KR101854195B1 - Process for Diect Zinc electroplating of Aluminum alloys - Google Patents
Process for Diect Zinc electroplating of Aluminum alloys Download PDFInfo
- Publication number
- KR101854195B1 KR101854195B1 KR1020170133255A KR20170133255A KR101854195B1 KR 101854195 B1 KR101854195 B1 KR 101854195B1 KR 1020170133255 A KR1020170133255 A KR 1020170133255A KR 20170133255 A KR20170133255 A KR 20170133255A KR 101854195 B1 KR101854195 B1 KR 101854195B1
- Authority
- KR
- South Korea
- Prior art keywords
- plating
- zinc
- aluminum alloy
- alkaline
- intermediate treatment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/12—Light metals
- C23G1/125—Light metals aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
- C23G1/22—Light metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/42—Pretreatment of metallic surfaces to be electroplated of light metals
- C25D5/44—Aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
본 발명은 알루미늄합금 소재를 직접 전기아연도금처리하는 공정과 기술에 관한 것으로, 특히 기존의 밀착성을 확보하기 위해 필수적으로 사용되어 온 탈산화처리('디스머트처리' 라고 도 함)와 아연치환처리('진케이트처리' 라고 도 함)가 없는 간단하고 직접적인 처리공정을 특징으로 하는 알루미늄합금소재에 밀착성이 우수한 전기아연도금하는 알루미늄합금의 전기아연도금 처리방법에 관한 것이다.[0001] The present invention relates to a process and a technique for directly subjecting an aluminum alloy material to electro-galvanizing treatment, and more particularly, to a process and a technique for directly subjecting an aluminum alloy material to electro- Which is characterized by a simple and direct treatment process free of zinc (also referred to as "zincate treatment"), which is excellent in adhesion to an aluminum alloy material.
알루미늄과 알루미늄합금에 전기도금을 처리하는 것은 내마모성, 내식성, 자기특성 등의 각종 기능을 부여하는 표면처리방법의 하나로서 여러 산업분야에 널리 사용되고 있으며 특히 경량화가 요구되는 산업제품, 부품에는 그 수요가 증가하고 있다. Electroplating of aluminum and aluminum alloys is one of the surface treatment methods that impart various functions such as abrasion resistance, corrosion resistance, and magnetic characteristics, and is widely used in various industrial fields. Especially, in the case of industrial products and parts requiring light weight, .
그러나 알루미늄 및 알루미늄합금은 높은 표면 활성도를 갖고 산소와의 친화력이 크기 때문에 제거해도 다시 쉽게 재생되는 산화피막이 표면에 존재한다. 이러한 산화피막이 도금피막의 밀착성을 저해시키기 때문에 도금공정 등의 표면처리방법을 적용하려면 도금공정 전에 산화피막을 제거하기 위한 특수한 전처리공정이 필요하다. 이런 이유로 종래에는 전처리방법으로서 디스머트처리와 침지도금 또는 치환도금으로 불리우는 별도의 진케이트처리가 필수적으로 시행되고 이 처리후 스트라이크도금이나 무전해도금을 거쳐 목표로 하는 최종 도금이 실시되어 왔다.However, since aluminum and aluminum alloys have high surface activity and high affinity with oxygen, there is an oxide film on the surface which is easily regenerated even when removed. Since such an oxide film hinders the adhesion of the plating film, a special pretreatment step for removing the oxide film before the plating step is required in order to apply the surface treatment method such as the plating process. For this reason, conventionally, as a pretreatment method, a separate zincate treatment called an impregnation treatment and an immersion plating or substitution plating is essentially performed, and after this treatment, a target final plating is performed through strike plating or electroless plating.
이와 같이, 종래의 전기도금의 처리공정은 다음과 같은 총 16개 공정으로 진행되었다.
'①탈지-②수세-③에칭-④수세-⑤디스머트-⑥수세-⑦1차 진케이트처리-⑧수세-⑨산세-⑩수세-⑪2차 진케이트처리-⑫수세-⑬스트라이크도금 또는 무전해도금-⑭수세-⑮아연도금-수세' 의 복잡하고 많은 처리공정(총 16개 공정단계)으로 도금생산 라인이 길어지고 또 처리시간이 오래 걸리는 문제와 함께, 많은 약품과 유해물질의 사용을 피할 수 없었다는 문제점이 있었다.
더욱이 이러한 종래의 방식에서는 '수세'공정에서도 3단계 향류 수세방식이 표준화되어 있기 때문에 수세수량이 많고 폐수처리가 어렵다는 문제가 항상 내포되어 환경부하의 증가 및 환경오염은 피할 수 없고 또 제조 원가상승의 근본적인 문제점이 상존하고 있는 실정이다.
이러한 종래의 전기아연도금 처리방법으로는 한국 특허공개번호 제1019980067632호 등이 알려져 있다. As described above, the conventional electroplating process has been carried out in a total of 16 processes as follows.
① Degreasing - ② Washing - ③ Etching - ④ Washing - ⑤ Dismantling - ⑥ Watering - ⑦ Waterproofing - ⑧ Waterproofing - ⑧ Waterproofing - ⑧ Waterproofing - ⑧ Waterproofing - ⑧ Waterproofing - ⑫ Waterproofing - ⑬ Strike plating or electroless plating Gold-14 SuSe-15 Zinc plating - SuSe 'complicated and many processing steps (16 process steps in total) to avoid the use of many chemicals and harmful substances, There was a problem that it was not possible.
In addition, in this conventional method, since the three-stage countercurrent washing method is standardized in the "washing process", there is always a problem that the washing water quantity is large and the wastewater treatment process is difficult. Therefore, the increase in the environmental load and the environmental contamination are inevitable, There is a fundamental problem.
Such a conventional electro-galvanizing method is disclosed in Korean Patent Publication No. 1019980067632 and the like.
삭제delete
삭제delete
본 발명은 상술한 바와 같은 제반 문제점을 해결하기 위한 것으로, 그 목적으로 하는 바는, 도금품질과 도금밀착성이 우수하면서도 최소, 최단의 청정처리공정으로 도금처리할 수 있는 알루미늄합금의 전기아연도금 처리방법을 제공하기 위한 것이다. SUMMARY OF THE INVENTION The present invention has been made to solve all of the problems as described above and it is an object of the present invention to provide an electro-galvanizing treatment of an aluminum alloy which is excellent in plating quality and plating adhesion but can be plated in the shortest, Method.
또한, 본 발명의 다른 목적은 알루미늄합금의 전기아연도금 처리방법에 있어서 각 처리공정의 화학적 중복성을 피하고 핵심기능을 중요시하는 최소 공정으로 개발, 단축시키고 청정화시킬 수 있는 알루미늄합금의 전기아연도금 처리방법을 제공하기 위한 것이다. It is another object of the present invention to provide an electro-galvanizing method of an aluminum alloy capable of avoiding chemical redundancy in each processing step in an electro-galvanizing process of an aluminum alloy and developing, shortening and purifying the minimum process, .
상기한 바와 같은 목적을 달성하기 위해 본 발명에 의한 알루미늄합금의 전기아연도금 처리방법은, 알루미늄 합금인 피도금 소재를 산성 탈지액에 침지하여 피도금 소재 표면에 생성된 자연산화피막과 그 자연산화피막 표면에 부착되어 있는 유지성분을 용해 제거함과 동시에 1차적으로 표면조정함으로서 피도금 소재표면을 청정하게 세정하고 활성화시켜 1차 중간처리재를 제조하는 제 1 단계 공정; 상기 1차 중간처리재를 알칼리성 활성액에 침지하여 그 표면에 다시 생성된 산화피막을 제거함과 동시에 2차적으로 표면조정된 2차 중간처리재를 제조하는 제 2 단계 공정; 상기 2차 중간처리재를 알칼리성 진케이트형 아연도금액에서 음극으로 하여 그 표면에 아연을 직접 도금하는 제 3 단계 공정;을 포함하여 이루어지는 알루미늄합금의 전기아연도금 처리방법으로서, 상기 1차 중간처리재는, 산성처리액으로서, 황산(95%) 30∼100 mℓ/ℓ, 황산나트륨 20~65 g/ℓ, 폴리아크릴산 0.1∼5 wt.% , 알킬페놀에톡시레이트화합물 0.01∼0.5 Vol.% 로 구성된 수용액을 사용하여 침지 처리시간 5∼15 분 범위로 관리하는 것으로 함으로써 달성할 수 있다. In order to achieve the above object, the present invention provides a method of electro-galvanizing an aluminum alloy, comprising the steps of immersing a plated material, which is an aluminum alloy, in an acidic degreasing liquid to form a natural oxide film on the surface of the material to be plated, A first step of preparing a first intermediate treatment material by cleansing and activating the surface of the material to be plated by dissolving and removing the retaining component adhering to the surface of the coating film and simultaneously performing surface adjustment on the primary surface thereof; A second step of immersing the first intermediate treatment material in an alkaline activation liquid to remove an oxide film formed on the surface of the first intermediate treatment material and preparing a secondary intermediate treatment material which is secondarily surface-adjusted; And a third step of directly plating zinc on the surface of the secondary intermediate treatment material as a negative electrode in an alkaline zincate type zinc plating solution, wherein the first intermediate treatment As the acid treatment liquid, 30 to 100 ml / l of sulfuric acid (95%), 20 to 65 g / l of sodium sulfate, 0.1 to 5 wt.% Of polyacrylic acid and 0.01 to 0.5 vol.% Of alkylphenol ethoxylate compound By using an aqueous solution in a range of 5 to 15 minutes for immersion treatment.
삭제delete
삭제delete
이때, 상기 2차 중간처리재는, 알칼리성처리액으로서, 수산화나트륨 20~100 g/ℓ, 티오글리콜산염 10∼40 g/ℓ, 수용성 폴리사카라이드화합물 0.1∼0.5 wt.% 로 구성된 수용액을 사용하여 침지 처리시간 20∼60 초 범위로 관리되는 것이 바람직하다. At this time, the secondary intermediate treatment material is prepared by using an aqueous solution composed of 20 to 100 g / l of sodium hydroxide, 10 to 40 g / l of thioglycolate, and 0.1 to 0.5 wt% of a water-soluble polysaccharide compound as the alkaline treatment liquid It is preferable that the immersion treatment time is controlled within a range of 20 to 60 seconds.
삭제delete
삭제delete
또한, 상기 제3단계 공정은, 알루미늄합금 소재(1)에, 황산 30∼150 ml/ℓ, 황산나트륨 20~65 g/ℓ, 억제제로서 폴리아크릴산 0.1~5 wt.% 계면활성제로서 알킬페놀에톡시레이트계 0.01~0.5 Vol.% 의 농도로 구성된 탈지액과 수산화나트륨 20~100 g/ℓ, 착화제로 티오글리콜산염 10~40 g/ℓ, 억제제로서 수용성 폴리사카라이드화합물 0.1~0.5wt.% 의 농도로 구성된 활성액과 산화아연 12∼20 g/ℓ, 수산화나트륨 120∼150 g/ℓ에 평활화제 10∼30 g/ℓ, 광택제 2∼10 mℓ/ℓ, 비이온계 계면활성제 0.1∼1 mℓ/ℓ가 포함되는 알칼리성 노시안 진케이트 타입의 도금액으로 도금처리하는 전기아연도금층(2)을 구비함으로써 알루미늄합금 소재에 직접 전기아연도금을 수행하는 것이 바람직하다. In the third step, the aluminum alloy material (1) is coated with 30 to 150 ml / l of sulfuric acid, 20 to 65 g / l of sodium sulfate, 0.1 to 5 wt% of polyacrylic acid as an inhibitor, And a water-soluble polysaccharide compound as an inhibitor in an amount of 0.1 to 0.5 wt.%, As a surfactant, in an amount of 20 to 100 g / l of sodium hydroxide, 10 to 40 g / l of thioglycolate as a complexing agent, , 10 to 30 g / l of a smoothing agent, 2 to 10 mℓ / l of a brightening agent, 0.1 to 1 mℓ / l of a nonionic surfactant, 12 to 20 g / l of a zinc oxide and 120 to 150 g / it is preferable to conduct electro-galvanizing directly on the aluminum alloy material by providing an electro-galvanizing layer 2 for electroplating with an alkaline cyanate zinc-based plating liquid.
본 발명에 따르면, 아연치환처리 및 스트라이크도금 또는 무전해도금을 하지않고 알루미늄합금 소재에 직접 아연도금을 전해 석출시킬 수가 있다. INDUSTRIAL APPLICABILITY According to the present invention, zinc plating can be electrolytically deposited directly on an aluminum alloy material without zinc substitution treatment and strike plating or electroless plating.
즉 디스머트처리와 그 수세공정, 1차 아연치환처리공정과 그 수세공정, 1차 아연치환처리에서 생성된 아연피막을 용해, 박리하는 산세공정과 그 수세공정, 아연피막이 박리된 알루미늄합금 소재 표면에 다시 2차 아연치환처리하는 공정과 그 수세공정, 2차 아연치환처리로 생성된 아연피막위에 스트라이크도금 또는 무전해도금하는 공정과 그 수세공정 모두를 생략하고 알루미늄합금소재에 직접 전기아연도금하는 것이 가능하다. That is, it is possible to use a desmutting treatment and its water washing step, a primary zinc substitution treatment step and its water washing step, a pickling step of dissolving and peeling the zinc coating film produced in the primary zinc substitution treatment, And the steps of the water washing step, the step of plating the strike or the step of electroless plating on the zinc film produced by the secondary zinc substitution treatment, and the step of washing the water are omitted, and the aluminum alloy material is directly electroplated with zinc It is possible.
따라서 알루미늄합금에 전기아연도금하는 전처리공정수를 기존과 비교하여 14개 공정을 4개 공정으로 획기적으로 단축하는 것이 가능하기 때문에 아연도금재의 생산제조 시간이 단축 가능하고 아울러 생산효율을 크게 높일 수가 있다. Therefore, it is possible to drastically shorten the number of pretreatment processes for electro-galvanizing an aluminum alloy to four processes in comparison with the conventional process, so that it is possible to shorten the production time of the zinc-plated material and increase the production efficiency .
또한 화학약품 사용을 대폭 삭감하여 최소화하고 환경오염 부하를 크게 줄인 청정생산공정이 가능하다는 효과를 구현할 수 있다. In addition, it is possible to realize a clean production process that can minimize the use of chemical agents and greatly reduce environmental pollution load.
도 1은 알루미늄합금 소재에 전기아연도금을 실시하기 위해 적용되는 종래기술에 의한 도금공정 계통도,
도 2는 본 발명의 실시예에 따른 피도금 소재인 알루미늄합금 소재에 직접 전기아연도금하는 전체 공정 흐름도,
도 3은 본 발명의 실시예에 따라 알루미늄합금 소재에 직접 전기아연도금된 제품의 도금층 단면도이며 아연도금후에 크로메이트처리를 한 상태를 도시한 것임,
도 4는 본 발명의 실시예 5에 따른 도 3의 실제 시편의 SEM 단면사진,
도 5a, 도 5b, 도 5c, 도 5d는 밀착성시험으로 굽힘시험과 X-cutting 및 유압기로 압착한 시편의 사진으로 도금층의 박리가 없었음을 도시함,
도 6을 참조하면 이와 같은 방법으로 제조된 본 발명의 실시 예에 따른 통신용 안테나의 형상을 알 수 있음,
도 7a과 도 7b는 2024계 및 6061계 알루미늄합금 시편에 아연도금과 크로메이트처리한 후, 한국화학융합시험원에서 밀착성시험을 의뢰한 결과의 시험성적서 사진.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a plating process according to the prior art applied to an aluminum alloy material for electro-
FIG. 2 is a whole process flow chart of direct electro-galvanizing an aluminum alloy material as a material to be plated according to an embodiment of the present invention;
FIG. 3 is a cross-sectional view of a plating layer of an electro-galvanized product directly applied to an aluminum alloy material according to an embodiment of the present invention. FIG. 3 shows a chromate treatment after zinc plating.
4 is an SEM cross-sectional photograph of the actual specimen of FIG. 3 according to Example 5 of the present invention,
5A, 5B, 5C and 5D are photographs of specimens subjected to the bending test, the X-cutting and the hydraulic press in the adhesion test, showing no peeling of the plating layer,
Referring to FIG. 6, the shape of a communication antenna according to an embodiment of the present invention manufactured in this manner can be known,
FIGS. 7A and 7B are photographs of test results obtained by zinc plating and chromate treatment of 2024-series and 6061-series aluminum alloy specimens, and then subjected to an adhesion test at the Korea Chemical Fusion Testing Center.
이하, 본 발명의 바람직한 실시 예를 첨부도면을 참조하여 보다 상세하게 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(실시 예) (Example)
본 발명에 의한 알루미늄합금의 전기아연도금 처리방법은, S10: 알루미늄 및 알루미늄 합금으로 이루어지는 피도금 소재 표면상의 유기계 오염물질과 이물질 및 산화피막을 제거 및 세척하는 탈지공정(1단계)과; S20: 상기 1단계 공정에서 탈지처리한 피도금 소재를 도금시 도금층의 밀착력을 강화하기 위해 알카리 에칭 및 2차적 산화피막 제거와 잔존하는 산성물질의 중화를 수행하는 청정화 전처리공정인 활성공정(2단계); 및 S30: 상기 2단계 공정을 거친 알루미늄합금 소재에 직접적으로 전기아연도금을 실시하는 전기아연도금 공정(3단계);을 순차적으로 구비하여 이루어지는 것을 특징으로 한다. A method of electro-galvanizing an aluminum alloy according to the present invention comprises: S10: a degreasing step (step 1) for removing and cleaning organic contaminants on the surface of a material to be plated made of aluminum and an aluminum alloy; Step S20: Activation process, which is a pre-treatment for cleaning to perform alkali etching and secondary oxidation film removal and neutralization of remaining acidic substances in order to enhance adhesion of the plating layer during plating of the plating material subjected to degreasing treatment in the above- ); And S30: an electro-galvanizing step (step 3) in which electro-galvanizing is directly performed on the aluminum alloy material that has undergone the above two-step process.
본 발명의 실시 예를 설명하기 위한 도면의 설명은 다음과 같다. DESCRIPTION OF THE PREFERRED EMBODIMENTS The following description of the drawings for explaining embodiments of the present invention is given below.
도 2는 본 발명의 실시예에 따른 피도금 소재인 알루미늄합금 소재에 직접 전기아연도금하는 전체 공정 흐름도이고, 도 3은 본 발명의 실시예에 따라 알루미늄합금 소재에 직접 전기아연도금된 제품의 도금층 단면도이며 아연도금후에 크로메이트처리를 한 상태를 도시한 것이며, 도 4는 본 발명의 실시예 5에 따른 도 3의 실제 시편의 SEM 단면사진을 도시한다. FIG. 2 is a flowchart showing an entire process of electro-galvanizing an aluminum alloy material as a material to be plated according to an embodiment of the present invention. FIG. 4 is a SEM cross-sectional photograph of an actual specimen of FIG. 3 according to Embodiment 5 of the present invention. FIG. 4 is a cross-sectional view showing a state in which chromate treatment is performed after zinc plating.
도 5a, 도 5b, 도 5c, 도 5d는 밀착성시험으로 굽힘시험과 X-cutting 및 유압기로 압착한 시편의 사진으로 도금층의 박리가 없었음을 도시하며, 도 6을 참조하면 이와 같은 방법으로 제조된 본 발명의 실시 예에 따른 통신용 안테나의 형상을 알 수 있으며, 도 7a과 도 7b는 2024계 및 6061계 알루미늄합금 시편에 아연도금과 크로메이트처리한 후, 한국화학융합시험원에서 밀착성시험을 의뢰한 결과의 시험성적서 사진을 각각 도시한다. FIGS. 5A, 5B, 5C, and 5D are photographs of specimens subjected to the bending test, the X-cutting, and the hydraulic press in the adhesion test, showing no peeling of the plating layer. Referring to FIG. 6, FIGS. 7A and 7B show examples of a 2024-series and 6061-series aluminum alloy specimens subjected to zinc plating and chromate treatment, and then subjected to an adhesion test at the Korea Chemical Fusion Test Center And a photograph of the test report of the result, respectively.
상기와 같이 구성되는 본 발명에 의한 알루미늄합금의 전기아연도금 처리방법에 있어서, 제 1단계인 탈지공정(S10)은 알루미늄 및 알루미늄합금재 표면에 부착된 유지성분을 제거함과 동시에 표면에 부착하고 있는 산화피막과 알루미늄 및 알루미늄합금 표면의 물리, 화학적 변화에 의해 생성되는 고형물 잔사까지 제거하는 공정이다.In the above-described method of electro-galvanizing an aluminum alloy according to the present invention, the degreasing step (S10) as the first step is a step of removing a retained component adhering to the surface of aluminum and aluminum alloy material, It is a process of removing even the solid residue produced by the physical and chemical changes of the oxide film and aluminum and aluminum alloy surface.
일반적인 알칼리 탈지공정이 유지성분만을 제거하는데 반해 본 발명의 탈지공정은 부가적으로 산에칭이 동반되어 표면의 균질화가 이루어 지고 1차적인 표면조정이 이루어지는 것으로 관측된다. It is observed that the degreasing process of the present invention is additionally accompanied by acid etching to homogenize the surface and to perform the primary surface adjustment while the general alkali degreasing process removes only the maintenance component.
이 경우, 산성액으로서는 황산함유 수용액을 사용하는 것이 바람직하다. 구체적으로는 이온교환수지로 처리된 순수에 황산을 30∼150 mℓ/ℓ첨가 용해시키고, 공기 냉각후 황산나트륨을 20∼65 g/ℓ과 부식억제제로서 폴리아크릴산 0.1∼5wt.% 및 계면활성제로서 알킬페놀에톡시레이트계 화합물을 0.01∼0.5 Vol.% 첨가하여 용해시킨 후에 온도 40∼60℃로 관리하여 5∼15분의 처리시간으로 침지 처리한다. In this case, it is preferable to use an aqueous solution containing sulfuric acid as the acidic solution. Specifically, 30 to 150 ml / L of sulfuric acid is added to pure water treated with an ion exchange resin, and after air cooling, sodium sulfate is added in an amount of 20 to 65 g / L, 0.1 to 5 wt.% Of polyacrylic acid as a corrosion inhibitor, 0.01 to 0.5 vol.% Of a phenol ethoxylate-based compound is added and dissolved. After that, the temperature is controlled at 40 to 60 占 폚 and immersion treatment is performed for 5 to 15 minutes.
다음으로, 제 2단계인 활성공정(S20)은 상기 탈지처리한 알루미늄 및 알루미늄합금 소재를 도금층과의 밀착력을 향상시키기 위해 알칼리 에칭으로 2차적인 표면조정이 이루어지면서 산화피막의 제거는 물론 제 1단계의 탈지공정에서 제품에 묻어 있는 산성 물질을 중화시켜 알루미늄과 알루미늄합금 소재에 대한 표면을 더욱 활성화시키는 역할을 수행한다.Next, in the active step (S20) as the second step, secondary surface adjustment is performed by alkali etching in order to improve adhesion of the degreased aluminum and aluminum alloy material to the plating layer, In the degreasing step, the surface of the aluminum and aluminum alloy material is further activated by neutralizing the acidic substance on the product.
여기에서, 활성화액은 순수에 수산화나트륨을 20∼100 g/ℓ 첨가, 용해시킨후 실온에서 냉각하고 착화제로서 티오글리콜산염 10∼40 g/ℓ과 부식억제제로서 수용성 폴리사카라이드화합물 0.1∼1 wt.% 을 첨가하여 용해시킨다. 온도는 50∼60℃로 관리하며, 침지처리 시간은 10∼60초가 좋다는 것을 실험을 통해 확인하였다.Here, the activating solution is prepared by dissolving and adding 20 to 100 g / l of sodium hydroxide to pure water, cooling at room temperature, adding 10 to 40 g / l of thioglycolate as a complexing agent and 0.1 to 1 g of a water-soluble polysaccharide compound wt. < / RTI > The temperature was controlled at 50 to 60 ° C and the immersion time was 10 to 60 seconds.
다음으로, 제 3단계인 전기아연도금 공정(S30)은 알칼리성 진케이트타입의 노시안 아연도금을 최종적으로 실시하는 것으로, 본발명은 아연치환처리에 사용되고 있는 진케이트처리액의 화학성 및 도금기구를 착안하였다.Next, the electro-galvanizing step (S30), which is the third step, is a final step of alkaline zincate-type non-cyanide galvanizing. The present invention relates to a chemical galvanizing process for zinc- .
진케이트 타입의 아연도금액의 기본 조성은 금속아연과 수산화나트륨이다. 이들 기본 조성의 비율은 NaOH:Zn=8:1∼15:1 의 범위이며, 도금결정의 미세화와 균일전착성, 도금효율을 고려하여 첨가제가 포함된다.The basic composition of zincate type zincate is sodium zinc metal and sodium hydroxide. The ratio of these basic compositions is in the range of NaOH: Zn = 8: 1 to 15: 1, and additives are included in consideration of the fineness of the plating crystal, the uniform electrodepositability, and the plating efficiency.
구체적으로는 산화아연 12∼20 g/ℓ, 수산화나트륨 120∼150 g/ℓ에 평활화제 10∼30 g/ℓ, 광택제 2∼10 mℓ/ℓ, 비이온계 계면활성제 0.1∼1 mℓ/ℓ가 함유되는 도금액으로 온도는 20∼40℃, 사용전류밀도는 1∼5 A/dm2 이다.Specifically, it is preferable to add 10 to 30 g / l of a smoothing agent, 2 to 10 ml / l of a polishing agent and 0.1 to 1 ml / l of a nonionic surfactant to 12 to 20 g / l of zinc oxide, 120 to 150 g / The temperature of the plating solution is 20 to 40 캜 and the current density is 1 to 5 A / dm 2 .
평활제로는 실리케이트화합물과 요소화합물을 제조하여 사용하고, 광택제로는 피로설폰산나트륨과 폴리아민화합물을 제조하여 사용하였다. 또 비이온계 계면활성제는 알킬페놀에톡시레이트화합물을 사용하였다.As the smoothing agent, a silicate compound and a urea compound were prepared and used. As a polishing agent, sodium pyrosulfonate and a polyamine compound were prepared and used. As the nonionic surfactant, an alkylphenol ethoxylate compound was used.
이하에서는 기술된 실시예에 따라 알루미늄 및 알루미늄합금 소재에 전기아연도금을 실시하였다. Hereinafter, the aluminum and aluminum alloy materials were electro-galvanized according to the embodiments described.
구체적으로, 본 발명에 의한 알루미늄합금의 전기아연도금 처리방법은, 알루미늄 합금인 피도금 소재를 산성 탈지액에 침지하여 피도금 소재 표면에 생성된 자연산화피막과 그 자연산화피막 표면에 부착되어 있는 유지성분을 용해 제거함과 동시에 1차적으로 표면조정함으로서 피도금 소재표면을 청정하게 세정하고 활성화시켜 1차 중간처리재를 제조하는 제 1 단계 공정; 상기 1차 중간처리재를 알칼리성 활성액에 침지하여 그 표면에 다시 생성된 산화피막을 제거함과 동시에 2차적으로 표면조정된 2차 중간처리재를 제조하는 제 2 단계 공정; 상기 2차 중간처리재를 알칼리성 진케이트형 아연도금액에서 음극으로 하여 그 표면에 아연을 직접 도금하는 3 단계 공정;을 포함하여 이루어지는 것을 특징으로 한다. Specifically, the method of electro-galvanizing an aluminum alloy according to the present invention comprises the steps of immersing a plated material, which is an aluminum alloy, in an acidic degreasing liquid to form a natural oxide film on the surface of the material to be plated, A first step of preparing a first intermediate treatment material by cleansing and activating the surface of the material to be plated by dissolving and removing the holding component and simultaneously performing surface adjustment on the first surface; A second step of immersing the first intermediate treatment material in an alkaline activation liquid to remove an oxide film formed on the surface of the first intermediate treatment material and preparing a secondary intermediate treatment material which is secondarily surface-adjusted; And a third step of directly plating zinc on the surface of the secondary intermediate treatment material as a negative electrode in an alkaline zincate type zinc plating solution.
본 발명의 바람직한 실시 예에 의한 알루미늄합금의 전기아연도금 처리방법은, 알루미늄 합금인 피도금 소재를 산성 탈지액에 침지하여 피도금 소재 표면에 생성된 자연산화피막과 그 자연산화피막 표면에 부착되어 있는 유지성분을 용해 제거함과 동시에 1차적으로 표면조정함으로서 피도금 소재표면을 청정하게 세정하고 활성화시켜 1차 중간처리재를 제조하는 제 1 단계 공정; 상기 1차 중간처리재를 알칼리성 활성액에 침지하여 그 표면에 다시 생성된 산화피막을 제거함과 동시에 2차적으로 표면조정된 2차 중간처리재를 제조하는 제 2 단계 공정; 상기 2차 중간처리재를 알칼리성 진케이트형 아연도금액에서 음극으로 하여 그 표면에 아연을 직접 도금하는 제 3 단계 공정;을 포함하여 이루어지는 알루미늄합금의 전기아연도금 처리방법에 있어서, 상기 1차 중간처리재는, 산성처리액으로서, 황산(95%) 30∼100 mℓ/ℓ, 황산나트륨 20~65 g/ℓ, 폴리아크릴산 0.1∼5 wt.% , 알킬페놀에톡시레이트화합물 0.01∼0.5 Vol.% 로 구성된 수용액을 사용하여 침지 처리시간 5∼15 분 범위로 관리하는 것을 특징으로 한다.
이때, 상기 1차 중간처리재는, 산성처리액으로서, 황산(95%) 30∼100 mℓ/ℓ, 황산나트륨 20~65 g/ℓ, 폴리아크릴산 0.1∼5 wt.% , 알킬페놀에톡시레이트화합물 0.01∼0.5 Vol.% 로 구성된 수용액을 사용하여 침지 처리시간 5∼15 분 범위로 관리되도록 구성하였다. A method of electro-galvanizing an aluminum alloy according to a preferred embodiment of the present invention comprises the steps of immersing a plated material, which is an aluminum alloy, in an acidic degreasing liquid and attaching to the surface of the natural oxide film formed on the surface of the material to be plated and the surface of the natural oxide film A first step of preparing a first intermediate treatment material by cleaning and activating the surface of the material to be plated by firstly dissolving and removing the retaining component contained in the first intermediate treatment material; A second step of immersing the first intermediate treatment material in an alkaline activation liquid to remove an oxide film formed on the surface of the first intermediate treatment material and preparing a secondary intermediate treatment material which is secondarily surface-adjusted; And a third step of directly plating zinc on the surface of the secondary intermediate treatment material as a negative electrode in an alkaline zincate type zinc plating solution, the method comprising the steps of: The treatment material is a solution containing 30 to 100 ml / l of sulfuric acid (95%), 20 to 65 g / l of sodium sulfate, 0.1 to 5 wt.% Of polyacrylic acid and 0.01 to 0.5 vol.% Of alkylphenol ethoxylate And the immersion treatment time is controlled within the range of 5 to 15 minutes by using the aqueous solution constituted.
The primary intermediate treatment material may be an acidic treatment liquid containing 30 to 100 ml / l of sulfuric acid (95%), 20 to 65 g / l of sodium sulfate, 0.1 to 5 wt.% Of polyacrylic acid, 0.01 To 0.5 vol.%, And the immersion time was controlled within the range of 5 to 15 minutes.
본 발명의 실시 예에 있어서, 상기 2차 중간처리재는, 알칼리성처리액으로서, 수산화나트륨 20~100 g/ℓ, 티오글리콜산염 10∼40 g/ℓ, 수용성 폴리사카라이드화합물 0.1∼0.5 wt.% 로 구성된 수용액을 사용하여 침지 처리시간 20∼60 초 범위로 관리되도록 구성하였다. In an embodiment of the present invention, the secondary intermediate treatment material is a treatment liquid containing 20 to 100 g / l of sodium hydroxide, 10 to 40 g / l of thioglycolate, 0.1 to 0.5 wt.% Of a water-soluble polysaccharide compound, And the immersion time was controlled within a range of 20 to 60 seconds.
또한, 상기 제 3단계 공정은, 알칼리성 아연도금액을 이용하는 것으로서, 산화아연 12~20 g/ℓ, 수산화나트륨 120~150 g/ℓ, 평활화제 10∼30 g/ℓ, 광택제 2∼10 mℓ/ℓ, 비이온계 계면활성제 0.1∼1 mℓ/ℓ 로 조제된 수용액을 사용하여 온도 20∼40℃, 전류밀도 1∼5 A/dm2 범위로 관리하여 도금하도록 구성하였다. In the third step, an alkaline zinc plating solution is used. The zinc plating solution includes 12 to 20 g / l of zinc oxide, 120 to 150 g / l of sodium hydroxide, 10 to 30 g / l of a smoothing agent, l, and 0.1 to 1 mℓ / l of a nonionic surfactant at a temperature of 20 to 40 ° C and a current density of 1 to 5 A / dm 2 .
또, 상기 제3단계 공정은, 그 공정을 완료한 후에 아연도금이 된 표면에 크로메이트처리를 하는 공정을 추가로 포함하도록 구성하였다. In the third step, the zinc-plated surface is further subjected to a chromate treatment after the step is completed.
또한, 상기 제3단계 공정은, 알루미늄합금 소재(1)에, 황산 30∼150 ml/ℓ, 황산나트륨 20~65 g/ℓ, 억제제로서 폴리아크릴산 0.1~5 wt.% 계면활성제로서 알킬페놀에톡시레이트계 0.01~0.5 Vol.% 의 농도로 구성된 탈지액과 수산화나트륨 20~100 g/ℓ, 착화제로 티오글리콜산염 10~40 g/ℓ, 억제제로서 수용성 폴리사카라이드화합물 0.1~0.5wt.% 의 농도로 구성된 활성액과 산화아연 12∼20 g/ℓ, 수산화나트륨 120∼150 g/ℓ에 평활화제 10∼30 g/ℓ, 광택제 2∼10 mℓ/ℓ, 비이온계 계면활성제 0.1∼1 mℓ/ℓ가 포함되는 알칼리성 노시안 진케이트 타입의 도금액으로 도금처리하는 전기아연도금층(2)을 구비함으로써 알루미늄합금 소재에 직접 전기아연도금을 수행하였다.In the third step, the aluminum alloy material (1) is coated with 30 to 150 ml / l of sulfuric acid, 20 to 65 g / l of sodium sulfate, 0.1 to 5 wt% of polyacrylic acid as an inhibitor, And a water-soluble polysaccharide compound as an inhibitor in an amount of 0.1 to 0.5 wt.%, As a surfactant, in an amount of 20 to 100 g / l of sodium hydroxide, 10 to 40 g / l of thioglycolate as a complexing agent, , 10 to 30 g / l of a smoothing agent, 2 to 10 mℓ / l of a brightening agent, 0.1 to 1 mℓ / l of a nonionic surfactant, 12 to 20 g / l of a zinc oxide and 120 to 150 g / galvanizing treatment was carried out by directly applying an electro-galvanizing treatment to the aluminum alloy material by providing an electro-galvanizing layer 2 for electroplating with an alkaline zinc-cyanate-type plating liquid.
이와 같이 함으로써, 본 발명은 알루미늄합금 소재에 전기아연도금하는 처리방법을 새로운 공정기술을 개발 적용하였고, 결과적으로는 종래의 16 단계 공정중에서 유해물질 발생이 많고 처리 및 관리가 복잡한 공정에 있어서 ⑤∼⑭공정의 10개 공정을 생략, 단축 가능하게 한 알루미늄합금소재에 전기아연도금하는 처리방법을 제공하게 되었다. Thus, the present invention has developed and applied a new process technology for electro-galvanizing an aluminum alloy material. As a result, in the process of complicated treatment and management in the conventional 16-step process, It has become possible to provide a treatment method of electro galvanizing an aluminum alloy material capable of shortening and shortening the ten steps of step (14).
구체적으로 본 발명의 실시 예에 의하면 알루미늄합금 소재에 전기도금하는 종래의 길고 복잡한 16단계 공정은 유해물질 및 환경오염물질의 발생이 많고 처리 및 관리가 복잡한 문제점들을 내포하고 있다. 이와 같은 문제점과 공정단축의 필요성을 해결하기 위해, 본 발명은 수많은 실험결과를 토대로 하여Specifically, according to the embodiment of the present invention, the conventional long and complicated 16-step process of electroplating an aluminum alloy material has many complications such as generation of harmful substances and environmental pollutants, and complication of treatment and management. In order to solve such a problem and the necessity of shortening the process, the present invention is based on a number of experimental results
①탈지-②수세-③활성-④수세-⑤아연도금-⑥수세① Degreasing - ② Washing - 3 Active - 4 Washing - 5 Zinc plating - 6 Washing
의 6개 공정(수세공정 제외시 3개 공정)으로 공정수를 대폭 축소하고, 디스머트처리공정과 1, 2차의 진케이트처리공정과, 스트라이크도금 또는 무전해도금공정 단계가 없는 알루미늄합금 소재에 직접 전기아연도금하는 처리방법을 제공하는 효과를 구현하였다. (Three processes in the case of excluding the water washing process) greatly reduce the number of process, and the dismantling process, the first and second ginning process, and the aluminum alloy material without strike plating or electroless plating process steps The present invention provides an effect of providing a direct electro-galvanizing treatment method.
특히 각 세부 공정의 화학적 성질과 기능을 재정립하여 길어질 수 밖에 없는 기존의 각 처리공정을 화학적 중복성을 피하고 핵심기능을 중요시하는 최소 공정으로 개발, 단축시키고 청정화시킬 수 있다는 효과를 갖는다. In particular, it has the effect of refining the chemical properties and functions of each sub-process, thereby avoiding chemical redundancy and developing, shortening, and purifying the existing process, which is a minimum process that emphasizes core functions.
이하에서는 본 발명의 바람직한 실시 예에 따른 공정을 적용한 예를 실험 및 비교 예를 기술하도록 한다. Hereinafter, an experiment and a comparative example in which the process according to the preferred embodiment of the present invention is applied will be described.
(실험 및 비교 예의 처리액 조성)(Treatment liquid composition in Experiments and Comparative Examples)
가. 알칼리성탈지액(제조액 예1-1, Macdermid사)end. Alkaline degreasing solution (Preparation liquid 1-1, Macdermid)
알칼리성 비에칭형 탈지제 시판제품을 제조 사용하였다.A commercially available alkaline non-etching type degreasing agent was prepared and used.
TS40=50g/l TS40 = 50 g / l
나. 산성탈지액(제조액 예1-2)I. Acidic degreasing solution (Preparation liquid example 1-2)
산성액으로서 황산 50 ml/ℓ, 황산나트륨 45 g/ℓ, 억제제로서 폴리아크릴산 0.5 wt.% 계면활성제로서 알킬페놀에톡시레이트계 0.1 Vol.% 농도로 구성된 탈지액을 순수를 사용하여 80L 파이로트 라인에 제조하였다. A degreasing solution consisting of 50 ml / l of sulfuric acid and 45 g / l of sodium sulfate as an acid solution and 0.5 vol.% Of alkyl phenol ethoxylate as a surfactant, 0.5 wt.% Of polyacrylic acid as an inhibitor, .
다. 활성액All. Active liquid
알칼리액으로서 수산화나트륨 50 g/ℓ, 착화제로 티오글리콜산염 20 g/ℓ,억제제로서 수용성 폴리사카라이드화합물 0.2 wt.% 의 농도로 구성된 활성화액 70L를 파이로트 라인에 제조하였다.70 L of an activating solution consisting of 50 g / l of sodium hydroxide as an alkaline solution, 20 g / l of a thioglycolate as a complexing agent and 0.2 wt.% Of a water-soluble polysaccharide compound as an inhibitor was prepared in a pilot line.
라. 알칼리성 아연도금액la. Alkaline zinc amount
금속아연 12 g/ℓ, 수산화나트륨 140 g/ℓ, 평활화제 20 g/ℓ, 광택제 5 mℓ/ℓ, 계면활성제 0.5 mℓ/ℓ 을 함유하는 알칼리성 진케이트 타입의 아연도금액을 80L 제조하였다. 이상의 가, 나, 다, 라 액을 사용하여 알루미늄 및 알루미늄합금 소재에 아래 실시예와 같이 도금하고 외관검사 및 굽힘시험과 X-cutting후 3M사의 610-1PK Tape로 밀착력 시험을 실시하였다. 80 liters of an alkaline zincate type zinc plating solution containing 12 g / l of metal zinc, 140 g / l of sodium hydroxide, 20 g / l of a smoothing agent, 5 mℓ / l of a polishing agent and 0.5 mℓ / l of a surfactant was prepared. The aluminum and aluminum alloy materials were plated as in the following examples using the above-mentioned cemented carbide, cemented carbide, and cemented carbide, and subjected to external inspection, bending test, X-cutting and adhesion test with 610-1PK tape of 3M Company.
마. 산성 아연도금액(산성 1액, 한국 ND사 제품)hemp. Acid zinc amount (acidic 1 part, manufactured by ND Corporation)
염화아연 240 g/ℓ , 염화암모늄 250 g/ℓ , 첨가제N1 35 mℓ/ℓ, 첨가제N2 2 mℓ/ℓ, pH=5.5 액을 제조, 사용하였다.240 g / l of zinc chloride, 250 g / l of ammonium chloride, 35 ml / l of additive N1, 2 ml / l of additive N2, and pH = 5.5 were prepared and used.
바. 산성 아연도금액(산성 2액, 한국 ND사 제품)bar. Acid zinc amount (2 acidic acid, manufactured by ND Co., Ltd.)
염화아연 130 g/ℓ , 염화칼륨 200 g/ℓ , 붕산 25 g/ℓ, 첨가제N3 130 g / l of zinc chloride, 200 g / l of potassium chloride, 25 g / l of boric acid,
25 mℓ/ℓ, 첨가제N4 1 mℓ/ℓ, pH=5.5 액을 제조, 사용하였다.25 mℓ / l,
[실험예 1]:[Experimental Example 1]
6061계 알루미늄합금판 시편(75mm x 255mm, 두께 1mm)을 사용하여 가의 알칼리성 탈지액에서 65℃, 5분간 침지처리하고 수세한 뒤에, 다의 활성액에서 60℃, 20초간 침지처리하고, 기존 방식대로 디스머트처리(15초)와 진케이트처리(40초)를 실시한후, 라의 아연도금액에서 상온, 1A/dm2 의 전류밀도로 35분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 11.9㎛ 이었고, 밀착성시험에서 이상이 없는 우수한 도금이 생성되었다. 6061-type aluminum alloy plate specimen (75 mm x 255 mm, thickness: 1 mm) was immersed in an alkaline degreasing solution at 65 ° C for 5 minutes, washed with water, immersed in various active solutions at 60 ° C for 20 seconds, After performing the dismutting treatment (15 seconds) and the zincate treatment (40 seconds), the zinc plating solution was plated at a current density of 1 A / dm < 2 > at room temperature for 35 minutes. The non-destructive X-ray plating thickness meter was used for the plating thickness. The average plating thickness was 11.9 μm, and excellent plating without abnormality was generated in the adhesion test.
[실험예 2]:[Experimental Example 2]
6061계 알루미늄합금판 시편(75mm x 255mm, 두께 1mm)을 사용하여 나의 산성 탈지액에서 55℃, 7분간 침지처리하고 수세한 뒤에, 다의 활성액에서 55℃, 30초간 침지처리하고, 라의 아연도금액에서 상온, 1A/dm2 의 전류밀도로 40분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 12.6㎛ 이었고, 밀착성시험에서 이상이 없는 우수한 도금이 생성되었다. 6061-type aluminum alloy plate specimen (75 mm x 255 mm, thickness: 1 mm), immersed in my acidic degreasing solution at 55 ° C for 7 minutes, rinsed in various active solutions at 55 ° C for 30 seconds, The plating solution was plated at a current density of 1 A / dm 2 at room temperature for 40 minutes. The non-destructive X-ray plating thickness meter was used for the plating thickness, and the average plating thickness was 12.6 μm, and excellent plating without abnormality was generated in the adhesion test.
[실험예 3]:[Experimental Example 3]
2024계 알루미늄합금판 시편(75mm x 255mm, 두께0.5mm)을 사용하여 나의 산성 탈지액에서 50℃, 5분간 침지처리하고 수세한 뒤에, 다의 활성액에서 50℃, 20초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 30분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 11.8㎛ 이었고, 밀착성시험에서 이상이 없는 우수한 도금이 생성되었다.2024-type aluminum alloy plate specimen (75 mm x 255 mm, thickness 0.5 mm), immersed in my acidic degreasing solution at 50 ° C for 5 minutes, washed with water, immersed in each of the active solutions at 50 ° C for 20 seconds, Zinc plating was carried out at a current density of 2A / dm < 2 > at room temperature for 30 minutes. The non-destructive X-ray plating thickness meter was used for the plating thickness. The average plating thickness was 11.8 μm, and excellent plating without abnormality was produced in the adhesion test.
[실험예 4]: [Experimental Example 4]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 55℃, 10분간 침지처리하고 수세한 뒤에, 다의 활성액에서 55℃, 20초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 45분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 13.6㎛ 이었고, 밀착성시험에서 이상이 없는 우수한 도금이 생성되었다.60 ° C aluminum alloy pipe specimen 53 (length 235 mm, thickness 1.8 mm), immersed in my degreasing solution at 55 ° C for 10 minutes, rinsed in various active solutions at 55 ° C for 20 seconds, Galvanized at a current density of 2A / dm < 2 > at room temperature for 45 minutes. The non-destructive X-ray plating thickness meter was used for the plating thickness, and the average plating thickness was 13.6 μm, and excellent plating without abnormality was generated in the adhesion test.
[실험예 5]: [Experimental Example 5]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 50℃, 7분간 침지처리하고 수세한 뒤에, 다의 활성액에서 50℃, 30초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 45분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 13.9㎛ 이었고, 밀착성시험에서 이상이 없는 우수한 도금이 생성되었다.60 ° C aluminum alloy pipe specimen 53 (length 235 mm, thickness 1.8 mm), immersed in my degreasing solution at 50 ° C for 7 minutes, washed with water, immersed in each of the active solutions at 50 ° C for 30 seconds, Galvanized at a current density of 2A / dm < 2 > at room temperature for 45 minutes. The non-destructive X-ray plating thickness meter was used for the plating thickness, and the average plating thickness was 13.9 μm, and excellent plating without abnormality was produced in the adhesion test.
[비교예 6]: [Comparative Example 6]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 40℃, 10분간 침지처리하고 수세한 뒤에, 다의 활성액에서 50℃, 30초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 40분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 10.9㎛ 이었고, 밀착성시험에서 도금이 박리되었다.The sample was immersed in my degreasing solution at 40 DEG C for 10 minutes using a 6063-type aluminum alloy pipe specimen (53, length 235mm, thickness 1.8mm), and then dipped in each of the multiple active solutions at 50 DEG C for 30 seconds. Zinc plating solution at a current density of 2A / dm < 2 > at room temperature for 40 minutes. Plating thickness was measured by non-destructive X-ray plating thickness meter. The average plating thickness was 10.9 μm and the plating was peeled off in the adhesion test.
[비교예 7]: [Comparative Example 7]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 70℃, 5분간 침지처리하고 수세한 뒤에, 다의 활성액에서 60℃, 20초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 40분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 11.7㎛ 이었고, 밀착성시험에서 도금이 박리되었다.60 ° C aluminum alloy pipe specimen 53 (length 235 mm, thickness 1.8 mm), immersed in my degreasing solution at 70 ° C for 5 minutes, rinsed in various active solutions at 60 ° C for 20 seconds, Zinc plating solution at a current density of 2A / dm < 2 > at room temperature for 40 minutes. The plating thickness was measured by a non-destructive X-ray plating thickness meter. The average plating thickness was 11.7 μm, and the plating was peeled off in the adhesion test.
[비교예 8]: [Comparative Example 8]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 55℃, 7분간 침지처리하고 수세한 뒤에, 다의 활성액에서 40℃, 30초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 40분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 11.2㎛ 이었고, 밀착성시험에서 도금이 박리되었다.60 ° C aluminum alloy pipe specimen 53 (length 235 mm, thickness 1.8 mm), immersed in my degreasing solution at 55 ° C for 7 minutes, washed with water, immersed in each of the multiple active solutions at 40 ° C for 30 seconds, Zinc plating solution at a current density of 2A / dm < 2 > at room temperature for 40 minutes. The plating thickness was measured by a non-destructive X-ray plating thickness meter. The average plating thickness was 11.2 μm and the plating was peeled off in the adhesion test.
[비교예 9]: [Comparative Example 9]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 55℃, 5분간 침지처리하고 수세한 뒤에, 다의 활성액에서 60℃, 20초간 침지처리하고, 라의 아연도금액에서 상온, 2A/dm2 의 전류밀도로 40분간 도금하였다. 도금두께는 비파괴식 X-ray도금두께 측정기를 사용하였으며 평균 도금두께는 11.5㎛ 이었고, 밀착성시험에서 도금이 박리되었다.Using a 6063-series aluminum alloy pipe specimen (53, length 235 mm, thickness 1.8 mm), the plate was immersed in my degreasing solution at 55 ° C for 5 minutes, washed with water, immersed in each of the active solutions at 60 ° C for 20 seconds, Zinc plating solution at a current density of 2A / dm < 2 > at room temperature for 40 minutes. The non-destructive X-ray plating thickness meter was used as the plating thickness. The average plating thickness was 11.5 μm, and the plating was peeled off in the adhesion test.
[비교예 10]: [Comparative Example 10]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 50℃, 10분간 침지처리하고 수세한 뒤에, 다의 활성액에서 55℃, 20초간 침지처리하고, 마의 산성 아연도금액에서 상온, 1.5a/dm2 의 전류밀도로 20분간 도금하였다. 그러나 밀착성시험에서 도금이 박리되었다.60 ° C aluminum alloy pipe specimen (53, length 235 mm, thickness 1.8 mm), immersed in my degreasing solution at 50 ° C for 10 minutes, rinsed in various active solutions at 55 ° C for 20 seconds, Zinc plating solution at a current density of 1.5 A / dm < 2 > at room temperature for 20 minutes. However, the plating was peeled off in the adhesion test.
[비교예 11]: [Comparative Example 11]
6063계 알루미늄합금파이프 시편(53,길이235mm, 두께1.8mm)을 사용하여 나의 탈지액에서 55℃, 7분간 침지처리하고 수세한 뒤에, 다의 활성액에서 55℃, 20초간 침지처리하고, 바의 산성 아연도금액에서 상온, 3A/dm2 의 전류밀도로 20분간 도금하였다. 그러나 밀착성시험에서 도금이 박리되었다.Using a 6063-series aluminum alloy pipe specimen (53, length: 235 mm, thickness: 1.8 mm), the plate was immersed in my degreasing solution at 55 DEG C for 7 minutes and then washed with water at 55 DEG C for 20 seconds. And then plated at a current density of 3A / dm < 2 > at room temperature for 20 minutes in an acidic zinc plating solution. However, the plating was peeled off in the adhesion test.
이상의 실험 및 비교예의 결과를 정리하여 아래의 [표 1]에 나타내었다. The results of the above experiments and comparative examples are summarized in Table 1 below.
합금Al
alloy
℃Temperature,
℃
℃Temperature,
℃
밀도,
A/d㎡electric current
density,
A / m2
상기 [표 1]에서 밀착성 항목에 "○" 표기한 것은 굽힘 시험 등에서 도금박리 현상이 발생하지 않은 양호한 상태를 나타내고, 밀착성 항목에 "×" 표기한 것은 굽힘 시험 등에서 도금박리 현상이 발생하여 양호하지 않은 상태를 나타낸다.In Table 1, " O "in the adhesion property indicates a satisfactory state in which no plating peeling phenomenon occurred in the bending test or the like, and" X "in the adhesion property indicates that plating peeling occurred in the bending test, .
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limited to the embodiments set forth herein. Various changes and modifications may be made by those skilled in the art.
1 : 알루미늄합금 소재
2 : 전기아연도금층1: Aluminum alloy material
2: Electro galvanized layer
Claims (7)
상기 1차 중간처리재는, 산성처리액으로서, 황산(95%) 30∼100 mℓ/ℓ, 황산나트륨 20~65 g/ℓ, 폴리아크릴산 0.1∼5 wt.% , 알킬페놀에톡시레이트화합물 0.01∼0.5 Vol.% 로 구성된 수용액을 사용하여 침지 처리시간 5∼15 분 범위로 관리되는 것을 특징으로 하는 알루미늄합금의 전기아연도금 처리방법. The surface of the plated material is immersed in an acidic degreasing solution to dissolve and remove the natural oxidation film formed on the surface of the plated material and the surface of the natural oxidation film, The first intermediate treatment material is immersed in an alkaline activation liquid to remove an oxide film which is formed again on the surface of the first intermediate treatment material and a second surface treatment A second step of producing a secondary intermediate treatment material, and a third step of directly plating zinc on the surface of the secondary intermediate treatment material as a negative electrode in an alkaline zincate type zinc salt solution, A method of electroplating a zinc plating product,
Wherein the first intermediate treatment material comprises 30 to 100 mℓ / liter of sulfuric acid (95%), 20 to 65 g / liter of sodium sulfate, 0.1 to 5 wt.% Of polyacrylic acid, 0.01 to 0.5 Vol.%, And the immersion treatment time is controlled within a range of 5 to 15 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170133255A KR101854195B1 (en) | 2017-10-13 | 2017-10-13 | Process for Diect Zinc electroplating of Aluminum alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170133255A KR101854195B1 (en) | 2017-10-13 | 2017-10-13 | Process for Diect Zinc electroplating of Aluminum alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101854195B1 true KR101854195B1 (en) | 2018-05-04 |
Family
ID=62199768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170133255A KR101854195B1 (en) | 2017-10-13 | 2017-10-13 | Process for Diect Zinc electroplating of Aluminum alloys |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101854195B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114808066A (en) * | 2022-05-31 | 2022-07-29 | 无锡鹰贝电化学工程有限公司 | Zinc plating process for magnetic core tube |
KR20220129710A (en) * | 2021-03-16 | 2022-09-26 | (주)일성도금 | Surface treatment method of glasses frame made of magnesium alloy material using ruthenium |
KR20230050875A (en) | 2021-10-08 | 2023-04-17 | 주식회사 써켐 | Acidic zincate composition for aluminum or aluminum alloy and zincate treatment method using the same |
KR20230066680A (en) * | 2021-11-08 | 2023-05-16 | 박성수 | Mold for sheet and plating method of the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040173467A1 (en) * | 2002-10-07 | 2004-09-09 | Joshi Nayan H. | Aqueous alkaline zincate solutions and methods |
US20170022621A1 (en) * | 2015-07-22 | 2017-01-26 | Dipsol Chemicals Co., Ltd. | Zinc alloy plating method |
-
2017
- 2017-10-13 KR KR1020170133255A patent/KR101854195B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040173467A1 (en) * | 2002-10-07 | 2004-09-09 | Joshi Nayan H. | Aqueous alkaline zincate solutions and methods |
US20170022621A1 (en) * | 2015-07-22 | 2017-01-26 | Dipsol Chemicals Co., Ltd. | Zinc alloy plating method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220129710A (en) * | 2021-03-16 | 2022-09-26 | (주)일성도금 | Surface treatment method of glasses frame made of magnesium alloy material using ruthenium |
KR102498096B1 (en) | 2021-03-16 | 2023-02-10 | (주)일성도금 | Surface treatment method of glasses frame made of magnesium alloy material using ruthenium |
KR20230050875A (en) | 2021-10-08 | 2023-04-17 | 주식회사 써켐 | Acidic zincate composition for aluminum or aluminum alloy and zincate treatment method using the same |
KR20230066680A (en) * | 2021-11-08 | 2023-05-16 | 박성수 | Mold for sheet and plating method of the same |
KR102610278B1 (en) * | 2021-11-08 | 2023-12-04 | 박성수 | Mold for sheet and plating method of the same |
CN114808066A (en) * | 2022-05-31 | 2022-07-29 | 无锡鹰贝电化学工程有限公司 | Zinc plating process for magnetic core tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101854195B1 (en) | Process for Diect Zinc electroplating of Aluminum alloys | |
US4346128A (en) | Tank process for plating aluminum substrates including porous aluminum castings | |
US8147671B2 (en) | Electroplating method and electroplated product | |
JP4857340B2 (en) | Pretreatment of magnesium substrate for electroplating | |
JPH01268896A (en) | Electroplating apparatus | |
US20080156652A1 (en) | Cyanide-free pre-treating solution for electroplating copper coating layer on zinc alloy surface and a pre-treating method thereof | |
US4670312A (en) | Method for preparing aluminum for plating | |
MX2013003935A (en) | Process for electroless deposition of metals using highly alkaline plating bath. | |
US7270734B1 (en) | Near neutral pH cleaning/activation process to reduce surface oxides on metal surfaces prior to electroplating | |
CN113463148A (en) | Method for electroplating gold on surface of titanium or titanium alloy substrate | |
JP2007254866A (en) | Plating pretreatment method for aluminum or aluminum alloy raw material | |
JP4027320B2 (en) | Copper plating method for zinc objects and zinc alloy objects using non-cyanide compounds | |
CN105734630A (en) | Method of preparing copper-zinc-copper composite coating with high corrosion resistance on surface of low-carbon steel | |
KR101847439B1 (en) | Direct zinc electroplating method on aluminium or aluminium alloys | |
KR101935028B1 (en) | Method for manufacturing wafer standard of led | |
US4225397A (en) | New and unique aluminum plating method | |
CN104087985A (en) | Copper coating method of metal part | |
US20200378028A1 (en) | Electrolytic Preparation Of A Metal Substrate For Subsequent Electrodeposition | |
US20080156653A1 (en) | Cyanide-free pre-treating solution for electroplating copper coating layer on magnesium alloy surface and a pre-treating method thereof | |
KR101332301B1 (en) | Plating method using the ni-free three element alloys plating and tri-valent chromium plating | |
CN1250772C (en) | Electroplating pretreatment solution and electroplating pretreatment method | |
US20100084278A1 (en) | Novel Cyanide-Free Electroplating Process for Zinc and Zinc Alloy Die-Cast Components | |
RU2709913C1 (en) | Method of applying galvanic coatings on complex-profile parts | |
KR101094338B1 (en) | Method for nikel coating of magnesiumalloy plate | |
CN104073850A (en) | Method for plating nickel to ceramic metal layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |