[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101960182B1 - Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase - Google Patents

Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase Download PDF

Info

Publication number
KR101960182B1
KR101960182B1 KR1020170111826A KR20170111826A KR101960182B1 KR 101960182 B1 KR101960182 B1 KR 101960182B1 KR 1020170111826 A KR1020170111826 A KR 1020170111826A KR 20170111826 A KR20170111826 A KR 20170111826A KR 101960182 B1 KR101960182 B1 KR 101960182B1
Authority
KR
South Korea
Prior art keywords
cape
derivatives
coumaroyl
ala
alcohol
Prior art date
Application number
KR1020170111826A
Other languages
Korean (ko)
Other versions
KR20190025318A (en
Inventor
안중훈
조아라
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020170111826A priority Critical patent/KR101960182B1/en
Publication of KR20190025318A publication Critical patent/KR20190025318A/en
Application granted granted Critical
Publication of KR101960182B1 publication Critical patent/KR101960182B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)을 과발현하는 재조합 미생물을 이용하여, 카페익산 페닐에스터(caffeic acid phenyl ester; CAPE) 또는 이의 유도체를 제조하는 방법에 관한 것이다.The invention p - one Co-A in Kumar: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; PMT) using recombinant microorganisms overexpressing, cafe acid phenyl ester (caffeic acid phenyl ester; CAPE ) Or a derivative thereof.

Description

p-쿠마로일 Co-A:모노리그놀 전이효소를 이용한 카페익산 페닐에스터 또는 이의 유도체 제조 방법{Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase}[0001] The present invention relates to a method for producing a caffeic acid phenyl ester or a derivative thereof, which comprises using a p-coumaroyl Co-A: monoligonol transferase,

본 발명은 p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)을 과발현하는 재조합 미생물을 이용하여, 카페익산 페닐에스터(CAPE) 또는 이의 유도체를 제조하는 방법에 관한 것이다.The invention p - one Co-A in Kumar: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; PMT) for using recombinant microorganisms overexpressing, cafe acid phenyl ester (CAPE) or derivatives thereof And a method for manufacturing the same.

카페익산 페닐에스터(caffeic acid phenyl ester, CAPE)는 벌꿀의 프로폴리스에 주요 성분으로서 포함되는 것으로 알려져 있는 천연 플라보노이드 화합물이다. CAPE는 강한 항산화 효과와 함께 피부 보습력을 향상시킬 수 있어 의약품, 화장료, 건강기능식품 등에 다양하게 사용될 수 있다. 뿐만 아니라, CAPE는 항암, 항염증 및 신경보호효과 또한 나타내어, 특히 CAPE를 항암제와 혼합하여 사용하였을 때 항암 효과가 증진되면서 천연 물질을 사용한다는 점에서 생체 안전성이 증가될 수있음에 대하여도 보고된 바 있다. 이 외에도 일반적인 진핵균류들의 성장 억제 작용, 급성 면역작용 억제 등의 생리 활성을 나타낸다. CAPE 외에도 이의 유사 유도체 역시 유사한 효과를 나타낼 수 있을 것으로 기대되어, 이의 대량 생산에 대한 연구가 요구되고 있다.Caffeic acid phenyl ester (CAPE) is a natural flavonoid compound that is known to be a major component of honey propolis. CAPE has a strong antioxidant effect and it can improve the skin moisturizing ability and can be used in various fields such as medicines, cosmetics and health functional foods. In addition, CAPE also exhibits anticancer, anti-inflammatory and neuroprotective effects, and in particular, when CAPE is mixed with an anticancer agent, the anticancer effect is enhanced, and thus the biosafety can be increased in that the natural substance is used There is a bar. In addition, it exhibits physiological activities such as suppression of growth of common eukaryotic fungi and inhibition of acute immune function. In addition to CAPE, its analogous derivatives are expected to have similar effects, and studies on their mass production are required.

CAPE는 카페익산의 에스터 화합물의 구조로 이루어진 폴리페닉 산이다. Ekfktj, 산업적으로 CAPE를 이용하기 위해서 프로폴리스로부터 추출하거나, 카페익산과 2-페닐에탄올(2-phenylethanol)을 에스테르 결합으로 연결해 화학적으로 합성하여 사용하고 있다. 그러나 화학적 방법으로 에스테르 결합을 유도하는 것은 화학 촉매의 사용으로 인해 부산물의 생산 또는 화학 공정의 조건 조절 등의 문제가 있어, 이를 생물학적 촉매를 이용하여 생산하고자 하는 방법이 연구되고 있다.CAPE is a polyphenic acid composed of the structure of an ester compound of caffeic acid. Ekfktj is industrially extracted from propolis to use CAPE, or chemically synthesized by linking caffeic acid with 2-phenylethanol via an ester bond. However, the induction of ester linkage by a chemical method has problems such as the production of by-products or the control of the chemical process due to the use of a chemical catalyst, and a method for producing this by using a biological catalyst has been studied.

생물학적 촉매, 즉 효소를 이용하여 에스테르 결합을 촉매하기 위해 리파아제(lipase)가 주로 사용되고 있다. 상업적으로 사용되는 대표적인 리파아제인 CALB(Candida antartica 유래의 lipaseB) 또는 이를 레진에 고정한 노보자임 435(Novozyme 435) 등을 사용하여 CAPE를 생산하는 방법에 대하여 공지된 바 있다(비특허문헌 1, 비특허문헌 2). 그러나 CAPE 외에도 이의 유도체 또한 다양한 활용가치가 있을 것으로 기대되는 바, 다양한 기질 특이성을 통해 CAPE 뿐 아니라 이의 유도체 또한 생산할 수 있는 효소 촉매에 대한 개발에 관심이 기울어지고 있다.Lipases are mainly used to catalyze ester bonds using biological catalysts, enzymes. A method of producing CAPE using CALB (lipaseB derived from Candida antartica ) or novozyme 435 (Novozyme 435) in which it is fixed to resin has been known as a representative lipase for commercial use (Non-Patent Document 1, Non-Patent Document 1 Document 2). However, in addition to CAPE, its derivatives are expected to have a variety of utility values, and interest is being focused on the development of enzyme catalysts capable of producing CAPE as well as derivatives thereof through a variety of substrate specificities.

이에, 본 발명자들은 다양한 기질 특이성으로 CAPE 및 이의 유도체를 합성할 수 있는 효소 자원을 개발하고자 노력한 결과, 벼 유전체의 게놈으로부터 분리된 p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)를 과발현하는 재조합 대장균을 이용하여, 히드록시신남산(hydroxycinnamic acid) 기질 및 페닐알코올을 합성하여 CAPE 및 이의 유도체를 생산할 수 있음을 확인함으로써, 본 발명을 완성하였다.The present inventors have made efforts to develop an enzyme source capable of synthesizing CAPE and its derivatives with various substrate specificities. As a result, it has been found that p -coumaroyl Co-A monoligonol transferase ( p- (Hydroxycinnamic acid) substrate and phenyl alcohol by using recombinant E. coli that overexpresses Coumaroyl Co-A: monolignol transferase (PMT) to produce CAPE and derivatives thereof. Respectively.

Antonopoulou, Io, et al., "Enzymatic synthesis of caffeic acid phenethyl ester", Journal of the Chinese Institute of Chemical Engineers 39 (2008) 413-418. Antonopoulou, Io, et al., &Quot; Enzymatic synthesis of caffeic acid phenethyl ester ", Journal of the Chinese Institute of Chemical Engineers 39 (2008) 413-418. Eudes, Aymerick, et al., "Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast.", Microbial cell factories 15.1 (2016): 198. Eudes, Aymerick, et al., "Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamates and benzoate conjugates in yeast.", Microbial cell factories 15.1 (2016): 198.

본 발명에서는 히드록시신남산(hydroxycinnamic acid) 기질 및 페닐알코올을 합성하여 카페익산 페닐에스터(CAPE) 및 이의 유도체를 합성할 수 있는 단백질의 용도를 제공하는 것을 목적으로 한다.The object of the present invention is to provide a use of a protein capable of synthesizing a caproic acid phenyl ester (CAPE) and derivatives thereof by synthesizing hydroxycinnamic acid substrate and phenyl alcohol.

또한, 본 발명의 목적은 상기 단백질을 이용한 CAPE 또는 이의 유도체 제조 방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a process for producing CAPE or a derivative thereof using the protein.

상기 목적을 달성하기 위해서, 본 발명은 하기 i) 내지 iv) 단계를 포함하는, CAPE 또는 이의 유도체 제조 방법을 제공한다:In order to achieve the above object, the present invention provides a process for producing CAPE or a derivative thereof, which comprises the following steps i) to iv):

i) p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)를 발현하는 재조합 미생물을 제조하는 단계;i) p - Kumar In one Co-A: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; preparing a recombinant microorganism expressing the PMT);

ii) 상기 단계 i)에서 제조한 재조합 미생물을 배양하고 수득하는 단계;ii) culturing and obtaining the recombinant microorganism produced in step i);

iii) 상기 단계 ii)에서 수득한 재조합 미생물을, 히드록시신남산(hydroxycinnamic acid) 기질 및 페닐알코올 기질을 포함하는 반응액에 현탁하고 반응하는 단계; 및iii) suspending and reacting the recombinant microorganism obtained in step ii) with a reaction solution containing a hydroxycinnamic acid substrate and a phenyl alcohol substrate; And

iv) 상기 단계 iii)에서 반응한 반응액으로부터 카페익산 페닐에스터(caffeic acid phenyl ester, CAPE) 또는 이의 유도체를 수득하는 단계.iv) obtaining a caffeic acid phenyl ester (CAPE) or a derivative thereof from the reaction mixture reacted in step iii).

본 발명의 바람직한 일실시예에서, 상기 PMT는 서열번호 1의 염기서열로 암호화되며, 서열번호 2의 아미노산 서열로 이루어지는, 벼 유래의 p-쿠마로일 Co-A:모노리그놀 전이효소일 수 있다.In one preferred embodiment of the present invention, the PMT is encoded by the nucleotide sequence of SEQ ID NO: 1, and is a p -coumaroyl Co-A: monolig knock transcription enzyme derived from rice and consisting of the amino acid sequence of SEQ ID NO: have.

본 발명의 바람직한 일실시예에서, 상기 단계 i)의 재조합 미생물은 대장균(E.coli)일 수 있다.In a preferred embodiment of the present invention, the recombinant microorganism of step i) may be E. coli.

본 발명의 바람직한 일실시예에서, 상기 단계 iii)의 히드록시 신남산 기질은, 하기 [화학식 1]의 구조를 가지는 카페익산(caffeic acid) 또는 하기 [화학식 2]의 구조를 가지는 쿠마르산(coumaric acid) 중 어느 하나일 수 있다:In one preferred embodiment of the present invention, the hydroxycinnamic acid substrate of step iii) is selected from the group consisting of caffeic acid having the structure of the following formula (1) or coumaric acid having the structure of the following formula (2) acid may be one of:

[화학식 1][Chemical Formula 1]

Figure 112017085110467-pat00001
; 및
Figure 112017085110467-pat00001
; And

[화학식 2](2)

Figure 112017085110467-pat00002
.
Figure 112017085110467-pat00002
.

본 발명의 바람직한 일실시예에서, 상기 단계 iii)의 페닐알코올 기질은, 하기 군으로부터 선택되는 어느 하나일 수 있다:In a preferred embodiment of the present invention, the phenyl alcohol substrate of step iii) may be any one selected from the group consisting of:

2-페닐에탄올(2-phenylethanol), 티로솔(tyrosol), 히드록시 티로솔(hydroxy tyrosol), 벤질알코올(benzyl alcohol), 2-히드록시펜에틸 알코올(2-hydroxyphenethyl alcohol), 2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol), 3-페닐-1-프로판올(3-phenyl-1-propanol), 4-페닐-1-부탄올(4-phenyl-1-butanol), 5-페닐-1-펜탄올(5-phenyl-1-pentanol), 7-페닐-1-헵탄올(7-phenyl-1-heptanol), 8-페닐-1-옥탄올(8-phenyl-1-octanol), 9-페닐-1-노난올(9-phenyl-1-nonanol), 2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol), 2-메탄옥시펜틸 알코올(2-methanoxyphenthyl alcohol), 3-메탄옥시펜틸 알코올(3-methanoxyphenthyl alcohol) 및 4-메탄옥시펜틸 알코올(4-methanoxyphenthyl alcohol).2-phenylethanol, tyrosol, hydroxy tyrosol, benzyl alcohol, 2-hydroxyphenethyl alcohol, 2- (3-hydroxyphenyl) Hydroxyphenyl alchol, 3-phenyl-1-propanol, 4-phenyl-1-butanol, Phenyl-1-pentanol, 7-phenyl-1-heptanol, 8-phenyl-1-heptanol, 1-nonanol, 2- (3-hydroxyphenyl) alcohol (2-3- (hydroxyphenyl alchol), 2-methanoxypentyl alcohol -methanoxyphenthyl alcohol, 3-methanoxyphenthyl alcohol and 4-methanoxyphenthyl alcohol.

본 발명의 바람직한 일실시예에서, 상기 CAPE 또는 이의 유도체는 하기 [화학식 3]의 구조로 이루어진 화합물일 수 있다:In a preferred embodiment of the present invention, the CAPE or derivatives thereof may be a compound having the structure of the following formula 3:

[화학식 3](3)

Figure 112017085110467-pat00003
Figure 112017085110467-pat00003

(상기 식에서, R1은 수소 또는 히드록시기 중 어느 하나이며,(Wherein R < 1 > is either hydrogen or a hydroxy group,

R2는 C1 내지 C9 페닐알킬, 메톡시펜에틸, 히드록시펜에틸 또는 디히드록시펜에틸 중 어느 하나이다.).R 2 is C 1 to C 9 phenylalkyl, methoxyphenethyl, hydroxyphenethyl or dihydroxyphenethyl).

본 발명의 바람직한 일실시예에서, 상기 CAPE 또는 이의 유도체는 하기 [화학식 4] 내지 [화학식 24] 중 어느 하나의 구조로 이루어진 화합물일 수 있다.In a preferred embodiment of the present invention, the CAPE or a derivative thereof may be a compound having any one of the following formulas (4) to (24).

따라서, 본 발명은 벼 유전체의 게놈으로부터 분리된 p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)의 용도를 제공한다. 본 발명의 PMT를 과발현하는 재조합 대장균을 이용하면, 히드록시신남산(hydroxycinnamic acid) 기질 및 페닐알코올을 합성하여 CAPE 및 이의 유도체를 합성할 수 있다.Accordingly, the invention is a p separated from the genome of a rice plant genome - one to Kumar Co-A: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; PMT) provides the use of a. When the recombinant Escherichia coli overexpressing the PMT of the present invention is used, CAPE and derivatives thereof can be synthesized by synthesizing hydroxycinnamic acid substrate and phenyl alcohol.

도 1은 카페익산 및 2-페닐에탄올을 기질로 하여 CAPE를 합성하는 과정을 나타내는 반응식 모식도이다.
도 2a는 카페익산 및 2-페닐에탄올 기질로부터 합성한 CAPE의 구조분석을 위한 proton NMR 분석 결과를 나타낸다.
도 2b는 카페익산 및 2-페닐에탄올 기질로부터 합성한 CAPE의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 3은 카페익산 및 티로솔(tyrosol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 4는 카페익산 및, 7-페닐-1-헵탄올(sample A), 8-페닐-1-옥탄올(sample B) 또는 9-페닐-1-노난올(sample C)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 5는 카페익산 및 2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 6은 카페익산 및 2-메탄옥시펜틸 알코올(2-methanoxyphenthyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 7은 카페익산 및 3-메탄옥시펜틸 알코올(3-methanoxyphenthyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 8은 카페익산 및 4-메탄옥시펜틸 알코올(4-methanoxyphenthyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 9는 쿠마르산(p-coumaric acid) 및 2-페닐에탄올로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 10은 쿠마르산 및 티로솔로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 11은 쿠마르산 및 히드록시티로솔로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 12는 쿠마르산 및 2-히드록시펜에틸 알코올(2-hydroxyphenethyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 13은 쿠마르산 및 2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 14는 쿠마르산 및 2-메탄옥시펜틸 알코올(2-methanoxyphenthyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 15는 쿠마르산 및 3-메탄옥시펜틸 알코올(3-methanoxyphenthyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
도 16은 쿠마르산 및 4-메탄옥시펜틸 알코올(4-methanoxyphenthyl alcohol)로부터 합성된 CAPE 유도체의 정량분석을 위한 HPLC-MS 분석 결과를 나타낸다.
Brief Description of the Drawings Fig. 1 is a schematic diagram of a reaction scheme for the synthesis of CAPE using caffeic acid and 2-phenylethanol as substrates.
2A shows the results of proton NMR analysis for the structural analysis of CAPE synthesized from caffeic acid and a 2-phenylethanol substrate.
Figure 2B shows HPLC-MS analysis results for quantitative analysis of CAPE synthesized from caffeic acid and 2-phenylethanol substrate.
3 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from capric acid and tyrosol.
4 is a graph showing the results of a CAPE derivative synthesized from caffeic acid and 7-phenyl-1-heptanol (sample A), 8-phenyl-1-octanol (sample B) The results of HPLC-MS analysis for quantitative analysis are shown.
FIG. 5 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from capric acid and 2- (3-hydroxyphenyl) alcohol (2-3- (hydroxyphenyl alchol).
6 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from caffeic acid and 2-methanoxyphenthyl alcohol.
7 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from caffeic acid and 3-methanoxyphenthyl alcohol.
8 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from caffeic acid and 4-methanoxyphenthyl alcohol.
9 shows HPLC-MS analysis results for quantitative analysis of CAPE derivatives synthesized from p- coumaric acid and 2-phenylethanol.
10 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from cumaric acid and tyrosol.
11 shows HPLC-MS analysis results for the quantitative analysis of CAPE derivatives synthesized from cumaric acid and hydroxycrozon.
12 shows HPLC-MS analysis results for quantitative analysis of CAPE derivatives synthesized from cumaric acid and 2-hydroxyphenethyl alcohol.
13 shows HPLC-MS analysis results for quantitative analysis of CAPE derivatives synthesized from cumaric acid and 2- (3-hydroxyphenyl) alcohol (2-3- (hydroxyphenyl alchol).
14 shows HPLC-MS analysis results for quantitative analysis of CAPE derivatives synthesized from cumaric acid and 2-methanoxyphenthyl alcohol.
15 shows HPLC-MS analysis results for quantitative analysis of CAPE derivatives synthesized from cumaric acid and 3-methanoxyphenthyl alcohol.
16 shows HPLC-MS analysis results for quantitative analysis of CAPE derivatives synthesized from cumaric acid and 4-methanoxyphenthyl alcohol.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하기 i) 내지 iv) 단계를 포함하는, CAPE 또는 이의 유도체 제조 방법을 제공한다:The present invention provides a process for the preparation of CAPE or derivatives thereof, which comprises the following steps i) to iv):

i) p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)를 발현하는 재조합 미생물을 제조하는 단계;i) p - Kumar In one Co-A: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; preparing a recombinant microorganism expressing the PMT);

ii) 상기 단계 i)에서 제조한 재조합 미생물을 배양하고 수득하는 단계;ii) culturing and obtaining the recombinant microorganism produced in step i);

iii) 상기 단계 ii)에서 수득한 재조합 미생물을, 히드록시신남산(hydroxycinnamic acid) 기질 및 페닐알코올 기질을 포함하는 반응액에 현탁하고 반응하는 단계; 및iii) suspending and reacting the recombinant microorganism obtained in step ii) with a reaction solution containing a hydroxycinnamic acid substrate and a phenyl alcohol substrate; And

iv) 상기 단계 iii)에서 반응한 반응액으로부터 카페익산 페닐에스터(caffeic acid phenyl ester, CAPE) 또는 이의 유도체를 수득하는 단계.iv) obtaining a caffeic acid phenyl ester (CAPE) or a derivative thereof from the reaction mixture reacted in step iii).

본 발명의 CAPE 또는 이의 유도체 생산 방법에 있어서, 상기 PMT는 벼 유래의 p-쿠마로일 Co-A:모노리그놀 전이효소인 것이 바람직하며, 구체적으로 서열번호 1의 염기서열로부터 합성되는 단백질인 것이 보다 바람직하고, 이는 서열번호 2의 아미노산 서열로 구성되는 단백질인 것이 가장 바람직하나, 이에 한정되지 않는다.In the method for producing CAPE or a derivative thereof according to the present invention, the PMT is preferably a p -coumaroyl Co-A monoligolnol transferase derived from rice, and more specifically, a protein synthesized from the nucleotide sequence of SEQ ID NO: 1 Most preferably a protein consisting of the amino acid sequence of SEQ ID NO: 2, but is not limited thereto.

본 발명의 CAPE 또는 이의 유도체 생산 방법에 있어서, PMT를 과발현하는 재조합 미생물은 당업계에서 재조합 미생물을 사용하여 표적 단백질을 과발현하도록 유도하기 위해 사용되는 방법이라면 제한없이 이를 사용하여 제조될 수 있다. 보다 구체적으로, 상기 재조합 미생물로는, 형질전환체를 제조하기 위해 사용되는 균주라면 제한없이 사용할 수 있으며, 구체적으로 대장균(E.coli), 효모(Saccharomyces cerevisiae) 또는 코리네박테리움속(Corynebacterium) 등을 사용하는 것이 바람직하고, 더욱 구체적으로는 대장균을 사용하는 것이 가장 바람직하나, 이에 한정되지 않는다.In the method for producing CAPE or derivatives thereof of the present invention, the recombinant microorganism overexpressing PMT can be produced using any method that is used in the art to induce over-expression of a target protein using a recombinant microorganism. More specifically, the recombinant microorganism can be used without limitation as long as it is used for producing a transformant. Specific examples of the recombinant microorganism include E. coli , Saccharomyces cerevisiae , or Corynebacterium , It is preferable to use E. coli. More specifically, E. coli is most preferably used, but not limited thereto.

본 발명의 CAPE 또는 이의 유도체 생산 방법에 있어서, 상기 단계 iii)의 히드록시 신남산 기질은, 하기 [화학식 1]의 구조를 가지는 카페익산(caffeic acid) 또는 하기 [화학식 2]의 구조를 가지는 쿠마르산(coumaric acid) 중 어느 하나일 수 있다:In the method for producing CAPE or a derivative thereof according to the present invention, the hydroxycinnamic acid substrate of step iii) may be a caffeic acid having a structure of the following formula (1) or a coumaric acid having a structure of the following formula May be any of coumaric acid:

[화학식 1][Chemical Formula 1]

Figure 112017085110467-pat00004
; 및
Figure 112017085110467-pat00004
; And

[화학식 2](2)

Figure 112017085110467-pat00005
.
Figure 112017085110467-pat00005
.

본 발명의 바람직한 일실시예에서, 상기 단계 iii)의 페닐알코올 기질은, 하기 군으로부터 선택되는 어느 하나일 수 있다:In a preferred embodiment of the present invention, the phenyl alcohol substrate of step iii) may be any one selected from the group consisting of:

2-페닐에탄올(2-phenylethanol), 티로솔(tyrosol), 히드록시 티로솔(hydroxy tyrosol), 벤질알코올(benzyl alcohol), 2-히드록시펜에틸 알코올(2-hydroxyphenethyl alcohol), 2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol), 3-페닐-1-프로판올(3-phenyl-1-propanol), 4-페닐-1-부탄올(4-phenyl-1-butanol), 5-페닐-1-펜탄올(5-phenyl-1-pentanol), 7-페닐-1-헵탄올(7-phenyl-1-heptanol), 8-페닐-1-옥탄올(8-phenyl-1-octanol), 9-페닐-1-노난올(9-phenyl-1-nonanol), 2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol), 2-메탄옥시펜틸 알코올(2-methanoxyphenthyl alcohol), 3-메탄옥시펜틸 알코올(3-methanoxyphenthyl alcohol) 및 4-메탄옥시펜틸 알코올(4-methanoxyphenthyl alcohol).2-phenylethanol, tyrosol, hydroxy tyrosol, benzyl alcohol, 2-hydroxyphenethyl alcohol, 2- (3-hydroxyphenyl) Hydroxyphenyl alchol, 3-phenyl-1-propanol, 4-phenyl-1-butanol, Phenyl-1-pentanol, 7-phenyl-1-heptanol, 8-phenyl-1-heptanol, 1-nonanol, 2- (3-hydroxyphenyl) alcohol (2-3- (hydroxyphenyl alchol), 2-methanoxypentyl alcohol -methanoxyphenthyl alcohol, 3-methanoxyphenthyl alcohol and 4-methanoxyphenthyl alcohol.

본 발명의 바람직한 일실시예에서, 상기 CAPE 또는 이의 유도체는 하기 [화학식 3]의 구조로 이루어진 화합물일 수 있다:In a preferred embodiment of the present invention, the CAPE or derivatives thereof may be a compound having the structure of the following formula 3:

[화학식 3](3)

Figure 112017085110467-pat00006
Figure 112017085110467-pat00006

(상기 식에서, R1은 수소 또는 히드록시기 중 어느 하나이며,(Wherein R < 1 > is either hydrogen or a hydroxy group,

R2는 C1 내지 C9 페닐알킬, 메톡시펜에틸, 히드록시펜에틸 또는 디히드록시펜에틸 중 어느 하나이다.).R 2 is C 1 to C 9 phenylalkyl, methoxyphenethyl, hydroxyphenethyl or dihydroxyphenethyl).

본 발명의 바람직한 일실시예에서, 상기 CAPE 또는 이의 유도체는 하기 [화학식 4] 내지 [화학식 24] 중 어느 하나의 구조로 이루어진 화합물일 수 있다:In a preferred embodiment of the present invention, the CAPE or a derivative thereof may be a compound having any one of the following formulas (4) to (24)

[화학식 4][Chemical Formula 4]

Figure 112017085110467-pat00007
,
Figure 112017085110467-pat00007
,

[화학식 5][Chemical Formula 5]

Figure 112017085110467-pat00008
,
Figure 112017085110467-pat00008
,

[화학식 6][Chemical Formula 6]

Figure 112017085110467-pat00009
,
Figure 112017085110467-pat00009
,

[화학식 7](7)

Figure 112017085110467-pat00010
,
Figure 112017085110467-pat00010
,

[화학식 8][Chemical Formula 8]

Figure 112017085110467-pat00011
,
Figure 112017085110467-pat00011
,

[화학식 9][Chemical Formula 9]

Figure 112017085110467-pat00012
,
Figure 112017085110467-pat00012
,

[화학식 10][Chemical formula 10]

Figure 112017085110467-pat00013
,
Figure 112017085110467-pat00013
,

[화학식 11](11)

Figure 112017085110467-pat00014
,
Figure 112017085110467-pat00014
,

[화학식 12][Chemical Formula 12]

Figure 112017085110467-pat00015
,
Figure 112017085110467-pat00015
,

[화학식 13][Chemical Formula 13]

Figure 112017085110467-pat00016
,
Figure 112017085110467-pat00016
,

[화학식 14][Chemical Formula 14]

Figure 112017085110467-pat00017
,
Figure 112017085110467-pat00017
,

[화학식 15][Chemical Formula 15]

Figure 112017085110467-pat00018
,
Figure 112017085110467-pat00018
,

[화학식 16][Chemical Formula 16]

Figure 112017085110467-pat00019
,
Figure 112017085110467-pat00019
,

[화학식 17][Chemical Formula 17]

Figure 112017085110467-pat00020
,
Figure 112017085110467-pat00020
,

[화학식 18][Chemical Formula 18]

Figure 112017085110467-pat00021
,
Figure 112017085110467-pat00021
,

[화학식 19][Chemical Formula 19]

Figure 112017085110467-pat00022
,
Figure 112017085110467-pat00022
,

[화학식 20][Chemical Formula 20]

Figure 112017085110467-pat00023
,
Figure 112017085110467-pat00023
,

[화학식 21][Chemical Formula 21]

Figure 112017085110467-pat00024
,
Figure 112017085110467-pat00024
,

[화학식 22][Chemical Formula 22]

Figure 112017085110467-pat00025
,
Figure 112017085110467-pat00025
,

[화학식 23](23)

Figure 112017085110467-pat00026
, 및
Figure 112017085110467-pat00026
, And

[화학식 24]≪ EMI ID =

Figure 112017085110467-pat00027
.
Figure 112017085110467-pat00027
.

본 발명의 구체적인 일실시예에서, 본 발명자들은 벼 유전체로부터 p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT) 유전자를 분리하여, 이를 과발현하는 형질전환체 대장균을 제조하였다. 상기 제조한 형질전환체 대장균을 이용하여, 카페익산 또는 쿠마르산 기질, 및 페닐알코올 기질을 합성하여 CAPE 또는 이의 유도체가 생산되는 것을 확인하였다.In an specific embodiment of the invention, the present inventors from rice genome p - one Co-A in Kumar: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; PMT) to remove the gene, to overexpress this E. coli transformants were prepared. Using the transformant E. coli thus prepared, caffeic acid or a coumaric acid substrate and a phenyl alcohol substrate were synthesized to confirm that CAPE or a derivative thereof was produced.

따라서, 본 발명의 p-쿠마로일 Co-A:모노리그놀 전이효소(p-Coumaroyl Co-A:monolignol transferase; PMT)의 용도를 제공한다. 본 발명의 PMT를 과발현하는 재조합 대장균을 이용하면, 히드록시신남산(hydroxycinnamic acid) 기질 및 페닐알코올을 합성하여 CAPE 및 이의 유도체를 합성할 수 있다.Accordingly, the present invention p-one Co-A in Kumar: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; PMT) provides the use of a. When the recombinant Escherichia coli overexpressing the PMT of the present invention is used, CAPE and derivatives thereof can be synthesized by synthesizing hydroxycinnamic acid substrate and phenyl alcohol.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

pp -쿠마로일 Co-A:모노리그놀 전이효소(- Coomarocyl Co-A: Monolig knock-in transgene ( pp -Coumaroyl Co-A:monolignol transferase; PMT) 과발현 대장균 제조-Coumaroyl Co-A: monolignol transferase; PMT) overexpression of E. coli

본 발명의 전세포 반응(whole-cell biocatalysis)의 촉매로 사용하기 위해, p-쿠마로일 Co-A:모노리그놀 전이효소(PMT)를 과발현하는 형질전환 대장균을 제조하였다.For use as a catalyst for the whole-cell biocatalysis of the present invention, a transformed E. coli overexpressing p -coumaroyl Co-A: monoligolnt transferase (PMT) was prepared.

구체적으로, 벼 유전체의 게놈으로부터, PMT 유전자(서열목록 1)를 분리하였다. 분리한 유전자 서열 양 말단은 SmaI 제한효소로 절단하고, pBluescript(Stratagene) 벡터의 SmaI 위치로 삽입하였다. 삽입된 pBluescript 벡터는 다시 EcoRI 및 Xho I(New England BioLab)로 절단하고, 대장균 발현 벡터로 사용하는 pGEX 벡터의 EcoRI 및 Xho I 위치로 옮겨, PMT 발현용 벡터를 준비하였다. 준비한 발현용 벡터는 E.coli DH-5α 균주(Invitrogen)에 형질전환시켰다. 형질전환된 대장균을 엠피실린이 첨가된 LB 배지에서 선발하였으며, 선발된 대장균으로부터 플라스미드를 분리하여, PMT 유전자가 포함된 것을 확인하고 최종 형질전환체로 선택하였다.Specifically, the PMT gene (Sequence Listing 1) was isolated from the rice genome genome. Both ends of the separated gene sequence were digested with SmaI restriction enzyme and inserted into the SmaI site of the pBluescript (Stratagene) vector. The inserted pBluescript vector was further digested with EcoRI and Xho I (New England BioLab) and transferred to EcoRI and Xho I sites of a pGEX vector used as an E. coli expression vector to prepare a vector for expression of PMT. The prepared expression vector was transformed into E. coli DH-5? Strain (Invitrogen). The transformed Escherichia coli was selected on LB medium supplemented with ampicillin. Plasmid was isolated from the selected Escherichia coli, and PMT gene was confirmed to be contained therein and selected as a final transformant.

최종 선택된 형질전환체 대장균은 2 ㎖ LB 배지에 접종하고 37℃에서 밤새도록 200 rpm으로 진탕하면서 종균 배양(seed culture)하였다. 다음날 아침에, 새로온 LB 배지 50㎖에 상기 종균 배양한 배양액 500 ㎕를 접종하여 37℃에서 200 rpm으로 진탕하면서 본배양(main culture)하였다. 본배양한 배지가 OD600의 흡광도가 0.6 내지 0.8을 나타내는 정도의 균밀도가 되면, 단백질 유도물질인 IPTG(최종 농도 0.1 mM)을 배양액에 첨가하였다. 그런 다음, 30℃에서 200 rpm으로 진탕하면서 4 시간 동안 형질전환체 대장균을 배양하여, PMT 단백질의 과발현을 유도하였다.The final selected transformant E. coli was seeded in 2 ml of LB medium and shaken at 37 ° C overnight at 200 rpm. On the next morning, 500 μl of the cultured medium was inoculated in 50 ml of fresh LB medium, and main culture was performed while shaking at 37 ° C at 200 rpm. When the cultured medium reached a bacterial density at an OD 600 of 0.6 to 0.8, a protein inducer, IPTG (final concentration: 0.1 mM), was added to the culture. Then, the transformant Escherichia coli was cultured for 4 hours while shaking at 30 DEG C at 200 rpm to induce overexpression of the PMT protein.

PMT 과발현 대장균을 이용한 카페인산 페닐 에스터(Caffeic acid phenethyl ester; CAPE)의 합성 반응Synthesis of Caffeic acid phenethyl ester (CAPE) using PMT overexpressing E. coli

형질전환체 대장균을 이용하여, 카페인산(caffeic acid) 및 2-페닐에탄올(2-phenyl ethanol)을 기질로 하는 카페인산 페닐 에스터(CAPE) 합성 반응을 수행하였다(도 1).The synthesis of caffeic acid phenyl ester (CAPE) using caffeic acid and 2-phenyl ethanol as substrates was carried out using E. coli transformants (Fig. 1).

구체적으로, 상기 [실시예1]에서 제조한 PMT 과발현 형질전환체 대장균을 배양한 배양액을 수득하였다. 그런 다음, 배양액을 15,000 rpm 에서 10 분간 원심분리하여 형질전환체 대장균을 회수하였다. 회수한 대장균은 다시 10% DMSO를 포함하는 M9 배지 10 ㎖에 대장균 농도가 OD600에서 1.5가 되도록 현탁하여 반응 배지를 준비하였다. 그런 다음, 10 ㎎/㎖ 카페익산 수용액 및 10 ㎎/㎖ 2-페닐에탄올을 포함하는 에탄올을 저장 용액(stock solution)을 사용하여, 상기 준비한 반응 배지에 카페익산 수용액 및 2-페닐에탄올의 최종 농도가 각각 200 μM 및 400 μM이 되도록 기질을 가한 다음, 30℃에서 200 rpm으로 67 시간 동안 진탕하여 CAPE 합성 반응을 진행하였다. 2-페닐에탄올은 휘발성이 있어 반응시 손실되는 양이 있어, 반응 개시 24 시간 및 53 시간 후에 400 μM의 2-페닐에탄올을 추가로 첨가하여(반응 개시 53 시간 시점에서의 2-페닐에탄올 총량은 1,200 μM) 반응을 수행하였다. 반응 종료 후, 반응 배지를 수득하여 에틸아세테이트(ethylacetate)로 2 회 추출한 후, 추출액을 진공 건조시켜 수득한 시료를 DMSO로 녹여 proton NMR 분석하여 구조를 확인하였으며, HPLC-MS 분석하여 정량하였다. 정량을 위한 CAPE 표준시료는 CAPE를 에탄올에 녹여 사용하였고, 이를 HPLC로 분석하여 정량곡선을 기준으로 하여 생산된 CAPE를 정량화하였다.Concretely, a culture solution in which the PMT-overexpressing transformant Escherichia coli prepared in [Example 1] was cultured was obtained. Then, the culture was centrifuged at 15,000 rpm for 10 minutes to recover the transformed E. coli. The recovered E. coli is an E. coli concentration in 10 ㎖ M9 medium containing 10% DMSO were prepared again the reaction medium and suspended to a 1.5 OD 600. Then, ethanol containing 10 mg / ml caffeic acid aqueous solution and 10 mg / ml 2-phenylethanol was added to the reaction medium prepared above using a stock solution, and the final concentration of aqueous solution of caffexic acid and 2-phenylethanol Were added to the reaction mixture to give 200 μM and 400 μM, respectively, followed by shaking at 30 ° C. and 200 rpm for 67 hours to carry out the CAPE synthesis reaction. 2-phenylethanol was volatile and lost in the reaction. After 24 hours and 53 hours from the start of the reaction, 400 μM of 2-phenylethanol was further added (the total amount of 2-phenylethanol at the start of the reaction was 1,200 [mu] M). After completion of the reaction, a reaction medium was obtained and extracted twice with ethylacetate. The extract was vacuum-dried, and the obtained sample was dissolved in DMSO to proton NMR analysis to confirm its structure and quantitated by HPLC-MS analysis. CAPE standard samples for quantification were prepared by dissolving CAPE in ethanol and analyzed by HPLC to quantify the CAPE produced based on the quantitative curve.

그 결과, 도 2에서 나타난 바와 같이 PMT 과발현 대장균을 이용하여, 카페익산 및 2-페닐에탄올 기질로부터 CAPE가 합성되는 것을 구조 분석하여 확인하였으며 해당 NMR 분석 결과는 다음과 같다(도 2a): 1H NMR (400 MHz, acetone) δ(ppm): 2.99 (2H, t, J=7.0Hz), 4.35 (2H, t, J=7.0Hz), 6.26 (1H, d, J=16.0Hz), 6.86 (1H, d, J=8.2Hz), 7.02 (1H, dd, J=8.2, 2.0Hz), 7.14 (1H, d, J=2.0Hz), 7.22 (1H, m), 7.31 (4H, m), 7.52 (1H, d, J=16.0HZ). 정량분석 결과, 반응 종료 후 110.9 μM의 CAPE가 합성된 것을 확인하였다(도 2b). 이때 첨가한 카페인산의 잔량을 확인하였을 때 약 55.5%의 카페인산이 CAPE로 전환되는 것으로 확인하였다.As a result, the over-expression of E. coli using the PMT, as shown in Figure 2, Cafe acid and 2-phenylimidazole was by structural analysis that CAPE is synthesized from ethanol to make the temperament NMR analysis results were as follows (Fig. 2a): 1 H (2H, t, J = 7.0 Hz), 6.26 (1H, d, J = 16.0 Hz), 6.86 (2H, (1H, d, J = 8.2 Hz), 7.02 (1H, dd, J = 8.2, 2.0 Hz), 7.14 7.52 (1H, d, J = 16.0 Hz). As a result of the quantitative analysis, it was confirmed that 110.9 μM of CAPE was synthesized after completion of the reaction (FIG. 2B). When the remaining amount of caffeic acid added was confirmed, it was confirmed that about 55.5% of caffeic acid was converted into CAPE.

PMT 과발현 대장균을 이용한 CAPE 유도체의 합성 반응Synthesis of CAPE derivatives using PMT overexpressing E. coli

PMT 과발현 대장균을 이용하여 카페인산 페닐 에스터(CAPE) 합성 반응을 유도할 수 있음을 확인하여, 기질을 변경하여 CAPE의 유도체 합성 반응을 유도하였다.It was confirmed that the synthesis of caffeic acid phenyl ester (CAPE) could be induced by using PMT overexpressing E. coli, and the synthesis reaction of the CAPE derivative was induced by changing the substrate.

<3-1> 카페익산을 기질로 한 CAPE 유도체 합성 반응<3-1> Synthesis of CAPE derivatives using caffeic acid as substrate

구체적으로, 상기 [실시예 1]에서 제조한 PMT 과발현 형질전환체 대장균을 배양한 배양액을 수득하고, 카페익산 수용액 및 하기 [표 1]에 기재된 기질을 사용하여 상기 [실시예 2]에서 수행한 바와 같이 CAPE 유도체를 합성하였다.Specifically, a culture solution in which the PMT-overexpressing transformant Escherichia coli prepared in [Example 1] was cultured was obtained and cultured in the same manner as in Example 2 using the aqueous solution of caffeic acid and the substrate described in the following [Table 1] CAPE derivatives were synthesized as described above.

CAPE 및 이의 유도체를 합성하기 위한 기질 및 합성된 CAPE 및 이의 유도체 목록Substrates for synthesis of CAPE and its derivatives and synthesized CAPE and its derivatives 번호number 기질temperament 산물(CAPE 유도체)Product (CAPE derivative) 1One

Figure 112017085110467-pat00028

2-페닐에탄올(2-phenylethanol)
Figure 112017085110467-pat00028

2-phenylethanol &lt; / RTI &gt;
Figure 112017085110467-pat00029

Figure 112017085110467-pat00029

22
Figure 112017085110467-pat00030

티로솔(tyrosol)
Figure 112017085110467-pat00030

Tyrosol
Figure 112017085110467-pat00031

Figure 112017085110467-pat00031

33
Figure 112017085110467-pat00032

벤질알코올(benzyl alcohol)
Figure 112017085110467-pat00032

Benzyl alcohol
Figure 112017085110467-pat00033

Figure 112017085110467-pat00033

44
Figure 112017085110467-pat00034

3-페닐-1-프로판올(3-phenyl-1-propanol)
Figure 112017085110467-pat00034

3-phenyl-1-propanol (3-phenyl-1-propanol)
Figure 112017085110467-pat00035

Figure 112017085110467-pat00035

55
Figure 112017085110467-pat00036

4-페닐-1-부탄올(4-phenyl-1-butanol)
Figure 112017085110467-pat00036

4-phenyl-1-butanol &lt; / RTI &gt;
Figure 112017085110467-pat00037

Figure 112017085110467-pat00037

66
Figure 112017085110467-pat00038

5-페닐-1-펜탄올(5-phenyl-1-pentanol)
Figure 112017085110467-pat00038

5-phenyl-1-pentanol &lt; / RTI &gt;
Figure 112017085110467-pat00039

Figure 112017085110467-pat00039

77
Figure 112017085110467-pat00040

7-페닐-1-헵탄올(7-phenyl-1-heptanol)
Figure 112017085110467-pat00040

7-phenyl-1-heptanol &lt; / RTI &gt;
Figure 112017085110467-pat00041

Figure 112017085110467-pat00041

88
Figure 112017085110467-pat00042

8-페닐-1-옥탄올(8-phenyl-1-octanol)
Figure 112017085110467-pat00042

8-phenyl-1-octanol &lt; / RTI &gt;
Figure 112017085110467-pat00043

Figure 112017085110467-pat00043

99
Figure 112017085110467-pat00044

9-페닐-1-노난올(9-phenyl-1-nonanol)
Figure 112017085110467-pat00044

9-phenyl-1-nonanol (9-phenyl-
Figure 112017085110467-pat00045

Figure 112017085110467-pat00045

1010
Figure 112017085110467-pat00046

2-(3-히드록시페닐) 알코올
(2-3-(hydroxyphenyl alchol)
Figure 112017085110467-pat00046

2- (3-hydroxyphenyl) alcohol
(2-3- (hydroxyphenyl alchol)
Figure 112017085110467-pat00047

Figure 112017085110467-pat00047

1111
Figure 112017085110467-pat00048

2-메탄옥시펜틸 알코올
(2-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00048

2-methanoxypentyl alcohol
(2-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00049
Figure 112017085110467-pat00049
1212
Figure 112017085110467-pat00050

3-메탄옥시펜틸 알코올
(3-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00050

3-methanoxypentyl alcohol
(3-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00051

Figure 112017085110467-pat00051

1313
Figure 112017085110467-pat00052

4-메탄옥시펜틸 알코올
(4-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00052

4-methanoxypentyl alcohol
(4-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00053

Figure 112017085110467-pat00053

그 결과, 도 3 내지 도 8에서 나타난 바와 같이, 카페익산과 함께 반응하는 알코올 기질이 변함에 따라 다양한 CAPE 유도체를 합성할 수 있음을 확인하였다(도 9). 이에 비해, 히드록시 티로솔(hydroxy tyrosol) 또는 2-히드록시펜에틸 알코올(2-hydroxyphenethyl alcohol)을 기질로 하여 카페익산과의 합성 반응을 유도하여보았으나, 합성 반응이 유의적으로 나타나지 않아 HPLC-MS 분석을 통해 검출되지 않는 것으로 확인하였다.As a result, as shown in FIG. 3 to FIG. 8, it was confirmed that various CAPE derivatives could be synthesized as the alcohol substrate reacted with caffeic acid was changed (FIG. 9). On the other hand, synthesis reaction with caffeic acid was induced by using hydroxy tyrosol or 2-hydroxyphenethyl alcohol as a substrate, but the synthesis reaction was not significant, -MS analysis. &Lt; / RTI &gt;

<3-2> 쿠마르산(coumaric acid)을 기질로 한 CAPE 유도체 합성 반응<3-2> Synthesis of CAPE derivatives using coumaric acid as a substrate

카페익산은 벤젠 고리에 2 개의 히드록시기를 가지며, 쿠마르산은 1 개의 히드록시기를 가져 구조가 유사하다. 이에, 본 발명자들은 카페익산을 기질로 하여 CAPE 및 이의 유도체를 합성하는 반응에서, 기질을 쿠마르산으로 변경하여도 CAPE 유도체를 합성할 수 있는지 확인하고자 반응을 수행하였다.Caffeic acid has two hydroxyl groups in the benzene ring, and the coumaric acid has one hydroxyl group and is similar in structure. Thus, the present inventors conducted a reaction to determine whether CAPE derivatives could be synthesized even when the substrate was changed to a coumaric acid in the reaction of synthesizing CAPE and its derivatives using caffeic acid as a substrate.

구체적으로, 상기 [실시예 1]에서 제조한 PMT 과발현 형질전환체 대장균을 배양한 배양액을 수득하고, 상기 [실시예 2]에서 수행한 바와 같이 대장균을 현탁하여 반응 배지를 준비한 다음, 쿠마르산 수용액 및 하기 [표 2]에 기재된 기질의 최종 농도가 각각 300 μM이 되도록 가한 다음, 30℃에서 200 rpm으로 69 시간 동안 진탕하여 CAPE 유도체 합성 반응을 진행하였다. 반응 개시 24 시간 후에 하기 [표 2]에 기재된 기질을 각각 배지에 500 μM을 추가로 첨가하여 반응을 수행하였다. 반응 종료 후, 상기 [실시예 2]와 동일한 방법을 수행하여 HPLC-MS 분석으로 정량하였다.Specifically, a culture solution in which the PMT-overexpressing transformant Escherichia coli prepared in [Example 1] was cultured was obtained, and Escherichia coli was suspended as described in Example 2 to prepare a reaction medium. Then, an aqueous solution of cumaric acid And the final concentrations of the substrates described in [Table 2] were adjusted to 300 μM, respectively, and shaken at 30 ° C. and 200 rpm for 69 hours to carry out the CAPE derivative synthesis reaction. 24 hours after the initiation of the reaction, 500 [mu] M was further added to each of the substrates described in [Table 2] below to carry out the reaction. After completion of the reaction, the same procedure as in [Example 2] was carried out and quantified by HPLC-MS analysis.

CAPE의 유도체를 합성하기 위해 쿠마르산과 함께 사용한 기질 및 CAPE의 유도체 목록A list of substrates and CAPE derivatives used with coumaric acid to synthesize derivatives of CAPE 번호number 기질temperament 산물(CAPE 유도체)Product (CAPE derivative) 1One

Figure 112017085110467-pat00054

2-페닐에탄올(2-phenylethanol)
Figure 112017085110467-pat00054

2-phenylethanol &lt; / RTI &gt;
Figure 112017085110467-pat00055

Figure 112017085110467-pat00055

22
Figure 112017085110467-pat00056

티로솔(tyrosol)
Figure 112017085110467-pat00056

Tyrosol
Figure 112017085110467-pat00057

Figure 112017085110467-pat00057

33
Figure 112017085110467-pat00058

히드록시 티로솔(hydroxy tyrosol)
Figure 112017085110467-pat00058

Hydroxy tyrosol &lt; RTI ID = 0.0 &gt;
Figure 112017085110467-pat00059

Figure 112017085110467-pat00059

44
Figure 112017085110467-pat00060

2-히드록시펜에틸 알코올(2-hydroxyphenethyl alcohol)
Figure 112017085110467-pat00060

2-hydroxyphenethyl alcohol &lt; RTI ID = 0.0 &gt;
Figure 112017085110467-pat00061

Figure 112017085110467-pat00061

55
Figure 112017085110467-pat00062

2-(3-히드록시페닐) 알코올(2-3-(hydroxyphenyl alchol)
Figure 112017085110467-pat00062

2- (3-hydroxyphenyl) alcohol (2-3- (hydroxyphenyl alchol)
Figure 112017085110467-pat00063

Figure 112017085110467-pat00063

66
Figure 112017085110467-pat00064

2-메탄옥시펜틸 알코올(2-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00064

2-methanoxyphenthyl alcohol
Figure 112017085110467-pat00065

Figure 112017085110467-pat00065

77
Figure 112017085110467-pat00066

3-메탄옥시펜틸 알코올(3-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00066

3-methanoxyphenthyl alcohol
Figure 112017085110467-pat00067

Figure 112017085110467-pat00067

88
Figure 112017085110467-pat00068

4-메탄옥시펜틸 알코올(4-methanoxyphenthyl alcohol)
Figure 112017085110467-pat00068

4-methanoxyphenthyl alcohol
Figure 112017085110467-pat00069

Figure 112017085110467-pat00069

그 결과, 도 9 내지 도 16에서 나타난 바와 같이, 쿠마르산과 함께 반응하는 알코올 기질이 변함에 따라 다양한 CAPE 유도체를 합성할 수 있음을 확인하였다. 특히, 쿠마르산을 티로솔과 함께 반응하였을 때, 사용했던 기질 중 약 98.2% 가 산물인 p-쿠마로일 티로솔(p-coumaroyl tyrosol)로 전환되어, 최종적으로 758.7 μM의 p-쿠마로일 티로솔이 합성되는 것을 확인하였다.As a result, as shown in FIG. 9 to FIG. 16, it was confirmed that various CAPE derivatives could be synthesized by changing the alcohol substrate reacting with the coumaric acid. In particular, the Kumar acid, about 98.2% of the p-substrate was used the product when reacted with a tee sol-tyrosine is converted into Kumano In one brush (p -coumaroyl tyrosol), and finally of 758.7 μM p-one to Kumar It was confirmed that thyrosol was synthesized.

<110> KONKUK UNIVERSITY INDUSTRIAL COOPERATION CORP <120> Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase <130> 1062693 <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 1320 <212> DNA <213> Homo sapiens <400> 1 atggggttcg cggtggtgag gacgaaccgg gagttcgtgc ggccgagcgc ggcgacgccg 60 ccgtcgtccg gcgagctgct ggagctgtcc atcatcgacc gcgtggtggg gctccgccac 120 ctggtgcggt cgctgcacat cttctccgcc gccgccccga gcggcggcga cgccaagccg 180 tcgccggcgc gggtgatcaa ggaggcgctg gggaaggcgc tggtggacta ctacccgttc 240 gcggggaggt tcgtggacgg cggcggcggg ccggggagcg cccgcgtgga gtgcaccggc 300 gagggcgcct ggttcgtgga ggccgccgcc ggctgcagcc tcgacgacgt gaacggcctc 360 gaccacccgc tcatgatccc cgaggacgac ctcctccccg acgccgcccc cggtgtccac 420 cccctcgacc tccccctcat gatgcaggtg acggagttca gttgcggagg gttcgtggtg 480 ggcctgatct cggtgcacac gatggcggac gggctagggg ccgggcagtt catcaacgcg 540 gtgggcgact acgcccgcgg gctggacagg ccgagggtga gcccggtctg ggcccgcgag 600 gccatcccga gcccgccgaa gctgcccccg ggcccgccgc cggagctgaa gatgttccag 660 ctccgccacg tcaccgccga cctgagcctg gacagcatca acaaggccaa gtccgcctac 720 ttcgccgcca ccggccaccg ctgctccacc ttcgacgtcg ccatcgccaa gacgtggcag 780 gcgcgcaccc gcgcgctccg cctcccggaa cccacctccc gcgtcaacct ctgcttcttc 840 gccaacaccc gccacctcat ggccggcgcc gccgcctggc ccgcacccgc cgccggcggc 900 aatggcggca atgggttcta cggcaactgc ttctacccgg tgtcggtggt ggcggagagc 960 ggggcggtgg aggcggcgga cgtggccggg gtggtgggga tgatacggga ggcgaaggcg 1020 aggctgccgg cggacttcgc gcggtgggcg gtggccgact tcagggagga tccgtacgag 1080 ctgagcttca cgtacgattc cctgttcgtc tccgactgga cgcggctggg gttcctggag 1140 gcggactacg ggtgggggcc gccgtcgcac gtcataccct tcgcgtacta cccgttcatg 1200 gccgtcgcca tcatcggcgc gccgccggtg cccaagaccg gcgcccggat catgacgcag 1260 tgcgtcgagg acgaccacct gccggcgttc aaggaggaga tcaaggcctt cgacaagtaa 1320 1320 <210> 2 <211> 439 <212> PRT <213> Homo sapiens <400> 2 Met Gly Phe Ala Val Val Arg Thr Asn Arg Glu Phe Val Arg Pro Ser 1 5 10 15 Ala Ala Thr Pro Pro Ser Ser Gly Glu Leu Leu Glu Leu Ser Ile Ile 20 25 30 Asp Arg Val Val Gly Leu Arg His Leu Val Arg Ser Leu His Ile Phe 35 40 45 Ser Ala Ala Ala Pro Ser Gly Gly Asp Ala Lys Pro Ser Pro Ala Arg 50 55 60 Val Ile Lys Glu Ala Leu Gly Lys Ala Leu Val Asp Tyr Tyr Pro Phe 65 70 75 80 Ala Gly Arg Phe Val Asp Gly Gly Gly Gly Pro Gly Ser Ala Arg Val 85 90 95 Glu Cys Thr Gly Glu Gly Ala Trp Phe Val Glu Ala Ala Ala Gly Cys 100 105 110 Ser Leu Asp Asp Val Asn Gly Leu Asp His Pro Leu Met Ile Pro Glu 115 120 125 Asp Asp Leu Leu Pro Asp Ala Ala Pro Gly Val His Pro Leu Asp Leu 130 135 140 Pro Leu Met Met Gln Val Thr Glu Phe Ser Cys Gly Gly Phe Val Val 145 150 155 160 Gly Leu Ile Ser Val His Thr Met Ala Asp Gly Leu Gly Ala Gly Gln 165 170 175 Phe Ile Asn Ala Val Gly Asp Tyr Ala Arg Gly Leu Asp Arg Pro Arg 180 185 190 Val Ser Pro Val Trp Ala Arg Glu Ala Ile Pro Ser Pro Pro Lys Leu 195 200 205 Pro Pro Gly Pro Pro Pro Glu Leu Lys Met Phe Gln Leu Arg His Val 210 215 220 Thr Ala Asp Leu Ser Leu Asp Ser Ile Asn Lys Ala Lys Ser Ala Tyr 225 230 235 240 Phe Ala Ala Thr Gly His Arg Cys Ser Thr Phe Asp Val Ala Ile Ala 245 250 255 Lys Thr Trp Gln Ala Arg Thr Arg Ala Leu Arg Leu Pro Glu Pro Thr 260 265 270 Ser Arg Val Asn Leu Cys Phe Phe Ala Asn Thr Arg His Leu Met Ala 275 280 285 Gly Ala Ala Ala Trp Pro Ala Pro Ala Ala Gly Gly Asn Gly Gly Asn 290 295 300 Gly Phe Tyr Gly Asn Cys Phe Tyr Pro Val Ser Val Val Ala Glu Ser 305 310 315 320 Gly Ala Val Glu Ala Ala Asp Val Ala Gly Val Val Gly Met Ile Arg 325 330 335 Glu Ala Lys Ala Arg Leu Pro Ala Asp Phe Ala Arg Trp Ala Val Ala 340 345 350 Asp Phe Arg Glu Asp Pro Tyr Glu Leu Ser Phe Thr Tyr Asp Ser Leu 355 360 365 Phe Val Ser Asp Trp Thr Arg Leu Gly Phe Leu Glu Ala Asp Tyr Gly 370 375 380 Trp Gly Pro Pro Ser His Val Ile Pro Phe Ala Tyr Tyr Pro Phe Met 385 390 395 400 Ala Val Ala Ile Ile Gly Ala Pro Pro Val Pro Lys Thr Gly Ala Arg 405 410 415 Ile Met Thr Gln Cys Val Glu Asp Asp His Leu Pro Ala Phe Lys Glu 420 425 430 Glu Ile Lys Ala Phe Asp Lys 435 <110> KONKUK UNIVERSITY INDUSTRIAL COOPERATION CORP <120> Method for producing caffeic acid phenyl ester or derivatives          its using p-Coumaroyl Co-A: monolignol transferase <130> 1062693 <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 1320 <212> DNA <213> Homo sapiens <400> 1 atggggttcg cggtggtgag gacgaaccgg gagttcgtgc ggccgagcgc ggcgacgccg 60 ccgtcgtccg gcgagctgct ggagctgtcc atcatcgacc gcgtggtggg gctccgccac 120 ctggtgcggt cgctgcacat cttctccgcc gccgccccga gcggcggcga cgccaagccg 180 tcgccggcgc gggtgatcaa ggaggcgctg gggaaggcgc tggtggacta ctacccgttc 240 gcggggaggt tcgtggacgg cggcggcggg ccggggagcg cccgcgtgga gtgcaccggc 300 gagggcgcct ggttcgtgga ggccgccgcc ggctgcagcc tcgacgacgt gaacggcctc 360 gaccacccgc tcatgatccc cgaggacgac ctcctccccg acgccgcccc cggtgtccac 420 cccctcgacc tccccctcat gatgcaggtg acggagttca gttgcggagg gttcgtggtg 480 ggcctgatct cggtgcacac gatggcggac gggctagggg ccgggcagtt catcaacgcg 540 gtgggcgact acgcccgcgg gctggacagg ccgagggtga gcccggtctg ggcccgcgag 600 gccatcccga gcccgccgaa gctgcccccg ggcccgccgc cggagctgaa gatgttccag 660 ctccgccacg tcaccgccga cctgagcctg gacagcatca acaaggccaa gtccgcctac 720 ttcgccgcca ccggccaccg ctgctccacc ttcgacgtcg ccatcgccaa gacgtggcag 780 gcgcgcaccc gcgcgctccg cctcccggaa cccacctccc gcgtcaacct ctgcttcttc 840 gccaacaccc gccacctcat ggccggcgcc gccgcctggc ccgcacccgc cgccggcggc 900 ggcggagagc 960 ggggcggtgg aggcggcgga cgtggccggg gtggtgggga tgatacggga ggcgaaggcg 1020 aggctgccgg cggacttcgc gcggtgggcg gtggccgact tcagggagga tccgtacgag 1080 ctgagcttca cgtacgattc cctgttcgtc tccgactgga cgcggctggg gttcctggag 1140 gcggactacg ggtgggggcc gccgtcgcac gtcataccct tcgcgtacta cccgttcatg 1200 gccgtcgcca tcatcggcgc gccgccggtg cccaagaccg gcgcccggat catgacgcag 1260 tgcgtcgagg acgaccacct gccggcgttc aaggaggaga tcaaggcctt cgacaagtaa 1320                                                                         1320 <210> 2 <211> 439 <212> PRT <213> Homo sapiens <400> 2 Met Gly Phe Ala Val Val Arg Thr Asn Arg Glu Phe Val Arg Pro Ser   1 5 10 15 Ala Ala Thr Pro Ser Ser Gly Glu Leu Glu Leu Ser Ile Ile              20 25 30 Asp Arg Val Val Gly Leu Arg His Leu Val Arg Ser Leu His Ile Phe          35 40 45 Ser Ala Ala Pro Ser Gly Gly Asp Ala Lys Pro Ser Pro Ala Arg      50 55 60 Val Ile Lys Glu Ala Leu Gly Lys Ala Leu Val Asp Tyr Tyr Pro Phe  65 70 75 80 Ala Gly Arg Phe Val Asp Gly Gly Gly Gly Pro Gly Ser Ala Arg Val                  85 90 95 Glu Cys Thr Gly Glu Gly Ala Trp Phe Val Glu Ala Ala Ala Gly Cys             100 105 110 Ser Leu Asp Asp Val Asn Gly Leu Asp His Pro Leu Met Ile Pro Glu         115 120 125 Asp Asp Leu Leu Pro Asp Ala Ala Pro Gly Val His Pro Leu Asp Leu     130 135 140 Pro Leu Met Met Gln Val Thr Glu Phe Ser Cys Gly Gly Phe Val Val 145 150 155 160 Gly Leu Ile Ser Val His Thr Met Ala Asp Gly Leu Gly Ala Gly Gln                 165 170 175 Phe Ile Asn Ala Val Gly Asp Tyr Ala Arg Gly Leu Asp Arg Pro Arg             180 185 190 Val Ser Pro Val Trp Ala Arg Glu Ala Ile Pro Ser Pro Pro Lys Leu         195 200 205 Pro Pro Gly Pro Pro Pro Glu Leu Lys Met Phe Gln Leu Arg His Val     210 215 220 Thr Ale Asp Leu Ser Leu Asp Ser Ile Asn Lys Ala Lys Ser Ala Tyr 225 230 235 240 Phe Ala Ala Thr Gly His Arg Cys Ser Thr Phe Asp Val Ala Ile Ala                 245 250 255 Lys Thr Trp Gln Ala Arg Thr Arg Ala Leu Arg Leu Pro Glu Pro Thr             260 265 270 Ser Arg Val Asn Leu Cys Phe Phe Ala Asn Thr Arg His Leu Met Ala         275 280 285 Gly Ala Ala Ala Trp Pro Ala Pro Ala Ala Gly Gly Asn Gly Gly Asn     290 295 300 Gly Phe Tyr Gly Asn Cys Phe Tyr Pro Val Ser Val Val Ala Glu Ser 305 310 315 320 Gly Ala Val Glu Ala Ala Asp Val Ala Gly Val Val Gly Met Ile Arg                 325 330 335 Glu Ala Lys Ala Arg Leu Pro Ala Asp Phe Ala Arg Trp Ala Val Ala             340 345 350 Asp Phe Arg Glu Asp Pro Tyr Glu Leu Ser Phe Thr Tyr Asp Ser Leu         355 360 365 Phe Val Ser Asp Trp Thr Arg Leu Gly Phe Leu Glu Ala Asp Tyr Gly     370 375 380 Trp Gly Pro Pro Ser Ser Val Valle Pro Phe Ala Tyr Tyr Pro Phe Met 385 390 395 400 Ala Val Ala Ile Ile Gly Ala Pro Pro Val I Lys Thr Gly Ala Arg                 405 410 415 Ile Met Thr Gln Cys Val Glu Asp Asp His Leu Pro Ala Phe Lys Glu             420 425 430 Glu Ile Lys Ala Phe Asp Lys         435

Claims (7)

(a) 서열번호 2의 아미노산 서열로 이루어지는, 벼 유래의 p-쿠마로일 Co-A:모노리그놀 전이효소 (p-Coumaroyl Co-A:monolignol transferase; PMT)를 발현하는 재조합 미생물을 제조하는 단계;
(b) 상기 단계 (a)에서 제조한 재조합 미생물을 배양하고 수득하는 단계;
(c) 상기 단계 (b) 에서 수득한 재조합 미생물을,
i) 하기 [화학식 2]의 구조를 가지는 쿠마르산(coumaric acid);
[화학식 2]
Figure 112018104522849-pat00111

ii) 티로솔(tyrosol);을 포함하는 반응액에 현탁하고 반응하는 단계; 및
(d) 상기 단계 (c)에서 반응한 반응액으로부터 하기 [화학식 18]의 구조로 이루어진 p-쿠마로일 티로솔(p-coumaroyl tyrosol)를 수득하는 단계;
를 포함하는, p-쿠마로일 티로솔(p-coumaroyl tyrosol) 제조 방법:
[화학식 18]
Figure 112018104522849-pat00112
.
(a), p rice origin of the amino acid sequence of SEQ ID NO: 2-1 in Kumar Co-A: mono league play transferase (p -Coumaroyl Co-A: monolignol transferase; PMT) for producing a recombinant microorganism expressing the step;
(b) culturing and obtaining the recombinant microorganism produced in the step (a);
(c) contacting the recombinant microorganism obtained in the step (b)
i) coumaric acid having the structure of the following formula (2);
(2)
Figure 112018104522849-pat00111

ii) suspending and reacting in a reaction solution containing tyrosol; And
to obtain the one tee brush (p -coumaroyl tyrosol) into Kumano - (d) p made of a structure of the following [formula 18] from the reaction solution in the reaction step (c);
, P containing -yl tee brush in Kumar (p -coumaroyl tyrosol) produced by:
[Chemical Formula 18]
Figure 112018104522849-pat00112
.
삭제delete 제 1항에 있어서, 상기 (a) 단계의 재조합 미생물은 대장균(E.coli)인 것을 특징으로 하는, p-쿠마로일 티로솔(p-coumaroyl tyrosol) 제조 방법.The method of claim 1 wherein the (a) step of the recombinant microorganism is Escherichia coli (E.coli), p, characterized in that - one way tee brush in Kumar (p -coumaroyl tyrosol) production. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020170111826A 2017-09-01 2017-09-01 Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase KR101960182B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170111826A KR101960182B1 (en) 2017-09-01 2017-09-01 Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170111826A KR101960182B1 (en) 2017-09-01 2017-09-01 Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase

Publications (2)

Publication Number Publication Date
KR20190025318A KR20190025318A (en) 2019-03-11
KR101960182B1 true KR101960182B1 (en) 2019-03-19

Family

ID=65758728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170111826A KR101960182B1 (en) 2017-09-01 2017-09-01 Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase

Country Status (1)

Country Link
KR (1) KR101960182B1 (en)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Current Opinion in Plant Biology, Vol. 9, pp. 331-340 (2006.)*
Microb. Cell Fact., Vol. 15, pp. 198(1-16) (2016.11.21.)*
Molecules, Vol. 19, pp. 16458-16476 (2014.)
NCBI GenBank Accession No. XP_015621300 (2016.03.01.)*
PNAS, Vol. 99, pp. 9166-9171 (2002.)

Also Published As

Publication number Publication date
KR20190025318A (en) 2019-03-11

Similar Documents

Publication Publication Date Title
DE102010014680A1 (en) Cells, nucleic acids, enzymes and their use, as well as methods for producing sophorolipids
US20220112526A1 (en) Biosynthesis of vanillin from isoeugenol
CN111263809B (en) Biosynthesis of eriodictyol from engineered microorganisms
US20220112525A1 (en) Biosynthesis of vanillin from isoeugenol
JP2003520580A (en) Enzymes and genes for producing vanillin
US20230227489A1 (en) Glycolipopeptide biosurfactants
KR20080073780A (en) Process for production of ceramide using transformed yeast
WO2014106189A2 (en) Methods of making vanillin via microbial fermentation utilizing ferulic acid provided by a modified caffeic acid 3-o-methyltransferase
CN114555798B (en) Biosynthesis of eriodictyol
KR101960182B1 (en) Method for producing caffeic acid phenyl ester or derivatives thereof using p-Coumaroyl Co-A:monolignol transferase
Zhang et al. Metabolic engineering of Aureobasidium melanogenum 9–1 for overproduction of liamocins by enhancing supply of acetyl-CoA and ATP
Agerbirk et al. Ancient biosyntheses in an oil crop: Glucosinolate profiles in Limnanthes alba and its relatives (Limnanthaceae, Brassicales)
KR20220088728A (en) Yeast producing polyamine analogues
KR101243263B1 (en) A novel compound, quercetin 3-O-N-Acetylglucosamine, gene for producing the compound, and method for producing the compound
US20240052380A1 (en) Biosynthesis of vanillin from isoeugenol
JP6219064B2 (en) Serine palmitoyltransferase
CN113832123A (en) Polyketide synthase Preu 3-delta CMeT and application thereof in preparation of orchidic acid
KR20160086479A (en) Novel cyclic depsipeptide-based compound, separation method thereof, and antibacterial pharmaceutical composition containing the same as an active ingredient
KR101846368B1 (en) Method for Preparing Astilbin from Taxifolin Using Microorganism Mutants
CN113801861B (en) Flavone 4&#39; -O-methyltransferase from Korean epimedium and application thereof
KR102674605B1 (en) Method for mass production of maysin using E. coli
JP2011256165A (en) Novel methylated theaflavin, and composition containing the same
JP6305735B2 (en) Method for improving ceramide productivity and method for producing ceramide
KR102009015B1 (en) Recombinant Microorganism Producing 1-Deoxynojirimycin and Method of Preparing 1-Deoxynojirimycin Using the Same
KR20230173113A (en) Methods for cyclization and decyclization of long-chain glycolipids

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant