rolled to obtain a finish rolling temperature of 850 ° C to 1050 ° C to obtain a hot rolled steel.
상기 마무리 압연온도가 850℃미만일 경우에는 탄화물이 석출되어 균일 연신율이 저하될 수 있으며, 미세조직이 팬케이크화 되어 조직 이방성으로 인한 불균일 연신이 발생할 수 있다. 상기 마무리 압연온도가 1050℃를 초과하는 경우에는 결정립 성장이 활발하여 쉽게 결정립이 조대화되어 강도가 저하되는 문제가 발생할 수 있다. When the finish rolling temperature is less than 850 ℃, carbides may be precipitated to lower the uniform elongation, and microstructures may be pancake to cause nonuniform stretching due to tissue anisotropy. When the finish rolling temperature exceeds 1050 ° C, grain growth may be active and coarse crystal grains may easily cause a problem that the strength is lowered.
열연강재의Of hot rolled steel 냉각단계 Cooling stage
상기 열연강재를 5℃/sec이상으로 600℃이하까지 냉각한다.The hot rolled steel is cooled to 600 ° C. or less at 5 ° C./sec or more.
상기 냉각속도가 5℃/sec미만이거나, 냉각정지온도가 600℃를 초과하는 경우에는 탄화물이 석출되어 연신율이 저하되는 문제가 발생할 수 있다. 급속한 냉각 공정은 기지조직 내의 C 및 N 원소들의 높은 고용도를 확보하는데 도움이 된다. 따라서, 상기 냉각은 5℃/sec이상으로 600℃이하까지 실시되는 것이 바람직하다. 상기 냉각 속도는 10℃/sec이상이 보다 바람직하며, 15℃/sec 이상이 보다 더 바람직하다. If the cooling rate is less than 5 ℃ / sec, or if the cooling stop temperature exceeds 600 ℃ may be a problem that the carbide is precipitated elongation is reduced. Rapid cooling processes help to ensure high solubility of the C and N elements in the matrix. Therefore, the cooling is preferably carried out to 5 ° C / sec or more to 600 ° C or less. The cooling rate is more preferably 10 ° C / sec or more, and even more preferably 15 ° C / sec or more.
상기 냉각속도의 상한은 특별히 한정되는 것은 아니며, 설비의 냉각능 등을 고려하여 한정될 수 있다. 상기 열영강재의 냉각은 상온까지 이루어지더라도 무방하다. The upper limit of the cooling rate is not particularly limited, and may be limited in consideration of the cooling capacity of the equipment. Cooling of the thermal steel material may be made up to room temperature.
본 발명의 바람직한 다른 일 측면에 따르는 내마모성이 우수한 강재의 제조방법에 따르면, 예를 들면, 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 갖는 강재를 제조할 수 있다. According to a method for producing steel having excellent wear resistance according to another preferred aspect of the present invention, for example, a steel having a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and an impact toughness of 40 J or more can be manufactured.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it should be noted that the following embodiments are only intended to illustrate the present invention and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1과 같은 성분 및 성분범위를 만족하는 용강을 하기 표 2의 조건으로 연속주조하여 슬라브를 제조한 후, 하기 표 3의 조건으로 슬라브를 재가열, 열간압연 및 냉각하여 열연강재로 제조하였다.The molten steel that satisfies the components and component ranges as shown in Table 1 was continuously cast under the conditions of Table 2, and then the slabs were reheated, hot rolled, and cooled under the conditions of Table 3 to produce hot rolled steel.
상기와 같이 제조된 열연강재의 미세조직, 성분 편석지수, 절단크랙 발생율(%), 내마모성(g), 항복강도(MPa) 및 균일 연신율(%)을 측정하고, 그 결과를 하기 표 4에 나타내었다. 여기서, 내마모성은 ASTM 65 시험법을 따르는 모래마모 시험으로 일정량의 모래를 분사하면서 회전하는 롤에 시편을 접촉시켜 마모를 시킨후 감소한 중량을 측정하여 평가한 것이다.The microstructure, component segregation index, cutting crack incidence (%), wear resistance (g), yield strength (MPa) and uniform elongation (%) of the hot rolled steel prepared as described above were measured, and the results are shown in Table 4 below. It was . Here, the wear resistance is evaluated by measuring the reduced weight after abrasion by contacting the specimen to the rotating roll while spraying a certain amount of sand in the sand wear test according to the ASTM 65 test method.
또한, 상기 열연강재에 대한 -29℃충격인성[충격에너지(J)]을 측정하고, 그 결과를 하기 표 4에 함께 나타내었다.In addition, -29 ℃ impact toughness [impact energy (J)] for the hot rolled steel was measured, and the results are shown in Table 4 together.
한편, 비교강4에 대해서는 강판 두께 중심부 결함의 발생여부를 확인하기 위하여 사진 관찰하고, 그 결과를 도 1에 나타내었다. On the other hand, the comparative steel 4 was photographed to confirm the occurrence of defects in the thickness of the steel sheet thickness, the results are shown in FIG.
상기 표 2에서 주조속도(V)는 V (m/min) = 0.025[TC-K]이다.In Table 2, the casting speed V is V (m / min) = 0.025 [T C -K].
편석지수1)ingredient
Segregation Index 1)
(g)Wear resistance
(g)
(MPa)Yield strength
(MPa)
(%)Uniform elongation
(%)
(J)Impact Toughness (-29 ℃)
(J)
1) 성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.01) Component Segregation Index (S) = (C center component / molten steel C component) / 1.25 + (Mn component / molten steel Mn component) / 1.15 + (P component / molten steel P component) /3.0
* 중심부 성분: 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다* Center component: It means the component in the upper and lower 50㎛ range of the part where the highest component is measured in the microstructure analysis at 1/2 thickness of the rolled material.
2) 절단크랙 발생율: (중심부 균열발생길이/전체절단길이) × 1002) Cutting crack incidence: (center crack incidence length / total cutting length) × 100
하기 표 1 내지 표 4에 나타난 바와 같이, 본 발명의 강 조성 및 제조조건을 모두 만족하는 발명강(1-5)의 경우에는 내마모성, 항복강도, 충격인성 및 균일 연신율이 우수할 뿐만 아니라 절단 크랙율도 낮음을 알 수 있다.As shown in Table 1 to Table 4, the invention steel (1-5) that satisfies both the steel composition and manufacturing conditions of the present invention is not only excellent in abrasion resistance, yield strength, impact toughness and uniform elongation but also cutting crack The rate is also low.
한편, 본 발명의 강 조성 및 제조조건 중 적어도 하나의 조건을 충족하지 못하는 비교강(1 -9)의 경우에는 내마모성, 항복강도, 충격인성 및 균일 연신율 중 적어도 하나의 물성이 불충분하거나 절단 크랙율이 높음을 알 수 있다.On the other hand, in the case of the comparative steel (1 -9) that does not meet at least one of the steel composition and manufacturing conditions of the present invention, the physical properties of at least one of the wear resistance, yield strength, impact toughness and uniform elongation is insufficient or the cutting crack rate It can be seen that this is high.
중심부 성분 편석지수가 3.0을 초과한 비교강 4의 경우에는 절단 크랙발생율이 높으며, 도 1에도 나타난 바와 같이, 강재 두께 중심부 결함이 발생되어 있음을 알 수 있다. 절단과정에서 발생하는 열응력에 의해 가장 취약한 중심부에서 균열이 발생하였고, 중심부를 따라 균열이 전파하고 있음을 알 수 있다.In the case of Comparative Steel 4 having a central component segregation index of more than 3.0, the cutting crack incidence is high, and as shown in FIG. 1, it can be seen that a defect in the thickness of the steel core is generated. It can be seen that the crack occurred in the weakest center due to the thermal stress generated during the cutting process, and the crack propagated along the center.
Claims (4)
하기 식(1)로 표현되는 성분 편석지수가 3.0 이하인 내마모성이 우수한 강재.
[관계식 1]
성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0
(여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다)
By weight%, carbon (C): 0.55 to 1.4%, manganese (Mn): 12 to 23%, chromium (Cr): 5% or less (excluding 0%), copper (Cu): 5% or less (0% Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (including 0%), phosphorus (P): 0.04% or less (0%) ), Including the balance Fe and inevitable impurities, the microstructure includes less than 10% (including 0%) of carbides and residual austenite in area%,
Steel material excellent in abrasion resistance whose component segregation index represented by following formula (1) is 3.0 or less.
[Relationship 1]
Component segregation index (S) = (rolling material center C component / molten steel C component) / 1.25 + (rolling material center Mn component / molten steel Mn component) / 1.15 + (rolling material center P component / molten steel P component) / 3.0
(In this case, the central component means a component in the range of 50 µm or less in the upper and lower portions of the portion where the highest component is measured in the microstructure analysis at the 1/2 thickness position of the rolled material)
The steel according to claim 1, wherein the steel has a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and an impact toughness of 40 J or more.
상기 용강을 하기 식(2)를 만족시키는 용강온도(TC)와 하기 식(3)을 만족시키는 주조속도(V)의 조건으로 연속주조하여 슬라브를 얻는 연속주조단계;
[관계식 2]
K≤TC≤K+60
(상기 식(2)에서 K 값은 하기 식(4)에 의해 결정되는 값을 나타낸다.)
[관계식 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)
[관계식 3]
V (m/min) ≥ 0.025[TC-K]
(상기 식(3)에서 K 값은 하기 식(4)에 의해 결정되는 값을 나타낸다.)
[관계식 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)
상기 슬라브를 하기 식(5)에 의해 구해지는 재가열온도(TR)이하에서 재가열하는 단계;
[관계식 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함]
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는 단계; 및
상기 열연강재를 5℃/sec이상으로 600℃ 이하까지 냉각하는 단계를 포함하며,
하기 식(1)로 표현되는 성분 편석지수가 3.0 이하를 만족하는 내마모성이 우수한 강재의 제조방법.
[관계식 1]
성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0
(여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다)By weight%, carbon (C): 0.55 to 1.4%, manganese (Mn): 12 to 23%, chromium (Cr): 5% or less (excluding 0%), copper (Cu): 5% or less (0% Al: 0.5% or less (excluding 0%), Si: 1.0% or less (excluding 0%), S: 0.02% or less (including 0%), phosphorus (P): 0.04% or less (0%) Comprising) preparing a molten steel comprising the balance Fe and inevitable impurities;
A continuous casting step of obtaining slabs by continuously casting the molten steel under conditions of a molten steel temperature (T C ) satisfying the following formula (2) and a casting speed (V) satisfying the following formula (3);
[Relationship 2]
K≤T C ≤K + 60
(K value in said Formula (2) shows the value determined by following formula (4).)
[Relationship 4]
K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
[Relationship 3]
V (m / min) ≥ 0.025 [T C -K]
(K value in said Formula (3) shows the value determined by following formula (4).)
[Relationship 4]
K (° C) = 1536-(69 [C] + 4.2 [Mn] + 39 [P])
(Wherein each of [C], [Mn], and [P] means the content (% by weight) of the corresponding element)
Reheating the slab below a reheating temperature (T R ) obtained by the following equation (5);
[Relationship 5]
T R = 1453-165 [C]-4.5 [Mn]-414 [P]
[T R: reheat temperature (° C.); [C] and [Mn] each means the content (% by weight) of the element.]
Hot-rolling the slab reheated as described above to have a finish rolling temperature of 850 to 1050 ° C. to obtain a hot rolled steel; And
Cooling the hot rolled steel to 600 ° C or less at 5 ° C / sec or more,
The manufacturing method of the steel material excellent in the wear resistance which satisfy | fills 3.0 or less of the component segregation index represented by following formula (1).
[Relationship 1]
Component segregation index (S) = (rolling material center C component / molten steel C component) / 1.25 + (rolling material center Mn component / molten steel Mn component) / 1.15 + (rolling material center P component / molten steel P component) / 3.0
(In this case, the central component means a component in the range of 50 µm or less in the upper and lower portions of the portion where the highest component is measured in the microstructure analysis at the 1/2 thickness position of the rolled material)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170178865A KR102020381B1 (en) | 2017-12-22 | 2017-12-22 | Steel having excellent wear resistnat properties and method for manufacturing the same |
US16/954,672 US20210164068A1 (en) | 2017-12-22 | 2018-12-20 | Steel material having excellent wear resistance and manufacturing method |
EP18890993.1A EP3730649A1 (en) | 2017-12-22 | 2018-12-20 | Steel material having excellent wear resistance and manufacturing method for same |
PCT/KR2018/016384 WO2019125023A1 (en) | 2017-12-22 | 2018-12-20 | Steel material having excellent wear resistance and manufacturing method for same |
CN201880083118.1A CN111492082B (en) | 2017-12-22 | 2018-12-20 | Steel material having excellent wear resistance and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170178865A KR102020381B1 (en) | 2017-12-22 | 2017-12-22 | Steel having excellent wear resistnat properties and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190076795A KR20190076795A (en) | 2019-07-02 |
KR102020381B1 true KR102020381B1 (en) | 2019-09-10 |
Family
ID=66994233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170178865A KR102020381B1 (en) | 2017-12-22 | 2017-12-22 | Steel having excellent wear resistnat properties and method for manufacturing the same |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210164068A1 (en) |
EP (1) | EP3730649A1 (en) |
KR (1) | KR102020381B1 (en) |
CN (1) | CN111492082B (en) |
WO (1) | WO2019125023A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161820A (en) * | 2011-02-08 | 2012-08-30 | Sumitomo Metal Ind Ltd | Manufacturing method of nonmagnetic steel using continuous casting |
KR101714922B1 (en) * | 2015-12-18 | 2017-03-10 | 주식회사 포스코 | Wear resistnat steel plate having excellent toughness and internal properties and method for manufacturing thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100320959B1 (en) * | 1996-12-30 | 2002-06-20 | 전선기 | METHOD FOR MANUFACTURING HIGH Mn-STEEL EXCELLENT IN IMPACT TOUGHNESS AT ULTRA LOW TEMPERATURE |
KR20000041265A (en) * | 1998-12-22 | 2000-07-15 | 이구택 | Method for producing high manganese hot rolled metal strip by mini mill process and for preventing surface scab defect and crack defect |
FR2857980B1 (en) * | 2003-07-22 | 2006-01-13 | Usinor | PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED |
FR2878257B1 (en) * | 2004-11-24 | 2007-01-12 | Usinor Sa | PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY |
CN102906294A (en) * | 2009-12-28 | 2013-01-30 | Posco公司 | Austenite steel material having superior ductility |
CN104204262B (en) * | 2011-12-28 | 2018-02-02 | Posco公司 | Abrasive austenic steel and its production method with excellent machining property and ductility |
JP5879448B2 (en) * | 2011-12-28 | 2016-03-08 | ポスコ | Abrasion-resistant austenitic steel with excellent toughness of weld heat-affected zone and method for producing the same |
JP2013249500A (en) * | 2012-05-31 | 2013-12-12 | Nsk Ltd | Rolling bearing |
BR112015005020B1 (en) * | 2012-09-27 | 2020-05-05 | Nippon Steel & Sumitomo Metal Corp | hot rolled steel sheet and method for making the same |
US20140261918A1 (en) * | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
KR101543916B1 (en) * | 2013-12-25 | 2015-08-11 | 주식회사 포스코 | Steels for low temperature services having superior deformed surface quality and method for production thereof |
KR20160075927A (en) * | 2014-12-19 | 2016-06-30 | 주식회사 포스코 | The steel sheet having excellent strength and toughness at the center of thickness and method for manufacturing the same |
KR101665801B1 (en) | 2014-12-23 | 2016-10-13 | 주식회사 포스코 | High manganese steel sheet having excellent hot dip aluminium coatability, and method for manufacturing the same |
JP6390573B2 (en) * | 2015-09-29 | 2018-09-19 | Jfeスチール株式会社 | Cold rolled steel sheet and method for producing the same |
WO2017111510A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | Non-magnetic steel material having excellent hot workability and manufacturing method therefor |
US20170349983A1 (en) * | 2016-06-06 | 2017-12-07 | Exxonmobil Research And Engineering Company | High strength cryogenic high manganese steels and methods of making the same |
KR101917473B1 (en) * | 2016-12-23 | 2018-11-09 | 주식회사 포스코 | Austenitic steel having excellent wear resistance and toughness and method for manufacturing thereof |
-
2017
- 2017-12-22 KR KR1020170178865A patent/KR102020381B1/en active IP Right Grant
-
2018
- 2018-12-20 US US16/954,672 patent/US20210164068A1/en active Pending
- 2018-12-20 CN CN201880083118.1A patent/CN111492082B/en active Active
- 2018-12-20 WO PCT/KR2018/016384 patent/WO2019125023A1/en unknown
- 2018-12-20 EP EP18890993.1A patent/EP3730649A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161820A (en) * | 2011-02-08 | 2012-08-30 | Sumitomo Metal Ind Ltd | Manufacturing method of nonmagnetic steel using continuous casting |
KR101714922B1 (en) * | 2015-12-18 | 2017-03-10 | 주식회사 포스코 | Wear resistnat steel plate having excellent toughness and internal properties and method for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111492082B (en) | 2021-10-26 |
WO2019125023A1 (en) | 2019-06-27 |
KR20190076795A (en) | 2019-07-02 |
EP3730649A4 (en) | 2020-10-28 |
WO2019125023A8 (en) | 2020-02-27 |
US20210164068A1 (en) | 2021-06-03 |
CN111492082A (en) | 2020-08-04 |
EP3730649A1 (en) | 2020-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101205144B1 (en) | H-steel for building structure and method for producing the same | |
KR102031446B1 (en) | Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same | |
KR101917473B1 (en) | Austenitic steel having excellent wear resistance and toughness and method for manufacturing thereof | |
KR101271888B1 (en) | Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same | |
KR20090070484A (en) | High-strength and high-toughness thick steel plate and method for producing the same | |
KR101747001B1 (en) | Steel having superior brittle crack arrestability and method for manufacturing the steel | |
EP3631032B1 (en) | High-strength, hot rolled abrasive wear resistant steel strip and method of manufacturing thereof | |
EP2799582A1 (en) | Wear resistant austenitic steel having superior machinability and ductility method for producing same | |
KR101746999B1 (en) | Steel having superior brittle crack arrestability and method for manufacturing the steel | |
KR20180073379A (en) | Wear resistant steel having high hardness and method for manufacturing same | |
KR101714922B1 (en) | Wear resistnat steel plate having excellent toughness and internal properties and method for manufacturing thereof | |
JP6625657B2 (en) | Component having bainite structure having high strength characteristics and manufacturing method | |
KR101920973B1 (en) | Austenitic steel having excellent surface properties and method for manufacturing thereof | |
KR101353665B1 (en) | Austenitic steel with excellent wear resistance and ductility | |
KR101657840B1 (en) | Steel having superior brittle crack arrestability and method for manufacturing the steel | |
KR101461735B1 (en) | Austenitic wear resistant steel having superior machinability and ductility | |
KR102031443B1 (en) | Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same | |
KR102020381B1 (en) | Steel having excellent wear resistnat properties and method for manufacturing the same | |
KR101714929B1 (en) | Austenitic steel having excellent wear resistance and method for manufacturing the same | |
KR20150076888A (en) | Extremely thick steel sheet and method of manufacturing the same | |
KR101647226B1 (en) | Steel plate having excellent fracture resistance and yield ratio, and method for manufacturing the same | |
KR101435318B1 (en) | Method of manufacturing wear resisting steel | |
KR101795863B1 (en) | Wire rod having excellent hot workability and machinability and method for manafacturing the same | |
KR101505278B1 (en) | Steel for cargo oil tank and method of manufacturing the same | |
KR20150125142A (en) | Hot-rolled steel sheet and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |