[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101926572B1 - Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same - Google Patents

Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101926572B1
KR101926572B1 KR1020150173521A KR20150173521A KR101926572B1 KR 101926572 B1 KR101926572 B1 KR 101926572B1 KR 1020150173521 A KR1020150173521 A KR 1020150173521A KR 20150173521 A KR20150173521 A KR 20150173521A KR 101926572 B1 KR101926572 B1 KR 101926572B1
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
lithium secondary
active material
manganese
Prior art date
Application number
KR1020150173521A
Other languages
Korean (ko)
Other versions
KR20170067085A (en
Inventor
최지훈
전인국
조승범
채화석
윤여준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020150173521A priority Critical patent/KR101926572B1/en
Publication of KR20170067085A publication Critical patent/KR20170067085A/en
Application granted granted Critical
Publication of KR101926572B1 publication Critical patent/KR101926572B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 구조적 안정성이 높은 LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)을 리튬 전이금속 산화물 입자의 표면에 코팅함으로써, Li2O-2B2O3 표면 코팅한 양극 활물질 대비 고전압 특성이 개선되고, 전해질과의 부반응을 최소화시켜 전지 안정성 및 사이클 특성이 개선된 이차전지를 제공할 수 있다. The present invention relates to a method for producing Li x M y BO 3 By coating the surface of the lithium transition metal oxide particle with at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn and 0.9? X? 1.1 and 0.9? Y? Li 2 O-2B 2 O 3 surface It is possible to provide a secondary battery in which high voltage characteristics are improved compared to a coated cathode active material, and side reactions with an electrolyte are minimized, thereby improving battery stability and cycle characteristics.

Description

리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 {CATHODE ACTIVE MATERIAL FOR A LITHIUM SECONDARY BATTERY, METHOD OF PREPARING FOR THE SAME, AND A LITHIUM SECONDARY BATTERY COMPRISING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery including the same. BACKGROUND ART [0002]

본 발명은 리튬 이차전지용 양극 활물질에 관한 것으로서, 구조적 안정성이 높은 LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)을 리튬 전이금속 산화물 입자의 표면에 코팅함으로써, 고전압 특성이 개선되고, 전해질과의 부반응이 억제되어 전지 안정성 및 사이클 특성이 개선된 이차전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a Li x M y BO 3 By coating the surface of the lithium transition metal oxide particle with at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn and 0.9? X? 1.1 and 0.9? Y? To a secondary battery in which high voltage characteristics are improved and side reactions with an electrolyte are suppressed to improve cell stability and cycle characteristics.

근래, 휴대전화, PDA, 랩탑 컴퓨터 등 휴대 전자기기를 비롯해 다방면에서 리튬 이차전지가 사용되고 있다. 특히 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차의 구동원으로서 높은 에너지 밀도와 방전 전압을 갖는 리튬 이차전지에 대한 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다. 한편 리튬 이차전지를 이러한 전기자동차의 구동원으로 사용하기 위해서는 높은 출력과 더불어 안정적으로 출력을 유지할 수 있어야 한다.2. Description of the Related Art In recent years, lithium secondary batteries have been used in many fields including portable electronic devices such as mobile phones, PDAs, and laptop computers. Especially, as the interest in environmental problems grows, it is one of the main causes of air pollution. As a driving source of electric vehicles that can replace fossil fuel vehicles such as gasoline vehicles and diesel vehicles, lithium secondary batteries Research on batteries has been actively conducted, and some of them are in the commercialization stage. On the other hand, in order to use a lithium secondary battery as a driving source of such an electric vehicle, it is necessary to maintain a stable output with a high output.

따라서, 고속 충, 방전시 용량 저하를 방지하고 전지 특성을 개선할 수 있는 새로운 양극재 및 이러한 양극재를 효과적, 경제적으로 제조할 수 있는 방법에 대한 개발이 요구되고 있다.Therefore, it is required to develop new cathode materials capable of preventing deterioration of capacity during high-speed charging and discharging and improving battery characteristics, and methods for efficiently and economically manufacturing such cathode materials.

붕소(B, Boron) 코팅은 LiMnO2에 처음 적용된 이후, 다양한 양극재에 적용되고 있다. 붕소는 녹는점이 낮고, 양극재 표면에서의 점도가 낮기 때문에 양극재 표면에 고르게 코팅되는 장점이 있다. Boron (B, Boron) coatings have been applied to various cathode materials since their first application to LiMnO 2 . Boron has a low melting point and low viscosity on the surface of the cathode material, which is advantageous in that it is uniformly coated on the surface of the cathode material.

양극재 표면에서의 붕소는 일반적으로 lithium borate glasses(Li2O-2B2O3) 형태로 존재하는 것으로 알려져 있고, lithium borate glasses 형태는 리튬 전도성을 가지기 때문에, 양극재 표면에 붕소 코팅된 경우에 방전 용량 및 충방전 효율이 증가하는 특성을 보여준다. Since boron on the surface of the cathode material is generally known to exist in the form of lithium borate glasses (Li 2 O-2B 2 O 3 ) and lithium borate glasses form has lithium conductivity, boron coating on the surface of the cathode material Discharge capacity and charge / discharge efficiency are increased.

하지만 lithium borate glasses는 양극재 표면에 결정화되지 않은 glasses형태로 존재하기 때문에, 고전압에서 충방전을 반복하게 되면 Li의 Intercalation/Deintercalation에 따른 양극재 부피변화와 전해액 등과의 부반응 으로 glasses형태가 불안정하게 되어, 양극재 표면 코팅 역할을 제대로 수행할 수 없는 문제가 있다. However, since lithium borate glasses exist in the form of uncrystallized glasses on the surface of the cathode material, if charging / discharging is repeated at high voltage, the shape of the glasses becomes unstable due to the change of anode material volume due to intercalation / deintercalation of Li and side reaction with electrolyte etc. , There is a problem that the cathode material can not perform the surface coating function properly.

따라서, borate 기반의 코팅 물질을 고전압 양극재에 적용하기 위해서는, glasses형태가 아닌 구조적 안정성이 높은 구조를 가지는 물질의 적용이 필요하다. Therefore, in order to apply a borate-based coating material to a high-voltage cathode material, it is necessary to apply a material having a structure having a high structural stability, not a glasses type.

이에, 본 발명자들은 상기 문제를 해결하고자 연구한 결과 구조적 안정성이 높은 LiMnBO3(lithium manganese borate)를 리튬 전이금속 산화물 입자의 표면에 코팅하는 경우 전지의 성능이 개선됨을 알게 되었다. As a result, the present inventors have found that the performance of the battery is improved when LiMnBO 3 (lithium manganese borate) having a high structural stability is coated on the surface of lithium transition metal oxide particles.

본 발명의 해결하고자 하는 과제는 구조적 안정성이 높은 LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)을 리튬 전이금속 산화물 입자의 표면에 코팅함으로써, Li2O-2B2O3 표면 코팅한 양극 활물질 대비 고전압 특성이 개선된 이차전지를 제공하는 것이다. The problem to be solved by the present invention is that Li x M y BO 3 By coating the surface of the lithium transition metal oxide particle with at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn and 0.9? X? 1.1 and 0.9? Y? Li 2 O-2B 2 O 3 surface And a secondary battery having improved high voltage characteristics compared to a coated cathode active material.

본 발명의 해결하고자 하는 다른 과제는 구조적 안정성이 높은 상기 코팅 물질을 사용함으로써, 전해질과의 부반응을 최소화시켜 전지 안정성 및 사이클 특성이 개선된 이차전지를 제공하는 것이다. Another object of the present invention is to provide a secondary battery having improved battery stability and cycle characteristics by minimizing side reactions with an electrolyte by using the coating material having high structural stability.

본 발명은 상기와 같은 과제를 해결하기 위한 것으로서, 리튬 전이금속 산화물 입자; 및 상기 리튬 전이금속 산화물 입자의 표면에 하기 화학식 1로 표시되는 붕소 화합물을 포함하는 코팅층을 포함하는 리튬 이차전지용 양극 활물질을 제공한다.The present invention has been made to solve the above problems, and it is an object of the present invention to provide a lithium transition metal oxide particle, And a coating layer comprising a boron compound represented by the following formula (1) on the surface of the lithium-transition metal oxide particle.

[화학식 1][Chemical Formula 1]

LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)Li x M y BO 3 (M = at least one element selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn, 0.9? X? 1.1, 0.9? Y?

또한, 본 발명은 a) 비수계 용매 하에 리튬 전구체, M 전구체(M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소.) 및 붕소 전구체를 혼합하여 혼합 용액을 준비하는 단계; b) 상기 혼합 용액을 0.6 내지 1.5 atm 하에서 150 내지 250 ℃의 온도에서 반응시켜 반응액을 준비하는 단계; c) 상기 반응액을 냉각 및 세척하여 붕소 화합물의 결정핵을 제조하는 단계; d) 상기 결정핵을 용매 하에 분산하여 코팅 용액을 준비하는 단계; 및 e) 상기 코팅 용액 및 리튬 전이금속 산화물 입자를 혼합 후 열처리하는 단계를 포함하는 리튬 이차전지용 양극 활물질 제조방법을 제공한다. The present invention also provides a method for preparing a mixed solution comprising a) mixing a lithium precursor, M precursor (at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn) and a boron precursor in a non- ; b) preparing a reaction solution by reacting the mixed solution at a temperature of from 150 to 250 캜 under a condition of from 0.6 to 1.5 atm; c) cooling and washing the reaction solution to prepare crystal nuclei of a boron compound; d) dispersing the crystal nuclei in a solvent to prepare a coating solution; And e) mixing the coating solution and the lithium-transition metal oxide particles followed by heat-treating the cathode active material for a lithium secondary battery.

또한, 본 발명은 본 발명에 따른 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극, 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다. The present invention also provides a lithium secondary battery including a positive electrode active material for a lithium secondary battery according to the present invention, and a lithium secondary battery including the positive electrode for the lithium secondary battery.

본 발명은 구조적 안정성이 높은 LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)을 리튬 전이금속 산화물 입자의 표면에 코팅함으로써, Li2O-2B2O3 표면 코팅한 양극 활물질 대비 고전압 특성이 개선되고, 전해질과의 부반응을 최소화시켜 전지 안정성 및 사이클 특성이 개선시킬 수 있는 이차전지를 제공할 수 있다. The present invention relates to a method for producing Li x M y BO 3 By coating the surface of the lithium transition metal oxide particle with at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn and 0.9? X? 1.1 and 0.9? Y? Li 2 O-2B 2 O 3 surface It is possible to provide a secondary battery having improved high voltage characteristics compared to a coated cathode active material and minimizing side reactions with an electrolyte to improve battery stability and cycle characteristics.

도 1은 본 발명의 실시예에 따라 LiMnBO3를 표면 코팅한 양극 활물질(LiNi0.6Mn0.2Co0.2O2)을 촬영한 SEM 사진이다(scale bar: 1.00μm).
도 2는 본 발명의 실시예에 따라 제조한 리튬 이차전지의 초기 50 사이클에 대한 충방전 그래프이다.
도 3은 본 발명의 비교예에 따라 제조한 리튬 이차전지의 초기 50 사이클에 대한 충방전 그래프이다.
도 4는 본 발명의 실시예에 따라 제조한 리튬 이차전지를 3일 rest한 다음 다시 50 사이클을 진행한 후 측정한 충방전 그래프이다.
도 5는 본 발명의 비교예에 따라 제조한 리튬 이차전지를 3일 rest한 다음 다시 50 사이클을 진행한 후 측정한 충방전 그래프이다.
도 6은 실시예 및 제조예에 따른 리튬 이차전지의 초기 50 사이클에 대한 방전 용량 그래프이다.
도 7은 실시예 및 제조예에 따른 리튬 이차전지를 3일 rest한 다음 다시 50 사이클을 진행한 후 측정한 방전 용량 그래프이다.
1 is a SEM photograph (scale bar: 1.00 m) of a cathode active material (LiNi 0.6 Mn 0.2 Co 0.2 O 2 ) coated with LiMnBO 3 according to an embodiment of the present invention.
FIG. 2 is a graph showing a charge / discharge cycle for an initial 50 cycles of a lithium secondary battery manufactured according to an embodiment of the present invention.
FIG. 3 is a graph showing charge / discharge cycles for an initial 50 cycles of a lithium secondary battery manufactured according to a comparative example of the present invention.
FIG. 4 is a graph of charge / discharge characteristics measured after restoration of a lithium secondary battery according to an embodiment of the present invention for 3 days followed by 50 cycles.
FIG. 5 is a graph showing the charge / discharge characteristics of a lithium secondary battery manufactured according to a comparative example of the present invention after resting for 3 days and then performing 50 cycles.
6 is a graph of discharge capacity for the initial 50 cycles of the lithium secondary battery according to the example and the production example.
FIG. 7 is a graph of a discharge capacity measured after restoration of lithium secondary batteries according to Examples and Production Examples for 3 days and then 50 cycles.

이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention. Herein, terms and words used in the present specification and claims should not be construed to be limited to ordinary or dictionary meanings, and the inventor may appropriately define the concept of the term to describe its own invention in the best way. It should be construed as meaning and concept consistent with the technical idea of the present invention.

본 발명은 리튬 전이금속 산화물 입자; 및 상기 리튬 전이금속 산화물 입자의 표면에 하기 화학식 1로 표시되는 붕소 화합물을 포함하는 코팅층을 포함하는 리튬 이차전지용 양극 활물질을 제공한다. The present invention relates to a lithium transition metal oxide particle; And a coating layer comprising a boron compound represented by the following formula (1) on the surface of the lithium-transition metal oxide particle.

[화학식 1][Chemical Formula 1]

LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)Li x M y BO 3 (M = at least one element selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn, 0.9? X? 1.1, 0.9? Y?

붕소(B, Boron)는 우수한 이온전도체로 알려져 있으며 4 V 급의 전위구간에서도 안정한 물질로 보고되고 있어 리튬 이차전지의 다양한 양극 활물질에 적용되고 있는 원소이다. Boron (B, Boron) is known as an excellent ion conductor, and it is reported to be stable even in the potential range of 4 V. It is an element that is applied to various cathode active materials of lithium secondary batteries.

상기 붕소 화합물을 포함하는 코팅층은 리튬 전이금속 산화물 입자의 표면적을 줄임으로써 전해질과의 반응성을 억제할 수 있으며 입자 표면의 결함(defect)을 채워주는 역할을 할 수 있다. The coating layer containing the boron compound can reduce the surface area of the lithium-transition metal oxide particles, thereby restricting the reactivity with the electrolyte and filling the defects of the particle surface.

본 발명의 일 실시예에 따르면, 상기 화학식 1의 LixMyBO3 에 있어서 M은 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu) 및 아연(Zn)으로 이루어진 군에서 선택되는 어느 하나 이상의 원소일 수 있으며, 가장 바람직하게는 망간(Mn)일 수 있다.According to one embodiment of the present invention, in the Li x M y BO 3 of Formula 1, M is at least one selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn), and most preferably, it may be manganese (Mn).

상기 붕소 화합물을 포함하는 코팅층의 형태는 단일층 또는 복수층의 레이어 형태 또는 아일랜드(island) 형태일 수 있다. 레이어 형태인 경우, 균일한 코팅으로 인해 상기 효과를 기대할 수 있으며 아일랜드 형태의 경우는 리튬 전이금속 산화물 입자의 표면상의 특정 활성점과 선택적으로 반응하여 부반응 제어의 효과가 크게 나타나면서 전지 특성의 향상과 함께 열적 안정성이 개선되는 효과를 기대할 수 있다.The form of the coating layer comprising the boron compound may be in the form of a single layer or a plurality of layers or in the form of an island. In the case of the layer form, the above effect can be expected due to the uniform coating, and in the case of the island type, the side reaction control effect is remarkably enhanced by selectively reacting with a specific active site on the surface of the lithium transition metal oxide particle, An effect of improving the thermal stability together can be expected.

본 발명의 일 실시예에 따르면, 상기 붕소 화합물은 리튬 전이금속 산화물 입자의 총 중량 대비 500 내지 5000 ppm일 수 있고, 보다 바람직하게는 1000 내지 3000 ppm일 수 있다. 상기 붕소 화합물이 1000 ppm미만인 경우, 전해액 분해나 리튬 전이금속 산화물의 결정 구조의 붕괴 억제, 또는 이온 전도성이 저하될 수 있으며, 3000 ppm초과인 경우, 초기용량 감소 및 충방전 효율의 감소가 나타나는 문제가 있을 수 있다. According to an embodiment of the present invention, the boron compound may be 500 to 5000 ppm, more preferably 1000 to 3000 ppm, based on the total weight of the lithium transition metal oxide particles. When the amount of the boron compound is less than 1000 ppm, decomposition of electrolytic solution, inhibition of crystal structure collapse of lithium transition metal oxide, or ion conductivity may be deteriorated. When the boron compound is more than 3000 ppm, reduction in initial capacity and decrease in charge / .

본 발명의 일 실시예에 따르면, 상기 코팅층의 두께는 10 내지 100 nm일 수 있고, 바람직하게는 10 내지 50 nm일 수 있다. 상기 코팅층의 두께가 10 nm 미만인 경우, 상기 붕소 화합물의 코팅의 효과가 미미할 수 있으며, 100 nm 초과인 경우, 초기용량 감소 및 리튬 전이금속 산화물 입자의 표면에서의 전기 전도도 저하로 고율 특성 및 수명 특성의 저하가 나타나는 문제가 있을 수 있다. According to an embodiment of the present invention, the thickness of the coating layer may be 10 to 100 nm, preferably 10 to 50 nm. When the thickness of the coating layer is less than 10 nm, the effect of coating of the boron compound may be insignificant. When the thickness of the coating layer is more than 100 nm, the initial capacity decrease and the electric conductivity at the surface of the lithium- There may be a problem in that degradation of the film is caused.

본 발명의 일 실시예에 따르면, 상기 붕소 화합물은 LiMnBO3을 포함하는 것일 수 있다.According to an embodiment of the present invention, the boron compound may include LiMnBO 3 .

한편, Polyanion structure를 가지는 물질(예를 들어 PO4 3-, SO4 2-, SiO4 4 - 또는 BO3 3- 등)은 안정한 구조를 가지기 때문에 고전압이나 열적 안정성이 우수하다는 특징이 있는데, BO3 3- 구조를 가지는 LixMyBO3(M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1) 는 PO4 3- 구조와 비슷하게 강한 B-O 결합력에 의해 안정된 구조를 가지고 있어, LiPF6 기본으로 하는 전해질과도 부반응이 없다는 장점이 있다. On the other hand, a material having a polyanion structure (for example, PO 4 3- , SO 4 2- , SiO 4 4 -, BO 3 3-, etc.) has a stable structure and is characterized by excellent high voltage and thermal stability. 3 Li x has a three- gujo M y BO 3 (M = Mn , Fe, Co, Ni, and any one or more elements selected from the group consisting of Cu and Zn, 0.9≤x≤1.1, 0.9≤y≤1.1) Has a stable structure due to strong BO binding force similar to the PO 4 3- structure, and LiPF 6 To There is also an advantage that there is no side reaction with the basic electrolyte.

그 중에서 특히, LiMnBO3(lithium manganese borate)는 고에너지 저장 용량이 우수한 효과가 있어 리튬 이차전지 외에도 다양한 에너지 저장 매체에 적용될 수 있다. Among them, LiMnBO 3 (lithium manganese borate) has a high energy storage capacity and can be applied to various energy storage media in addition to lithium secondary batteries.

본 발명의 일 실시예에 따르면, 상기 리튬 전이금속 산화물 입자는 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1 -yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 -yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. According to an embodiment of the present invention, the lithium transition metal oxide particles include Li x CoO 2 (0.5 <x <1.3), Li x NiO 2 (0.5 <x <1.3), Li x MnO 2 ), Li x Mn 2 O 4 (0.5 <x <1.3), Li x (Ni a Co b Mn c) O 2 (0.5 <x <1.3, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), Li x Ni 1 -y Co y O 2 (0.5 <x <1.3, 0 <y <1), LixCo 1 - y Mn y O 2 (0.5 <x <1.3 , 0≤y <1), Li x Ni 1 -y Mn y O 2 (0.5 <x <1.3, O≤y <1), Li x (Ni a Co b Mn c) O 4 (0.5 <x <1.3 , 0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), Li x Mn 2 - z Ni z O 4 (0.5 <x <1.3, 0 <z <2 ), Li x Mn 2 - z Co z O 4 (0.5 ≦ x ≦ 1.3, 0 ≦ z ≦ 2), Li x CoPO 4 (0.5 ≦ x ≦ 1.3) and Li x FePO 4 And at least one selected from the group consisting of

또한, 본 발명은 a) 비수계 용매 하에 리튬 전구체, M 전구체(M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소.), 붕소 전구체를 혼합하여 혼합 용액을 준비하는 단계; b) 상기 혼합 용액을 0.6 내지 1.5 atm 하에서 150 내지 250 ℃의 온도에서 반응시켜 반응액을 준비하는 단계; c) 상기 반응액을 냉각 및 세척하여 붕소 화합물의 결정핵을 제조하는 단계; d) 상기 결정핵을 용매 하에 분산하여 코팅 용액을 준비하는 단계; 및 e) 상기 코팅 용액 및 리튬 전이금속 산화물 입자를 혼합 후 열처리하는 단계를 포함하는 리튬 이차전지용 양극 활물질 제조방법을 제공한다. The present invention also relates to a method for preparing a mixed solution comprising a) mixing a lithium precursor, M precursor (at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn) and a boron precursor in a non- ; b) preparing a reaction solution by reacting the mixed solution at a temperature of from 150 to 250 캜 under a condition of from 0.6 to 1.5 atm; c) cooling and washing the reaction solution to prepare crystal nuclei of a boron compound; d) dispersing the crystal nuclei in a solvent to prepare a coating solution; And e) mixing the coating solution and the lithium-transition metal oxide particles followed by heat-treating the cathode active material for a lithium secondary battery.

본 발명의 일 실시예에 따르면, 상기 a) 단계의 비수계 용매는 분자 중에 하이드록실기를 2개 이상 갖는 폴리올로서 에틸렌글리콜, 1,2-프로판온디올, 1,3-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 네올펜틸글리콜, 펜탄디올, 1,6-헥산디올, 1,8-옥탄디올, 1,10-데칸디올, 4,4'-디히드록시페닐프로판, 4,4'-디히드록시메틸메탄, 디에틸렌글리콜, 트리에틸렌글리콜, 폴리에틸렌글리콜, 디프로필렌글리콜, 폴리프로필렌글리콜, 1,4-시클로헥산디메탄올 및 1,4-시클로헥산디올로 이루어진 군에서 선택되는 하나 이상일 수 있다. According to an embodiment of the present invention, the non-aqueous solvent in step a) is a polyol having two or more hydroxyl groups in the molecule, such as ethylene glycol, 1,2-propanediol, 1,3- Butanediol, neopentyl glycol, pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 4,4'-dihydroxyphenylpropane, 4 , 4'-dihydroxymethylmethane, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, 1,4-cyclohexanedimethanol and 1,4-cyclohexanediol Lt; / RTI &gt;

상기 폴리올로서는 분자 중에 하이드록실기를 2개 이상 갖는 것이면 특별히 한정되지 않으며, 임의의 적절한 폴리올을 사용할 수 있다.The polyol is not particularly limited as long as it has two or more hydroxyl groups in the molecule, and any suitable polyol can be used.

본 발명의 일 실시예에 따르면, 상기 a) 단계의 리튬 전구체는 리튬 클로라이드, 리튬 카보네이트, 리튬 하이드록사이드, 리튬 옥살레이트, 리튬 아세테이트, 리튬 옥사이드, 리튬 설페이트, 리튬 포스페이트 및 리튬 나이트레이트로 이루어진 군에서 선택되는 하나 이상일 수 있다. According to an embodiment of the present invention, the lithium precursor in step a) is at least one selected from the group consisting of lithium chloride, lithium carbonate, lithium hydroxide, lithium oxalate, lithium acetate, lithium oxide, lithium sulfate, lithium phosphate and lithium nitrate &Lt; / RTI &gt;

또한, 상기 a) 단계의 M 전구체는 망간 클로라이드, 망간 카보네이트, 망간 옥살레이트, 망간 아세테이트, 망간 옥사이드, 망간 설페이트, 망간 포스페이트 및 망간 나이트레이트로 이루어진 군에서 선택되는 하나 이상일 수 있다. The M precursor of step a) may be at least one selected from the group consisting of manganese chloride, manganese carbonate, manganese oxalate, manganese acetate, manganese oxide, manganese sulfate, manganese phosphate and manganese nitrate.

또한, 상기 a) 단계의 붕소 전구체는 붕산, 오르토 붕산, 메타 붕산, 2붕산, 3붕산 및 4붕산 등의 폴리 붕산 및 이들의 염으로 이루어진 군에서 선택되는 하나 이상일 수 있다. In addition, the boron precursor in step a) may be at least one selected from the group consisting of boric acid, orthoboric acid, metaboric acid, boric acid, boric acid, tetraboric acid and tetraboric acid, and polybasic acid and salts thereof.

위와 같이, 본 발명의 리튬 이차전지용 양극 활물질 제조방법은 비수계 용매를 이용하여 상대적으로 저온에서 0.6 내지 1.5 atm 하에서 제조하는 바, 고온 고압이 필요하지 않아 공정이 간단하고 비용이 절약되는 공정상의 이점이 존재한다. As described above, the method of the present invention for producing a cathode active material for a lithium secondary battery is manufactured at a relatively low temperature of 0.6 to 1.5 atm using a nonaqueous solvent, and the advantage of a simple and cost- Lt; / RTI &gt;

본 발명의 일 실시예에 따르면, 상기 b) 단계의 반응은 1 내지 24시간 동안 수행될 수 있다. 반응 시간이 1 시간 미만인 경우, 전구체 간의 반응이 일어나기 어려우며, 반응 시간이 24 시간 초과인 경우, 전구체 간의 반응이 충분히 이루어졌기 때문에 공정 상의 이점이 없다. According to an embodiment of the present invention, the reaction of step b) may be carried out for 1 to 24 hours. If the reaction time is less than 1 hour, the reaction between the precursors is difficult to occur. If the reaction time exceeds 24 hours, there is no process advantage because the reaction between the precursors is sufficiently performed.

본 발명의 일 실시예에 따르면, 상기 c) 단계의 세척은 아세톤 또는 메틸에틸케톤 등의 케톤류; 테트라하이드로푸란 등의 에테르류; 메탄올, 에탄올, 프로판올, 이소프로판올 또는 부탄올 등의 알코올류; 아세트산에틸 등의 에스테르류 등에 의해 수행될 수 있다. According to an embodiment of the present invention, the washing in step c) may be carried out using ketones such as acetone or methyl ethyl ketone; Ethers such as tetrahydrofuran; Alcohols such as methanol, ethanol, propanol, isopropanol or butanol; Esters such as ethyl acetate and the like.

한편, c) 및 d) 단계에서 붕소 화합물의 결정을 제조하기 전에 먼저 결정핵을 제조하여 이를 포함하는 코팅 용액을 준비하는 것은 리튬 이차전지용 양극 활물질 제조방법의 총 공정 시간을 줄일 수 있기 때문이며, 결정핵 상태가 결정 상태보다 접착력이 우수하여 리튬 전이금속 산화물 입자의 표면에 보다 균일한 코팅이 가능하기 때문이다. On the other hand, preparing the crystal nuclei before preparing the crystal of the boron compound in steps c) and d) and preparing the coating solution containing the crystal nuclei can reduce the total process time of the method for producing the cathode active material for a lithium secondary battery, This is because the nuclear state is more adhesive than the crystalline state, and the lithium transition metal oxide particles can be more uniformly coated on the surface thereof.

본 발명의 일 실시예에 따르면, e) 단계의 열처리는 300 내지 800 ℃에서 수행될 수 있다. 열처리 온도가 300 ℃ 미만인 경우에는, 구조적으로 안정한 코팅층이 형성되기 위한 결정화가 충분히 이루어지지 않을 수 있으며, 800 ℃ 초과인 경우에는 코팅 물질이 양극재 안으로 확산(diffusion)하여 들어가 코팅층의 역할을 못하게 되는 문제가 있을 수 있다. According to an embodiment of the present invention, the heat treatment in step e) may be performed at 300 to 800 ° C. When the heat treatment temperature is lower than 300 ° C, crystallization for forming a structurally stable coating layer may not be sufficiently performed. If the heat treatment temperature is higher than 800 ° C, the coating material may diffuse into the cathode material, There may be a problem.

또한, 본 발명은 본 발명에 따른 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공하며, 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다. The present invention also provides a lithium secondary battery positive electrode comprising the positive electrode active material for a lithium secondary battery according to the present invention, and a lithium secondary battery including the positive electrode for the lithium secondary battery.

본 발명의 리튬 이차전지는 당 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 분리막을 넣고 리튬염이 용해되어 있는 전해액을 투입하여 제조할 수 있다.The lithium secondary battery of the present invention can be produced by a conventional method known in the art. For example, a separation membrane may be placed between the anode and the cathode, and an electrolyte solution in which a lithium salt is dissolved may be added.

리튬 이차전지의 전극 역시 당 분야에 알려진 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질 또는 음극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산재를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 전극을 제조할 수 있다.The electrode of the lithium secondary battery may also be manufactured by a conventional method known in the art. For example, a slurry is prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant, if necessary, in a cathode active material or a negative electrode active material, applying the coating to a current collector of a metal material, Can be manufactured.

특히 본 발명의 일 실시예에 따른 리튬 이차전지용 양극은 구조적 안정성이 높은 LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)을 리튬 전이금속 산화물 입자의 표면에 코팅함으로써, 고전압 특성이 개선되고, 전해질과의 부반응을 최소화시켜 전지 안정성 및 사이클 특성이 개선된 이차전지를 제공할 수 있다.In particular, the positive electrode for a lithium secondary battery according to an embodiment of the present invention includes Li x M y BO 3 By coating the surface of the lithium transition metal oxide particle with at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn and 0.9? X? 1.1 and 0.9? Y? It is possible to provide a secondary battery in which high voltage characteristics are improved and side reactions with an electrolyte are minimized to improve battery stability and cycle characteristics.

본 발명의 양극 활물질은 상술한 바와 같으며, 음극 활물질은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (mesocarbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.The positive electrode active material of the present invention is as described above, and the negative electrode active material is typically a carbonaceous material, lithium metal, silicon, or tin capable of intercalating and deintercalating lithium ions. Preferably, carbon materials can be used, and carbon materials such as low-crystalline carbon and highly-crystalline carbon can be used. Examples of the low crystalline carbon include soft carbon and hard carbon. Examples of highly crystalline carbon include natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber high temperature sintered carbon such as mesophase pitch based carbon fiber, mesocarbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes are representative.

금속 재료의 집전체는 전도성이 높고 상기 전극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.The current collector of the metal material is a metal having high conductivity and easily adhered to the slurry of the electrode active material, and any material can be used as long as it is not reactive in the voltage range of the battery. Non-limiting examples of the positive electrode current collector include aluminum, nickel, or a foil produced by a combination of these. Non-limiting examples of the negative electrode current collector include copper, gold, nickel, or a copper alloy or a combination thereof Foil and so on.

도전재는 당업계에서 일반적으로 사용될 수 있는 것이라면 특별하게 제한되지 않으나, 예를 들면, 인조 흑연, 천연 흑연, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 탄소 섬유, 금속 섬유, 알루미늄, 주석, 비스무트, 실리콘, 안티몬, 니켈, 구리, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 아연, 몰리브덴, 텅스텐, 은, 금, 란타늄, 루테늄, 백금, 이리듐, 산화티탄, 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 또는 이들의 조합 등이 적용될 수 있으며, 일반적으로는 카본 블랙계 도전재가 자주 사용될 수 있다.The conductive material is not particularly limited as long as it can be generally used in the art, and examples thereof include synthetic graphite, natural graphite, carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, carbon fiber, , Aluminum, tin, bismuth, silicon, antimony, nickel, copper, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, lanthanum, ruthenium, platinum, iridium, Polythiophene, polyacetylene, polypyrrole, or a combination thereof. In general, a carbon black-based conductive material may be used.

바인더는 당업계에서 일반적으로 사용될 수 있는 것이라면 특별하게 제한되지 않으나, 일반적으로, 폴리비닐리덴플루오라이드 (PVdF), 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체 (PVdF/HFP), 폴리(비닐아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬화 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌 (PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌프로필렌디엔모노머 (EPDM) 또는 이들의 혼합물 등이 사용될 수 있다.The binder is not particularly limited as long as it can be generally used in the art, and generally, a binder such as polyvinylidene fluoride (PVdF), a copolymer of polyhexafluoropropylene-polyvinylidene fluoride (PVdF / HFP), poly (Vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), poly (ethyl acrylate), polytetrafluoroethylene (PTFE) Polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene propylene diene monomer (EPDM) or a mixture thereof may be used.

본 발명에 따른 리튬 이차전지에 포함되는 전해액은 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤(GBL), 플루오르에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 초산 메틸, 초산 에틸, 초산 프로필, 초산 펜틸, 프로 피온산 메틸, 프로피온산 에틸, 프로피온산 에틸 및 프로피온산 부틸로 이루어진 군으로부터 선택되는 하나 이상의 혼합 유기 용매일 수 있다. The electrolytic solution contained in the lithium secondary battery according to the present invention may be at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethylsulfoxide (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate (methyl ethyl ketone , At least one mixed organic solvent selected from the group consisting of ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, ethyl propionate and butyl propionate.

또한, 본 발명에 따른 상기 전해액은 리튬염을 더 포함할 수 있으며, 상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, F3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 1종 이상일 수 있다. Further, the electrolyte according to the present invention may further include a lithium salt, and the anion of the lithium salt may be an anion selected from the group consisting of F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P - , F 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5 ) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and ( CF 3 CF 2 SO 2 ) 2 N - .

본 발명에 따른 이차전지는 원통형, 각형, 파우치형 이차전지일 수 있으나, 충방전 디바이스에 해당하는 것이라면 이에 제한되는 것은 아니다.The secondary battery according to the present invention may be a cylindrical, square, or pouch type secondary battery, but is not limited thereto.

또한, 본 발명은 상기 리튬 이차전지를 단위 셀로 포함하는 전지모듈 및 이를 포함하는 전지팩을 제공할 수 있다. In addition, the present invention can provide a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.

상기 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템으로 이루어진 군에서 선택되는 1종 이상의 중대형 디바이스 전원으로 사용될 수 있다. The battery pack includes a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Or a system for power storage. &Lt; RTI ID = 0.0 &gt; [0027] &lt; / RTI &gt;

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

실시예Example

1) 리튬 이차전지용 양극 제조1) Preparation of positive electrode for lithium secondary battery

500 ml의 1,4-부탄디올에 수산화 리튬(LiOH·H2O), 망간 아세테이트((CH3COO)2Mn·4H2O), 붕산(HBO3)을 몰 기준으로 1:1:1 비율로 순차적으로 투입하고 혼합하여 혼합용액을 제조하였다. 상기 혼합 용액을 상압 반응기에 투입한 다음, 190 내지 220 ℃로 승온하면서 1 내지 24 시간 동안 반응시켰다. 반응 종결 후, 남아있는 반응액을 냉각하고, 이를 메탄올을 이용하여 세척하여 LiMnBO3 결정핵(seed)를 제조하였다. 합성된 결정핵을 에탄올에 적당한 농도로 분산하여 코팅 용액을 제조한 다음, 리튬 니켈망간코발트 산화물(LiNi0 . 6Mn0 . 2Co0 . 2O2) 20 g과 혼합하여 리튬 니켈망간코발트 산화물 입자의 표면에 리튬 니켈망간코발트 산화물 입자의 총 중량 대비 2000 ppm의 농도로 코팅을 하였다. 이어서 air 분위기에서 400 ℃ 에서 열처리하였다. Lithium hydroxide (LiOH · H 2 O) in 500 ml of 1,4-butanediol, manganese acetate ((CH 3 COO) 2 Mn · 4H 2 O), boric acid in the first (HBO 3) on a molar basis: 1: 1 ratio , And mixed to prepare a mixed solution. The mixed solution was introduced into an atmospheric pressure reactor, and the mixture was reacted for 1 to 24 hours while being heated to 190 to 220 ° C. After the completion of the reaction, the remaining reaction solution was cooled, washed with methanol to obtain LiMnBO 3 A seed crystal was prepared. To prepare a coating solution by dispersing the appropriate concentration of the nucleated composite in ethanol, lithium nickel manganese cobalt oxide (LiNi 0. 6 Mn 0. 2 Co 0. 2 O 2) 20 g and mixed with the lithium nickel manganese cobalt oxide The surface of the particles was coated with a concentration of 2000 ppm based on the total weight of the lithium nickel manganese cobalt oxide particles. Followed by heat treatment at 400 占 폚 in an air atmosphere.

상기 LiMnBO3가 코팅된 양극 활물질(LiNi0 . 6Mn0 . 2Co0 . 2O2), 바인더(KF1100), 도전재(Super-C)를 각각 93:4:3의 중량비로 용매(N-methyl-2-pyrrolidone, NMP)에 혼합하여 양극 슬러리를 제조하였다. The LiMnBO 3 coated positive electrode active material (... LiNi 0 6 Mn 0 2 Co 0 2 O 2), a binder (KF1100), conductive material (Super-C) 93, respectively: 4: solvent weight ratio of 3 (N -methyl-2-pyrrolidone, NMP) to prepare a positive electrode slurry.

상기 양극 슬러리를 두께 20 ㎛ 의 양극 집전체인 알루미늄(Al) 박막 일면에 도포하고 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 가공하였다.The positive electrode slurry was coated on one surface of an aluminum (Al) thin film as a positive electrode current collector having a thickness of 20 占 퐉 and dried to prepare a positive electrode, followed by roll pressing to process the positive electrode.

2) 리튬 이차전지의 제조2) Preparation of lithium secondary battery

음극은 리튬 금속을 사용하였으며, 전해액은 에틸렌 카보네이트(Ethylene Carbonate), 디에틸 카보네이트(Diethyl Carbonate) 및 디메틸 카보네이트(Dimethyl Carbonate)를 1:1:2의 부피 비율로 혼합한 용매에 비닐렌 카보네이트(Vinylene Carbonate)를 첨가한 용매에 1몰의 LiPF6 를 용해하여 제조하였다. Lithium metal was used as the cathode. The electrolytic solution was prepared by mixing ethylene carbonate (ethylene carbonate), diethyl carbonate (carbonate) and dimethyl carbonate (carbonate) in a volume ratio of 1: 1: Carbonate) was added 1 mol of LiPF 6 .

이와 같이 제조된 양극 및 음극을 분리막과 함께 통상적인 방법으로 전지를 제작한 후, 상기 제조된 전해액을 주액하여 리튬 이차전지(코인셀)의 제조를 완성하였다.The thus prepared positive electrode and negative electrode were combined with a separator to prepare a battery by a conventional method, and then the prepared electrolyte was injected to complete the preparation of a lithium secondary battery (coin cell).

비교예Comparative Example

상기 실시예의 리튬 이차전지용 양극의 제조에서, LiMnBO3가 아닌 붕산(HBO3)을 리튬 전이금속 산화물 입자의 총 중량 대비 500 ppm 첨가하여, 300 ℃에서 5 시간 동안 열처리하여 lithium borate glasses(Li2O-2B2O3) 코팅층을 형성한 것을 제외하고는 실시예와 동일한 방법으로 리튬 이차전지를 제조하였다. In the production of the embodiment of a lithium secondary battery positive electrode, and the boric acid (HBO 3) non-LiMnBO 3 lithium transition added 500 ppm total, based on the weight of the metal oxide particles, by heating at 300 ℃ for 5 hours, lithium borate glasses (Li 2 O -2B 2 O 3 ) coating layer was formed in the same manner as in Example 1.

실험예Experimental Example 1: 전자현미경( 1: Electron microscope ( SEMSEM ) 사진 촬영) Photo shoot

상기 실시예에 따라 제조된 LiMnBO3를 표면 코팅한 양극 활물질(LiNi0.6Mn0.2Co0.2O2)에 대해 전자현미경(SEM) 사진을 촬영하였다(도 1)An electron microscope (SEM) photograph was taken of the cathode active material (LiNi 0.6 Mn 0.2 Co 0.2 O 2 ) surface-coated with LiMnBO 3 prepared according to the above example (FIG. 1)

실험예Experimental Example 2:  2: 충방전Charging and discharging 특성 측정 Characterization

상기 실시예 및 제조예에 따라 제조된 리튬 이차전지를 3.0 - 4.6 V 범위에서의 사이클에 따른 충방전 특성을 측정하였다. 충방전의 율속은 0.5 C로 측정하였다. The charge and discharge characteristics of the lithium secondary battery produced according to the above Examples and Production Examples were measured in the range of 3.0 to 4.6 V according to the cycle. The rate of charge / discharge was measured at 0.5 C.

4.6 V 에서 초기 50 사이클을 진행한 경우, 비교예(도 3)의 경우, 방전 용량의 감소폭이 실시예(도 2)보다 크게 나타났다. When the initial 50 cycles were carried out at 4.6 V, in the case of the comparative example (Fig. 3), the decrease width of the discharge capacity was larger than that of the example (Fig. 2).

3일의 rest 이후에 추가로 50 사이클을 진행한 경우, 비교예(도 5)의 경우, 사이클이 진행됨에 따라 실시예(도 4)에 따른 리튬 이차전지에 비해 방전 초기의 전압이 지속적으로 감소하는 것을 확인할 수 있었다. 반면 실시예의 경우에는 방전 초기 전압이 사이클이 진행되어도 일정 수준을 유지하였다.  In the case of the comparative example (FIG. 5), the voltage at the initial stage of the discharge is continuously decreased as compared with the lithium secondary battery according to the embodiment (FIG. 4) . On the other hand, in the case of the embodiment, the initial discharge voltage maintained a constant level even when the cycle progressed.

이는 비교예의 경우 lithium borate glasses(Li2O-2B2O3) 코팅층이 구조적으로 안정하지 않아, 전해액과의 부반응이 일어나고, 고전압에서 충방전을 반복하는 경우 사이클이 진행됨에 따라 양극 활물질의 전이금속이 용출되는 것에 따른 것이다. In the comparative example, the lithium borate glasses (Li 2 O-2B 2 O 3 ) coating layer is structurally unstable and side reactions with the electrolytic solution occur, and when charging and discharging are repeated at a high voltage, the transition metal Is eluted.

반면 실시예의 경우 LiMnBO3 는 구조적으로 안정하여, 고전압 특성이 개선되고, 전해질과의 부반응을 최소화시켜 전지 안정성 및 사이클 특성이 개선된 것에 따른 것이다. On the other hand, LiMnBO 3 Is structurally stable, resulting in improved high-voltage characteristics and minimized side reactions with electrolytes, thereby improving battery stability and cycle characteristics.

실험예Experimental Example 3: 방전 용량 측정 3: Measurement of discharge capacity

상기 실시예 및 비교예에 따라 제조된 리튬 이차전지를 3.0 - 4.6 V 범위에서의 사이클에 따른 방전 용량을 측정하였다. 충방전의 율속은 0.5 C로 측정하였다. The discharge capacity of the lithium secondary battery manufactured according to the above Examples and Comparative Examples was measured in the range of 3.0 to 4.6 V according to the cycle. The rate of charge / discharge was measured at 0.5 C.

4.6 V 에서 초기 50 사이클을 진행한 경우(도 6), 비교예의 경우, 사이클이 진행됨에 따라 지속적으로 용량이 감소하는 반면, 실시예는 사이클이 진행됨에 따라 용량은 다소 감소하지만 감소 폭이 비교예에 비하여 현저히 작은 것을 확인할 수 있었다. In the case of the initial 50 cycles at 4.6 V (FIG. 6), in the case of the comparative example, as the cycle progresses, the capacity decreases steadily while the embodiment decreases the capacity somewhat as the cycle progresses, Which is significantly smaller than that of the conventional method.

3일의 rest 이후에 추가로 50 사이클을 진행한 경우(도 7), 비교예의 경우 방전 용량이 실시예와 비슷한 수준으로 회복하였지만, 3일 rest 이후의 25 사이클 이후(총 75 사이클)에 방전 용량이 급속히 저하되는 것을 확인할 수 있었다. 반면 실시예의 방전 용량의 감소폭은 급속히 증가하지 않고, 일정 수준의 용량을 유지하는 것을 확인할 수 있었다.7). In the case of the comparative example, the discharge capacity was recovered to a level similar to that of the embodiment, but the discharging capacity after 25 cycles after the rest of 3 days (total of 75 cycles) It was confirmed that the temperature was rapidly lowered. On the other hand, it was confirmed that the decrease in the discharge capacity of the embodiment did not rapidly increase, and the capacity was maintained at a constant level.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (14)

리튬 전이금속 산화물 입자; 및
상기 리튬 전이금속 산화물 입자의 표면에 하기 화학식 1로 표시되는 붕소 화합물을 포함하는 코팅층을 포함하는 리튬 이차전지용 양극 활물질.
[화학식 1]
LixMyBO3 (M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤x≤1.1, 0.9≤y≤1.1)
Lithium transition metal oxide particles; And
And a coating layer comprising a boron compound represented by the following formula (1) on the surface of the lithium-transition metal oxide particle.
[Chemical Formula 1]
Li x M y BO 3 (M = at least one element selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn, 0.9? X? 1.1, 0.9? Y?
제1항에 있어서,
상기 붕소 화합물은 리튬 전이금속 산화물 입자의 총 중량 대비 1000 내지 3000 ppm인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
The method according to claim 1,
Wherein the boron compound is present in an amount of 1000 to 3000 ppm based on the total weight of the lithium transition metal oxide particles.
제1항에 있어서,
상기 코팅층의 두께는 10 내지 100 nm 인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
The method according to claim 1,
Wherein the coating layer has a thickness of 10 to 100 nm.
제1항에 있어서,
상기 붕소 화합물은 LiMnBO3을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
The method according to claim 1,
The boron compound is a lithium secondary battery positive electrode active material comprising the LiMnBO 3.
제1항에 있어서,
상기 리튬 전이금속 산화물 입자는 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1 - yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 - yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
The method according to claim 1,
The lithium transition metal oxide particles may include Li x CoO 2 (0.5 <x <1.3), Li x NiO 2 (0.5 <x <1.3), Li x MnO 2 (0.5 <x <1.3), Li x Mn 2 O 4 0.5 <x <1.3), Li x (Ni a Co b Mn c) O 2 (0.5 <x <1.3, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = Li x Ni 1 - y Co y O 2 (0.5 <x <1.3, 0 <y <1), Li x Co 1 - y Mn y O 2 x Ni 1 - y Mn y O 2 (0.5 <x <1.3, O≤y <1), Li x (Ni a Co b Mn c) O 4 (0.5 <x <1.3, 0 <a <2, 0 < Li x Mn 2 - z Ni z O 4 (0.5 <x <1.3, 0 <z <2), Li x Mn 2 - z Co z O 4 (0.5 <x <1.3, 0 <z <2), Li x CoPO 4 (0.5 <x <1.3) and Li x FePO 4 (0.5 <x <1.3) And a positive electrode active material for a lithium secondary battery.
a) 비수계 용매 하에 리튬 전구체, M 전구체(M= Mn, Fe, Co, Ni, Cu 및 Zn 으로 이루어진 군에서 선택되는 어느 하나 이상의 원소.) 및 붕소 전구체를 혼합하여 혼합 용액을 준비하는 단계;
b) 상기 혼합 용액을 0.6 내지 1.5 atm 하에서 150 내지 250 ℃의 온도에서 반응시켜 반응액을 준비하는 단계;
c) 상기 반응액을 냉각 및 세척하여 붕소 화합물의 결정핵을 제조하는 단계;
d) 상기 결정핵을 용매 하에 분산하여 코팅 용액을 준비하는 단계; 및
e) 상기 코팅 용액 및 리튬 전이금속 산화물 입자를 혼합 후 열처리하는 단계를 포함하는 리튬 이차전지용 양극 활물질 제조방법.
a) preparing a mixed solution by mixing a lithium precursor, an M precursor (at least one element selected from the group consisting of M, Mn, Fe, Co, Ni, Cu and Zn) and a boron precursor in a non-aqueous solvent;
b) preparing a reaction solution by reacting the mixed solution at a temperature of from 150 to 250 캜 under a condition of from 0.6 to 1.5 atm;
c) cooling and washing the reaction solution to prepare crystal nuclei of a boron compound;
d) dispersing the crystal nuclei in a solvent to prepare a coating solution; And
and e) mixing the coating solution and the lithium transition metal oxide particles and then heat-treating the lithium transition metal oxide particles.
제6항에 있어서,
상기 a) 단계의 비수계 용매는 에틸렌글리콜, 1,2-프로판온디올, 1,3-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 네올펜틸글리콜, 펜탄디올, 1,6-헥산디올, 1,8-옥탄디올, 1,10-데칸디올, 4,4'-디히드록시페닐프로판, 4,4'-디히드록시메틸메탄, 디에틸렌글리콜, 트리에틸렌글리콜, 폴리에틸렌글리콜, 디프로필렌글리콜, 폴리프로필렌글리콜, 1,4-시클로헥산디메탄올 및 1,4-시클로헥산디올로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method according to claim 6,
The nonaqueous solvent in step a) is selected from the group consisting of ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, Hexanediol, 1,8-octanediol, 1,10-decanediol, 4,4'-dihydroxyphenylpropane, 4,4'-dihydroxymethylmethane, diethylene glycol, triethylene glycol, polyethylene glycol, Dipropylene glycol, polypropylene glycol, 1,4-cyclohexanedimethanol, and 1,4-cyclohexanediol. 7. The method for producing a cathode active material for a lithium secondary battery according to claim 1,
제6항에 있어서,
상기 a) 단계의 리튬 전구체는 리튬 클로라이드, 리튬 카보네이트, 리튬 하이드록사이드, 리튬 옥살레이트, 리튬 아세테이트, 리튬 옥사이드, 리튬 설페이트, 리튬 포스페이트 및 리튬 나이트레이트로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method according to claim 6,
The lithium precursor in step a) is at least one selected from the group consisting of lithium chloride, lithium carbonate, lithium hydroxide, lithium oxalate, lithium acetate, lithium oxide, lithium sulfate, lithium phosphate and lithium nitrate Wherein the positive electrode active material is a lithium secondary battery.
제6항에 있어서,
상기 a) 단계의 M 전구체는 망간 클로라이드, 망간 카보네이트, 망간 옥살레이트, 망간 아세테이트, 망간 옥사이드, 망간 설페이트, 망간 포스페이트 및 망간 나이트레이트로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method according to claim 6,
The M precursor in step a) includes at least one selected from the group consisting of manganese chloride, manganese carbonate, manganese oxalate, manganese acetate, manganese oxide, manganese sulfate, manganese phosphate and manganese nitrate. A method for manufacturing a cathode active material for a battery.
제6항에 있어서,
상기 a) 단계의 붕소 전구체는 붕산, 오르토 붕산, 메타 붕산, 2붕산, 3붕산 및 4붕산 등의 폴리 붕산 및 이들의 염으로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method according to claim 6,
Wherein the boron precursor in step a) comprises at least one selected from the group consisting of boric acid, orthoboric acid, metaboric acid, polybasic acid such as boric acid, tetraboric acid and tetraboric acid, and salts thereof. A method for producing a cathode active material.
제6항에 있어서,
상기 b) 단계의 반응 시간은 1 내지 24 시간인 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method according to claim 6,
Wherein the reaction time in the step b) is 1 to 24 hours.
제6항에 있어서,
상기 e) 단계의 열처리는 300 내지 800 ℃에서 수행되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method according to claim 6,
Wherein the heat treatment in step e) is performed at 300 to 800 ° C.
제1항 내지 제5항 중 어느 한 항에 따른 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극.
A positive electrode for a lithium secondary battery comprising the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 5.
제13항에 따른 리튬 이차전지용 양극을 포함하는 리튬 이차전지.14. A lithium secondary battery comprising a positive electrode for a lithium secondary battery according to claim 13.
KR1020150173521A 2015-12-07 2015-12-07 Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same KR101926572B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150173521A KR101926572B1 (en) 2015-12-07 2015-12-07 Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150173521A KR101926572B1 (en) 2015-12-07 2015-12-07 Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20170067085A KR20170067085A (en) 2017-06-15
KR101926572B1 true KR101926572B1 (en) 2018-12-10

Family

ID=59217488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150173521A KR101926572B1 (en) 2015-12-07 2015-12-07 Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR101926572B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177798B1 (en) * 2017-11-16 2020-11-12 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
WO2019168301A1 (en) * 2018-02-28 2019-09-06 주식회사 엘지화학 Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
CN118398800B (en) * 2024-06-28 2024-10-18 帕瓦(兰溪)新能源科技有限公司 Positive electrode sodium supplementing agent and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669592B2 (en) * 1999-06-18 2011-04-13 Necディスプレイソリューションズ株式会社 Recording device
EP2375478A1 (en) * 2010-04-12 2011-10-12 Belenos Clean Power Holding AG Transition metal borate comprising cathode for rechargeable battery
JP5828304B2 (en) * 2012-06-29 2015-12-02 トヨタ自動車株式会社 Composite active material, solid battery, and method for producing composite active material
KR101539408B1 (en) * 2013-06-05 2015-07-27 한국과학기술연구원 Cathode active material for lithium-ion secondary battery comprising lithium manganese borate compounds and manganese oxide, and method for manufacturing the same
KR101816945B1 (en) * 2013-10-29 2018-01-09 주식회사 엘지화학 Cathode active material, preparation method thereof, and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR20170067085A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
CN107925068B (en) Positive electrode active material for secondary battery and secondary battery including the same
KR101944381B1 (en) Surface-treated cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same
CN107636866B (en) Positive electrode active material for secondary battery and secondary battery including the same
US9979014B2 (en) Composite cathode active material, cathode and lithium battery comprising the same, and preparation method thereof
CN111095630B (en) Positive active material for secondary battery, method for producing same, and lithium secondary battery comprising same
KR20180087162A (en) Method for preparing lithium secondary battery having high-temperature storage properties
JPWO2009110490A1 (en) Non-aqueous electrolyte battery
CN106463715B (en) Positive electrode active material and lithium secondary battery including the same
CN110249469A (en) Lithium secondary battery
CN102160215A (en) Nonaqueous electrolyte secondary battery
KR20150083381A (en) Rechargeable lithium battery
KR20140066567A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20200114403A (en) Lithium secondary battery
CN115004417A (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery comprising positive electrode active material
KR101907730B1 (en) Cathode additives for lithium secondary battery and secondary battery comprising the same
KR20140025102A (en) Cathode active material for lithium secondary battery and manufacturing method thereof
KR20150083382A (en) Negative electrode and rechargeable lithium battery including same
KR101631753B1 (en) Manufacturing method of lithium nickel complex oxide, lithium nickel complex oxide manufactured thereby, and cathode active material comprising the same
KR101926572B1 (en) Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same
KR102117618B1 (en) Surface-treated cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same
KR101897860B1 (en) Cathode additives for lithium secondary battery and secondary battery comprising the same
CN115485244A (en) Method for preparing positive electrode active material
CN106233513B (en) Positive electrode active material and lithium secondary battery containing the same
KR101909317B1 (en) Cathode active material for lithium secondary battery and method of making the same
KR20140071549A (en) Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising The Same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20151207

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20170413

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20151207

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180605

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20181030

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20181203

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20181204

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210927

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20220926

Start annual number: 5

End annual number: 5