KR101942976B1 - 광학 줌 프로브 - Google Patents
광학 줌 프로브 Download PDFInfo
- Publication number
- KR101942976B1 KR101942976B1 KR1020120109260A KR20120109260A KR101942976B1 KR 101942976 B1 KR101942976 B1 KR 101942976B1 KR 1020120109260 A KR1020120109260 A KR 1020120109260A KR 20120109260 A KR20120109260 A KR 20120109260A KR 101942976 B1 KR101942976 B1 KR 101942976B1
- Authority
- KR
- South Korea
- Prior art keywords
- fluid
- lens
- optical zoom
- liquid
- zoom probe
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00188—Optical arrangements with focusing or zooming features
- A61B1/0019—Optical arrangements with focusing or zooming features characterised by variable lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0068—Confocal scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
- G02B23/243—Objectives for endoscopes
- G02B23/2438—Zoom objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/178—Methods for obtaining spatial resolution of the property being measured
- G01N2021/1785—Three dimensional
- G01N2021/1787—Tomographic, i.e. computerised reconstruction from projective measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Astronomy & Astrophysics (AREA)
- Immunology (AREA)
- Theoretical Computer Science (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pulmonology (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Lenses (AREA)
Abstract
광학 줌 프로브가 개시된다. 개시된 광학 줌 프로브는, 광전송부에서 전송된 광이 통과하는 개구를 조절하는 개구 조절기와, 개구를 통과한 광을 포커싱하며 초점 거리를 조절하도록 곡률이 서로 독립적으로 제어되는 제1 및 제2액체 렌즈를 포함하는 초점 조절 유닛을 포함한다.
Description
광학 줌 프로브에 관한 것으로, 근접 거리 및 초근접 거리 스캔이 가능한 광학 줌 프로브에 관한 것이다.
의료 영상(Medical Imaging) 분야에서는 Tissue (인체, 피부) 표면에 대한 정보와 함께 하부의 단층을 정밀 촬영하는 기술에 대한 요구가 증가하고 있다. 특히 대부분의 암 (cancer)은 상피 세포 하부에서 발생하여 혈관이 존재하는 진피세포 내부로 전파되기 때문에 조기 발견이 가능할 경우 암에 의한 피해를 획기적으로 감소시킬 수 있다. 기존의 MRI(magnetic resonance imaging), CT(x-ray computed tomography), 초음파 등의 이미징 기술은 피부를 관통하여 내부 단층을 촬영할 수 있지만 해상도가 낮아 사이즈가 작은 조기 암의 검출은 불가능하다. 반면 최근에 소개된 OCT (optical coherence tomography) 기술은 기존 방법과 달리 광을 이용하기 때문에 피부속 침투 깊이는 약 2~3 mm로 낮지만 해상도가 초음파의 10배 정도로 높아 50~100μm 정도의 조기암의 진단에 유용할 것으로 기대된다. 그러나, 이러한 OCT 기술도 해상도가 현미경 수준보다 낮기 때문에, 실제 암의 판별에 사용되는 생검(biopsy) 및 조직학(histology)을 대체하지는 못한다.
최근에는 일부 OCT 연구자들에 의해 OCT의 단층 촬영 특성과 공초점 현미경(confocal microscope)과 같은 고해상도 표면 촬영 방법을 융합하여 생검을 실시하지 않고 티슈(Tissue) 내부의 암 진단을 실시간으로 하려는 연구가 진행 중이다. 그러나, 현미경의 대물렌즈는 수평 방향 고해상도를 위해 고(high) 개구수(NA: numerical aperture)의 광학계를 필요로 하는 반면 OCT는 깊이 정보를 획득하기 위해 깊이 방향의 스폿 크기(spot size)가 상대적으로 균일한 즉, 초점 심도(DOF: depth of focus)가 큰 저(low) 개구수의 광학계를 필요로 한다.
초근접 및 근접간 거리 구간에서 초점을 이동하면서 고해상도 스캔이 가능한 광학 줌 프로브를 제공한다.
본 발명의 실시예에 따른 광학 줌 프로브는, 광전송부에서 전송된 광이 통과하는 개구를 조절하는 개구 조절기와; 상기 개구를 통과한 광을 포커싱하며 초점 거리를 조절하도록 곡률이 서로 독립적으로 제어되는 제1 및 제2액체 렌즈를 포함하는 초점 조절 유닛;을 포함한다.
상기 초점 조절 유닛과 대상체 사이에 포지티브 파워를 가지는 렌즈;를 더 포함할 수 있다.
상기 렌즈는 비구면 렌즈일 수 있다.
상기 제1액체 렌즈와 제2액체 렌즈 사이에 투명 매질이 존재하며, 상기 제1액체 렌즈와 상기 제2액체 렌즈는 상기 투명 매질을 사이에 두고 단일체로 형성될 수 있다.
근접 스캐닝 모드시, 상기 제1 및 제2액체렌즈는 오목 렌즈면을 가지도록 구동될 수 있다.
초근접 스캐닝 모드시, 상기 제1 및 제2액체렌즈는, 적어도 하나의 액체렌즈가 볼록 렌즈면을 가지도록 구동될 수 있다.
초근접 스캐닝 모드시, 상기 제1 및 제2액체렌즈 중 대상체에 가까운 액체렌즈는, 볼록 렌즈면을 가지도록 구동될 수 있다.
상기 제1 및 제2액체 렌즈는, 각각의 돌출 변화량이 400μm 이하가 되도록 마련될 수 있다.
상기 제1 및 제2액체 렌즈 중 적어도 하나는, 곡면을 가지는 투명막을 더 포함하며, 근접 스캐닝 모드시에는 상기 투명막의 곡면이 렌즈면으로 작용하고, 초근접 스캐닝 모드시에는 이 투명막의 곡면이 렌즈면으로 작용하지 않도록 마련될 수 있다.
상기 제1 및 제2액체 렌즈 각각은, 유체 표면으로 렌즈면을 형성하고, 유체 유동을 이용하여 렌즈면의 형상을 조절하여 초점 거리를 조절하도록 마련될 수 있다.
상기 제1 및 제2액체렌즈는, 서로 반대 방향으로 유체 이동이 이루어지도록 마련될 수 있다.
상기 유체 유동은 전기 습윤 방식에 따라 일어날 수 있다.
상기 제1 및 제2액체 렌즈 중 적어도 하나는, 투광성인 제1유체; 상기 제1유체와 혼합되지 않는 성질을 가지며 투광성인 제2유체; 상기 제1유체와 제2유체를 수용하는 내부 공간을 가지는 챔버; 상기 제1유체와 제2유체의 경계면으로, 상기 렌즈면을 이루는 제1면; 상기 제1유체와 제2유체의 경계면으로, 상기 렌즈면의 곡률변화를 유도하는 제2면; 상기 챔버 내에 마련된 것으로, 상기 렌즈면에 대응하는 직경을 가지는 제1관통홀과, 상기 제2유체의 통로를 형성하는 제2관통홀이 형성된 제1중간판; 상기 제2면의 위치를 변화시키는 전기장을 형성하기 위한 전극부;를 포함할 수 있다.
상기 제1유체는 극성 액체이고, 상기 제2유체는 기체 또는 비극성 액체일 수 있다.
상기 유체 유동이 압력식으로 일어날 수 있다.
상기 개구 조절기 및 상기 초점 조절 유닛 중 적어도 하나는 커버 글라스를 포함하며, 상기 커버 글라스는 12도 이하의 기울기를 갖도록 마련될 수 있다.
상기 커버 글라스는 상기 개구 조절기에 마련될 수 있다.
상기 커버 글라스는, 상기 초점 조절 유닛의 입력단과 출력단 중 적어도 하나에 마련될 수 있다.
상기 광전송부에서 전송된 광을 콜리메이팅하여 상기 개구 조절기로 전송되도록 하는 제1렌즈유닛; 및 상기 개구 조절기와 상기 초점 조절 유닛 사이에 배치되는 제2렌즈유닛; 중 적어도 어느 하나를 더 포함할 수 있다.
상기 개구 조절기는, 미소 전기 유체 방식으로 개구 크기가 조절되는 액체 조리개일 수 있다.
상기 개구 조절기는, 유체가 유동되는 공간을 구성하는 챔버; 상기 챔버 내에 마련된 것으로, 서로 혼합되지 않는 성질을 가지며, 하나는 투광성, 다른 하나는 차광성 또는 흡광성의 물질로 형성된 제1유체와 제2유체; 상기 챔버의 내측면에 마련된 것으로, 상기 챔버 내에 전기장을 형성하기 위해 전압이 인가되는 하나 이상의 전극들이 어레이된 전극부;를 포함하며, 전기장에 따른 상기 제1유체와 상기 제2유체간 계면 위치 변화에 의해 광이 투과되는 개구가 조절되도록 마련될 수 있다.
상기 제1유체와 제2유체 중 어느 하나는 액체 금속 또는 극성 액체이고, 다른 하나는 기체 또는 비극성 액체일 수 있다.
상기 광전송부는 광섬유를 포함할 수 있다.
상기 광섬유의 끝단은 12도 이하의 기울기를 가지거나 무반사 코팅을 하거나, 상기 두 가지 특성을 포함하도록 마련될 수 있다.
본 발명의 실시예에 따른 영상 진단 시스템은, 광원부; 상기 광원부로부터의 광을 검사 대상인 대상체에 조사하는 본 발명의 실시예에 따른 광학 줌 프로브; 상기 대상체에서 반사된 광으로부터 상기 대상체의 이미지를 검출하는 검출부;를 포함할 수 있다.
본 발명의 실시예에 따른 광학 줌 프로브에 따르면, 초점 조절 유닛에 서로 독립적으로 제어되는 한쌍의 액체 렌즈와, 개구 크기를 조절하는 개구 조절기를 구비함에 의해, 초근접 및 근접간 거리 구간에서 초점을 이동하면서 고해상도 스캔이 가능한 광학 줌 프로브를 실현할 수 있다.
도 1은 수평 해상도와 초점 깊이(depth of focus: DOF)의 관계를 설명하기 위한 개념도이다.
도 2는 본 발명의 실시예에 따른 광학 줌 프로브의 전체적인 광학적 구성을 개략적으로 보여준다.
도 3은 도 2의 광학 줌 프로브에 채용될 수 있는 개구 조절기의 일예를 보여준다.
도 4는 도 2의 광학 줌 프로브에 채용될 수 있는 개구 조절기의 다른 예를 보여준다.
도 5는 도 2의 광학 줌 프로브에 초점 조절 유닛에 제1액체 렌즈나 제2액체 렌즈로 채용될 수 있는 액체 렌즈의 일예를 보여준다.
도 6은 도 2의 광학 줌 프로브에 초점 조절 유닛에 제1액체 렌즈나 제2액체 렌즈로 채용될 수 있는 액체 렌즈의 다른 예를 보여준다.
도 7은 도 5의 액체렌즈를 서로 대칭으로 결합하여, 제1 및 제2액체렌즈를 포함하는 초점 조절 유닛을 구성한 예를 보여준다.
도 8은 도 2의 광학 줌 프로브에 초점 조절 유닛에 제1액체 렌즈나 제2액체 렌즈로 채용될 수 있는 액체 렌즈의 다른 예를 보여준다.
도 9a 및 도 9b는 대상체 예컨대, 티슈 표면에서 비교적 얕은 깊이까지 티슈를 스캐닝할 때의 본 발명의 실시예에 따른 광학 줌 프로브의 동작 상태를 보여준다.
도 10은 초점 거리를 길게 하여 스캐닝할 때의 본 발명의 실시예에 따른 광학 줌 프로브의 동작 상태를 보여준다.
도 11은 본 발명의 다른 실시예에 따른 광학 줌 프로브의 전체적인 광학적 구성을 개략적으로 보여준다.
도 12는 본 발명의 실시예에 따른 광학 줌 프로브를 적용한 영상 진단 시스템을 개략적으로 보여준다.
도 13 내지 도 15는 OCM모드와 OCT 모드로 사용될 때, 기준광의 광경로 길이를 맞추기 위해 적용될 수 있는 다양한 광학 시스템을 개략적으로 보여준다.
도 2는 본 발명의 실시예에 따른 광학 줌 프로브의 전체적인 광학적 구성을 개략적으로 보여준다.
도 3은 도 2의 광학 줌 프로브에 채용될 수 있는 개구 조절기의 일예를 보여준다.
도 4는 도 2의 광학 줌 프로브에 채용될 수 있는 개구 조절기의 다른 예를 보여준다.
도 5는 도 2의 광학 줌 프로브에 초점 조절 유닛에 제1액체 렌즈나 제2액체 렌즈로 채용될 수 있는 액체 렌즈의 일예를 보여준다.
도 6은 도 2의 광학 줌 프로브에 초점 조절 유닛에 제1액체 렌즈나 제2액체 렌즈로 채용될 수 있는 액체 렌즈의 다른 예를 보여준다.
도 7은 도 5의 액체렌즈를 서로 대칭으로 결합하여, 제1 및 제2액체렌즈를 포함하는 초점 조절 유닛을 구성한 예를 보여준다.
도 8은 도 2의 광학 줌 프로브에 초점 조절 유닛에 제1액체 렌즈나 제2액체 렌즈로 채용될 수 있는 액체 렌즈의 다른 예를 보여준다.
도 9a 및 도 9b는 대상체 예컨대, 티슈 표면에서 비교적 얕은 깊이까지 티슈를 스캐닝할 때의 본 발명의 실시예에 따른 광학 줌 프로브의 동작 상태를 보여준다.
도 10은 초점 거리를 길게 하여 스캐닝할 때의 본 발명의 실시예에 따른 광학 줌 프로브의 동작 상태를 보여준다.
도 11은 본 발명의 다른 실시예에 따른 광학 줌 프로브의 전체적인 광학적 구성을 개략적으로 보여준다.
도 12는 본 발명의 실시예에 따른 광학 줌 프로브를 적용한 영상 진단 시스템을 개략적으로 보여준다.
도 13 내지 도 15는 OCM모드와 OCT 모드로 사용될 때, 기준광의 광경로 길이를 맞추기 위해 적용될 수 있는 다양한 광학 시스템을 개략적으로 보여준다.
이하, 첨부된 도면들을 참조하면서 본 발명의 실시예에 따른 광학 줌 프로브를 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다.
도 1은 수평 해상도와 초점 깊이(depth of focus: DOF)의 관계를 설명하기 위한 개념도이다.
가우시안 빔은 포커싱될 때, 점이 아니라, 유한한 크기, Δx의 빔 웨이스트(beam waist)를 가지며, Δx는 개구(D)와 초점 거리(f)에 의해 다음과 같이 정해진다.
Δx는 수평 해상도에 관계된다. 즉, Δx가 작을수록 수평 해상도는 높아진다. 상기 식(1)에서 나타나는 바와 같이, Δx는 f/D에 비례하는데, 집속 렌즈(FE)의 개구수(numerical aperture, NA)는 D/f에 비례하므로, 높은 수평 해상도를 얻기 위해서는, Δx가 작아지도록 개구수가 큰 광학계가 요구된다.
초점 심도(depth of focus, DOF)는 빔 직경이 √2Δx가 되는 범위로 다음과 같이 정해진다.
초점 심도(DOF)는 깊이 방향을 따라 빔 스폿 크기가 비교적 균일한 범위를 의미한다. 깊이에 따른 이미지 정보, 예를 들어, 인체 조직의 단층 촬영 이미지를 획득하고자 할 때, 초점 심도(DOF)가 큰 광학계, 즉, 개구수(NA)가 작은 광학계가 요구된다.
이와 같이, 수평 해상도와 초점 심도(DOF)는 트레이드 오프(trade off)의 관계를 가진다.
본 발명의 실시예에 따른 광학 줌 프로브는, 초근접 거리나 근접 거리에서 고해상도로 대상체를 스캔하는데 필요한 수평 해상도 및 초점 심도를 구현할 수 있다. 여기서, 초근접 거리는, 광학 줌 프로브의 마지막 렌즈에서 대상체 예컨대, 티슈(Tissue)의 표면까지의 거리가 예컨대, 대략 2mm 이하인 경우, 근접 거리는 광학 줌 프로브의 마지막 렌즈에서 대상체 예컨대, 티슈(Tissue)의 표면까지의 거리가 예컨대, 대략 30mm 이하인 경우를 의미한다.
도 2는 본 발명의 실시예에 따른 광학 줌 프로브(10)의 전체적인 광학적 구성을 개략적으로 보여준다.
도 2를 참조하면, 광학 줌 프로브(10)는, 광전송부(20)에서 전송된 광이 통과하는 개구를 조절하는 개구 조절기(50)와, 서로 독립적으로 곡률이 조정되도록 된 제1 및 제2액체 렌즈(71)(75)를 포함하는 초점 조절 유닛(70)을 포함한다. 광학 줌 프로브(10)는, 초점 조절 유닛(70)과 대상체 예컨대, 검사 대상인 티슈 사이에 초점을 최적화하도록 포지티브 파워를 가지는 렌즈(80)를 더 포함할 수 있다. 상기 렌즈(80)는 비구면 렌즈일 수 있다. 광학 줌 프로브(10)는, 광전송부(20)에서 전송된 광을 콜리메이팅하여 개구 조절기(50)로 전송되도록 하는 제1렌즈 유닛(30), 개구 조절기(50)와 초점 조절 유닛(70) 사이에 배치되는 제2렌즈 유닛(60) 중 적어도 어느 하나를 더 포함할 수 있다. 도 2 및 나머지 도면들에서는 광학 줌 프로브(10)가 제1렌즈 유닛(30)과 제2렌즈 유닛(60)을 모두 포함하는 경우를 예시적으로 보여준다. 이하에서는 도 2에 도시된 광학계를 기준으로 본 발명의 실시예에 따른 광학 줌 프로브(10)를 설명하지만, 본 발명의 실시예가 이에 한정되는 것은 아니며, 다양한 변형 및 균등한 타 실시예가 가능함은 물론이다.
상기 광전송부(20)는, 광섬유(21)를 포함하며, 광섬유(21)의 일단에 조립되는 스캐너(23)를 더 포함할 수 있다. 스캐너(23)는 광섬유(21)의 변형을 유도하여 광경로를 바꾸어주는 액츄에이터로서, 예를 들어, 압전 액츄에이터(piezo actuator)나, 압전체나 형상 기억합금 등을 이용한 캔틸레버(cantilever) 형태로 이루어질 수 있으며, 이외에도 다양한 재료 다양한 방식을 이용하여 형성될 수 있다.
스캔되는 광섬유(21)의 끝단은 반사광에 의해 노이즈(noise)를 제거할 수 있도록, 약 12도 이하의 기울기를 가지거나 무반사 코팅을 하거나, 이 두 가지 복합 특성을 모두 포함하도록 형성될 수 있다.
상기 제1렌즈 유닛(30)은 광전송부(20)에서 전송된 광을 콜리메이팅하여 개구 조절기(50)로 입사되는 광이 평행광 또는 대략적인 평행광이 되도록 하기 위한 것으로, 적어도 하나의 렌즈(31,35)를 포함할 수 있다. 도 2 및 이하의 도면에서는 제1렌즈 유닛(30)이 단일 렌즈(31)와, 이로부터 이격된 이중 접합렌즈(35)를 포함하는 구성을 가지는 예를 보여주는데, 이는 예시적인 것으로, 제1렌즈 유닛(30)의 렌즈 구성은 다양하게 변형될 수 있다.
상기 개구 조절기(50)는, 상기 초점 조절 유닛(70)에 입사되는 광빔의 크기를 조정하여, 초점 조절 유닛(70)의 개구수를 바꾸어주기 위한 것으로, 예를 들어, 상대적으로 대략 2mm 이하의 초근접 거리에서 깊이 방향으로 대략 2mm 구간내 균일한 고해상도를 요구하는 OCM 모드에서는 초점 조절 유닛(70)에 입사되는 광빔의 크기를 크게 하여 상대적으로 고개구수를 실현하도록 한다. 또한, 개구 조절기(50)는 대략 2mm에서 30mm 이내의 근접 거리에서 깊이 방향으로 대략 2mm 구간내 균일한 스폿 크기를 요구하는 OCT 모드에서는 초점 조절 유닛(70)에 입사되는 광빔의 크기를 작게 하여 상대적으로 저개구수를 실현하도록 한다.
상기 개구 조절기(50)는, 미소 전기 유체 방식으로 개구 크기가 조절되는 액체 조리개일 수 있다. 또한, 상기 개구 조절기(50)는 기계적으로 개구 크기가 조절되는 조리개 일 수도 있으며, 펌프 등 유압을 이용하여 개구 크기가 조절되는 액체 조리개일 수도 있다.
상기 개구 조절기(50)로는 예를 들어, 도 3 및 도 4에서와 같은 구조의 개구 조절기(101)(102)가 채용될 수 있다.
도 3은 도 2의 광학 줌 프로브(10)에 채용될 수 있는 개구 조절기(101)의 일예를 보여준다.
도 3을 참조하면, 개구 조절기(101)는 전기 습윤 원리에 의해 유체가 유동되고, 유체 유동에 따라 광이 통과되는 개구(A) 크기가 조절되도록 구성될 수 있다. 개구 조절기(101)는 유체가 유동되는 공간을 구성하는 챔버와, 챔버 내에 마련되는 것으로, 서로 혼합되지 않는 성질을 가지며, 하나는 투광성, 다른 하나는 차광성 또는 흡광성의 물질로 형성된 제1유체(F1)와 제2유체(F2), 챔버의 내측면에 마련되고 챔버 내에 전기장을 형성하기 위해 전압이 인가되는 하나 이상의 전극들이 어레이된 전극부를 포함한다. 전기장에 따라 제1유체(F1)와 상기 제2유체(F2)간 계면 위치 변화에 의해 광이 투과되는 개구가 조절된다.
예를 들어, 챔버의 영역은 제1채널과(C1), 제1채널(C1)의 상부에 제1채널(C1)과 연결되게 마련된 제2채널(C2)을 포함하며, 제1채널(C1)과 제2채널(C2) 각각에서 일어나는 제1유체(F1)와 제2유체(F2)간 계면 위치 변화에 의해 개구 범위가 정해지도록 마련될 수 있다. 제1채널은(C1) 제1기판(110)과, 제1기판(110)과 이격되게 마련된 제2기판(150)과, 제1기판(110)과 제2기판(150) 사이에 내부 공간을 형성하는 제1스페이서(130)에 의해 형성될 수 있다. 이때, 제2기판(150)은 중심부에 제1관통홀(TH1)이 형성되고, 주변부에 제2관통홀(TH2)이 형성될 수 있다. 또한, 제2채널(C2)은 제2기판(150)과, 제2기판(150)과 이격되게 마련된 제3기판(190)과, 제2기판(150)과 제3기판(190)사이에 내부 공간을 형성하도록 마련된 제2스페이서(170)에 의해 형성될 수 있다.
제1유체(F1)와 제2유체(F2) 중 어느 하나는 액체 금속 또는 극성 액체이고, 다른 하나는 기체 또는 비극성 액체로 이루어질 수 있다.
전극부는 제1기판(110) 상에 형성되고 절연 물질(I)로 코팅된 하나 이상의 전극(E)으로 이루어진 제1전극부(120)와, 제3기판(190) 상에 형성되고 절연 물질(I)로 코팅된 하나 이상의 전극(E)으로 이루어진 제2전극부(180)를 포함할 수 있다.
제1전극부(120)는 개구(A)를 디지털 방식으로 제어하기 위해 다수의 전극을 포함하도록 구성될 수 있다.
접지 전극부(R)는 챔버의 내부 한 곳 이상에서 극성 유체와 접촉을 유지하도록 마련될 수 있다. 예를 들어 접지 전극부(R)는 극성의 제1유체(F1)와 접촉을 유지하도록 마련될 수 있으며, 이를 위하여, 도 3에서와 같이, 제1기판(110) 상에 배치될 수 있으며, 그 위치는 변경될 수 있다.
제1전극부(120), 제2전극부(180)를 이루는 전극(E)은 투명 전도성 재질로 형성될 수 있다. 예를 들어, 제1전극부(120) 및 제2전극부(180)를 이루는 전극(E)은 ITO(indium tin oxide), IZO(indium zinc oxide)등의 금속산화물, Au, Ag등의 금속 나노입자 분산 박막, CNT(carbon nanotube), 그래핀(graphene) 등의 탄소 나노구조체, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole(PPy), poly(3-hexylthiophene)(P3HT) 등의 전도성 고분자등으로 형성될 수 있다.
접지 전극부(R)는 배치 위치상 투광성이 요구되지 않으므로, 예를 들어, Au, Ag, Al, Cr, Ti등의 금속 박막으로 형성될 수 있다.
전기 습윤 현상은 절연체로 코팅된 전극 상의 전해질 액적에 전압을 가하면 액적의 접촉각이 변하는 현상을 의미한다. 즉, 유체, 액적, 절연체가 만나는 삼상 접촉선(three-phase contact line, TCL)에서 각각의 계면장력에 따라 접촉각이 변한다. 전기 습윤 현상을 이용하는 경우, 낮은 전압을 사용하여 빠르고 효과적으로 유체의 유동을 제어할 수 있으며, 가역적으로 유체의 이송 및 제어가 가능하다.
제1전극부(120)의 어느 한 전극(E)에 적절한 전압을 인가하면, 활성화된 구동전극 위의 삼상 접촉선(three-phase contact line, TCL), 즉, 제1유체(F1), 제2유체(F2) 및 절연 물질(I)이 만나는 접선에서 전기기계적 힘이 작용하여 제1유체(F1)가 제1채널(C1)을 통해 중심부로 이동하면서 개구(A)가 축소될 수 있다. 또한, 제2전극부(180)에 적절한 전압을 인가하면, 제1유체(F1)가 제2채널(C2)을 통해 중심부로 이동하면서 제1채널(C1)의 TCL은 가장자리로 밀려 나와 개구(A)가 확장될 수 있다. 제1전극부(120)를 다수 전극(E)으로 구성하는 경우, 활성화된 전극을 변화시킴에 따라 개구(A) 크기를 디지털 방식으로 제어할 수 있다.
다시 도 2를 참조하면, 개구 조절기(50)는 입력단 및 출력단 중 적어도 하나에 커버 글라스(51)를 구비할 수 있다. 도 2에서는 개구 조절기(50)가 입력단에 커버 글라스(51)를 구비하는 예를 보여준다. 도 2에서 참조번호 55는 개구 조절기(50)의 개구 조절이 이루어지는 부분을 나타낸다.
도 3 및 도 4에서와 같이 전기 습윤 원리에 의해 유체가 유동되어 개구(A) 크기가 조절되는 경우, 개구 조절기(101)의 제1기판(110) 또는 제3기판(190)이 커버 글라스로서 사용되거나, 별도의 커버 글라스를 더 구비할 수도 있다.
도 4는 도 2의 광학 줌 프로브(10)에 채용될 수 있는 개구 조절기(102)의 다른 예를 보여준다.
도 4에 도시된 개구 조절기(102)는 제2기판(150)의 양면에 절연 물질(I)로 코팅된 하나 이상의 전극(E)으로 이루어진 제3전극부(320) 및 제4전극부(380)가 더 구비된 점에서, 도 3의 개구 조절기(101)와 차이가 있다. 제3전극부(320)는 제1전극부(120)와 함께, 제1채널(C1)에서 발생하는 구동력을 증가시키고, 제4전극부(380)는 제2전극부(180)와 함께, 제2채널(C2)에서 발생하는 구동력을 증가시키는 역할을 할 수 있다. 제3전극부(320) 및 제4전극부(380)를 이루는 전극 개수는 도시된 개수에 한정되지는 않으며, 다양하게 변형될 수 있다. 또한, 제2기판(150)의 양면에 각각 제3전극부(320) 및 제4전극부(380)가 구비된 것으로 설명 및 도시하였지만, 이는 예시적인 것으로, 제2기판(150)의 어느 일면에만 제3전극부(320) 또는 제4전극부(380)가 구비될 수 도 있다.
다시 도 2를 참조하면, 상기 제2렌즈 유닛(60)은 상기 개구 조절기(50)를 통과한 광을 초점 조절 유닛(70)으로 전달하기 위한 것으로, 적어도 1개의 렌즈를 포함할 수 있다.
상기 초점 조절 유닛(70)은 상기 개구 조절기(50)의 개구를 통과한 광을 포커싱하며 초점 거리를 조절하도록 곡률이 서로 독립적으로 제어되는 제1 및 제2액체 렌즈(71)(75)를 포함할 수 있다.
상기 제1액체 렌즈(71)와 제2액체 렌즈(75)는 그 사이에 투명 매질(73)이 존재할 수 있으며, 이 제1액체 렌즈(71)와 제2액체 렌즈(75)는 상기 투명 매질(73)을 사이에 두고 단일체로 형성될 수 있다. 이때, 초점 조절 유닛(70)을 길이 방향으로 최적화하기 위해, 제1 및 제2액체 렌즈(71)(75)는 하나의 투명 매질(73)을 두고, 초점 조절 동작시, 서로 반대 방향으로 거동이 이루어지도록 마련될 수 있다. 이때, 제1 및 제2액체 렌즈(71)(75)의 곡률 조정시, 거리를 최소화하기 위해, 각 액체 렌즈(71)(75)의 돌출 변화량은 400μm을 넘지 않도록 구동될 수 있다.
상기 제1 및 제2액체 렌즈(71)(75) 각각은, 유체 표면으로 렌즈면을 형성하고, 유체 유동을 이용하여 렌즈면의 형상을 조절하여 초점 거리를 조절하도록 마련될 수 있다.
광학 줌 프로브(10)의 마지막 렌즈( 도 2에서는 렌즈(80))와 대상체 예컨대, 티슈(Tissue)까지의 거리가 초근접 예컨대, 대략 2mm 이하의 초근접 위치에서 깊이 방향으로 일정 범위에서 x,y 스캐닝시, 즉, OCM 모드시, 제1 및 제2액체 렌즈(71)(75)는, 후술하는 도 9a 및 도 9b에서와 같이, 적어도 하나의 액체 렌즈가 볼록 렌즈면을 가지도록 구동될 수 있다. 이때, 초근접 스캐닝시 즉, OCM 모드시, 제1 및 제2액체 렌즈(71)(75) 중 티슈에 가까운 액체 렌즈 즉, 제2액체 렌즈(75)는 볼록 렌즈면을 가지도록 구동될 수 있다.
또한, 광학 줌 프로브(10)의 마지막 렌즈(도 2에서는 렌즈(80))와 대상체 예컨대, 티슈(Tissue)까지의 거리가 근접 예컨대, 대략 30mm 이하의 근접 위치에서 깊이 방향으로 일정 범위에서 x,y 스캐닝시, 즉, OCT 모드시, 제1 및 제2액체 렌즈(71)(75)는, 후술하는 도 10에서와 같이, 오목 렌즈면을 가지도록 구동될 수 있다.
상기 제1 및 제2액체 렌즈(71)(75)는 예를 들어, 유체 유동이 전기 습윤 방식에 따라 일어나도록 마련될 수 있다.
도 5는 도 2의 광학 줌 프로브(10)에 초점 조절 유닛(70)에 제1액체 렌즈(71)나 제2액체 렌즈(75)로 채용될 수 있는 액체 렌즈(201)의 일예를 보여준다.
도 5를 참조하면, 액체 렌즈(201)의 챔버 내부 공간에는 투광성이며 극성인 제1유체(TF1), 제1유체(TF1)와 혼합되지 않는 성질을 가지며 투광성인 제2유체(TF2)가 수용된다. 제1유체(TF1)와 제2유체(TF2)의 경계면은 렌즈면을 이루는 제1면(LS)과 상기 렌즈면의 곡률변화를 유도하는 제2면(IS)을 포함한다. 또한, 제2면(IS)의 위치를 변화시키는 전기장을 형성하기 위한 전극부가 챔버 내에 형성된다. 제1유체(TF1)와 제2유체(TF2)의 경계면이 렌즈면을 이루는 제1면(LS)과 상기 렌즈면의 곡률변화를 유도하는 제2면(IS)을 형성할 수 있도록, 상기 렌즈면에 대응하는 렌즈의 직경을 형성하는 제1관통홀(TH1)과, 제2유체(TF2)의 통로를 형성하는 제2관통홀(TH2)이 형성된 제1중간판(250)이 챔버 내부에 마련된다.
제1중간판(250)의 하부 및 상부에는 각각 하부기판(210)과 상부기판(290)이 마련될 수 있으며, 내부공간을 형성하도록, 하부기판(210)과 제1중간판(250) 사이, 제1중간판(250)과 상부기판(290) 사이에는 스페이서부가 마련될 수 있다. 스페이서부는 하부기판(210)과 제1중간판(250) 사이의 제1스페이서(230)와 제1중간판(250)과 상부기판(290) 사이의 제2스페이서(270)로 이루어질 수 있다.
하부기판(210), 제1중간판(250), 상부기판(290)은 투광성 소재로 형성될 수 있다.
제1유체(TF1)와 제2유체(TF2)는 굴절률이 서로 다른 투광성 유체로 이루어질 수 있다. 이때, 제1유체(TF1)는 극성 액체, 제2유체(TF2)는 기체 또는 비극성 액체로 이루어질 수 있다.
전극부는 도시된 바와 같이, 하부기판(210)의 상면에 형성되고 표면이 절연 물질(I)로 코팅된 전극(E)으로 이루어진 제1전극부(220)와 제1중간판(250)의 하면에 형성되고 표면이 절연 물질(I)로 코팅된 전극(E)으로 이루어진 제2전극부(280)를 포함한다. 여기서, 제1전극부(220)와 제2전극부(280) 중 어느 하나만이 구비되는 것도 가능하다.
또한, 제1유체(TF1)와 접하도록 마련된 접지 전극(R)을 더 포함할 수 있다. 접지 전극(R)은 제1기판(210) 상에 배치된 것으로 도시되어 있으나, 전압이 인가되지 않은 상태에서 제1유체(TF1)와 접할 수 있는 어느 위치에나 가능하다. 접지 전극(R)은 선택적으로 구비될 수 있으며, 접지 전극(R)이 구비되는 경우, 구동 전압을 보다 낮게 할 수 있다.
제1전극부(220), 제2전극부(280)를 이루는 전극은 투명 전도성 재질로 형성될 수 있다. 예를 들어, ITO(indium tin oxide), IZO(indium zinc oxide)등의 금속산화물, Au, Ag등의 금속 나노입자 분산 박막, CNT(carbon nanotube), 그래핀(graphene) 등의 탄소 나노구조체, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole(PPy), poly(3-hexylthiophene)(P3HT) 등의 전도성 고분자등이 사용될 수 있다. 접지 전극(R)은 상술한 투명 전도성 물질로 형성될 수 있고, 배치 위치에 따라 투광성이 요구되지 않는 경우 Au, Ag, Al, Cr, Ti등의 금속 박막으로 형성될 수도 있다.
액체 렌즈(201)는 전기 습윤 구동에 의해 제2면(IS)에 작용하는 압력이 변하고, 이에 따라 렌즈면인 제1면(LS)의 곡률이 조절된다. 전압이 인가되지 않은 상태 또는 인가전압의 크기가 작아지면, 제2면(IS)은 중심측으로 이동하여, 렌즈면이 되는 제1면(LS)은 보다 볼록해질 수 있다. 인가전압의 크기를 증가시키면, 제2면(IS)은 양측으로 이동하며, 제1면(LS)의 곡률은 보다 작아지고, 인가전압이 최대가 될 때, 제1면(LS)은 오목한 곡률을 가질 수 있다.
도 5에서는 제1전극부(220), 제2전극부(280)가 각각 하나의 전극(E)으로 이루어지며, 이 전극(E)에 인가되는 전압 크기를 조절하여 제2면(IS)의 위치를 변화시키도록 된 예를 보여준다.
여기서, 상기 제1전극부(220) 및 제2전극부(280는 각각 절연물질(I)로 코팅된 다수의 전극(E)으로 이루어질 수도 있다. 이 경우, 제1전극부(220), 제2전극부(280)를 구성하는 전극(E) 일부를 선택하여 전압을 인가함으로써 렌즈면이 되는 제1면(LS)의 곡률을 디지털 방식으로 제어할 수 있다. 즉, 전극(E)들 중 어느 하나를 선택하여 적절한 전압을 인가하면, 활성화된 구동전극의 삼상 접촉선(three-phase contact line, TCL), 즉, 제1유체(F1), 제2유체(F2)의 경계면인 제2면(IS)과 절연물질(I)이 만나는 접선에서 전기기계적 힘이 작용하여 제2면(IS)의 위치가 형성되고, 이에 따라 제1면(LS)의 곡률이 정해질 수 있다. 가장 안쪽에 배치된 전극(E)을 선택하여 적절한 전압을 인가하면, 제2면(IS)의 위치가 최대한 중심측으로 이동하여 제1면(LS)의 곡률은 보다 커질 수 있다. 또한, 가장 바깥쪽에 배치된 전극(E)을 선택하여 적절한 전압을 인가하면, 제2면(IS)의 위치가 양측으로 최대로 이동하고, 제2면(LS)은 곡률은 커질 수 있고, 또는 오목한 곡률이 형성될 수도 있다.
도 6은 도 2의 광학 줌 프로브(10)에 초점 조절 유닛(70)에 제1액체 렌즈(71)나 제2액체 렌즈(75)로 채용될 수 있는 액체 렌즈(202)의 다른 예를 보여준다.
도 6을 참조하면, 액체 렌즈(202)는, 초점 거리가 대략 30mm 정도로 길어 z축 방향으로 형상 제어가 불필요한 경우나 형상 변형의 최소가 되는 렌즈면을 투명막(203)으로 렌즈 형상을 갖도록 액체사이에 형성할 수 있다. 도 6의 액체 렌즈(202)는 곡면을 가지는 투명막(203)을 더 포함하는 점에서 도 5의 액체 렌즈(201)와 차이가 있다. 상기 투명막(203)의 곡면은 오목한 곡면을 이루도록 형성될 수 있다.
이 경우, 예를 들어, 근접 모드시, 제1면(LS)이 투명막(203)의 곡면에 해당하도록 제1유체(TF1) 및 제2유체(TF2)가 이동하여, 투명막(203)의 곡면이 오목한 렌즈면으로 작용할 수 있으며, 초근접 모드시에는 제1면(LS)이 투명막(203)보다 위에 존재하여 이 투명막(203)의 곡면이 렌즈면으로 작용하지 않도록 할 수 있다. 상기 투명막(203)에는 제1유체(TF1)나 제2유체(TF2)의 이동이 이루어질 수 있도록 관통홀(203a)이 형성될 수 있다. 도 6에서는 제1유체(TF1)가 투명막(203) 상에도 존재하여, 제1유체(TF1)와 제2유체(TF2)의 볼록한 경계면이 렌즈면으로 작용하는 경우를 예시한다. 투명막(203) 상에 존재하는 유체(TF1)가 모두 투명막(203) 아래로 빠져 나오면, 투명막(203)의 오목한 곡면이 오목 렌즈면으로 작용하게 된다.
이 경우에도, 액체 렌즈(202)는 전기 습윤 구동에 의해 제2면(IS)에 작용하는 압력이 변하고, 이에 따라 렌즈면인 제1면(LS)의 곡률이 조절될 수 있다.
도 5 및 도 6에서는 제1전극부(220), 제2전극부(280)가 각각 하나의 전극(E)으로 이루어지며, 이 전극(E)에 인가되는 전압 크기를 조절하여 제2면(IS)의 위치를 변화시키도록 된 예를 보여주는데, 상기 제1전극부(220) 및 제2전극부(280는 각각 절연물질(I)로 코팅된 다수의 전극(E)으로 이루어질 수도 있다. 이 경우, 제1전극부(220), 제2전극부(280)를 구성하는 전극(E) 일부를 선택하여 전압을 인가함으로써 렌즈면이 되는 제1면(LS)의 곡률을 디지털 방식으로 제어할 수 있다.
도 7은 도 5의 액체 렌즈(201)를 서로 대칭으로 결합하여, 제1 및 제2액체 렌즈(71)(75)를 포함하는 초점 조절 유닛(70)을 구성한 예를 보여준다. 제1 및 제2액체 렌즈(71)(75)를 포함하는 초점 조절 유닛(70)은 도 6의 액체 렌즈(202)를 서로 대칭으로 결합하여 구조를 가질 수 있음을 물론이다. 이 경우, 제1액체 렌즈(71)와 제2액체 렌즈(75)는 서로 독립적으로 제어하여 곡률을 조정할 수 있다.
이때, 제1액체 렌즈(71)와 제2액체 렌즈(75) 사이에 존재하는 투명매질(73)은 하부기판(210)에 해당할 수 있으며, 제1액체 렌즈(71)와 제2액체 렌즈(75) 사이에 별도의 투명매질을 더 구비할 수도 있다. 도 7에서는 한쌍의 액체 렌즈를 결합시켜, 하부기판(210) 두개가 서로 결합되는 예를 보여주는데, 초점 조절 유닛(70)은 제1액체 렌즈(71)와 제2액체 렌즈(75) 사이에 하나의 하부기판(210)만이 존재하도록 형성될 수도 있다.
다시 도 2를 참조하면, 초점 조절 유닛(70)은, 입력단 및 출력단 중 적어도 하나에 커버 글라스(77)(79)를 구비할 수 있다. 도 2에서는 초점 조절 유닛(70)의 입력단 및 출력단에 각각 커버 글라스(77)(79)를 포함하는 예를 보여준다.
도 7에서와 같이 두개의 액체 렌즈를 서로 대칭으로 결합하여 제1 및 제2액체 렌즈(71)(75)를 포함하는 초점 조절 유닛(70)을 구성하는 경우, 초점 조절 유닛(70)의 상하부에 위치하는 상부기판(290)들이 커버 글라스로서 사용되거나, 별도의 커버 글라스를 더 구비할 수도 있다.
이상에서는 초점 조절 유닛(70)의 제1 및 제2액체 렌즈(71)(75)가, 유체 유동이 전기 습윤 방식에 따라 일어나도록 마련된 경우를 예를 들어 설명하였는데, 본 발명의 실시예가 이에 한정되는 것은 아니며, 상기 제1 및 제2액체 렌즈(71)(75) 중 적어도 하나는 도 8에서와 같이 유체 유동이 압력식으로 일어나도록 마련된 액체 렌즈(205)를 적용할 수도 있다.
도 8은 도 2의 광학 줌 프로브(10)에 초점 조절 유닛(70)에 제1액체 렌즈(71)나 제2액체 렌즈(75)로 채용될 수 있는 액체 렌즈(205)의 다른 예를 보여준다.
도 8을 참조하면, 액체 렌즈(205)는 렌즈면의 곡률 변화를 위한 유체 유동이 압력식으로 일어나는 구성을 갖는다. 액체 렌즈(205)는 챔버의 내부 공간에 마련된 투광성 유체(TF3)를 포함한다. 챔버의 내부 공간(380)은 기판(310)과 기판(310)에 형성된 프레임(330)에 의해 형성되며, 유실(382), 유로(384), 렌즈실(386)로 이루어질 수 있다. 프레임(330) 상부에는 멤브레인(350)이 배치되고, 유실(382)의 상부에 대응하는 멤브레인(350) 상의 위치에는 액츄에이터(370)가 마련될 수 있다. 렌즈실(386)의 상부에 대응하는 위치의 멤브레인(350) 일면이 렌즈면(350a)이 될 수 있다.
멤브레인(350)은 투명하며 탄성을 가지는 물질, 예를 들어, 실리콘 탄성중합체(elastomer)로 이루어질 수 있다. 또한, 내구성 및 유연성이 우수한 폴리디메틸실록산 (polydimethylsiloxane;PDMS)이 채용될 수 있다.
액츄에이터(370)는 투광성 유체(TF3)에 압력을 인가하도록 마련되는 것으로, 통상적으로 사용되고 있는 다양한 방식의 액츄에이터가 사용될 수 있다. 예를 들어, 두께가 매우 얇고 소비 전력이 작은 전기적 능동 폴리머(electro active polymer:EAP)로 이루어진 통상의 폴리머 액츄에이터가 사용될 수 있으며, P(VDF-TrFE_CFE), P(VDF-TrFE-CTFE)와 같은 혼성 중합체로 제작된 완화형 강유전성(relaxor ferroelectric) 폴리머 액츄에이터가 채용될 수 있다. 액츄에이터(370)는, 전압 인가에 따라 전왜 변형(electrostrictive strain)이 유발되어 인접한 투광성 유체(TF3)에 압력을 인가하게 된다.
광학 유체(TF3)로는 예를 들어, 실리콘 오일이 채용될 수 있다.
액츄에이터(370)의 구동에 따라 유실(382)내의 투광성 유체(TF3)에 압력이 가해지면, 투광성 유체(TF3)가 유로(384)를 따라 렌즈실(386)로 이동하여 렌즈면(350a)의 형상이 변화된다.
도 2의 광학 줌 프로브(10)에 초점 조절 유닛(70)에 제1액체 렌즈(71)나 제2액체 렌즈(75)로 채용될 수 있는 액체 렌즈는 상술한 예들 이외에도, 다른 구성이 채용될 수 있으며, 예를 들어, 액정 (Liquid Crystal)에 전기장 구배 (gradient)를 형성하고 그에 따른 굴절율 구배를 유도하여 초점거리를 조절하는 액정렌즈로 이루어질 수도 있다.
상기한 바와 같은 본 발명의 실시예에 따른 광학 줌 프로브(10)에 있어서, 제1 및 제2액체 렌즈(71)(75)의 곡률을 조정함에 따라 초점 거리가 가변되며, 개구의 크기를 조정함에 따라 해상도가 조정되게 된다.
도 9a 내지 도 9b, 도 10은 본 발명의 실시예에 따른 광학 줌 프로브(10)를 이용한 깊이 스캐닝 방법을 보여준다. 도 9a 내지 도 9b, 도 10에서와 같이, 본 발명의 실시예에 따른 광학 줌 프로브(10)에 따르면, 대상체내에서의 깊이를 달리해도 수평 해상도를 유지하면서 스캐닝이 가능하다.
도 9a 및 도 9b는 대상체 예컨대, 티슈 표면에서 비교적 얕은 깊이까지 티슈를 스캐닝할 때의 본 발명의 실시예에 따른 광학 줌 프로브(10)의 동작 상태를 보여준다. 도 10은 초점 거리를 길게 하여 스캐닝할 때의 본 발명의 실시예에 따른 광학 줌 프로브(10)의 동작 상태를 보여준다.
도 9a에서와 같이, 개구 조절기(50)의 개구 크기를 적정 크기로 하고, 제1액체 렌즈(71)와 제2액체 렌즈(75)의 렌즈면이 볼록 곡면이 되도록 하면, 광이 대략적으로 초근접 거리에서 대상체 예컨대, 티슈(Tissue) 표면에 포커싱된다. 이때, 광학 줌 프로브(10)의 마지막 렌즈(80)와 티슈간의 거리는 예를 들어, 약 2mm 정도 또는 그 이하가 될 수 있다. 이때, 광전송부(20)에서 스캐너(23)에 의해 광섬유(21)의 변형을 유도하여 광경로를 바꾸어주면, x,y 평면내의 일정 범위내에서 티슈 표면을 스캐닝할 수 있다.
도 9b에서와 같이, 개구 조절기(50)의 개구 크기를 도 9b에 비해 크게 하고, 제1액체 렌즈(71)는 렌즈면이 약간 오목한 곡면이 되도록 하고, 티슈에서 상대적으로 가까운 제2액체 렌즈(75)는 렌즈면이 볼록 곡면이 되도록 하면, 광스폿의 수평 해상도는 유지하면서, 광스폿의 맺히는 위치를 티슈 표면으로부터 일정 깊이에 맺히도록 할 수 있다. 예를 들어, 광스폿은 티슈 표면으로부터 약 2mm 깊이에 맺힐 수 있다. 이 경우에도, 일정 깊이에서 광스폿을 형성시키면서, 광전송부(20)에서 스캐너(23)에 의해 광섬유(21)의 변형을 유도하여 광경로를 바꾸어주면, 일정 깊이의 x,y평면내 일정 범위내에서 티슈 내부를 스캐닝할 수 있다.
이러한, 본 발명의 실시예에 따른 광학 줌 프로브(10)의 동작에 의해, 고해상도의 초근접(마지막 렌즈로부터 티슈 표면까지의 거리가 대략 2mm 이하) 스캐닝인 OCM 모드를 구현할 수 있다. 즉, 대략 2mm 이하의 초근접 위치에서 깊이 방향으로 대략 2mm 구간내 균일한 3차원 공간내 해상도를 갖고 광학적으로 티슈를 스캐닝할 수 있다.
도 10에서와 같이, 개구 조절기(50)의 개구 크기를 도 9a 및 도 9b에 비해 작게 하고, 제1액체 렌즈(71)와 제2액체 렌즈(75)의 렌즈면이 오목 곡면이 되도록 하면, 광을 마지막 렌즈로부터 비교적 먼 거리 예컨대, 대략 30mm 범위까지 포커싱할 수 있다. 이때, 광스폿의 포커싱 위치는 개구 조절기(50)의 개구 크기 조절과 제1 및 제2액체 렌즈(71)(75)의 오목 곡면의 곡률 조정에 의해 달라질 수 있다. 이 경우에도, 광전송부(20)에서 스캐너(23)에 의해 광섬유(21)의 변형을 유도하여 광경로를 바꾸어주면, x,y 평면내 일정 범위내에서 광스폿의 맺히는 수평 위치를 바꾸면서 스캐닝할 수 있다.
이러한 도 10에서와 같은 본 발명의 실시예에 따른 광학 줌 프로브(10)의 동작에 의해, 근접(마지막 렌즈로부터 티슈 표면까지의 거리가 대략 30mm 이하) 스캐닝인 OCT 모드를 구현할 수 있다. 즉, 대략 30mm 이하의 근접 위치에서 깊이 방향으로 대략 2mm 구간내에서 균일한 3차원 공간내 해상도를 갖고 광학적으로 티슈를 스캐닝할 수 있다.
이와 같이, 개구 조절기(50)의 개구 크기를 조절함과 동시에, 제1액체 렌즈(71)와 제2액체 렌즈(75)의 렌즈면의 곡률 방향 및 곡률을 조정하여, 초점 조절 유닛(70)의 초점 거리를 조정하면, 수평 해상도를 고해상도로 유지하면서 일정 깊이까지 티슈를 광학적으로 스캔할 수 있다.
여기서, 초근접 스캐닝시, 제1 및 제2액체렌즈(71)(75) 중 적어도 상대적으로 대상체에 가까운 제2액체렌즈(75)가 볼록 곡면을 형성하고, 근접 스캐닝시, 제1 및 제2액체렌즈(71)(75)가 모두 오목 곡면을 형성하는 것으로 설명 및 도시하였는데, 이는 예시적으로 설명 및 도시한 것으로, 본 발명의 실시예가 이에 한정되는 것은 아니며 다양한 변형 및 균등한 타 실시예가 가능하다.
한편, 본 발명의 실시예에 따른 광학 줌 프로브(10)는, 반사광에 의한 노이즈를 제거하도록 광경로상에서 수직한 면을 갖는 구성 파트를 무반사 코팅하거나 일정 기울기를 갖도록 배치할 수 있다.
예를 들어, 도 11에서와 같이 개구 조절기(50)의 커버 글라스(51)나 초점 조절 유닛(70)의 커버 글라스(77)(79)는 광축에 대해 일정 각도(θ1)(θ2)만큼 기울어지게 배치될 수 있다. 도 11에서는 개구 조절기(50) 및 초점 조절 유닛(70)가 모두 기울어지게 배치된 예를 보여주는데, 이 중 어느 하나만 기울어지게 배치되는 것도 가능하다.
이때, 기울어지는 각도는 12도 이하일 수 있다. 즉, 개구 조절기(50)의 커버 글라스(51)나 초점 조절 유닛(70)의 커버 글라스(77)(79)는 광축에 대해 약 12도 이하, 예컨대, 약 4도 이상 약 12도 이하의 기울기를 갖도록 배치될 수 있다. 예를 들어, 개구 조절기(50)의 커버 글라스(51)나 초점 조절 유닛(70)의 커버 글라스(77)(79)는 광축에 대해 약 8도의 기울기를 갖도록 배치될 수 있다.
도 12는 본 발명의 실시예에 따른 광학 줌 프로브를 적용한 영상 진단 시스템을 개략적으로 보여준다.
도 12를 참조하면, 영상 진단 시스템(3000)은 광원부, 광원부로부터의 광을 대상체(S) 예컨대, 검사 대상인 티슈(tissue)에 스캐닝하는 광학 줌 프로브(10), 대상체에서 반사된 광으로부터 대상체의 이미지를 검출하는 검출부를 포함한다.
광학 줌 프로브로는 전술한 본 발명의 실시예에 따른 광학 줌 프로브(10)가 채용될 수 있으며, 검사 목적에 따라, 개구의 크기, 초점거리 등을 적절히 조절할 수 있다. 검출부는 대상체의 이미지를 센싱하기 위한 CCD와 같은 이미지 센서를 포함할 수 있다.
여기서, 영상 진단 시스템(3000)은 광원부에서 대상체(S)를 향해 조사된 광과 대상체(S)로부터 반사된 광의 경로를 분리하는 빔분리기, 검출부에서 감지된 신호를 영상 신호로 처리하고 디스플레이하는 영상 신호 처리부를 더 포함할 수도 있다.
상기 영상 진단 시스템(3000)은, 광학 줌 프로브(10)로 검사 대상인 티슈(tissue)를 스캐닝하여 대상체로부터 반사되는 광을 기준광과 간섭시켜 신호광으로 검출하도록 마련될 수 있다. 이를 위하여 광학 줌 프로브(10)는 대상체(S)에 조사되는 광과 동일 광원 즉, 상기 광원부로부터 출사된 광을 분기하여, 일 분기광은 대상체(S)에 조사하는 광으로 사용하고, 다른 분리광은 기준광으로 사용하며, 대상체(S)로부터 반사된 광과 기준광을 간섭시키는 광학 시스템을 더 포함할 수 있다.
이때, 초근접 및 근접간 거리 구간에서 초점을 이동하면서 대상체(S)를 스캔할 때, 즉, OCM 모드와 OCT 모드 전환시, 대상체(S)에 조사되는 광의 광경로 길이가 달라지므로, 기준광의 광경로 길이도 이에 맞추어 바꾸어주어야 한다.
도 13 내지 도 15는 OCM모드와 OCT 모드로 사용될 때, 기준광의 광경로 길이를 맞추기 위해 적용될 수 있는 다양한 광학 시스템(500)(600)(700)을 개략적으로 보여준다.
도 13 및 도 14는 광학 시스템(500)(600)이 커플러(510)(610)를 사용하여 길이가 서로 다른 광섬유로 모드에 따라 기준광을 진행시키도록 마련된 예를 보여준다.
도 13을 참조하면, 커플러(510) 일단은 하나의 광섬유(520), 타단은 길이가 서로 다른 두개의 광섬유(530)(540)가 결합된 구조로 마련된다. 광섬유(530)(540)의 입/출력단에는 광섬유(530)(540)로부터 출력되는 기준광을 콜리메이팅하고, 반사 미러(560)에서 반사된 기준광을 집속하여 광섬유(530)(540)로 입력시키기 위한 콜리메이팅렌즈(535)(545)를 구비할 수 있다. 광섬유(530)(540)와 반사미러(560) 사이에는 셔터(550)가 구비될 수 있다.
예를 들어, 기준광의 광경로 길이를 상대적으로 길게 하고자 하는 경우에는, 셔터(550)는 길이가 긴 광섬유(530)로부터 출력되는 기준광을 통과시키고, 길이가 짧은 광섬유(540)로부터 출력되는 기준광은 통과시키지 않도록 동작될 수 있다. 광섬유(530)로부터 출력되고 셔터(550)를 통과한 기준광은 반사미러(560)에서 반사되어, 다시 셔터(550)를 통과하여 광섬유(530)로 입력되게 된다.
또한, 기준광의 광경로 길이를 상대적으로 짧게 하고자 하는 경우에는, 셔터(550)는 길이가 짧은 광섬유(540)로부터 출력되는 기준광을 통과시키고, 길이가 긴 광섬유(530)로부터 출력되는 기준광은 통과시키지 않도록 동작될 수 있다. 광섬유(540)로부터 출력되고 셔터(550)를 통과한 기준광은 반사미러(560)에서 반사되어, 다시 셔터(550)를 통과하여 광섬유(540)로 입력되게 된다.
도 14를 참조하면, 커플러(610) 일단은 하나의 광섬유(620), 타단은 길이가 서로 다른 두개의 광섬유(630)(640)가 결합된 구조로 마련된다. 광섬유(630)(640)의 입/출력단(630a)(640a)은 광섬유(630)(640)로부터 출력되는 기준광을 그대로 반사시켜 다시 광섬유(630)(640)를 반대 방향으로 진행하도록 금이나 은 등의 반사물질을 이용하여 반사코팅될 수 있다. 전압 인가에 따라 외부 힘의 작용으로 길이가 다른 두 광섬유(630)(640)를 진행하는 광을 선택적으로 차단하도록 마련될 수 있다.
도 15는 광학 시스템(700)이 광학 스위치(710)를 사용하여 일단의 광섬유(720)로부터의 기준광을 길이가 서로 다른 광섬유(730)(740) 중 어느 한 광섬유로 모드에 따라 기준광을 진행시키도록 마련된 예를 보여준다. 광섬유(730)(740)의 입/출력단(730a)(740a)은 광섬유(730)(740)로부터 출력되는 기준광을 그대로 반사시켜 다시 광섬유(730)(740)를 반대 방향으로 진행하도록 금이나 은 등의 반사물질을 이용하여 반사코팅될 수 있다.
Claims (25)
- 광전송부에서 전송된 광이 통과하는 개구를 조절하는 개구 조절기와;
상기 개구를 통과한 광을 포커싱하며 초점 거리를 조절하도록 곡률이 서로 독립적으로 제어되는 제1 및 제2액체 렌즈를 포함하는 초점 조절 유닛;을 포함하며,
상기 제1 및 제2액체 렌즈 중 적어도 하나는, 곡면을 가지는 투명막을 더 포함하며,
근접 스캐닝 모드시에는 상기 투명막의 곡면이 렌즈면으로 작용하고, 초근접 스캐닝 모드시에는 이 투명막의 곡면이 렌즈면으로 작용하지 않도록 된 광학 줌 프로브. - 제1항에 있어서, 상기 초점 조절 유닛과 대상체 사이에 포지티브 파워를 가지는 렌즈;를 더 포함하는 광학 줌 프로브.
- 제2항에 있어서, 상기 렌즈는 비구면 렌즈인 광학 줌 프로브.
- 제1항에 있어서, 상기 제1액체 렌즈와 제2액체 렌즈 사이에 투명 매질이 존재하며, 상기 제1액체 렌즈와 상기 제2액체 렌즈는 상기 투명 매질을 사이에 두고 단일체로 형성된 광학 줌 프로브.
- 제1항에 있어서, 근접 스캐닝 모드시, 상기 제1 및 제2액체 렌즈는 오목 렌즈면을 가지도록 구동되는 광학 줌 프로브.
- 제1항에 있어서, 초근접 스캐닝 모드시, 상기 제1 및 제2액체 렌즈는, 적어도 하나의 액체 렌즈가 볼록 렌즈면을 가지도록 구동되는 광학 줌 프로브.
- 제6항에 있어서, 초근접 스캐닝 모드시, 상기 제1 및 제2액체 렌즈 중 대상체에 가까운 액체 렌즈는, 볼록 렌즈면을 가지도록 구동되는 광학 줌 프로브.
- 제1항에 상기 제1 및 제2액체 렌즈는, 각각의 돌출 변화량이 400μm 이하가 되도록 된 광학 줌 프로브.
- 삭제
- 제1항에 있어서, 상기 제1 및 제2액체 렌즈 각각은,
유체 표면으로 렌즈면을 형성하고, 유체 유동을 이용하여 렌즈면의 형상을 조절하여 초점 거리를 조절하도록 된 광학 줌 프로브. - 제10항에 있어서, 상기 제1 및 제2액체 렌즈는, 서로 반대 방향으로 유체 이동이 이루어지는 광학 줌 프로브.
- 제10항에 있어서, 상기 유체 유동은 전기 습윤 방식에 따라 일어나는 광학 줌 프로브.
- 제12항에 있어서, 상기 제1 및 제2액체 렌즈 중 적어도 하나는,
투광성인 제1유체;
상기 제1유체와 혼합되지 않는 성질을 가지며 투광성인 제2유체;
상기 제1유체와 제2유체를 수용하는 내부 공간을 가지는 챔버;
상기 제1유체와 제2유체의 경계면으로, 상기 렌즈면을 이루는 제1면;
상기 제1유체와 제2유체의 경계면으로, 상기 렌즈면의 곡률변화를 유도하는 제2면;
상기 챔버 내에 마련된 것으로, 상기 렌즈면에 대응하는 직경을 가지는 제1관통홀과, 상기 제2유체의 통로를 형성하는 제2관통홀이 형성된 제1중간판;
상기 제2면의 위치를 변화시키는 전기장을 형성하기 위한 전극부;를 포함하는 광학 줌 프로브. - 제13항에 있어서, 상기 제1유체는 극성 액체이고, 상기 제2유체는 기체 또는 비극성 액체인 광학 줌 프로브.
- 제10항에 있어서, 상기 유체 유동이 압력식으로 일어나는 광학 줌 프로브.
- 제1항에 있어서, 상기 개구 조절기 및 상기 초점 조절 유닛 중 적어도 하나는 커버 글라스를 포함하며, 상기 커버 글라스는 12도 이하의 기울기를 갖도록 된 광학 줌 프로브.
- 제16항에 있어서, 상기 커버 글라스는 상기 개구 조절기에 마련되는 광학 줌 프로브.
- 제16항에 있어서, 상기 커버 글라스는, 상기 초점 조절 유닛의 입력단과 출력단 중 적어도 하나에 마련되는 광학 줌 프로브.
- 제1항에 있어서, 상기 광전송부에서 전송된 광을 콜리메이팅하여 상기 개구 조절기로 전송되도록 하는 제1렌즈 유닛; 및
상기 개구 조절기와 상기 초점 조절 유닛 사이에 배치되는 제2렌즈 유닛; 중 적어도 어느 하나를 더 포함하는 광학 줌 프로브. - 제1항에 있어서, 상기 개구 조절기는,
미소 전기 유체 방식으로 개구 크기가 조절되는 액체 조리개인 광학 줌 프로브. - 제20항에 있어서, 상기 개구 조절기는,
유체가 유동되는 공간을 구성하는 챔버;
상기 챔버 내에 마련된 것으로, 서로 혼합되지 않는 성질을 가지며, 하나는 투광성, 다른 하나는 차광성 또는 흡광성의 물질로 형성된 제1유체와 제2유체;
상기 챔버의 내측면에 마련된 것으로, 상기 챔버 내에 전기장을 형성하기 위해 전압이 인가되는 하나 이상의 전극들이 어레이된 전극부;를 포함하며,
전기장에 따른 상기 제1유체와 상기 제2유체간 계면 위치 변화에 의해 광이 투과되는 개구가 조절되도록 마련된 광학 줌 프로브. - 제21항에 있어서, 상기 제1유체와 제2유체 중 어느 하나는 액체 금속 또는 극성 액체이고, 다른 하나는 기체 또는 비극성 액체인 광학 줌 프로브.
- 제1항에 있어서, 상기 광전송부는 광섬유를 포함하는 광학 줌 프로브.
- 제23항에 있어서, 상기 광섬유의 끝단은 12도 이하의 기울기를 가지거나 무반사 코팅을 하거나, 상기 두 가지 특성을 포함하도록 마련된 광학 줌 프로브.
- 광원부;
상기 광원부로부터의 광을 검사 대상인 대상체에 조사하는 청구항 1항 내지 8항, 10항 내지 24항 중 어느 한 항의 광학 줌 프로브;
상기 대상체에서 반사된 광으로부터 상기 대상체의 이미지를 검출하는 검출부;를 포함하는 영상 진단 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120109260A KR101942976B1 (ko) | 2012-09-28 | 2012-09-28 | 광학 줌 프로브 |
US14/040,851 US9411155B2 (en) | 2012-09-28 | 2013-09-30 | Optical zoom probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120109260A KR101942976B1 (ko) | 2012-09-28 | 2012-09-28 | 광학 줌 프로브 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140042464A KR20140042464A (ko) | 2014-04-07 |
KR101942976B1 true KR101942976B1 (ko) | 2019-01-28 |
Family
ID=50384874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120109260A KR101942976B1 (ko) | 2012-09-28 | 2012-09-28 | 광학 줌 프로브 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9411155B2 (ko) |
KR (1) | KR101942976B1 (ko) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140089129A (ko) | 2013-01-04 | 2014-07-14 | 삼성전자주식회사 | 광학 줌 프로브 |
JP6309356B2 (ja) * | 2014-06-10 | 2018-04-11 | オリンパス株式会社 | 光ファイバスキャナ、照明装置および観察装置 |
JP6442902B2 (ja) * | 2014-07-31 | 2018-12-26 | 株式会社ニデック | 眼科装置 |
US9864205B2 (en) * | 2014-11-25 | 2018-01-09 | Ricoh Company, Ltd. | Multifocal display |
US9976844B2 (en) | 2015-02-06 | 2018-05-22 | Medlumics S.L. | Miniaturized OCT package and assembly thereof |
US11826097B2 (en) * | 2015-11-18 | 2023-11-28 | Cyclone Biosciences, Llc | Forming radial emissions from optical fibers |
KR20180084435A (ko) * | 2017-01-17 | 2018-07-25 | 엘지이노텍 주식회사 | 액체렌즈 및 이를 포함하는 카메라 모듈 및 광학기기 |
CN107085254A (zh) * | 2017-05-09 | 2017-08-22 | 厦门新鸿洲精密科技有限公司 | 一种通过改变液晶曲率实现对焦的机构 |
US20190094424A1 (en) * | 2017-09-27 | 2019-03-28 | Cognex Corporation | Optical systems having adaptable viewing angle and working distance, and methods of making and using the same |
CN108600620B (zh) * | 2018-04-13 | 2021-02-23 | 上海大学 | 一种基于电液可调焦镜头的移动机器人的目标跟踪方法 |
CN110661953B (zh) * | 2019-10-14 | 2021-09-07 | Oppo广东移动通信有限公司 | 摄像头模组和终端设备 |
CN114740555B (zh) * | 2022-05-13 | 2023-04-28 | 四川大学 | 一种面形和光阑可调的多功能液体透镜 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254474A1 (en) | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
US20060256448A1 (en) | 2005-05-16 | 2006-11-16 | Samsung Electro-Mechanics Co., Ltd. | Variable-focus lens and fabrication method thereof |
US20070156021A1 (en) * | 2005-09-14 | 2007-07-05 | Bradford Morse | Remote imaging apparatus having an adaptive lens |
US20090147372A1 (en) * | 2007-12-11 | 2009-06-11 | Hon Hai Precision Industry Co., Ltd. | Liquid lens group |
JP2009128791A (ja) * | 2007-11-27 | 2009-06-11 | Sony Corp | 光学素子 |
US20120013990A1 (en) | 2010-07-16 | 2012-01-19 | Canon Kabushiki Kaisha | Zoom lens |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2887636B1 (fr) * | 2005-06-23 | 2007-08-31 | Varioptic Sa | Montage de lentille a focale variable |
EP1798958A1 (en) * | 2005-12-16 | 2007-06-20 | Varioptic | Adjustable liquid optical diaphragm |
US8184367B2 (en) | 2006-02-15 | 2012-05-22 | University Of Central Florida Research Foundation | Dynamically focused optical instrument |
EP2076800A4 (en) * | 2006-02-24 | 2011-01-05 | Agency Science Tech & Res | METHOD FOR FORMING LIQUID LENSES WITH A VARIABLE BURNING POINT IN A TUBE HOUSING |
US20110118610A1 (en) * | 2008-07-10 | 2011-05-19 | Koninklijke Philips Electronics N.V. | An optical image probe |
WO2010073127A2 (en) * | 2008-12-23 | 2010-07-01 | Varioptic S.A. | Optical electrowetting device |
US7978346B1 (en) | 2009-02-18 | 2011-07-12 | University Of Central Florida Research Foundation, Inc. | Methods and systems for realizing high resolution three-dimensional optical imaging |
AU2010234888B2 (en) | 2009-04-10 | 2014-06-26 | Blackeye Optics, Llc | Variable power optical system |
JP2011013582A (ja) | 2009-07-03 | 2011-01-20 | Sony Corp | ズームレンズ、カメラモジュール、電子機器、及びズームレンズの設計方法 |
WO2012010201A1 (en) * | 2010-07-20 | 2012-01-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fluidic variable focal length optical lens and method for manufacturing the same |
CN103384491B (zh) * | 2010-12-01 | 2016-08-10 | 阿德伦丝必康公司 | 基于液体透镜技术的可变焦度内窥镜 |
KR101849974B1 (ko) | 2011-09-16 | 2018-04-19 | 삼성전자주식회사 | 개구수 제어 유닛, 이를 채용한 가변형 광 프로브 및 깊이 스캐닝 방법 |
-
2012
- 2012-09-28 KR KR1020120109260A patent/KR101942976B1/ko active IP Right Grant
-
2013
- 2013-09-30 US US14/040,851 patent/US9411155B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254474A1 (en) | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
US20060256448A1 (en) | 2005-05-16 | 2006-11-16 | Samsung Electro-Mechanics Co., Ltd. | Variable-focus lens and fabrication method thereof |
US20070156021A1 (en) * | 2005-09-14 | 2007-07-05 | Bradford Morse | Remote imaging apparatus having an adaptive lens |
JP2009128791A (ja) * | 2007-11-27 | 2009-06-11 | Sony Corp | 光学素子 |
US20090147372A1 (en) * | 2007-12-11 | 2009-06-11 | Hon Hai Precision Industry Co., Ltd. | Liquid lens group |
US20120013990A1 (en) | 2010-07-16 | 2012-01-19 | Canon Kabushiki Kaisha | Zoom lens |
Also Published As
Publication number | Publication date |
---|---|
KR20140042464A (ko) | 2014-04-07 |
US20140092388A1 (en) | 2014-04-03 |
US9411155B2 (en) | 2016-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101942976B1 (ko) | 광학 줌 프로브 | |
KR101849974B1 (ko) | 개구수 제어 유닛, 이를 채용한 가변형 광 프로브 및 깊이 스캐닝 방법 | |
Tanguy et al. | Real-time Lissajous imaging with a low-voltage 2-axis MEMS scanner based on electrothermal actuation | |
JP2008504557A (ja) | マルチモードの光画像化方法及びその光ファイバスキャナ | |
CN102216828B (zh) | 光纤扫描探测器 | |
KR102146558B1 (ko) | 파이버 스캐닝 광 프로브 및 이를 구비한 의료 영상 기기 | |
US8184365B2 (en) | Optical instruments having dynamic focus | |
US20130066150A1 (en) | Zoom lens module and endoscope system including the same | |
US9880381B2 (en) | Varifocal lens, optical scanning probe including the varifocal lens, and medical apparatus including the optical scanning probe | |
KR20140089129A (ko) | 광학 줌 프로브 | |
KR102026741B1 (ko) | 광학 줌 프로브 | |
KR101854137B1 (ko) | 광 프로브 및 이를 위한 광학계 | |
Meinert et al. | Varifocal MOEMS fiber scanner for confocal endomicroscopy | |
Liu et al. | Technologies for depth scanning in miniature optical imaging systems | |
JP6959745B2 (ja) | 光学装置および眼科装置 | |
KR101919012B1 (ko) | 광 프로브 및 이를 포함하는 광 간섭 단층 촬영 장치 | |
US11259685B2 (en) | Endoscopic OCT probes with immersed MEMS mirrors | |
JP2015004570A (ja) | 光音響対物光学系及び光音響顕微鏡 | |
Zhang et al. | Deep learning-assisted 3D laser steering using an optofluidic laser scanner | |
WO2009115943A2 (en) | Optical system | |
KR101669214B1 (ko) | 바이모르프 액츄에이터를 채용한 렌즈 스캐닝 장치 | |
JP6812180B2 (ja) | 光学装置を使用した光路長変更装置および偏向装置、眼科装置 | |
CN116509327A (zh) | 基于液体透镜的跨尺度光声成像方法 | |
CN116519594A (zh) | 一种跨尺度光声成像系统 | |
Mandella et al. | Compact optical design for dual-axes confocal endoscopic microscopes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |