KR102011335B1 - Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar - Google Patents
Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar Download PDFInfo
- Publication number
- KR102011335B1 KR102011335B1 KR1020180118132A KR20180118132A KR102011335B1 KR 102011335 B1 KR102011335 B1 KR 102011335B1 KR 1020180118132 A KR1020180118132 A KR 1020180118132A KR 20180118132 A KR20180118132 A KR 20180118132A KR 102011335 B1 KR102011335 B1 KR 102011335B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- shrinkage reducing
- admixture
- shrinkage
- glycerol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
- C04B28/16—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C7/00—Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
- B28C7/0007—Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
- C04B22/147—Alkali-metal sulfates; Ammonium sulfate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0032—Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
- C04B7/04—Portland cement using raw materials containing gypsum, i.e. processes of the Mueller-Kuehne type
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/40—Surface-active agents, dispersants
- C04B2103/408—Dispersants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/56—Opacifiers
- C04B2103/58—Shrinkage reducing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/346—Materials exhibiting reduced plastic shrinkage cracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 균열저감 건식 모르타르에 관한 것으로, 더욱 상세하게는 균열저감은 물론 응결속도와 강도증진에도 유리한 효과를 나타내는 새로운 유무기 복합 수축저감 혼화재의 제조방법과 그 제조방법으로 제조된 유무기 복합 수축저감 혼화재를 바람직하게 이용한 균열저감 건식 모르타르 조성물에 관한 것이다.The present invention relates to a crack reducing dry mortar, and more particularly, to a method for preparing a new organic-inorganic composite shrinkage reducing admixture exhibiting a beneficial effect not only in cracking reduction but also in increasing the setting speed and strength, and the organic-inorganic complex shrinkage prepared by the method. The present invention relates to a crack reducing dry mortar composition preferably using a reduced admixture.
콘크리트는 다양한 원인으로 균열이 발생하며, 콘크리트 구조물에 균열이 발생하면 내구성 저하가 촉진되어 철근 부식, 동결융해 등의 구조적 문제는 물론 누수, 백화, 미관저하 등의 다양한 문제가 발생한다. 콘크리트 구조물에 균열이 발생하면 보수공사 실시하여 해결하는데, 특히 콘크리트 타설 후 건조수축에 따라 발생한 균열은 보수공사 비용 부담을 수반할 뿐만 아니라 시공회사의 이미지 손상 및 준공심사 지연 등에 따른 간접적인 손실까지 초래한다. 따라서 콘크리트 구조물의 시공시에는 콘크리트의 건조수축에 따른 균열 발생을 억제할 수 있는 재료적, 시공적, 구조적 대책을 다양하게 검토할 필요가 있다.Concrete causes cracks for various reasons, and when cracks occur in concrete structures, degradation of durability is promoted, and structural problems such as steel corrosion and freeze-thawing, as well as various problems such as leakage, whitening, and aesthetic degradation, occur. If cracks occur in concrete structures, they are repaired and repaired. In particular, cracks caused by dry contraction after concrete pouring not only incurs the cost of repair work but also indirect losses due to damage of construction company's image and delayed completion of construction review. do. Therefore, when constructing concrete structures, it is necessary to examine various material, construction, and structural measures that can suppress the occurrence of cracks caused by dry shrinkage of concrete.
종래 공동주택의 옥상층에는 방수층을 보호할 수 있는 무근콘크리트를 타워크레인의 버켓을 이용하여 타설해왔는데, 이러한 시공방식은 타워크레인의 존치기간이 길어져 시공비가 증가하고, 또한 무근콘크리트로 15~18MPa 수준의 비구조용 콘크리트를 이용하는 관계로 균열발생, 표면 레이턴스 등 하자 발생이 문제로 지적되고 있다. 하자 발생을 억제하기 위하여 21~24MPa 수준의 콘크리트를 시공하는 사례도 있으나 시공비가 더욱 증가할 뿐만 아니라 균열 발생 등에는 근본적인 대안이 되지 못하는 실정이다. Previously, the roofless floor of multi-family houses has been built with bare concrete to protect the waterproof layer by using the bucket of the tower crane. This construction method increases the construction cost due to the long duration of the tower crane, and also 15 ~ 18MPa as the bare concrete. Problems such as cracking and surface latencies have been pointed out due to the use of non-structural concrete. There are cases where 21 ~ 24MPa concrete is used to suppress the defect, but the construction cost is not only increased but also it is not a fundamental alternative to the occurrence of cracks.
최근에는 타워크레인의 사용에 따른 시공비 증가 문제를 해결하기 위해 타워크레인을 철수한 뒤 건식 모르타르(Dry Mortar) 제품을 현장에서 혼합하고 압송하여 시공하는 사례가 증가하고 있다. 하지만, 이러한 시공방식은 압송을 위하여 굵은 골재가 없는 건식 모르타르 제품에 다량의 혼합수(통상 W/C 기준 65~85%)를 사용하게 되므로 콘크리트로 시공하는 경우보다 균열발생에 더욱 취약한 문제점이 있다. 특히 국내는 양질의 천연잔골재 수급이 절대 부족하여 흡수율이 높은 저품질의 잔골재(부순 모래, 내륙사 등)를 주로 사용하게 되는데, 이러한 잔골재의 사용은 다량의 혼합수 사용의 한 원인으로 작용한다.Recently, in order to solve the problem of increased construction costs due to the use of tower cranes, the construction of dry mortar products after mixing tower cranes is increasing. However, this construction method uses a large amount of mixed water (typically 65-85% based on W / C) for dry mortar products without coarse aggregates for pressure feeding, which is more susceptible to cracking than concrete construction. . In particular, in Korea, the supply and demand of high quality natural aggregates is mainly used low-quality fine aggregates (crushed sand, inland sand, etc.) with high absorption rate, the use of such aggregates serves as a cause of the use of a large amount of mixed water.
건식 모르타르 제품의 품질을 향상시키기 위하여 결합재량을 증가하고 양질의 골재를 사용하는 방안이 있기는 하나, 결합재량의 증가는 건식 모르타르 제조 비용의 증가로 이어지고 또한 결합재량의 증가시 일반적으로 건조수축량도 증가하므로 균열저감에 대안이 되는데 한계가 있으며, 양질의 골재 사용은 이미 골재의 수급 불균형에 따른 문제이므로 현실적인 대안이 될 수 없다. 이러한 산업 환경을 고려하여 다량의 혼합수를 사용하면서도 소성수축, 건조수축에 의한 균열 발생을 억제할 수 있는 새로운 건식 모르타르 제품 기술이 필요한 실정이다.In order to improve the quality of dry mortar products, there is a plan to increase the amount of binder and to use high-quality aggregates, but the increase in the amount of binder leads to an increase in the cost of manufacturing the dry mortar and, in general, the amount of dry shrinkage when the binder is increased. There is a limit to alternative crack reduction as it increases, the use of high-quality aggregate is already a problem due to the supply and demand imbalance of the aggregate can not be a realistic alternative. Considering this industrial environment, there is a need for a new dry mortar product technology capable of suppressing cracking caused by plastic shrinkage and dry shrinkage while using a large amount of mixed water.
한편 모르타르의 건조수축을 저감시키기 위한 방안으로 팽창제가 소개되고 있다. 그러나 팽창제는 수화반응을 통하여 부피 팽창을 일으키는 것으로, 보통 매우 고가이어서 경제적인 제품 제조에 활용하는데 제약이 된다. 또한 팽창제는 옥상용 모르타르와 같이 다량의 혼합수를 사용하는 경우에는 그 효과가 미미하며, 그렇다고 옥상용 모르타르에 다량의 팽창제를 사용하면 우천 등에 의하여 수분의 반복, 지속적인 공급에 의하여 과량 팽창하여 구조물을 파괴할 우려가 있기 때문에 적당하지 않다.Meanwhile, expansion agents have been introduced as a way to reduce the dry shrinkage of mortar. However, swelling agents cause volume expansion through hydration, which is usually very expensive and constrains their use in economical product manufacturing. In addition, when the expansion agent uses a large amount of mixed water, such as a roof mortar, the effect is insignificant.However, when a large amount of expansion agent is used in the roof mortar, the expansion structure is excessively expanded due to the repeated repetition of water due to rain or the like. It is not suitable because it may be destroyed.
모르타르의 건조수축을 저감시키기 위한 다른 방안으로 수축저감제도 소개된다. 수축저감제는 소성수축 및 건조수축에 가장 많은 영향을 주게 되는 2.5~50nm 크기의 콘크리트나 모르타르의 공극에서 수분의 증발시 발생하는 모세관 장력을 완화시키는 방식으로 수축 현상을 저감시킨다. 가장 많이 활용하는 소개되는 수축저감제는 다음과 같이 나타낼 수 있으며, 주로 glycol ether blend 가 활용된다. Another method for reducing the dry shrinkage of mortars is introduced. Shrinkage reducing agents reduce shrinkage in a way that mitigates the capillary tension generated by evaporation of water in the pores of 2.5-50 nm concrete or mortar, which have the greatest effect on plastic shrinkage and dry shrinkage. The most commonly used shrinkage reducing agent can be expressed as follows, mainly glycol ether blend.
R O(AO)n RR O (AO) n R
여기서, A : alkalene polymer Where A: alkalene polymer
R : hydrogen, hydroxyl, alkyl, phenyl, cycloalkyl groupsR: hydrogen, hydroxyl, alkyl, phenyl, cycloalkyl groups
위와 같은 수축저감제는 소성 및 건조수축 감소가 가능하고 투수저항성 증가 및 장기 내구성 증진에 이점이 있지만, 응결시간 지연 및 강도발현 저감이 단점으로 지적된다. 따라 기존 수축저감제를 옥상용 모르타르에 사용할 경우 응결시간 지연에 따라 작업시간 지연으로 이어져 시공비가 증가할 수 있다. 또한 대부분의 수축저감제는 액상의 형태이므로 건식 모르타르 제품 제조에 활용하기 어렵다.Shrinkage reducing agents as described above can reduce the plastic shrinkage and drying shrinkage and increase the permeability resistance and long-term durability, but it is pointed out that the delay in setting time and the reduction in strength expression. Therefore, when the existing shrinkage reducing agent is used for the roof mortar, the construction time may increase due to the delay of the condensation time, thereby increasing the construction cost. In addition, most shrinkage reducing agents are in the form of liquids and are difficult to utilize in the manufacture of dry mortar products.
본 발명은 종래 건식 모르타르 제품의 품질을 개선하고자 개발된 것으로서, 균열저감은 물론 응결시간 단축, 강도증진이 가능하여 옥상층 보호 모르타르로 유리하게 활용할 수 있는 새로운 건식 모르타르 제품을 제공하는데 기술적 과제가 있다.The present invention has been developed to improve the quality of the conventional dry mortar product, there is a technical problem to provide a new dry mortar product that can be advantageously used as a roof protection mortar by reducing cracks, shortening the setting time, increase the strength. .
또한 본 발명은 건식 모르타르 제품에 바람직하게 이용하기 위한 수축저감 혼화재로서, 기존 수축저감제를 경제적으로 활용하면서도 건식 모르타르 제품에 적절히 혼합 분산될 수 있는 고체 형태를 가지며 더불어 응결지연 방지, 강도손실 방지 효과도 발현할 수 있는 새로운 유무기 복합 수축저감 혼화재를 제조하기 위한 방법을 제공하고자 한다. In addition, the present invention is a shrinkage reducing admixture for preferably used in dry mortar products, while having a solid form that can be properly mixed and dispersed in dry mortar products while economically utilizing the existing shrinkage reducing agent, and prevents the delay of condensation and strength loss. It is intended to provide a method for producing a new organic-inorganic composite shrinkage reducing admixture that can also be expressed.
상기한 기술적 과제를 해결하기 위해 본 발명은, 시멘트 결합재 100중량부에 대하여, 유무기 복합 수축저감 혼화재 1.5~3.0중량부, 잔골재 150~300중량부를 포함하여 조성되는 것을 특징으로 하는 균열저감 건식 모르타르 조성물을 제공한다.In order to solve the above technical problem, the present invention, with respect to 100 parts by weight of cement binders, organic-inorganic composite shrinkage reducing admixtures 1.5 to 3.0 parts by weight, cracked dry mortar, characterized in that the composition is composed of 150 to 300 parts by weight To provide a composition.
또한 본 발명은 수축저감제 20~30중량%, 알칼리 설페이트 10~18중량%, 무수석고 10~20중량%, SO3 함량이 20중량% 이상이면서 유리석회(free CaO)가 15중량% 이하인 구형 입상의 산업부산물 30~55중량%, 나프탈렌계 분산제 0.1~5.0중량%, 글리세롤 0.2~2.4중량%를 포함하여 조성한 혼화재 조성물을 준비하는 제1단계; 준비한 혼화재 조성물에서 글리세롤을 제외한 재료를 분쇄기에 투입하여 분쇄 혼합하는 제2단계; 분쇄 혼합하는 중간에 글리세롤을 투입하고 분쇄 혼합하여 최대입도가 100㎛ 이하의 분쇄 혼합물로 제조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 유무기 복합 수축저감 혼화재의 제조방법을 제공한다.In addition, the present invention is 20 to 30% by weight of shrinkage reducing agent, 10 to 18% by weight of alkali sulfate, 10 to 20% by weight of anhydrous gypsum, SO 3 content of more than 20% by weight of spherical free lime (free CaO) 15% by weight or less A first step of preparing a admixture composition comprising 30 to 55% by weight of a granular industrial by-product, 0.1 to 5.0% by weight of a naphthalene-based dispersant, and 0.2 to 2.4% by weight of glycerol; A second step of pulverizing and mixing a material other than glycerol in the prepared admixture composition into a grinder; It provides a method for producing an organic-inorganic composite shrinkage reducing admixture, characterized in that it comprises a; the third step of preparing a pulverized mixture having a maximum particle size of less than 100㎛ by adding glycerol in the middle of the pulverized mixing.
본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.
첫째, 기존의 수축저감제를 경제적으로 활용하면서도 고체 형태를 가져 건식 모르타르 제품에 적절히 혼합 분산될 수 있는 새로운 유무기 복합 수축저감 혼화재를 제공할 수 있다. 특히 본 발명의 수축저감 혼화재는 기존의 수축저감제에 비하여 응결시간 단축, 강도증진 효과를 발현하기 때문에 옥상용 모르타르에 유리하게 활용할 수 있다.First, it is possible to provide a new organic-inorganic composite shrinkage reducing admixture that can be economically utilizing the existing shrinkage reducing agent while being properly mixed and dispersed in a dry mortar product. In particular, the shrinkage reducing admixture of the present invention can be advantageously used for the roof mortar because it exhibits a shortening of the condensation time, the strength enhancing effect compared to the conventional shrinkage reducing agent.
둘째, 새로운 유무기 복합 수축저감 혼화재를 혼입한 건식 모르타르 제품은 수축저감에 따른 균열저감이 가능한 것은 물론, 응결시간 단축, 강도증진 효과까지 기대할 수 있고, 나아가 혼합수의 사용량을 줄인 상태에서도 일정 이상의 성능발현을 나타내기 때문에, 옥상용 모르타르로 적용할 경우 시공성과 내구성을 동시에 확보하면서 공사비 절감을 이끌 수 있다.Second, the dry mortar product incorporating the new organic-inorganic composite shrinkage reducing admixture can not only reduce the cracks due to shrinkage reduction, but also shorten the setting time and increase the strength, and even more than a certain amount even when the amount of mixed water is reduced. Since performance is expressed, when applied as a roof mortar, it is possible to reduce construction costs while ensuring construction and durability at the same time.
도 1 및 도 2는 Mock-Up 시험예를 보여주는 도면으로, 각각 거푸집 계획도와 길이변화 측정 계획도를 보여준다.
도 3a 내지 도 3c는 Mock-Up 시험예에서 시험체의 균열 형상 평가결과를 보여주는 도면으로, 각각 타설 직후, 1일차, 21일차 평가결과를 보여준다.
도 4는 Mock-Up 시험예에서 시험체의 균열 형상에 대한 모식도와 균열 길이 측정 결과표이다.
도 5는 Mock-Up 시험예에서 시험체의 균열 길이와 균열 폭에 대한 측정결과 그래프이다.
도 6은 Mock-Up 시험예에서 길이변화 측정결과는 보여주는 그래프이다.1 and 2 is a view showing a mock-up test example, respectively showing the formwork plan and the length change measurement plan.
3A to 3C are diagrams showing the results of evaluation of the crack shape of the test specimen in the Mock-Up test example, and immediately after the casting, the first and the 21st evaluation results are respectively shown.
4 is a schematic diagram of the crack shape of the test specimen in the mock-up test example and a crack length measurement result table.
Figure 5 is a graph of the measurement results for the crack length and crack width of the test specimen in the mock-up test example.
Figure 6 is a graph showing the measurement results of the length change in the Mock-Up test example.
본 발명은 새로운 수축저감 혼화재의 제조방법과 그 수축저감 혼화재를 바람직하게 이용한 균열저감 건식 모르타르 조성물에 관한 것이다.The present invention relates to a method for producing a novel shrinkage reducing admixture and to a crack reducing dry mortar composition preferably using the shrinkage reducing admixture.
본 발명에 따른 수축저감 혼화재는 기존 수축저감제의 단점을 보완하면서 건식 모르타르 제품에 쉽게 혼입하여 활용할 수 있도록 기존 수축저감제와 알칼리 설페이트, 무수석고, 플라이애시 등의 산업부산물, 분산제, 글리세롤 등을 함께 분쇄 혼합하여 유무기가 복합된 수축저감 혼화재로 제조한다는데 특징이 있다. Shrinkage reducing admixture according to the present invention is a conventional shrinkage reducing agent and industrial by-products such as alkali sulfate, anhydrous gypsum, fly ash, dispersant, glycerol, etc. to be easily incorporated into dry mortar products while supplementing the disadvantages of the existing shrinkage reducing agent Grinding and mixing together is characterized by the production of shrinkage mixed with a mixed organic and inorganic.
구체적으로 유무기 복합 수축저감 혼화재는, 수축저감제 20~30중량%, 알칼리 설페이트 10~18중량%, 무수석고 10~20중량%, SO3 함량이 20중량% 이상이면서 유리석회(free CaO)가 15중량% 이하인 구형 입상의 산업부산물 30~55중량%, 나프탈렌계 분산제 0.1~5.0중량%, 글리세롤 0.2~2.4중량%를 포함하여 조성한 혼화재 조성물을 준비하는 제1단계; 준비한 혼화재 조성물에서 글리세롤을 제외한 재료를 분쇄기에 투입하여 분쇄 혼합하는 제2단계; 분쇄 혼합하는 중간에 글리세롤을 투입하고 분쇄 혼합하여 최대입도가 100㎛ 이하의 분쇄 혼합물로 제조하는 제3단계;를 포함하는 과정으로 제조하는 것을 특징으로 한다.Specifically, the organic-inorganic composite shrinkage reducing admixture includes 20 to 30% by weight of shrinkage reducing agent, 10 to 18% by weight of alkali sulfate, 10 to 20% by weight of anhydrous gypsum, and a SO 3 content of 20% or more by free lime (Free CaO). A first step of preparing a admixture composition comprising 30 to 55% by weight of a spherical granular industrial by-product having a content of 15% by weight or less, 0.1 to 5.0% by weight of a naphthalene-based dispersant, and 0.2 to 2.4% by weight of glycerol; A second step of pulverizing and mixing a material other than glycerol in the prepared admixture composition into a grinder; Characterized in that the manufacturing process comprising; a third step of adding a glycerol in the middle of the grinding and mixing and grinding and mixing to prepare a grinding mixture with a maximum particle size of 100㎛ or less.
제1단계는 원재료 준비 계량단계인데, 원재료는 수축저감제, 알칼리 설페이트, 무수석고, 산업부산물, 분산제, 글리세롤를 준비한다.The first step is the raw material preparation weighing step, the raw material is prepared shrinkage reducing agent, alkali sulfate, anhydrous gypsum, industrial by-products, dispersants, glycerol.
수축저감제는 수축저감을 위한 기본적인 재료인데, 2.5~50nm 크기의 콘크리트나 모르타르의 공극에서 수분의 증발시 발생하는 모세관 장력을 완화시켜 수축 현상을 저감시키는 작용을 하는 기존의 수축저감제를 그대로 사용하면 된다. 바람 직하게는 프로필렌 글리콜(Propylene glycol), 폴리옥시아킬렌 알킬 에스터(Polyoxyalkylene alkyl esters), 펜틸 글리콜(Pentyl Glycol) 중에서 하나 이상 선택하고, flake 형태의 고체 상태로 사용하면 적당하다. 수축저감제는 20~30중량% 사용하는데, 20중량% 미만이면 수축저감 효과가 미미하고 30중량% 초과하면 경제성 상실 및 강도 저하가 우려된다.Shrinkage reducing agent is a basic material for shrinkage reduction. It uses existing shrinkage reducing agent that acts to reduce the shrinkage phenomenon by relieving capillary tension caused by evaporation of water in the concrete of 2.5 ~ 50nm size or mortar. Just do it. Preferably, at least one selected from propylene glycol, polyoxyalkylene alkyl esters, and pentyl glycol, and it is suitable to use in a flake solid state. Shrinkage reducing agent is used 20 to 30% by weight, if less than 20% by weight shrinkage effect is insignificant, if it exceeds 30% by weight is concerned about economic loss and strength degradation.
알칼리 설페이트는 알칼리에 의한 시멘트의 수화 촉진 내지 Al2O3-SiO2계 혹은 CaO-Al2O3-SiO2계 결합재의 반응 촉진으로 수축저감제에 의한 초기 강도저하 보상 및 응결지연 방지하는 역할을 한다. 또한 SO3 성분에 의한 다량의 팽창성 에트링자이트 생성으로 강도 향상 및 수축 저감 효과도 있다. 알칼리 설페이트는 Na2SO4, K2SO4 중 하나 이상 선택하면 적당하며, 10~18중량% 사용한다. 10중량% 미만이면 강도저하 보상 및 응결지연 방지 효과가 미미하고, 18중량% 초과하면 경제성 상실 및 장기 강도 손실이 우려된다.Alkali sulphate serves to compensate the initial strength reduction and prevent the coagulation delay by shrinkage reducing agent by promoting the hydration of cement by alkali to promote the reaction of Al2O3-SiO2 or CaO-Al2O3-SiO2 binder. In addition, the formation of a large amount of expandable ettringite by the SO 3 component has an effect of improving strength and reducing shrinkage. Alkaline sulfate is suitable to select one or more of Na 2 SO 4 , K 2 SO 4 , 10 to 18% by weight is used. If it is less than 10% by weight, the effect of compensating for strength degradation and preventing condensation delay is insignificant, and if it is more than 18% by weight, economic loss and long-term strength loss are feared.
무수석고는 알칼리 설페이트와 마찬가지로 SO3 성분에 의한 다량의 팽창성 에트링자이트 생성으로 강도 향상 및 수축 저감에 기여한다. 무수석고는 분말도가 높아야 초기에 적절한 반응 가능하므로 경제성을 고려하여 분말도 5500~7500㎠/g인 것을 사용하는 것이 바람직하다. 무수석고는 10~20중량% 사용하는데, 10중량% 미만이면 팽창성 수화물 생성 및 초기 강도 향상 효과가 미미하고, 20중량% 초과하면 분쇄 효율이 떨어져 응집현상이 일어나기 쉽다.Anhydrous gypsum, like alkaline sulphate, contributes to strength improvement and shrinkage reduction by generating a large amount of expandable ettringite by SO 3 component. Anhydrous gypsum can be properly reacted at the initial stage when the powder is high, so it is preferable to use a powder of 5500 ~ 7500
산업부산물은 SO3 함량이 20중량% 이상이면서 유리석회(free CaO)가 15중량% 이하인 구형 입상의 재료인데, 구형의 입상을 가지므로 분쇄 혼합시 수축저감제 및 무수석고의 효율적인 분산 혼합에 기여한다. 구형 입상의 산업부산물이 없으면 분쇄 혼합시 유무기 혼합물이 응집하여 분산하지 못한다. 또한 산업부산물은 SO3 성분을 함유하기 때문에 에트링자이트 생성에도 기여한다. 산업부산물은 유리석회(free CaO)가 15중량% 이하이어야 하는데, 유리석회가 많으면 부피가 큰 수화물이 물과 즉시 반응하여 건조수축 발생이 많은 2.5~50nm의 공극을 다량 발생시키므로 수축 감소에 부정적 영향을 미치기 때문이다. 산업부산물로는 바람직하게 플라이애시를 사용하며, 30~55중량% 사용한다. 30중량% 미만이면 수축저감제 및 무수석고의 효율적인 분산 혼합에 긍정적 영향을 미치지 못하고, 55중량% 초과하면 상대적으로 수축저감제, 알칼리 설페이트, 무수석고 등의 함량이 적어져 수축저감 효과가 떨어진다.Industrial by-products are spherical granular materials with more than 20 wt% of SO 3 and less than 15 wt% of free CaO. Since they have spherical grains, they contribute to efficient dispersion and mixing of shrinkage reducing agents and anhydrous gypsum during grinding mixing. do. In the absence of spherical granular industrial by-products, the organic-inorganic mixture may not aggregate and disperse during pulverization mixing. In addition, industrial by-products contain SO 3 , which contributes to the formation of ettringite. Industrial by-products should have free CaO of 15% by weight or less. If there is a large amount of free lime, the bulky hydrate reacts immediately with water, creating a large amount of 2.5-50 nm voids, which tend to cause dry shrinkage. Because it is crazy. As an industrial by-product, fly ash is preferably used, and 30 to 55% by weight is used. If it is less than 30% by weight does not have a positive effect on the efficient dispersion mixing of shrinkage reducing agent and anhydrous gypsum, if it exceeds 55% by weight, the content of shrinkage reducing agent, alkali sulfate, anhydrous gypsum and the like decreases relatively.
분산제는 적절한 작업성 확보와 혼합수량의 감소에 기여하는 재료로, 나프탈렌계를 사용하며, 분산효과와 경제성을 고려하여 0.1~5.0중량% 사용한다.The dispersant is a material that contributes to securing proper workability and reducing the amount of mixing. The naphthalene system is used and 0.1 to 5.0% by weight is used in consideration of the dispersing effect and economic efficiency.
글리세롤은 화학식이 C3H5(OH)3이고 분자량이 92.09382g/mol인 것으로, 분쇄 혼합시 내용물의 응집 방지에 효과적이고, 또한 급격한 수분 증발을 방지하여 수축 저감 보조적인 효과를 발휘한다. 글리세롤은 0.2~2.4중량% 사용하는데, 0.2중량% 미만이면 응집방지 효과가 미미하고 2.4중량% 초과하면 응집방지 역효과가 우려된다.Glycerol has a chemical formula of C 3 H 5 (OH) 3 and a molecular weight of 92.09382 g / mol, which is effective in preventing aggregation of contents during grinding mixing, and also prevents rapid evaporation of moisture, thereby exerting a secondary effect of shrinkage reduction. Glycerol is used in the 0.2 ~ 2.4% by weight, but less than 0.2% by weight of the anti-aggregation effect is insignificant, if the content exceeds 2.4% by weight of the anti-aggregation adverse effect.
제2단계는 위와 같이 준비하는 원재료를 분쇄 혼합하는 단계이다. 글리세롤를 제외한 원재료 모두를 분쇄기에 투입하여 분쇄 혼합한다. 분쇄기는 진동밀(vibration mill), 볼밀(ball mill), 크로스비터밀(cross beater mill) 등을 적절히 활용하면 되며, 특히 진동밀이나 볼밀은 분쇄시 발생하는 마찰열로 자연 건조 효과가 있다. 분쇄기에 의한 분쇄 혼합과정에서 응집 현상이 일어날 수 있는데, 본 발명에서는 구형 입상의 산업부산물을 활용함과 동시에 분쇄 중간에 글리세롤을 투입함으로써 응집 현상을 억제하고 있다.The second step is to grind and mix the raw materials prepared as above. All raw materials except glycerol are added to a grinder and mixed. The pulverizer may use a vibration mill, a ball mill, a cross beater mill, and the like, and the vibration mill or the ball mill have a natural drying effect due to frictional heat generated during grinding. Agglomeration may occur in the pulverization mixing process by the pulverizer. In the present invention, the coagulation phenomena is suppressed by injecting glycerol in the middle of pulverization while utilizing industrial granular products of spherical shape.
제3단계는 분쇄 중간에 글리세롤을 투입하고 분쇄 혼합을 계속 실시하는 단계이다. 글리세롤은 분쇄 중간에 투입해야 응집 현상 방지에 효과적이다.The third step is to add glycerol in the middle of the grinding and to continue the grinding mixing. Glycerol should be added in the middle of grinding to prevent flocculation.
이로써 분쇄 혼합물이 제조 생산되며, 분쇄 혼합물이 곧 유무기 복합 수축저감 혼화재가 된다. 다만 생산된 분쇄 혼합물은 최대 입도가 100㎛ 이하, 평균 입도가 7~50㎛가 적당하다. 평균 입도가 작으면 제조비용이 증가하고 평균 입도가 크면 원재료의 분산 효과가 미미하다. 그리고 분쇄 혼합물은 수분 함수율이 0.7% 이하로 생산하는 것이 바람직한데, 함수율이 높으면 저장시 응집이 발생할 수 있다.As a result, a pulverized mixture is produced and produced, and the pulverized mixture soon becomes an organic-inorganic composite shrinkage reducing admixture. However, the pulverized mixture produced has a maximum particle size of 100 μm or less and an average particle size of 7-50 μm. If the average particle size is small, the manufacturing cost increases. If the average particle size is large, the dispersion effect of raw materials is insignificant. In addition, the grinding mixture is preferably produced with a moisture content of 0.7% or less. If the moisture content is high, aggregation may occur during storage.
위와 같이 제조 생산된 유무기 복합 수축저감 혼화재는 옥상용 모르타르를 위한 건식 모르타르로 제품화할 수 있다. 건식 모르타르는 시멘트 결합재 100중량부에 대하여, 유무기 복합 수축저감 혼화재 1.5~3.0중량부, 잔골재 150~300중량부를 포함하여 조성하면 적당하다. The organic-inorganic composite shrinkage reducing admixture produced as described above can be commercialized as a dry mortar for roofing mortar. Dry mortar is suitable to include 1.5 to 3.0 parts by weight of organic-inorganic composite shrinkage reducing admixtures, and 150 to 300 parts by weight of fine aggregates, based on 100 parts by weight of cement binder.
건식 모르타르에서 시멘트 결합재는 보통 포틀랜드 시멘트 75~100중량%, Al2O3-SiO2계 또는 CaO-Al2O3-SiO2계 결합재 0~25중량%로 조성하는 것이 바람직하며, 더욱 바람직하게는 보통 포틀랜드 시멘트 75~95중량%, Al2O3-SiO2계 또는 CaO-Al2O3-SiO2계 결합재 5~25중량%로 조성한다. 보통 포틀랜드 시멘트가 75중량% 미만이면 강도발현에 문제가 있으며, Al2O3-SiO2계 또는 CaO-Al2O3-SiO2계 결합재가 25중량% 초과하면 강도발현 저하, 소성수축 및 건조수축 증가가 우려된다. Al2O3-SiO2계 또는 CaO-Al2O3-SiO2계 결합재에는 플라이애시, 고로슬래그 미분말 등이 있으며, 본 발명의 실시예에서는 플라이애시를 사용한다.In dry mortar, the cement binder is usually composed of 75-100% by weight of Portland cement, 0-25% by weight of Al2O3-SiO2 or CaO-Al2O3-SiO2-based binder, more preferably 75-95% by weight of Portland cement. %, Al 2 O 3 -
유무기 복합 수축저감 혼화재는 시멘트 결합재 100중량부에 대하여 1.5~3.0중량부 사용하는데, 1.5중량부 미만하면 수축저감 효과가 미미하고 3.0중량부 초과하면 초기 강도 저하가 우려된다.The organic-inorganic composite shrinkage reducing admixture is used 1.5 to 3.0 parts by weight with respect to 100 parts by weight of cement binder, if less than 1.5 parts by weight shrinkage effect is insignificant, if more than 3.0 parts by weight of the initial strength is feared.
잔골재는 시멘트 결합재 100중량부에 대하여 150~300중량부 사용한다. 150중량부 미만이면 경제성을 상실하고, 300중량부 초과하면서 강도 저하 및 내구성 저하가 우려된다. 잔골재는 흡수율 10% 이하이면서 조립율 2.1 ~ 4.5인 것을 사용하는데, 흡수율이 높으면 혼합수가 다량 필요하여 강도가 저하하고, 조립율이 2.1 이하이면 미분이 많아 혼합수량이 많이 소요되며, 조립율이 4.5 이상이면 굵은 크기의 골재가 많아져 작업성 및 펌프 압송성에 부정적 영향을 미친다.The fine aggregate is used in an amount of 150 to 300 parts by weight based on 100 parts by weight of the cement binder. If it is less than 150 parts by weight, the economical efficiency is lost, and the strength is lowered and the durability is lowered while it is over 300 parts by weight. Residual aggregate is less than 10% water absorption and granulation rate of 2.1 to 4.5 is used, but a high absorption rate requires a large amount of mixed water, the strength is lowered. Larger aggregates have a negative impact on workability and pump pressure.
이하에서는 제조예 및 시험예에 의거하여 본 발명을 상세히 살펴본다 다만, 아래의 제조예 및 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Preparation Examples and Test Examples. However, the following Preparation Examples and Test Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
[제조예] 유무기 복합 수축저감 혼화재의 제조Preparation Example Preparation of Organic-Inorganic Composite Shrinkage Reduction Admixture
(1)원재료 준비(1) preparation of raw materials
원재료로 수축저감제, 알칼리 설페이트, 무수석고, 산업부산물, 나프탈렌계 분산제, 글리세롤를 준비하였다. 여기서 수축저감제는 flake 상의 고체상의 펜틸 글리콜(PPentyl Glycol)로, 순도 99.2%, 산도(acidit) max 0.01, 알데히드(aldehyde) max 0.05, 분자량(molecular weight) 104.15, 비중(specific gravity) 1.06을 갖는 것이다. 알칼리 설페이트는 순도가 99% 이상이면서 수분을 0.2중량% 이하 함유한 Na2SO4이고, 무수석고는 분말도가 6320㎠/g이고 밀도가 2.91인 것이다. 산업부산물은 화학조성이 CaO 34.8중량%, SO3 21.5중량%, SiO2 15.2중량%, Fe2O3 13.7중량%, Al2O3 7.34중량%, MgO 5.02중량%, 유리석회(free CaO) 4.8중량%로 구성된 플라이애시이다. As raw materials, shrinkage reducing agents, alkali sulfates, anhydrous gypsum, industrial by-products, naphthalene-based dispersants, and glycerol were prepared. The shrinkage reducing agent is a solid pentyl glycol on flake, having a purity of 99.2%, an acidit max of 0.01, an aldehyde max of 0.05, a molecular weight of 104.15, and a specific gravity of 1.06. will be. Alkali sulfate is Na 2 SO 4 containing not less than 99% pure water and 0.2 wt% or less of water, and anhydrous gypsum has a powder density of 6320
(2)원재료 개량 및 호퍼 투입(2) Improving raw materials and adding hoppers
수축저감제 25중량%, 알칼리 설페이트 14중량%, 무수석고 11중량%, 산업부산물 49중량%, 나프탈렌계 분산제 0.5중량%, 글리세롤 0.5중량%의 조성으로 원재료를 개량하고, 호퍼에 투입하였다.The raw materials were improved by the composition of 25 weight% shrinkage reducing agent, 14 weight% of alkali sulfate, 11 weight% of anhydrous gypsum, 49 weight% of industrial by-products, 0.5 weight% of naphthalene type dispersing agents, and 0.5 weight% of glycerol, and it put into the hopper.
(3)분쇄기 투입(3) grinding machine
개량된 원재료에서 글리세롤을 제외하고 분쇄기에 투입하여 분쇄 혼합하였다. 분쇄기는 분쇄용량이 1.8kg/13min이고 분쇄능력이 3∼4kg/pot×2pot이고 분쇄매체가 Steel bar(Vol 50%)인 진동밀(bration mill)를 이용하였다.Glycerol was removed from the improved raw materials, and then pulverized and mixed into a grinder. The grinding machine used a vibration mill with a grinding capacity of 1.8kg / 13min, a grinding capacity of 3 to 4kg / pot × 2pot, and a grinding medium of steel bar (Vol 50%).
(4)글리세롤 투입(4) glycerol input
분쇄 혼합 중에 글리세롤을 투입하였다. Glycerol was added during grinding mixing.
(5)분쇄물 수득(5) obtaining crushed products
분쇄 혼합을 끝내고, 분쇄물을 수득하였다. 분쇄물은 최대 입도 93㎛, 평균입도 23㎛ , 수분 함수율이 5.6%를 나타냈으며, 이러한 분쇄물이 곧 본 발명에 따른 유무기 복합 수축저감 혼화재가 된다.The pulverized mixing was finished and the pulverized product was obtained. The pulverized product showed a maximum particle size of 93 μm, an average particle size of 23 μm, and a water content of 5.6%. Such a pulverized product immediately became an organic-inorganic composite shrinkage reducing admixture according to the present invention.
[시험예 1] 모르타르 성능Test Example 1 Mortar Performance
1. 모르타르 배합1. Mortar formulation
아래 [표 1]과 같이 건식 모르타르를 조성하고, 조성된 건식 모르타르에 물을 배합하였다.Dry mortar was formed as shown in Table 1 below, and water was mixed with the prepared dry mortar.
(물시멘트비)Material cost
(Water cement ratio)
(67.8%)19%
(67.8%)
(67.8%)19%
(67.8%)
(67.8%)19%
(67.8%)
(78.5%)22%
(78.5%)
(78.5%)22%
(78.5%)
(78.5%)22%
(78.5%)
위 [표 1]의 배합에서 결합재는 비교예와 실시예 모두 포틀랜드시멘트(비중 3.15, 분말도 3480㎠/g) 80중량%와 플라이애시(비중 2.22, 분말도 3519㎠/g) 20중량%로 조성한 것이고, 수축저감 혼화재는 비교예의 경우 통상적으로 사용하는 글리콜계 수축저감제이고 실시예의 경우 [제조예]에서 제조한 유무기 복합 수축저감 혼화재이다. 골재는 천연골재와 부순모래를 3:7로 혼합한 표준사로, 조립율이 3.48이고 밀도가 2.54인 것이다.In the formulation of Table 1 above, the binders were 80% by weight of Portland cement (specific gravity 3.15, 3480
2. 모르타르 성능2. Mortar Performance
위 [표 1]과 같은 조성으로 배합한 모르타르에 대하여 응결시간, 플로우, 압축강도, 길이변화율을 측정하였으며, 측정 결과 아래 [표 2]와 같이 나타냈다.Condensation time, flow, compressive strength, and the rate of change of length were measured for the mortar blended with the composition as shown in [Table 1], and the measurement results are shown in the following [Table 2].
(16회타격시)240
(When hit 16 times)
(6회타격시)240
(6 hits)
(6회타격시)240
(6 hits)
(15회타격시)250
(15 hits)
(5회타격시)230
(5 hits)
(5회타격시)230
(5 hits)
(28일, ×10-6)
(매립형 게이지에 의한 길이변화 측정)Change of length
(28 days, × 10 -6 )
(Measurement of length change by embedded gauge)
위의 [표 2]에서와 같이 기존 글리콜계 수축저감제를 혼입한 비교예2, 비교예4는 길이변화가 감소하나 응결의 지연이 크고, 강도저하가 크게 나타냈다. 반면 본 발명에 따른 유무기 복합 수축저감 혼화재를 혼입한 실시예1, 실시예2는 길이변화의 감소 효과가 더욱 클 뿐만 아니라 응결 지연이 현저히 감소하고, 강도성능은 향상되는 것으로 나타냈다. 이러한 결과는 실시예1,2와 같이 현장의 시공 여건에 따라 혼합수가 증가하여도 그 경향이 유지되므로, 향후 시공현장에서도 우수한 균열저감 효과를 가져올 수 있을 것이다.As shown in Table 2, Comparative Example 2 and Comparative Example 4, in which the existing glycol-based shrinkage reducing agent was mixed, showed a change in length but a large delay in condensation and a large decrease in strength. On the other hand, Examples 1 and 2 incorporating the organic-inorganic composite shrinkage reducing admixture according to the present invention was not only more effective in reducing the length change, but also significantly reduced the setting delay, the strength performance was shown to be improved. These results are maintained even if the mixed water increases according to the construction conditions of the site as in Example 1, 2, it will be possible to bring excellent crack reduction effect in the future construction site.
[시험예 2] Mock-Up 시험Test Example 2 Mock-Up Test
1. 모르타르 배합1. Mortar formulation
Mock-Up 시험을 위해 아래 [표 3]과 같이 건식 모르타르를 조성하고, 조성된 건식 모르타르에 물을 배합하였다. 위 [표 3]의 배합에서 결합재는 비교예와 실시예 모두 포틀랜드시멘트(비중 3.15, 분말도 3480㎠/g) 80중량%와 플라이애시(비중 2.22, 분말도 3519㎠/g) 20중량%로 조성한 것이고, 수축저감 혼화재는 실시예에만 [제조예]에서 제조한 유무기 복합 수축저감 혼화재를 혼입하였다. 골재는 천연골재와 부순모래를 3:7로 혼합한 표준사로, 조립율이 3.48이고 밀도가 2.54인 것이다. Dry mortar was prepared for the mock-up test as shown in Table 3 below, and water was mixed with the prepared dry mortar. In the formulation of Table 3 above, the binder is 80% by weight of Portland cement (specific gravity 3.15, 3480
(물시멘트비)Material cost
(Water cement ratio)
(63%)20%
(63%)
(63%)20%
(63%)
(63%)20%
(63%)
(63%)20%
(63%)
위 [표 3]과 같이 배합한 모르타르의 성능은 측정한 결과 아래 [표 4]와 같이 나타냈다. 본 발명에 따른 수축저감 혼화재를 혼입으로 최종 응결시간이 단축되고, 압축강도가 향상된 것으로 확인된다.The performance of the mortar blended as shown in [Table 3] was shown as [Table 4] below as a result of the measurement. It is confirmed that the final setting time is shortened by the incorporation of the shrinkage reducing admixture according to the present invention, and the compressive strength is improved.
(타격없이 측정)180
(Measured without strike)
(타격없이 측정)180
(Measured without strike)
2. Mock-UP 시험2. Mock-UP test
Mock-UP 시험은 도 1과 같이 제작한 거푸집에 [표 3]과 같이 배합한 모르타르를 타설하여 실시하였으며, 와이어메쉬를 설치 여부에 따라 구분하여 실시하였다. Plain과 SR3는 와이어메쉬를 설치하지 아니한 경우이고, Plain-Mesh와 SR3-Mesh는 와이어메쉬를 설치한 경우이다. Mock-Up 시험에서는 도 2와 같은 계획에 따라 길이변화를 측정하였으며, 더불어 시간 경과에 따란 시험체의 균열 형상을 확인하고 균열 길이와 균열 폭을 측정하였다. 균열 형상은 도 3a 내지 도 3c와 같고, 균열 길이와 균열 폭 측정 결과는 아래 [표 5] 및 도 4 내지 도 5와 같으며, 길이변화 측정 결과는 도 6과 같다.Mock-UP test was carried out by pouring mortar blended as shown in [Table 3] in the formwork prepared as shown in Figure 1, was carried out separately according to the wire mesh installation. Plain and SR3 do not have wire mesh installed. Plain-Mesh and SR3-Mesh have wire mesh installed. In the mock-up test, the length change was measured according to the plan as shown in FIG. 2, and the crack shape of the test specimen was checked over time, and the crack length and the crack width were measured. The crack shape is the same as in Figures 3a to 3c, the crack length and crack width measurement results are as shown in [Table 5] and Figures 4 to 5, the length change measurement results are shown in FIG.
위의 [표 5] 및 도 3a 내지 도 6에서 보는 바와 같이, Plain의 경우는 와이어메쉬 유무와 관계없이 양생초기 소성시점부터 급격한 수축 작용이 발생되어 소성 및 건조수축 균열이 육안으로 확인되었으나, 본 발명에 따른 유무기 복합 수축저감 혼화재를 혼입한 시험체(SR, SR3-Mesh)에서는 와이어메쉬 유무와 관계없이 양생초기 소성시점부터 약간의 팽창거동이 발생되면서 소성수축 균열을 제어하는 결과를 확인할 수 있었다. 또한 건조수축 작용이 본격적으로 발생되는 재령 4일 시점부터의 Plain 시험체와 비교하여 완만한 건조수축량이 발생되는 것을 확인할 수 있었다. As shown in the above [Table 5] and Figures 3a to 6, in the case of Plain, regardless of the presence of the wire mesh, the rapid shrinkage action occurs from the initial firing time of curing, the firing and dry shrinkage cracks were visually confirmed. In the test body (SR, SR3-Mesh) mixed with the organic-inorganic composite shrinkage reducing admixture according to the invention, it was confirmed that the result of controlling the plastic shrinkage crack with slight expansion behavior occurred at the initial firing time regardless of the presence or absence of wire mesh. . In addition, it was confirmed that a gentle amount of dry shrinkage occurred compared to the plain test specimen from the age of 4 days when the dry shrinkage action occurs in earnest.
한편, Plain-Mesh의 경우, 양생초기 소성수축량이 Plain 보다 작게 나타났으며, 이는 초기 소성수축을 와이어메쉬가 구속한 결과로 판단된다. SR3-Mesh에서도 초기에 발생된 팽창이 와이어메쉬의 구속영향에 기인하여 SR3보다 팽창량이 적게 발생되는 결과를 보였다. 또한, 와이어메쉬 유무에 대한 각각의 Mock-up 시험체의 재령 28일 기준 총건조수축량을 비교한 결과 SR3는 Plain 대비 수축량이 약 75% 감소하는 결과를 보였으며, SR3-Mesh는 Plain-Mesh 대비 약 73%의 수축량이 감소하는 결과를 보여, 유무기 복합 수축저감 혼화재를 혼입한 건식모르타르의 수축 균열저감 성능이 탁월하게 우수한 성능을 확보하고 있는 것으로 나타났다. 다만 재령 21~22일 사이는 건조수축 완화구간으로 확인되는데, 이는 강우로 인한 수분공급 영향으로 건조수축량이 일시적으로 완화된 결과로 파악된다.On the other hand, in the case of Plain-Mesh, the initial curing shrinkage was smaller than that of plain, which is judged to be the result of the wire mesh restraining the initial plastic shrinkage. In SR3-Mesh, the initial expansion occurred less than SR3 due to the restraint effect of the wire mesh. In addition, as a result of comparing the total dry shrinkage at 28 days of mock-up test with or without wire mesh, SR3 showed about 75% reduction in shrinkage compared to plain, and SR3-Mesh was about compared to plain mesh. The shrinkage amount of 73% was reduced, and the shrinkage cracking performance of the dry mortar containing the organic-inorganic composite shrinkage reducing admixture was excellent. However, between 21 and 22 days of age, it is confirmed that the period of dry shrinkage is mitigated, which is the result of temporary relief of dry shrinkage due to water supply from rainfall.
Claims (4)
준비한 혼화재 조성물에서 글리세롤을 제외한 재료를 분쇄기에 투입하여 분쇄 혼합하는 제2단계;
분쇄 혼합하는 중간에 글리세롤을 투입하고 분쇄 혼합하여 최대입도가 100㎛ 이하의 분쇄 혼합물로 제조하는 제3단계;를 포함하여 이루어지되,
상기 제1단계는, 수축저감제로 펜틸 글리콜(Pentyl Glycol)을 선택하고, 알칼리 설페이트로 Na2SO4를 선택하며, 무수석고로 분말도가 5500~7500㎠/g인 것을 선택하면서 이루어지며,
상기 제2단계는, 분쇄기로 진동밀 또는 볼밀을 이용하면서 이루어지는 것을 특징으로 하는 유무기 복합 수축저감 혼화재의 제조방법.Shrinkage reducing agent 20-30% by weight, alkali sulfate 10-18% by weight, anhydrous gypsum 10-20% by weight, SO 3 content of 20% by weight or more, spherical granular industrial by-products having 15% by weight or less free lime A first step of preparing a admixture composition comprising 30 to 55% by weight, 0.1 to 5.0% by weight of a naphthalene-based dispersant, and 0.2 to 2.4% by weight of glycerol;
A second step of pulverizing and mixing a material other than glycerol in the prepared admixture composition into a grinder;
Including a glycerol in the middle of the grinding and mixing, the third step of preparing a grinding mixture with a maximum particle size of 100㎛ or less by grinding and mixing;
The first step is made by selecting a pentyl glycol (Pentyl Glycol) as a shrinkage reducing agent, select Na 2 SO 4 as alkali sulfate, and select a powder of 5500 ~ 7500 cm 2 / g with anhydrous gypsum,
The second step is a method for producing an organic-inorganic composite shrinkage reducing admixture, characterized in that made using a vibrating mill or ball mill as a grinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180118132A KR102011335B1 (en) | 2018-10-04 | 2018-10-04 | Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180118132A KR102011335B1 (en) | 2018-10-04 | 2018-10-04 | Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102011335B1 true KR102011335B1 (en) | 2019-08-16 |
Family
ID=67806714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180118132A KR102011335B1 (en) | 2018-10-04 | 2018-10-04 | Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102011335B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220169802A (en) * | 2021-06-21 | 2022-12-28 | 주식회사 위드엠텍 | Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100403831B1 (en) * | 2003-03-26 | 2003-11-01 | 주식회사한국포조텍 | Crack retardant mixture made from flyash and its application to concrete |
KR20050105641A (en) | 2004-04-30 | 2005-11-08 | 한천구 | Method of producing for shrinkage-reducing type admixture combined with glycol based shrinkage reducing agent, gypseous expansive additive and fly ash with specific ratio |
JP2011246286A (en) * | 2010-05-21 | 2011-12-08 | Nippon Shokubai Co Ltd | Autogenous shrinkage reducing agent |
KR101321730B1 (en) * | 2013-02-28 | 2013-10-28 | (주)문수토가 | Environmental-friendly shrinkage reducing agent and environmental-friendly plastering cement and mortar containing the same |
KR20160018442A (en) | 2015-12-16 | 2016-02-17 | 지에스건설 주식회사 | Multi funcitional shrinkage reducing agent composition |
KR101815928B1 (en) * | 2017-07-19 | 2018-01-08 | (주)위드엠텍 | Water-repellent Admixture for Reducing Shrinkage, Binder Composition for Repair Mortar with the Chemical Resistance Comprising the Admixture, Dry Mortar Composition Comprising the Binder and Concrete Repair Method Using the Mortar |
KR101852483B1 (en) * | 2017-04-26 | 2018-04-27 | (주)세종이엔씨 | Makinh method of Solidified agent using high-calcium fly ash |
KR101879269B1 (en) * | 2016-07-20 | 2018-07-17 | 아주산업 주식회사 | Expansible contraction reduction type of crack prevention composite for cement mortar |
-
2018
- 2018-10-04 KR KR1020180118132A patent/KR102011335B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100403831B1 (en) * | 2003-03-26 | 2003-11-01 | 주식회사한국포조텍 | Crack retardant mixture made from flyash and its application to concrete |
KR20050105641A (en) | 2004-04-30 | 2005-11-08 | 한천구 | Method of producing for shrinkage-reducing type admixture combined with glycol based shrinkage reducing agent, gypseous expansive additive and fly ash with specific ratio |
JP2011246286A (en) * | 2010-05-21 | 2011-12-08 | Nippon Shokubai Co Ltd | Autogenous shrinkage reducing agent |
KR101321730B1 (en) * | 2013-02-28 | 2013-10-28 | (주)문수토가 | Environmental-friendly shrinkage reducing agent and environmental-friendly plastering cement and mortar containing the same |
KR20160018442A (en) | 2015-12-16 | 2016-02-17 | 지에스건설 주식회사 | Multi funcitional shrinkage reducing agent composition |
KR101879269B1 (en) * | 2016-07-20 | 2018-07-17 | 아주산업 주식회사 | Expansible contraction reduction type of crack prevention composite for cement mortar |
KR101852483B1 (en) * | 2017-04-26 | 2018-04-27 | (주)세종이엔씨 | Makinh method of Solidified agent using high-calcium fly ash |
KR101815928B1 (en) * | 2017-07-19 | 2018-01-08 | (주)위드엠텍 | Water-repellent Admixture for Reducing Shrinkage, Binder Composition for Repair Mortar with the Chemical Resistance Comprising the Admixture, Dry Mortar Composition Comprising the Binder and Concrete Repair Method Using the Mortar |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220169802A (en) * | 2021-06-21 | 2022-12-28 | 주식회사 위드엠텍 | Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same |
KR102597189B1 (en) * | 2021-06-21 | 2023-11-02 | 주식회사 위드엠텍 | Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109369076B (en) | Concrete and preparation method thereof | |
CN110845190A (en) | Ultrahigh-performance cement-based material applied to wet-process injection construction | |
EP3385241B1 (en) | Hydraulic binder composition with very low shrinkage | |
KR101260412B1 (en) | Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof | |
KR100873514B1 (en) | Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder | |
CN112266212A (en) | Concrete preparation process | |
CN103467037B (en) | A kind of reactive powder cement-base composite material and preparation method thereof | |
KR102349613B1 (en) | Cement Admixture Composite for Rapid Expansion Hardening Type, On-site Hydration Concrete Mat Using the Cement Admixture Composite and Construction Method Using the Mat | |
KR101113138B1 (en) | Early Strength Type Concrete Composition | |
CN112521113B (en) | Low-temperature hydration hardening gel material and preparation method and application thereof | |
KR100867250B1 (en) | Ultra high strength concrete containing non-sintering binder | |
KR100878551B1 (en) | Composition for concrete having superhigh compressive strength and manufactruing method | |
KR101037983B1 (en) | Concrete composition and include them an artificial waterfall or ingongamyong plastic panels | |
KR101963579B1 (en) | High Early Strength Concrete Composition and Constructing Methods using Thereof | |
KR102011335B1 (en) | Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar | |
KR20170143253A (en) | Cement composition for concrete | |
KR102114016B1 (en) | Hybrid Hydration Heat Reducer and Concrete Composition Using the Same | |
KR102432617B1 (en) | Self-healing Admixture Composition, Manufacturing Method of the Admixture, Mortar Composition Using the Admixture and Concrete Repair Method Using the Mortar | |
CN115304326B (en) | Shrinkage-compensating self-compacting concrete and preparation method thereof | |
CN116639935A (en) | Low-heat cement concrete without admixture and preparation method thereof | |
CN115304321A (en) | High-durability concrete for nuclear engineering and preparation method thereof | |
KR102616772B1 (en) | Mortar composition of floor structure reducing inter-floor noise | |
KR102681389B1 (en) | High Performance Concrete Composition Having Improved Early-Strength Characteristics for Shortening of Period | |
KR101797350B1 (en) | High strength conctete composition for psc girder | |
JP2003146732A (en) | Method of producing slag hardened body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |