[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101845532B1 - Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing - Google Patents

Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing Download PDF

Info

Publication number
KR101845532B1
KR101845532B1 KR1020160146327A KR20160146327A KR101845532B1 KR 101845532 B1 KR101845532 B1 KR 101845532B1 KR 1020160146327 A KR1020160146327 A KR 1020160146327A KR 20160146327 A KR20160146327 A KR 20160146327A KR 101845532 B1 KR101845532 B1 KR 101845532B1
Authority
KR
South Korea
Prior art keywords
weight
parts
flame retardant
silane
composition
Prior art date
Application number
KR1020160146327A
Other languages
Korean (ko)
Inventor
구영일
남종철
최상대
김범준
Original Assignee
주식회사 위스컴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위스컴 filed Critical 주식회사 위스컴
Priority to KR1020160146327A priority Critical patent/KR101845532B1/en
Application granted granted Critical
Publication of KR101845532B1 publication Critical patent/KR101845532B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5442
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to an eco-friendly non-toxic flame-retardant silane crosslinked composition for extrusion coating of an indoor insulated wire, and a method of manufacturing an insulated wire. In particular, the composition comprises: 20-40 parts by weight of a polyolefin resin or an ethylene copolymer resin; 10-40 parts by weight of a thermoplastic elastomer; 20-50 parts by weight of a maleic anhydride graftmer; 100-180 parts by weight of a silane surface-treated inorganic flame retardant; 1-10 parts by weight of a silicone-cyclo chlorophosphazene auxiliary flame retardant; 0.1-5 parts by weight of an antioxidant; 1-10 parts by weight of a pigment; 1-5 parts by weight of a lubricant; 0.5-3 parts by weight of vinylsilane; 0.1-2 parts by weight of an organic peroxide; and 5.0-5.5 parts by weight of a crosslinking catalyst. The present invention, due to a low generation amount of toxic gases and a low smoke density, does not hinder a fire extinguishing activity, and thus has excellent reliability; through a crosslinking method, shows improved physical and thermal characteristics compared with vinyl insulation coating; and can reduce the manufacturing cost and facilitate the production compared with the irradiation crosslinking or chemical crosslinking scheme. In addition, the finally manufactured wire has excellent long-term service life.

Description

옥내 절연전선의 압출피복용 친환경 무독성 난연 실란가교 조성물 및 절연전선의 제조방법{Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an environmentally friendly non-toxic flame retardant silane crosslinking composition for extrusion coating of indoor insulation wires,

본 발명은 옥내 (indoor) 절연전선 (insulated cable)의 압출피복용 (sheath extrusion) 친환경 무독성 난연 실란가교 (silane crosslinking) 조성물 (compound) 및 절연전선의 제조방법에 관한 것으로서, 더욱 상세하게는 연소 시 유해가스 (toxic gas) 발생량 및 연기밀도 (smoke density)가 낮아 소화활동을 방해하지 않기 때문에 안정성이 뛰어나며 비닐절연피복 (vinyl sheath) 대비 수가교 (moisture crosslinking) 방법을 통해 물리적, 열적 특성과 조사가교 (electron-beam irradiation crosslinking)나 화학가교 (chemical crosslinking) 방식대비 제조경비 절감 및 생산이 용이하며, 최종적으로 제조되는 전선의 장기적 수명이 우수한 옥내 절연전선의 압출피복용 친환경 무독성 난연 실란가교 조성물 및 절연전선의 제조방법에 관한 것이다. The present invention relates to an eco-friendly, non-toxic flame retardant silane crosslinking compound of an indoor insulated cable, and a method of manufacturing an insulated electric wire. More particularly, It has excellent stability because it does not interfere with the digestion activity because of low amount of toxic gas and smoke density and it has physical and thermal properties and irradiation bridging through vinyl crosslinking method compared to vinyl sheath. friendly non-toxic flame-retardant silane crosslinking composition and insulation for extrusion coating of indoor insulated wire with excellent long-term service life of the final manufactured wire, which is easy to manufacture and reduce manufacturing cost compared to electron-beam irradiation crosslinking or chemical crosslinking To a method of manufacturing an electric wire.

일반적으로 옥내용 절연전선은 도체만으로 이루어진 전선에 절연체와 피복체의 두 기능을 갖춘 재료를 한 층 씌운 단순구조의 전선을 일컫는다. In general, an indoor insulation wire refers to a wire with a single layer of a material having two functions of an insulator and a covering body in a conductor made of only a conductor.

현재는 옥내절연 전선용으로 600V 이하 비닐계 절연피복이 사용 중이나 가정용 전자기기의 사용량이 증가 되면서 전선의 수명과 내구성을 구현하기 위해 절연피복체는 내후성과 내산화성이 우수해야 할 뿐만 아니라 기계적, 전기적 특성까지 겸비 해야 한다. Currently, vinyl insulating coatings of 600V or less are used for indoor insulated wires. However, in order to realize the life and durability of electric wires as the usage of household electronic appliances is increased, not only the insulated covers must have excellent weather resistance and oxidation resistance, We must combine the characteristics.

이를 위해 절연전선 제조에 사용되는 절연피복 수지 조성물에는 화학가교에 의한 내열성을 부여하기 위해서 가교제가 포함되지만, 이러한 가교제는 압출기 내에서 조기분해되어 스코치라고 하는 조기 가교물을 형성하기도 한다. 이 때문에 제조된 수지의 압출기로부터의 압출이 어렵게 되고 최종 제품의 외관 및 물성에도 악영향을 끼치게 되는 문제가 있다. To this end, the insulating coating resin composition used for manufacturing insulated wires includes a crosslinking agent for imparting heat resistance by chemical crosslinking, but such crosslinking agent may be prematurely decomposed in an extruder to form an early crosslinking substance called scorch. This makes it difficult to extrude the produced resin from an extruder and adversely affect the appearance and physical properties of the final product.

따라서 상기 가교제를 첨가하는 화학가교 방식에 의한 옥내용 절연 전선의 제조방법의 기술적 보완이 시급하였다.Therefore, it is urgent to supplement the technical method of manufacturing the insulated wire by the chemical crosslinking method in which the crosslinking agent is added.

이를 위해 미국특허 제4117195호에서는 생산성 향상도 병행하기 위하여 화학가교 대신에 수지 조성물 중에 실란을 함침시켜 단축 압출기 (single extruder) 내에서 화학적 반응에 의해 실란이 폴리에틸렌 (polyethylene)에 그라프팅 (grafting) 되게 하고, 압출된 전선을 수분에 노출시켜 가교시키는 방법이 개시되었다. For this purpose, U.S. Patent No. 4,117,195 discloses a method in which a silane is impregnated into a resin composition instead of a chemical crosslinking in order to improve the productivity, and the silane is grafted to polyethylene by a chemical reaction in a single extruder And exposing the extruded electric wires to moisture to crosslink them.

상기 발명의 수가교 방식은 화학가교 방식에 비하여 낮은 결합 에너지 (bonding energy)를 가지며 수분을 통과하는 관계로 수분의 영향을 배제하기 어렵기 때문에 주로 가공선의 압출절연에 한정되며 비교적 낮은 전압 (1kV) 급에서 이용하는 것이 바람직하다. 하지만 실란 함침에 의한 옥외용 중저압전력 케이블 제조 시 압출기 내에서의 실란과 폴리에틸렌의 반응 불균일성에 의해 최종 제품의 물성이 균일성을 유지하기 어렵고, 장기 작업 시 스코치 (scotch)가 발생하는 문제점이 있을 뿐만 아니라 마스터 배치 (master batch) 형태의 안정제 (stabilizer)나 카본블랙 (carbon black) 등을 첨가하는 경우 분산 불균일까지 발생하는 문제점을 안고 있다. 이러한 기술적 단점들을 극복하기 위하여 많은 연구가 행하여져 왔고 이는 현재까지 상당한 효과를 거두어 왔다.Since the water exchange method of the present invention has low bonding energy compared to the chemical crosslinking method and it is difficult to exclude the influence of moisture due to the passage of moisture, it is mainly limited to the extrusion insulation of the processed wire, and the relatively low voltage (1 kV) It is preferable to use it in class. However, it is difficult to maintain the uniformity of properties of the final product due to the non-uniformity of silane and polyethylene in the extruder during production of the low-voltage power cable for outdoor use by silane impregnation, and scotch occurs in long-term operation However, when a master batch type stabilizer or carbon black or the like is added, there arises a problem that even dispersion unevenness occurs. Much research has been done to overcome these technical shortcomings and has had a considerable effect to date.

그러나 폴리에틸렌 수가교용 흑색 수지 조성물에 대한 발명을 제공한 대한민국 특허 제0373852호 발명은 전선의 수축률이 큰 단점이 있으며, 대한민국 특허 발명 제0377862호는 전력선 절연용 수가교 난연 수지 조성물에 대한발명을 제공하고 있으나 수축률이 큰 단점이 있다. 또한, 대한민국 특허발명 제0619363호는 실란 그라프트된 폴리올레핀 조성물을 제공하나 핫-셋 (hot-set) 특성 편차가 큰 단점이 있어 이들 기술에 대한 개선이 요구되었다.However, Korean Patent No. 0373852, which provides an invention for a black polyethylene resin composition, has a disadvantage in that the shrinkage ratio of the wire is large, and Korean Patent No. 0377862 provides an invention for a water-insulated flame retardant resin composition for power line insulation However, there is a disadvantage that the shrinkage ratio is large. In addition, Korean Patent No. 0619363 provides a silane grafted polyolefin composition but it has disadvantages such as high hot-set characteristic deviation, and improvement of these techniques is required.

종래의 옥내용 전선은 구리 등의 금속으로 이루어진 도체부분과 도체를 외부로부터 절연시키는 절연층, 전선 자체를 보호하여 주기 위한 피복층으로 구성되어 있으며, 필요에 따라서 그 구조는 변하기도 한다.Conventional indoor wires consist of a conductor portion made of a metal such as copper, an insulating layer for insulating the conductor from the outside, and a covering layer for protecting the wire itself, and the structure may be changed if necessary.

이러한 구조를 갖는 종래의 전선은 전류가 흐르고 있어서 누전이나 전기적인 충격에 의하여 화재가 발생할 우려가 있고, 일단 화재가 발생하면, 도체를 보호하고 있는 피복층 및 절연층 등이 연소되어 파괴되기 쉽다. 이로 인하여 도체도 단락되는 경우가 많아서, 이러한 화재의 위험으로부터 전선을 보호하기 위하여 비닐계 난연수지 조성물로 제조된 외부 피복층을 사용하여 왔다.A conventional electric wire having such a structure may cause a fire due to a short circuit or an electric shock due to current flow. Once a fire occurs, the coating layer and the insulating layer protecting the conductor are likely to be burned and destroyed. Because of this, conductors are often short-circuited, and an outer coating layer made of a vinyl-based flame retardant resin composition has been used in order to protect electric wires from the risk of such fire.

따라서 절연피복층은 우수한 기계적 강도의 유지가 필요하고, 통전 시 도체 발열에 의하여 전선이 고온으로 유지되므로 고온에서의 안정성이 요구되어 절연층을 가교화시키는 것이 필요하다.Therefore, it is necessary to maintain excellent mechanical strength of the insulating coating layer and to keep the electric wire at a high temperature by heat generation of the conductor during the electric current application, so that stability at high temperature is required and crosslinking of the insulating layer is required.

이와 같이 우수한 전기적 특성 및 우수한 난연성을 동시에 보유하면서 높은 가교 효율을 보유하는 것은 매우 어렵다. 현재까지 상기와 같은 물성을 보유한 수지 조성물을 얻기 위해서 폴리에틸렌 수지에 할로겐계 (halogen) 난연제와 무기물, 산화방지제, 퍼옥사이드 (peroxide)와 같은 가교제 등이 혼합된 수지 조성물을 사용하여 왔다.It is very difficult to have high crosslinking efficiency while simultaneously possessing excellent electrical properties and excellent flame retardancy. In order to obtain a resin composition having such physical properties as described above, a resin composition in which a halogen flame retardant and a crosslinking agent such as an inorganic substance, an antioxidant, and a peroxide are mixed with a polyethylene resin has been used.

그러나 상기 수지 조성물을 가공하기 위해서는 반드시 가류관이라는 부가의 장치를 통과시켜야 하는데, 이 장치는 설비비가 많이 들고, 가공조건을 변경할 때 가류관의 기본 길이로 인하여 버려지는 분량이 많아서 가공비도 높아지게 되는 문제점이 있다.However, in order to process the resin composition, it is necessary to pass an additional device such as a vulcanizing tube. This device has a high equipment cost and a large amount of waste due to the basic length of the vulcanizing tube when changing the processing conditions, .

또한 지금까지의 가교전선의 압출피복용 난연 컴파운드에 사용되어온 난연제는 염소 (Cl)나 브롬 (Br)과 같은 할로겐 원소를 함유한 난연제를 사용하고 있다. In addition, flame retardants that have been used in the conventional flame retardant compound for extrusion coating of crosslinked wires include flame retardants containing halogen elements such as chlorine (Cl) and bromine (Br).

현재 사용되고 있는 할로겐 난연제는 매우 다양하나 저렴한 가격과 높은 난연효과로 인해 전 세계적으로 많이 사용되고 있다. 이중 특히 브롬화 난연제는 PBBs (PolyBrominated Biphenyls), PBDEs (PolyBrominated Diphenyl Ethers), TBBPA (TetraBromoBisPhenol A) 등 세 종류가 대표적이며, 이중 PBBs는 이미 1970년대부터 발암성과 간독성이 확인되어있다. Halogen flame retardants currently in use are very diverse, but they are widely used worldwide due to their low cost and high flame retardant effect. Among them, PBBs (PolyBrominated Biphenyls), PBDEs (PolyBrominated Diphenyl Ethers) and TBBPA (TetraBromoBisPhenol A) are typical examples of brominated flame retardants. PBBs have been proven to have carcinogenicity and hepatotoxicity since 1970s.

PBBs 등에 비하여 상대 적으로 안전하다고 평가된 나머지 브롬화 난연제 중 일부 물질이 위해하다는 보고가 최근 속속 확인되고 있다. 따라서 브롬화 난연제의 생산, 가공과정에서 근로자 노출뿐만 아니라, 이들이 함유된 최종제품의 사용과정 및 화재로 인하여 소비자 노출, 대기, 수질, 토양, 등 환경매체로의 유출과 먹이사슬을 통한 생물축적을 통해 인체 및 생태계에 위해를 미칠 수 있는 상황이다. It has been recently confirmed that some of the remaining brominated flame retardants, which are relatively safe compared to PBBs, are harmful. Therefore, not only workers' exposure during the production and processing of brominated flame retardants, but also the use of end products containing them and fire, resulting in consumer spills, release to environmental media such as air, water, soil, and bioaccumulation through food chains It is a situation that can harm human body and ecosystem.

특히 PBDEs의 경우 간독성과 생식이상을 일으키며, 생물축적성이 있다는 이유로 잠재적인 유기물 오염물질 (persistent organic pollutants)로 주목 받고 있다.Particularly, PBDEs are attracting attention as potential organic pollutants because they cause hepatotoxicity and reproduction abnormality and bioaccumulation.

따라서 대부분의 전선 회사에서는 최종 고객의 요구사양인 무독성 난연 피복제의 물성을 충족시킬 수가 없는 실정이다. Therefore, most wire companies are unable to meet the requirements of the end customer's non-toxic flame-retardant coating.

이에 본 발명자들은 실란 표면처리된 유기 난연제와 실리콘-시클로 클로로포스파젠 난연 보조제를 함께 이용한 새로운 무독성 난연 실란 가교 조성물을 완성하였다. Accordingly, the present inventors have completed a novel non-toxic flame retardant silane crosslinking composition using a silane surface-treated organic flame retardant and a silicone-cyclochlorophosphane flame retardant auxiliary.

대한민국 공개특허 제10-2011-0112677호Korean Patent Publication No. 10-2011-0112677 대한민국 공개특허 제10-2011-0133230호Korean Patent Publication No. 10-2011-0133230

본 발명의 목적은 폴리올레핀 수지 또는 에틸렌 공중합체수지, 열가소성엘라스토머 및 말레익 안하이드리드 그라프트머로 이루어진 기본 수지; 상기 기본수지 100중량부 대비 무기 난연제 100 내지 180 중량부; 보조 난연제 1 내지 10 중량부; 산화방지제 0.1 내지 5 중량부; 안료 1 내지 10 중량부; 활제 1 내지 5 중량부; 비닐실란 0.5 내지 3 중량부; 유기과산화물 0.1 내지 2 중량부; 및 수가교촉매 5.0 내지 5.5 중량부를 포함하는 무독성 난연 실란가교 조성물을 제공하는 것이다.An object of the present invention is to provide a resin composition comprising a base resin composed of a polyolefin resin or an ethylene copolymer resin, a thermoplastic elastomer and a maleic anhydride graftmer; 100 to 180 parts by weight of an inorganic flame retardant relative to 100 parts by weight of the base resin; 1 to 10 parts by weight of an auxiliary flame retardant; 0.1 to 5 parts by weight of an antioxidant; 1 to 10 parts by weight of a pigment; 1 to 5 parts by weight of a lubricant; 0.5 to 3 parts by weight of vinylsilane; 0.1 to 2 parts by weight of an organic peroxide; And water in an amount of from 5.0 to 5.5 parts by weight based on the total weight of the flame retardant silane crosslinking composition.

본 발명의 다른 목적은, Another object of the present invention is to provide

1) 실리콘-시클로 클로로포스파젠 보조 난연제를 제조하는 단계; 1) preparing a silicone-cyclochlorophosphazene secondary flame retardant;

2) 실란 표면 처리된 무기 난연제를 제조하는 단계;2) preparing a silane surface-treated inorganic flame retardant;

3) 수가교촉매를 제조하는 단계;3) preparing a water catalyst;

4) 폴리올레핀 수지 또는 에틸렌 공중합체수지, 열가소성엘라스토머, 말레익 안하이드리드 그라프트머, 상기 난연제, 상기 보조 난연제, 산화방지제, 활제 및 안료를 순차적으로 투입하여 120 내지 240℃의 온도에서 10 내지 60분 동안 용융혼합하는 단계; 4) A polyolefin resin or an ethylene copolymer resin, a thermoplastic elastomer, a maleic anhydride graft polymer, the flame retardant, the auxiliary flame retardant, an antioxidant, a lubricant and a pigment are sequentially charged and heated at a temperature of 120 to 240 ° C for 10 to 60 minutes ;

5) 상기 용융혼합된 혼합물에 비닐실란, 유기과산화물을 순차적으로 투입하여 150 내지 240 ℃의 온도에서 1 내지 10분 동안 용융혼합하여 실란 그라프팅 반응을 유도하는 단계;5) introducing vinyl silane and organic peroxide sequentially into the melt-mixed mixture, and melt-mixing the mixture at a temperature of 150 to 240 ° C for 1 to 10 minutes to induce a silane grafting reaction;

6) 상기 실란 그라프팅된 조성물을 성형하여 펠렛화시키는 단계; 및6) molding and pelletizing the silane-grafted composition; And

7) 상기 펠렛화된 조성물을 상기 수가교촉매와 혼합하는 단계;7) mixing the pelletized composition with the water flow catalyst;

를 포함하는 무독성 난연 실란가교 조성물 제조방법을 제공하는 것이다.A flame retardant silane cross-linking composition.

본 발명의 또 다른 목적은 무독성 난연 절연전선 제조 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for manufacturing a non-toxic flame-retardant insulated wire.

본 발명은 폴리올레핀 수지 또는 에틸렌 공중합체수지, 열가소성엘라스토머 및 말레익 안하이드리드 그라프트머로 이루어진 기본 수지; 상기 기본수지 100중량부 대비 무기 난연제 100 내지 180 중량부; 보조 난연제 1 내지 10 중량부; 산화방지제 0.1 내지 5 중량부; 안료 1 내지 10 중량부; 활제 1 내지 5 중량부; 비닐실란 0.5 내지 3 중량부; 유기과산화물 0.1 내지 2 중량부; 및 수가교촉매 5.0 내지 5.5 중량부를 포함하는 무독성 난연 실란가교 조성물을 제공한다.The present invention relates to a base resin comprising a polyolefin resin or an ethylene copolymer resin, a thermoplastic elastomer and a maleic anhydride graftomer; 100 to 180 parts by weight of an inorganic flame retardant relative to 100 parts by weight of the base resin; 1 to 10 parts by weight of an auxiliary flame retardant; 0.1 to 5 parts by weight of an antioxidant; 1 to 10 parts by weight of a pigment; 1 to 5 parts by weight of a lubricant; 0.5 to 3 parts by weight of vinylsilane; 0.1 to 2 parts by weight of an organic peroxide; And water in an amount of 5.0 to 5.5 parts by weight based on the total weight of the flame retardant silane crosslinking composition.

본 발명에서 사용된 용어 “난연”은 연소가 잘 되지 않는 성질을 의미하며, 플라스틱의 경우, 불에 타기 쉽고 연소하면서 유독가스 등의 배출이 많으므로, 연소가 잘 되지 않도록 처리된다. The term " flame retardant " used in the present invention means a property of not being combusted well. In the case of plastic, the flame is easily burned and burned.

상기 폴리올레핀 수지는 폴리에틸렌 (polyethylene), 폴리프로필렌 (polypropylene), 폴리부텐 (polybutene) 및 폴리메틸펜텐 (polymethly pentene)로 이루어진 군으로부터 선택된 것일 수 있고 상기 에틸렌 공중합체는 에틸렌 비닐아세테이트, 에틸렌 부틸아크릴레이트 (ethylene butylacrylate), 에틸렌 메틸아크릴레이트(ethylene methylacrylate), 에틸렌 에틸아크릴레이트 (ethylene ethylacrylate), 에틸렌 메틸메타크릴레이트 (ethylene methylmethacrylate), 에틸렌 부텐 공중합체 (ethylene butene copolymer) 및 에틸렌 옥텐 공중합체 (ethylene octene coplymer) 로 이루어진 군으로부터 선택된 것일 수 있다. 이 때 에틸렌 공중합체는 쇼어 A (Shore A)로 40 내지 95 사이의 경도를 가지는 것이 바람직하고 경도가 40 미만인 경우 압출피복의 유연성이 떨어지고 95 이상인 경우 혼련성이 떨어진다.The polyolefin resin may be selected from the group consisting of polyethylene, polypropylene, polybutene, and polymethly pentene, and the ethylene copolymer may be selected from the group consisting of ethylene vinyl acetate, ethylene butyl acrylate ( ethylene butylacrylate, ethylene methylacrylate, ethylene ethylacrylate, ethylene methylmethacrylate, ethylene butene copolymer and ethylene octene coplymer ). ≪ / RTI > The ethylene copolymer is preferably a Shore A hardener having a hardness of 40 to 95. When the hardness is less than 40, the flexibility of the extrusion coating is poor. When the hardness is more than 95, the ethylene copolymer is poorly kneaded.

상기 열가소성엘라스토머는 폴리올레핀열가소성엘라스토머가 바람직하나 폴리우레탄열가소성엘라스토머나 폴리에스테르열가소성열가소성엘라스토머, 폴리에테르열가소성엘라스토머 등도 사용가능하며 이에 제한되는 것은 아니다. 상기 열가소성엘라스토머의 사용은 압출피복의 유연성을 향상시킬 수 있다. 이 때 열가소성엘라스토머 10 중량부 미만인 경우 압출피복의 유연성이 떨어지고 40 중량부 이상인 경우 난연성이 떨어질 수 있다.Although the thermoplastic elastomer is preferably a polyolefin thermoplastic elastomer, a polyurethane thermoplastic elastomer, a polyester thermoplastic thermoplastic elastomer, and a polyether thermoplastic elastomer may be used, but the present invention is not limited thereto. The use of the thermoplastic elastomer can improve the flexibility of the extrusion coating. At this time, if the thermoplastic elastomer is less than 10 parts by weight, the flexibility of the extrusion coating is poor, and if it is more than 40 parts by weight, the flame retardancy may be deteriorated.

상기 말레익 안하이드리드 그라프트머는 상용화제로, 에틸렌 말레익 안하이드리드 그라프트머 (ethylene maleic anhydride graftmer), 프로필렌 말레익 안하이드리드 그라프트머 (propylene-maleic anhydride graftmer), 에틸렌-프로필렌 말레익 안하이드리드 그라프트머 (ethylene-propylene-maleic anhydride graftmer) 및 에틸렌 아크릭 에스테르 말레익 안하이드리드 그라프트머 (ethylene acrylic ester maleic anhydride graftmer)로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 에틸렌 말레익 안하이드리드 그라프트이고, 이에 제한되지 않는다. 이 때 말레익 안하이드리드 그라프트머가 20 중량부 미만인 경우 조성물간의 사용성이 떨어지고 50 중량부 이상인 경우 난연성이 떨어진다.The maleic anhydride graftmer may be a compatibilizer such as an ethylene maleic anhydride graftmer, a propylene-maleic anhydride graftmer, an ethylene-propylene maleic anhydride An ethylene-propylene-maleic anhydride graftmer, and an ethylene acrylic ester maleic anhydride graftmer. Preferably, the ethylene-maleic anhydride graft copolymer is selected from the group consisting of ethylene- But is not limited thereto. When the amount of the maleic anhydride graft polymer is less than 20 parts by weight, the usability between the compositions is deteriorated. When the amount of the maleic anhydride graft polymer is more than 50 parts by weight, the flame retardancy is deteriorated.

상기 무기 난연제는 탄산칼슘 (calcium carbonate), 탄산 마그네슘 (magnesium carbonate), 알루미나 (alumina), 알루미늄 옥사이드히드로옥사이드 (aluminumoxide hydroxide), 수산화마그네슘 (magnesium hydroxide) 및 수산화알루미늄 (aluminium hydroxide)으로 이루어진 군으로부터 선택된 하나 이상의 화합물을 실란으로 표면 처리한 것일 수 있다.Wherein the inorganic flame retardant is selected from the group consisting of calcium carbonate, magnesium carbonate, alumina, aluminum oxide hydroxide, magnesium hydroxide and aluminum hydroxide, One or more compounds may be surface treated with silane.

상기 보조 난연제는 바람직하게는 폴리디메틸실록산 (hydroxyl terminated polydimethylsiloxane)과 헥사클로로포스파젠 (hexachlorophosphazene)과 같은 시클로 클로로포스파젠 (cyclo chlorophosphazene)을 포함하는 실리콘-시클로클로로포스파젠 난연제이고, 이제 제한되는 것은 아니다. 이때 상기 보조 난연제가 1.0 중량부 미만인 경우 난연성이 떨어지고 10 중량부 이상인 경우 조성물 외부로 이행 (migration) 되고 경제성이 떨어진다.The auxiliary flame retardant is preferably a silicone-cyclochlorophosphane flame retardant including cyclochlorophosphazene such as hydroxyl terminated polydimethylsiloxane and hexachlorophosphazene, but is not limited to . If the auxiliary flame retardant is less than 1.0 part by weight, the flame retardancy is lowered. If the auxiliary flame retardant is more than 10 parts by weight, the composition migrates to the outside of the composition and becomes less economical.

상기 산화방지제는 폴리(1,2-디히드로-2,2,4-트리메틸퀴놀린) [poly(1,2-dihydro-2,2,4-trimethyl quinoline)], 2,6-디-터트-부틸-4‘-메틸페놀(2,6-di-tert-butyl-4-methyl phenol), 테트라키스[메틸렌-3-(3‘,5’-디-터트-부틸-4-히드로옥시페닐-프로피오네이트)메탄 [tetrakis[methylene-3-(3‘,5’-di-tert-butyl-4‘- hydroxyphenyl-propionate)]methane]및 트리스(2,4-디-터트-부틸-페닐)포스파이트[tris(2,4-di-tert-butyl-phenyl) phosphite]로 이루어진 군으로부터 선택된 것일 수 있다. 이 때 상기 산화방지제가 0.1 중량부 미만일 경우 가공 중 고분자 수지가 산화되며, 5.0 중량부 이상을 첨가할 경우 경제성이 떨어진다.The antioxidant may be poly (1,2-dihydro-2,2,4-trimethyl quinoline), 2,6-di-tert- Butyl-4-methylphenol, tetrakis [methylene-3- (3 ', 5'-di-tert-butyl- Propaneate) methane] and tris (2,4-di-tert-butylphenyl) propaneate) methane [tetrakis methylene-3- (3 ', 5'- Tris (2,4-di-tert-butyl-phenyl) phosphite]. If the amount of the antioxidant is less than 0.1 parts by weight, the polymer resin is oxidized during processing, and when the amount is 5.0 parts by weight or more, the economical efficiency is lowered.

상기 활제는 바람직하게는 폴리에틸렌 왁스, 산화폴리에틸렌 왁스, 폴리프로필렌 왁스 및 파라핀 왁스로 이루어진 군으로부터 선택되는 것일 수 있다. 그 외에도 라울릭 액시드 (lauric acid), 미리스틱 액시드 (myristic acid), 활미트 액시드 (palmitic acid)와 같은 지방산이나 (fatty acid), 칼슘 스테아레이트 (calcium stearate), 징크 스테아레이트 (zinc stearate), 마그네슘 스테아레이트 (magnesium stearate)의 금속염 스테아레이트 사용가능하며 본 발명은 이에 제한되는 것이 아니다. 이 때 상기 활제는 1 중량부 미만일 경우 가공성이 떨어지고, 5.0 중량부 이상을 첨가할 경우 경제성이 떨어진다.The lubricant may preferably be selected from the group consisting of polyethylene wax, oxidized polyethylene wax, polypropylene wax and paraffin wax. In addition, fatty acids such as lauric acid, myristic acid and palmitic acid, fatty acid such as calcium stearate, zinc stearate (zinc stearate, magnesium stearate, and the present invention is not limited thereto. If the amount of the lubricant is less than 1 part by weight, the processability is deteriorated. If the lubricant is added in an amount of 5.0 parts by weight or more, economical efficiency is deteriorated.

상기 안료는 산화티탄, 산화철, 탄산칼슘, 크롬옥사이드 및 카본블랙으로 이루어진 군으로부터 선택될 수 있고 조성물의 색상을 부여하기 위해 1.0 내지 10 중량부가 사용된다. The pigment may be selected from the group consisting of titanium oxide, iron oxide, calcium carbonate, chromium oxide and carbon black, and 1.0 to 10 parts by weight is used for imparting the hue of the composition.

상기 비닐실란은 비닐트리메톡시실란 (vinyltrimethoxysilane), 비닐트리에톡시실란 (vinyltrimethoxysilane), 비닐트리스(2-메톡시에톡시)-실란 [vinyl tris(2-methoxyethoxy)silane] 이 바람직하며 그외에고 3-(아크릴옥시프로필)트리메톡시실란 [3-(acryloxypropyltrimethoxysilane)], 2-(아크릴옥시에톡시)트리메틸실란 [2-(acryloxyethoxy)trimethylsilane], (3-아크릴옥시프로필) 디메틸메톡시실란 [(3-(acryloxypropyl)dimethylmethoxysilane)] 및 아릴트리에톡시실란 (allyltriethoxysilane)으로 이루어진 군으로부터 선택될 수 있고 이에 제한되지 않는다. 이때 상기 비닐실란이 0.5 중량부 미만인 경우 수가교성이 떨어지고 3 중량부 이상일 경우 조성물 외부로 이행 (migration) 되고 경제성이 떨어진다.The vinyl silane is preferably vinyltrimethoxysilane, vinyltrimethoxysilane, vinyl tris (2-methoxyethoxy) silane, and the like. - (acryloxypropyltrimethoxysilane), 2- (acryloxyethoxy) trimethylsilane, (3-acryloxypropyl) dimethylmethoxysilane [( 3- (acryloxypropyl) dimethylmethoxysilane), and allyltriethoxysilane. If the amount of the vinylsilane is less than 0.5 parts by weight, the water becomes poor in durability. If the amount of the vinylsilane is more than 3 parts by weight, migration to the outside of the composition becomes difficult and the economical efficiency decreases.

상기 유기과산화물은 상기 폴리올레핀수지와 상기 비닐실란을 화학적으로 그래프팅시키는 역할을 하고 상기 유기과산화물은 벤조일 퍼옥사이드 (benzoyl peroxide), t-부틸큐밀 퍼옥사이드 (t-butyl cumyl peroxide), 디큐밀 퍼옥사이드 (dicumyl peroxide), t-부틸퍼옥시벤조에이트 (t-butyl peroxybenzoate), t-부틸퍼옥시이소부틸레이트 (t-butyl peroxyisobutyrate), 시클로헥사논퍼옥사이드 (cyclohexanone peroxide) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고 이에 제한되는 것이 아니다. 이때 상기 유기과산화물이 0.1 중량부 미만인 경우 그라프팅 반응효율이 떨어지고 2 중량부 이상일 경우 경제성이 떨어진다. The organic peroxide chemically grafts the polyolefin resin and the vinyl silane, and the organic peroxide is selected from the group consisting of benzoyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide from the group consisting of dicumyl peroxide, t-butyl peroxybenzoate, t-butyl peroxyisobutyrate, cyclohexanone peroxide, and mixtures thereof. May be selected and not limited thereto. If the amount of the organic peroxide is less than 0.1 parts by weight, the efficiency of the grafting reaction is lowered. If the amount of the organic peroxide is more than 2 parts by weight, economical efficiency is deteriorated.

본 발명은The present invention

1) 실리콘-시클로 클로로포스파젠 보조 난연제를 제조하는 단계; 1) preparing a silicone-cyclochlorophosphazene secondary flame retardant;

2) 실란 표면 처리된 무기 난연제를 제조하는 단계;2) preparing a silane surface-treated inorganic flame retardant;

3) 수가교촉매를 제조하는 단계;3) preparing a water catalyst;

4) 폴리올레핀 수지 또는 에틸렌 공중합체수지, 열가소성엘라스토머, 말레익 안하이드리드 그라프트머, 상기 단계 1)에서 제조된 보조 난연제, 상기 단계 2)에서 제조된 무기 난연제, 산화방지제, 활제 및 안료를 순차적으로 투입하여 120 내지 240℃의 온도에서 10 내지 60분 동안 용융혼합하는 단계; 4) A method for producing a flame-retardant polyolefin resin or ethylene copolymer resin, a thermoplastic elastomer, a maleic anhydride graft polymer, an auxiliary flame retardant prepared in the step 1), an inorganic flame retardant prepared in the step 2), an antioxidant, And melt mixing at a temperature of 120 to 240 DEG C for 10 to 60 minutes;

5) 상기 용융혼합된 혼합물에 비닐실란, 유기과산화물을 순차적으로 투입하여 150 내지 240 ℃의 온도에서 1 내지 10분 동안 용융혼합하여 실란 그라프팅 반응을 유도하는 단계;5) introducing vinyl silane and organic peroxide sequentially into the melt-mixed mixture, and melt-mixing the mixture at a temperature of 150 to 240 ° C for 1 to 10 minutes to induce a silane grafting reaction;

6) 상기 실란 그라프팅된 조성물을 성형하여 펠렛화시키는 단계; 및6) molding and pelletizing the silane-grafted composition; And

7) 상기 펠렛화된 조성물을 상기 수가교촉매와 혼합하는 단계;7) mixing the pelletized composition with the water flow catalyst;

를 포함하는 무독성 난연 실란가교 조성물 제조방법을 제공한다.A flame retardant silane cross-linking composition.

상기 보조 난연제 제조는 온도조절기 (temperature controller). 교반기 (stirrer) 및 응축기 (condenser)가 장착된 반응기 (reactor)에 히드로기를 말단기로 갖는 폴리디메틸실록산 (hydroxyl terminated polydimethylsiloxane) 0.5 내지 5 중량부와 헥사클로로포스파젠 (hexachlorophosphazene)과 같은 시클로 클로로포스파젠 (cyclo chlorophosphazene) 0.5 내지 5 중량부, 테트로히드로퓨란 (tetrahydrofuran)이나 에틸아세테이트 (ethyl acetate), 메틸에틸케톤 (methyl ethyl ketone) 같은 유기용매 (organic solvent) 50 내지 100 중량부를 가하여 200 내지 1000 RPM 속도로 20 내지 60 분간 교반한 다음, 반응기의 온도를 60 내지 80℃로 상승시켜 트리에틸아민 (triethylamine)이나 트리프로필아민 (tripropylamine)과 같은 삼가아민 (tertiary amine) 0.1 내지 5 중량부를 가하여 24 시간 내지 72 시간 동안 반응시킨 반응액을 여과건조하고 100 내지 500 중량부의 헥산으로 세척하여 제조될 수 있다.The auxiliary flame retardant preparation is performed using a temperature controller. In a reactor equipped with a stirrer and a condenser, 0.5 to 5 parts by weight of a hydroxyl terminated polydimethylsiloxane having a hydro group as a terminal group and 0.5 to 5 parts by weight of a cyclocrossphosphazene such as hexachlorophosphazene 0.5 to 5 parts by weight of cyclochlorophosphazene and 50 to 100 parts by weight of an organic solvent such as tetrahydrofuran, ethyl acetate or methyl ethyl ketone, And the temperature of the reactor is raised to 60 to 80 DEG C, and 0.1 to 5 parts by weight of a tertiary amine such as triethylamine or tripropylamine is added thereto, and the mixture is stirred for 24 hours To 72 hours. The reaction solution is filtered, dried and washed with 100 to 500 parts by weight of hexane.

상기 실란표면 처리된 무기 난연제의 제조는 교반기가 장착된 통상의 반응기에 메탄올 (methanol)이나 에탄올 (ethanol)과 같은 알코올 (alcohol) 95 중량부, 증류수 5 중량부, 실란 1 내지 5 중량부를 첨가하고 염산 또는 아세트산과 같은 산촉매를 5 내지 20 중량부를 가하여 pH 3 내지 5를 유지시키면서 50 내지 300 RPM 속도로 20 내지 60 분간 교반시킨 용액에 무기 난연제 99 내지 175 중량부를 가하여 50 내지 300 RPM 속도로 20분 내지 120 분간 교반한 다음 여과한 후 60 내지 120 ℃에서 건조하여 실란 표면처리된 난연제 분말 100 내지 180 중량부를 제조할 수 있다.The silane surface-treated inorganic flame retardant was prepared by adding 95 parts by weight of an alcohol such as methanol or ethanol, 5 parts by weight of distilled water and 1 to 5 parts by weight of silane to a conventional reactor equipped with a stirrer Adding acetic acid such as hydrochloric acid or acetic acid in an amount of from 5 to 20 parts by weight, stirring the mixture at a rate of 50 to 300 rpm for 20 to 60 minutes while maintaining the pH of 3 to 5, adding 99 to 175 parts by weight of an inorganic flame retardant, Followed by filtration and drying at 60 to 120 ° C. to prepare 100 to 180 parts by weight of a flame retardant powder subjected to silane surface treatment.

상기 실란 표면 처리된 무기 난연제 제조에 사용되는 실란은 비닐트리메톡시실란 (vinyltrimethoxysilane), 비닐트리에톡시실란 (vinyltrimethoxysilane), 테트라에톡시실란 (tetraethoxy silane), 메틸트리에톡시실란 (methyltriethoxysilane), 메틸트리메톡시실란 (methyltrimethoxysilane), 메틸트리(2-메톡시에톡시)실란,3-메타크릴로일옥시프로필-트리메톡시실란 (3-methacryloyloxypropyl-trimethoxysilane), 3-메르캅토프로필-트리메톡시실란 (3-mercaptopropyl-trimethoxysilane), 3-아미노프로필-트리메톡시실란 (3-aminopropyl-trimethoxysilane)및 3-글리시딜옥시프로필-트리메톡시실란 (3-glycidyloxypropyl-trimethoxysilane)으로 이루어진 군으로부터 선택된 것이거나 2종 이상 조합하여 사용될 수 있으며 본 발명은 이에 제한되는 것이 아니다.The silane used for the surface treatment of the silane surface-treated inorganic flame retardant may be selected from the group consisting of vinyltrimethoxysilane, vinyltrimethoxysilane, tetraethoxy silane, methyltriethoxysilane, methyl But are not limited to, methyltrimethoxysilane, methyltri (2-methoxyethoxy) silane, 3-methacryloyloxypropyl-trimethoxysilane, 3-mercaptopropyltrimethoxy 3-mercaptopropyl-trimethoxysilane, 3-aminopropyl-trimethoxysilane, and 3-glycidyloxypropyl-trimethoxysilane. Or two or more of them may be used in combination, and the present invention is not limited thereto.

상기 실란 표면 처리된 무기 난연제 제조에 사용되는 무기 난연제는 탄산칼슘, 탄산 마그네슘, 알루미나, 알루미늄 옥사이드히드로옥사이드, 수산화마그네슘, 수산화알루미늄 및 삼산화안티몬으로 이루어진 군으로부터 선택된 하나 또는 2종 이상 조합하여 사용될 수 있으나, 본 발명은 이에 제한되는 것이 아니다. The inorganic flame retardant used in the silane surface-treated inorganic flame retardant may be one or more selected from the group consisting of calcium carbonate, magnesium carbonate, alumina, aluminum oxide hydroxide, magnesium hydroxide, aluminum hydroxide and antimony trioxide , But the present invention is not limited thereto.

상기 수가교촉매를 제조하는 단계는 폴리올레핀 수지 4.6 중량부와 디부틸틴 디알루레이트 (dibuthyltin dilaurate), 스텐니우스 옥토에이트 (stannous octoate), 디부틸틴 디말릴레이트 (dibutyltin dimalrate), 디부틸틴 아세테이트 (dibutyltin diacetate), 디부틸틴 라울레이트 (dibutyltin dilaurate), 디부틸틴 디옥토에이트 (dibutyltin dioctoate), 디옥틸틴 말릴레이트 (dioctyltin maleate), 디부틸틴 디아세테이트 (dibutyltin diacetate), 테트라부틸 티타네이트 (tetrabutyl titanate)와 같은 축합촉매 0.4 내지 0.9 중량부를 이축압출기 (twin screw extruder)에 순차적으로 투입하여 150 내지 240 ℃의 온도에서 1 내지 10분 동안 용융 혼합하여 2 내지 3 mm 정도 크기를 갖는 수가교촉매를 제조할 수 있다.The step of preparing the water-exchanging catalyst comprises the steps of mixing 4.6 parts by weight of a polyolefin resin with at least one additive selected from the group consisting of dibutyltin dilaurate, stannous octoate, dibutyltin dimalate, But are not limited to, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate, dioctyltin maleate, dibutyltin diacetate, tetrabutyl titanate and 0.4 to 0.9 part by weight of a condensation catalyst such as tetrabutyl titanate are sequentially introduced into a twin screw extruder and melt-mixed at a temperature of 150 to 240 ° C for 1 to 10 minutes to form a water- A catalyst can be produced.

상기 용융혼합 단계는 폴리에틸렌 (polyethylene), 폴리프로필렌 (polypropylene), 폴리부텐 (polybutene) 및 폴리메틸펜텐 (polymethly pentene)으로이루어진 군으로부터 선택된 폴리올레핀 수지나 폴리에틸렌비닐아세테이트 (ethylenevinyl acetate), 에틸렌에틸아크릴레이트 (ethylene ethyl acrylate) 및 에틸렌부틸아크릴레이트 (ethylene buthyl acrylate)으로 이루어진 군으로부터 선택된 에틸렌 공중합체수지 20 내지 40 중량부와, 열가소성엘라스토머 10 내지 40 중량부, 에틸렌 말레익 안하이드리드 그라프트머 (ethylene maleic anhydride graftmer), 프로필렌 말레익 안하이드리드 그라프트머 (propylene-maleic anhydride graftmer), 에틸렌-프로필렌 말레익 안하이드리드 그라프트머 (ethylene-propylene-maleic anhydride graftmer) 및 에틸렌 아크릭 에스테르 말레익 안하이드리드 그라프트머 (ethylene acrylic ester maleic anhydride graftmer)으로 이루어진 군으로부터 선택된 말레익 안하이드리드 그라프트머 20 내지 50 중량부, 실란 표면 처리된 무기 난연제 제조단계에서 얻어진 실란 표면 처리된 무기 난연제 100 내지 180 중량부, 실리콘-시클로 클로로포스파젠 보조 난연제 1 내지 10 중량부, 산화방지제로 0.1 내지 5 중량부 및 안료 1 내지 10 중량부를 니더믹서 (Kneader mixer), 부스니더 (Buss kneader)나 밴버리믹서 (Banbury mixer) 등의 혼합믹서에 순차적으로 투입하여 120 내지 240℃의 온도에서 10 내지 60분 동안 용융혼련하여 수행될 수 있다.Wherein the melt mixing step comprises mixing a polyolefin resin selected from the group consisting of polyethylene, polypropylene, polybutene and polymethly pentene, polyethylene vinyl acetate, ethylenevinyl acrylate, 20 to 40 parts by weight of an ethylene copolymer resin selected from the group consisting of ethylene ethyl acrylate and ethylene buthyl acrylate, 10 to 40 parts by weight of a thermoplastic elastomer, ethylene maleic anhydride graftmer, propylene-maleic anhydride graftmer, ethylene-propylene-maleic anhydride graftmer and ethylene acrylic ester maleic anhydride graft polymer ( ethylene acrylic ester maleic anh ydride graftmer), 100 to 180 parts by weight of a silane surface treated inorganic flame retardant obtained in the step of preparing an inorganic flame retardant treated with a silane surface treatment, 100 to 180 parts by weight of a silicone-cyclochlorophosphazene auxiliary 1 to 10 parts by weight of a flame retardant, 0.1 to 5 parts by weight of an antioxidant and 1 to 10 parts by weight of a pigment are sequentially introduced into a mixing mixer such as a Kneader mixer, a Buss kneader or a Banbury mixer And melting and kneading at a temperature of 120 to 240 DEG C for 10 to 60 minutes.

상기 실란그라프팅 단계는 용융혼련단계가 끝난 후에 상기 혼합물을 일축압출기 혹은 이축압출기로 이송시키고 비닐실란 0.5 내지 3 중량부, 유기과산화물 0.1 내지 2 중량부를 순차적으로 투입하여 150 내지 240 ℃의 온도에서 1 내지 10분 동안 용융혼합하여 실란 그라프팅반응을 유도하여 수행될 수 있다. In the silane grafting step, after the melt kneading step, the mixture is transferred to a uniaxial extruder or a twin-screw extruder, and 0.5 to 3 parts by weight of vinylsilane and 0.1 to 2 parts by weight of an organic peroxide are sequentially added thereto. For 10 minutes to induce a silane grafting reaction.

상기 펠렛화 단계는 바람직하게는 상기 실란 그라프팅단계에서 얻어진 조성물을 단축 또는 이축 압출기를 이용한 용융압출 성형과정을 통해 2 내지 3 mm 정도 크기를 갖는 펠렛으로 만들어 수행될 수 있다. The pelletizing step is preferably performed by forming the composition obtained in the silane grafting step into a pellet having a size of about 2 to 3 mm through a single-screw extruder or a melt extrusion molding process using a twin-screw extruder.

상기 혼합단계는 바람직하게는 상기 펠렛화 단계에서 제조된 펠렛 153.7 내지 345 중량부와 수가교촉매 제조단계에서 제조된 수가교촉매 5.0 내지 5.5 중량부를 혼합하여 수행될 수 있고 상기 혼합된 생성물이 본 발명의 무독성 난연 실란가교 조성물일 수 있다.The mixing step may be carried out preferably by mixing 153.7 to 345 parts by weight of the pellet produced in the pelletizing step with 5.0 to 5.5 parts by weight of the catalyst prepared in the step of preparing the water catalyst, Non-toxic flame retardant silane crosslinking composition.

본 발명은 상기 제조방법에 의해 제조된 무독성 난연 실란가교 조성물을 전선에 압출하여 전선을 성형하는 단계를 포함하는 무독성 난연 절연전선 제조방법을 제공한다. The present invention provides a method for manufacturing a non-toxic flame-retardant insulated wire including the steps of extruding a non-toxic flame retardant silane cross-linking composition produced by the above-described method into electric wires to form electrical wires.

상기 전선을 성형하는 단계는 상기 혼합단계에서 생성된 혼합물 157.75 내지 345.5 중량부를 일축압출기 (single screw extruder)의 호퍼에 투입한 다음, 실린더1: 160 내지 230℃, 실리더2: 170 내지 240 ℃, 실리더3: 180 내지 240℃, 다이: 175 내지 245℃의 온도 조건으로 10 내지 40kg/시간의 압출속도로 고분자 수지로 절연된 동선이나 알루미늄선, 합금선, 금속 도금선으로 이루어진 군으로부터 선택된 절연선에 압출하여 전선을 성형할 수 있다.The forming of the electric wire is performed by injecting 157.75 to 345.5 parts by weight of the mixture produced in the mixing step into a hopper of a single screw extruder, An insulated wire selected from the group consisting of copper wire, aluminum wire, alloy wire and metal plated wire insulated with a polymer resin at an extrusion rate of 10 to 40 kg / hour under a temperature condition of 180 to 240 캜 and a die 175 to 245 캜 To form a wire.

본 발명은 연소 시 발생 유해가스 및 연기량이 적어 소화활동을 방해하지 않기 때문에 안정성이 뛰어나며 비닐절연피복 대비 수가교 방법을 통해 물리적, 열적 특성과 조사가교나 화학가교 방식대비 제조경비 절감 및 생산이 용이하며, 최종적으로 제조되는 전선의 장기적 수명이 우수한 옥내 절연전선의 압출피복용 친환경 무독성 난연 실란가교 조성물를 용이하게 제조하는 효과를 가지고 있다.The present invention is excellent in stability since it does not interfere with digestion activity because of harmful gas and smoke amount generated during combustion, and it is easy to manufacture and reduce manufacturing cost compared to irradiation crosslinking or chemical crosslinking method And has an effect of easily producing an environmentally friendly non-toxic flame-retardant silane crosslinking composition for extrusion coating of indoor insulation wires having excellent long-term service life of wires finally produced.

도 1은 본 발명의 실시 방법을 예시한 공정흐름도이다.1 is a process flow diagram illustrating an embodiment of the present invention.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단 본 발명의 범위가 예시한 실시예만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to the illustrated embodiments.

옥내 절연전선의 압출피복용 친환경 무독성 난연 실란가교 조성물 및 절연전선의 제조방법의 실시예Embodiment of an Eco-Friendly Non-toxic Flame Retardant Silane Crosslinking Composition for Extrusion Coating of Indoor Insulated Wire and Method of Manufacturing Insulated Electric Wire 원 료 (기본 수지 100 중량부 대비)Materials (100 parts by weight of base resin) 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예Comparative Example 기본 수지Base resin 폴리올레핀수지Polyolefin resin 폴리에틸렌Polyethylene 4040 -- -- 4040 폴리프로필렌Polypropylene -- 4040 -- -- 폴리메틸펜텐Polymethylpentene -- -- 4040 -- 열가소성엘라스토머Thermoplastic elastomer 폴리올레핀열가소성엘라스토머Polyolefin thermoplastic elastomer 3333 3333 3333 3333 말레익 안하이드리드 그라프트머Maleic anhydride graft polymer 에틸렌-말레익 안하이드리드Ethylene-maleic anhydride 2727 2727 2727 2727 무기 난연제Inorganic flame retardant 테트라에톡시 실란 표면 처리Tetraethoxysilane surface treatment 수산화마그네슘Magnesium hydroxide 133133 -- -- -- 수산화알루미늄Aluminum hydroxide -- 133133 -- -- 알루미늄옥사이드히드로옥사이드Aluminum oxide hydroxide -- -- 133133 -- 실란 미처리Silane untreated 수산화마그네슘Magnesium hydroxide 133133 보조
난연제
assistant
Flame retardant
유기실리콘 Organic silicon 실리콘-시클로 클로로포스파젠Silicone-Cyclochlorophosphazene 9.39.3 9.39.3 9.39.3 --
산화방지제Antioxidant 테트라키스[메틸렌-3-(3‘,5’-디-터트-부틸-4-히드로옥시페닐-프로피오네이트)메탄 Tetrakis [methylene-3- (3 ', 5'-di-tert-butyl-4-hydroxyoxyphenyl-propionate) methane 22 22 22 22 안료Pigment 카본블랙Carbon black 5.25.2 5.25.2 5.25.2 5.25.2 활제Lubricant 폴리에틸렌 왁스Polyethylene wax 22 22 22 22 비닐실란Vinylsilane 비닐트리에톡시실란Vinyltriethoxysilane 33 33 33 33 유기과산화물Organic peroxide 디큐밀 퍼옥사이드Dicumyl peroxide 1One 1One 1One 1One 수가교촉매 (폴리에틸렌)The water catalyst (polyethylene) 폴리에틸렌: 4.6
디부틸틴 디알루레이트: 0.4
Polyethylene: 4.6
Dibutyl tin dilaurate: 0.4
55 55 55 55
합 계Sum 260.5260.5 260.5260.5 260.5260.5 260.5260.5

<< 제조예Manufacturing example > 무독성 난연 > Non-toxic flame retardant 실란가교Silane bridging 조성물의 제조 Preparation of composition

20L 니더믹서에 상기 표 1의 배합비에 의해 순차적으로 폴리올레핀수지, 열가소성엘라스토머, 말레익 안하이드리드 그라프트머, 테트라에톡시실란 표면처리된 무기 난연제, 실리콘-시클로 클로로포스파젠 보조 난연제, 산화방지제, 안료, 활제를 투입하여 140 내지 240℃의 온도로 유지하면서 15 분간 용융혼련한 덩어리 반죽 형태의 용융 혼합물을 이축압출기로 이송하여 비닐실란, 유기과산화물을 보조호퍼로 투여하여 150 내지 240℃의 온도에서 용융압출성형과정을 통해 2 내지 3 mm 정도 크기를 갖는 난연 실란가교 조성물 펠렛을 제조하였다. A 20 L kneader mixer was charged with a polyolefin resin, a thermoplastic elastomer, a maleic anhydride graft polymer, an inorganic flame retardant surface-treated with tetraethoxysilane, a silicone-cyclocholinephosphazine auxiliary flame retardant, an antioxidant, a pigment , And a lubricant in the form of a dough kneaded by kneading and kneading for 15 minutes while being maintained at a temperature of 140 to 240 ° C by a lubricant is fed to a twin-screw extruder, and vinylsilane and organic peroxide are fed as an auxiliary hopper, Through the extrusion process, flame retardant silane crosslinked composition pellets having a size of about 2 to 3 mm were prepared.

<< 실시예Example 1> 1>

상기 제조예에 따라 제조된 난연 실란가교 조성물 펠렛과 수가교촉매를 혼합하여 호퍼에 투여한 다음 20 mm 압출성형용 다이가 부착되어 있는 일축압출기 (스큐류: 60Φ)에서 실린더1:160℃, 실리더2:170℃, 실리더3:180℃, 다이:175℃은 온도 조건으로 20㎏/hr의 속도로 15 mm 지름의 폴리에틸렌이 절연된 동선에 1.2㎜ 두께의 절연피복을 성형하였다. 이렇게 제조된 절연피복을 가지고 시편을 제작하여, 산소지수, 인장강도, 신장율, 인장특성을 평가하여 그 결과를 표 2에 나타내었다. The flame-retardant silane crosslinked composition pellets prepared according to the above Preparation Example were mixed with a water-swellable catalyst, and the resulting mixture was introduced into a hopper. Then, in a uniaxial extruder (skew type: 60Φ) equipped with a die for 20 mm extrusion molding, Reader 2: 170 캜, cylinder 3: 180 캜, and die 175 캜 were thermally insulated at a rate of 20 kg / hr to form a 1.2 mm thick insulating coating on a copper wire insulated with 15 mm diameter. The specimens were prepared with the insulation coating thus prepared, and the oxygen index, tensile strength, elongation and tensile properties were evaluated. The results are shown in Table 2.

<< 실시예Example 2> 2>

상기 제조예에 따라 제조된 난연 실란가교 조성물 펠렛과 수가교촉매를 혼합하여 호퍼에 투여한 다음 20 mm 압출성형용 다이가 부착되어 있는 일축압출기 (스큐류: 60Φ)에서 실린더1:200℃, 실리더2:210℃, 실리더3:220℃, 다이:215℃은 온도 조건으로 20㎏/hr의 속도로 15 mm 지름의 폴리프로필렌 수지로 절연된 동선에 1.2㎜ 두께의 절연피복을 성형하였다. 이렇게 제조된 절연피복을 가지고 시편을 제작하여, 산소지수, 인장강도, 신장율, 인장특성을 평가하여 그 결과를 표 2에 나타내었다. The flame-retardant silane crosslinked composition pellets prepared according to the above Preparation Example were mixed with a water-swellable catalyst, and the mixture was dispensed into a hopper. Then, in a uniaxial extruder (skew type: 60Φ) equipped with a die for 20 mm extrusion molding, A 1.2 mm thick insulating coating was formed on a copper wire insulated with a polypropylene resin having a diameter of 15 mm at a rate of 20 kg / hr under a temperature condition of a reader 2: 210 캜, a cylinder 3: 220 캜 and a die 215 캜. The specimens were prepared with the insulation coating thus prepared, and the oxygen index, tensile strength, elongation and tensile properties were evaluated. The results are shown in Table 2.

<< 실시예Example 3> 3>

상기 제조예에 따라 제조된 난연 실란가교 조성물 펠렛과 수가교촉매를 혼합하여 호퍼에 투여한 다음 20 mm 압출성형용 다이가 부착되어 있는 일축압출기 (스큐류: 60Φ)에서 실린더1:220℃, 실리더2:230℃, 실리더3:240℃, 다이:235℃은 온도 조건으로 20㎏/hr의 속도로 15 mm 지름의 폴리메틸펜텐 수지로 절연된 동선에 1.2㎜ 두께의 절연피복을 성형하였다. 이렇게 제조된 절연피복을 가지고 시편을 제작하여, 산소지수, 인장강도, 신장율, 인장특성을 평가하여 그 결과를 표 2에 나타내었다. The flame-retardant silane crosslinked composition pellets prepared according to the above Preparation Example were mixed with a water-swellable catalyst, and the mixture was injected into a hopper. Then, in a uniaxial extruder (skew type: 60Φ) equipped with a 20 mm extrusion die, A 1.2 mm thick insulating coating was formed on a copper wire insulated with a polymethylpentene resin having a diameter of 15 mm at a rate of 20 kg / hr under a temperature condition of a reader 2: 230 ° C, a cylinder 3: 240 ° C, and a die 235 ° C . The specimens were prepared with the insulation coating thus prepared, and the oxygen index, tensile strength, elongation and tensile properties were evaluated. The results are shown in Table 2.

<< 비교예Comparative Example >>

기 제조예에 따라 제조된 난연 실란가교 조성물 펠렛과 수가교촉매를 혼합하여 호퍼에 투여한 다음 20 mm 압출성형용 다이가 부착되어 있는 일축압출기 (스큐류: 60Φ)에서 실린더1:220℃, 실리더2:230℃, 실리더3:240℃, 다이:235℃은 온도 조건으로 20㎏/hr의 속도로 15 mm 지름의 폴리메틸펜텐 수지로 절연된 동선에 1.2㎜ 두께의 절연피복을 성형하였다. 이렇게 제조된 절연피복을 가지고 시편을 제작하여, 산소지수, 인장강도, 신장율, 인장특성을 평가하여 그 결과를 표 2에 나타내었다. The flame-retardant silane crosslinked composition pellets prepared according to the Preparation Example were mixed with a water-swellable catalyst, and the mixture was dispensed into a hopper. Then, a cylinder 1: 220 ° C in a uniaxial extruder (skew type: 60Φ) equipped with a 20 mm extrusion die, A 1.2 mm thick insulating coating was formed on a copper wire insulated with a polymethylpentene resin having a diameter of 15 mm at a rate of 20 kg / hr under a temperature condition of a reader 2: 230 ° C, a cylinder 3: 240 ° C, and a die 235 ° C . The specimens were prepared with the insulation coating thus prepared, and the oxygen index, tensile strength, elongation and tensile properties were evaluated. The results are shown in Table 2.

실시예와 비교예에 따른 각 실험의 측정결과Measurement results of each experiment according to Examples and Comparative Examples 시 험 항 목Test Items 실시예1 Example 1 실시예2Example 2 실시예3Example 3 비교예 Comparative Example 연기밀도 (150 이하)Smoke density (less than 150) 110110 115115 100100 180180 연소가스 부식성 (PH >3.5)Corrosion of combustion gas (PH> 3.5) 5.55.5 5.45.4 6.06.0 4.54.5 산소지수Oxygen index 4747 4747 4747 3535 자기소화성Self-extinguishing 우수Great 우수Great 우수Great 양호Good

<표 2>에서와 같이 실리콘-시클로 클로로포스파젠 보조 난연제 및 실란-표면 처리된 무기 난연제를 함께 사용한 본 발명의 무독성 난연 실란가교 조성물은 연기밀도, 산소지수, 연소가스 부식성 및 난연성이 우수한 것을 확인 할 수 있었다. As shown in Table 2, the non-toxic flame retardant silane cross-linking composition of the present invention using the silicone-cyclochlorophosphazene auxiliary flame retardant and the silane-surface treated inorganic flame retardant together was found to have excellent smoke density, oxygen index, flame gas corrosion resistance and flame retardancy Could.

Claims (8)

삭제delete 삭제delete 삭제delete 1) 실리콘-시클로 클로로포스파젠 보조 난연제를 제조하는 단계;
2) 실란 표면 처리된 무기 난연제를 제조하는 단계;
3) 수가교촉매를 제조하는 단계;
4) 폴리올레핀 수지 또는 에틸렌 공중합체수지, 열가소성엘라스토머, 말레익 안하이드리드 그라프트머, 상기 실란 표면 처리된 무기 난연제, 상기 실리콘-시클로 클로로포스파젠 보조 난연제, 산화방지제, 활제 및 안료를 순차적으로 투입하여 120 내지 240℃의 온도에서 10 내지 60분 동안 용융혼합하는 단계;
5) 상기 용융혼합된 혼합물에 비닐실란, 유기과산화물을 순차적으로 투입하여 150 내지 240 ℃의 온도에서 1 내지 10분 동안 용융혼합하여 실란 그라프팅 반응을 유도하는 단계;
6) 상기 실란 그라프팅된 조성물을 성형하여 펠렛화시키는 단계; 및
7) 상기 펠렛화된 조성물을 상기 수가교촉매와 혼합하는 단계;
를 포함하는 무독성 난연 실란가교 조성물 제조방법으로,
상기 실리콘-시클로 클로로포스파젠 보조 난연제를 제조하는 단계는:
폴리디메틸실록산 0.5 내지 5 중량부, 시클로 클로로포스파젠 0.5 내지 5 중량부 및 유기용매 50 내지 100 중량부를 교반하는 단계;
상기 교반한 혼합물과 삼가아민(tertiary amine) 0.1 내지 5 중량부를 반응시키는 단계; 및
상기 반응 후 생성물을 여과 건조하고 헥산으로 세척하는 단계;
를 포함하는 것인 무독성 난연 실란가교 조성물 제조방법.
1) preparing a silicone-cyclochlorophosphazene secondary flame retardant;
2) preparing a silane surface-treated inorganic flame retardant;
3) preparing a water catalyst;
(4) A method for producing a flame-retardant resin composition, which comprises sequentially feeding a polyolefin resin or an ethylene copolymer resin, a thermoplastic elastomer, a maleic anhydride graft copolymer, an inorganic flame retardant having undergone the silane surface treatment, the silicone-cyclochlorophosphazine flame retardant, an antioxidant, Melt mixing at a temperature of 120 to 240 DEG C for 10 to 60 minutes;
5) introducing vinyl silane and organic peroxide sequentially into the melt-mixed mixture, and melt-mixing the mixture at a temperature of 150 to 240 ° C for 1 to 10 minutes to induce a silane grafting reaction;
6) molding and pelletizing the silane-grafted composition; And
7) mixing the pelletized composition with the water flow catalyst;
Wherein the flame retardant silane crosslinking composition is a non-toxic flame retardant silane crosslinking composition.
Wherein the step of preparing the silicone-cyclochlorophosphazene auxiliary flame retardant comprises:
0.5 to 5 parts by weight of polydimethylsiloxane, 0.5 to 5 parts by weight of cyclochlorophosphazene and 50 to 100 parts by weight of an organic solvent;
Reacting the stirred mixture with 0.1 to 5 parts by weight of a tertiary amine; And
Filtering the product after the reaction and washing with hexane;
&Lt; / RTI &gt; wherein the flame retardant composition comprises a non-toxic flame retardant silane crosslinking composition.
삭제delete 제 4항에 있어서,
상기 실란 표면 처리된 무기 난연제를 제조하는 단계는,
알코올 (alcohol) 95 중량부, 증류수 5 중량부, 실란 1 내지 5 중량부 및 산촉매 5 내지 20 중량부를 교반하는 단계; 및
상기 교반시킨 용액에 탄산칼슘, 탄산 마그네슘, 알루미나, 알루미늄 옥사이드히드로옥사이드, 수산화마그네슘 및 수산화알루미늄으로 이루어진 군으로부터 선택된 하나 이상의 무기 난연제를 교반하는 단계;
를 포함하는 무독성 난연 실란가교 조성물 제조방법.
5. The method of claim 4,
The step of preparing the silane surface-treated inorganic flame-
95 parts by weight of alcohol, 5 parts by weight of distilled water, 1 to 5 parts by weight of silane and 5 to 20 parts by weight of an acid catalyst; And
Stirring the solution with at least one inorganic flame retardant selected from the group consisting of calcium carbonate, magnesium carbonate, alumina, aluminum oxide hydroxide, magnesium hydroxide and aluminum hydroxide;
&Lt; / RTI &gt; wherein the flame retardant silane crosslinking composition is a non-toxic flame retardant silane.
제 4항에 있어서,
상기 수가교촉매를 제조하는 단계는 폴리올레핀 수지 4.6 중량부와 디부틸틴 디알루레이트 (dibuthyltin dilaurate), 스텐니우스 옥토에이트 (stannous octoate), 디부틸틴 디말릴레이트 (dibutyltin dimalrate), 디부틸틴 아세테이트 (dibutyltin diacetate), 디부틸틴 라울레이트 (dibutyltin dilaurate), 디부틸틴 디옥토에이트 (dibutyltin dioctoate), 디옥틸틴 말릴레이트 (dioctyltin maleate), 디부틸틴 디아세테이트 (dibutyltin diacetate) 및 테트라부틸 티타네이트 (tetrabutyl titanate)로 이루어진 군으로부터 선택된 하나 이상의 축합촉매 0.4 내지 0.9 중량부를 이축압출기로 용융 혼합하여 제조하는 것인 무독성 난연 실란가교 조성물 제조방법.
5. The method of claim 4,
The step of preparing the water-exchanging catalyst comprises the steps of mixing 4.6 parts by weight of a polyolefin resin with at least one additive selected from the group consisting of dibutyltin dilaurate, stannous octoate, dibutyltin dimalate, But are not limited to, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate, dioctyltin maleate, dibutyltin diacetate and tetrabutyl titanate and 0.4 to 0.9 parts by weight of at least one condensation catalyst selected from the group consisting of tetrabutyl titanate is melt-mixed with a twin-screw extruder.
제 4항 및 제 6항 내지 제 7항 중 어느 한 항의 방법으로 제조된 무독성 난연 실란가교 조성물을 고분자 수지로 절연된 동선, 알루미늄선, 합금선, 금속도금선으로 이루어진 군으로부터 선택된 하나이상의 전선에 압출하여 전선을 성형하는 단계를 포함하는 무독성 난연 절연전선 제조 방법.
A non-toxic flame-retardant silane crosslinking composition produced by the method of any one of claims 4 and 6 to 7 is applied to at least one wire selected from the group consisting of copper wire insulated with a polymer resin, aluminum wire, alloy wire, And extruding the wire to form a wire.
KR1020160146327A 2016-11-04 2016-11-04 Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing KR101845532B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160146327A KR101845532B1 (en) 2016-11-04 2016-11-04 Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160146327A KR101845532B1 (en) 2016-11-04 2016-11-04 Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing

Publications (1)

Publication Number Publication Date
KR101845532B1 true KR101845532B1 (en) 2018-04-04

Family

ID=61975464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160146327A KR101845532B1 (en) 2016-11-04 2016-11-04 Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing

Country Status (1)

Country Link
KR (1) KR101845532B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111117137A (en) * 2019-12-27 2020-05-08 上海至正道化高分子材料股份有限公司 Preparation method of anti-shrinkage silane cross-linked low-smoke halogen-free flame-retardant insulating material for intelligent building cloth wires
KR20200050072A (en) * 2018-10-31 2020-05-11 에이치디씨현대이피 주식회사 Polymer composite composition having high flame retardancy and polymer resin comprising the same
KR102253407B1 (en) * 2020-01-28 2021-05-18 한국산업기술대학교산학협력단 Flame retardant polyolefine based resin composition and high-voltage wire using the same
WO2021133052A1 (en) * 2019-12-24 2021-07-01 (주)티에스씨 Low-toxicity flame-retardant polyolefin-based insulating resin composition, insulated electric wire, and method for producing insulated electric wire
CN115028985A (en) * 2022-06-16 2022-09-09 江苏新金牛线缆有限公司 Weather-resistant wire and cable material and production process thereof
CN115160762A (en) * 2022-06-27 2022-10-11 广东中德电缆有限公司 Silane crosslinking SEBS (styrene-ethylene-butadiene-styrene) based halogen-free flame-retardant elastomer and preparation method thereof
WO2022250456A1 (en) * 2021-05-25 2022-12-01 한국생산기술연구원 High-voltage cable material and manufacturing method therefor
CN115558280A (en) * 2022-11-10 2023-01-03 苏州亨利通信材料有限公司 B1-level silane cross-linked flame-retardant polyolefin cable material for wire distribution and preparation method thereof
KR20230006414A (en) * 2021-07-02 2023-01-10 정세진 High heat resistance flexible positive temperature coefficient composition
WO2023008951A1 (en) * 2021-07-30 2023-02-02 한국생산기술연구원 High-voltage lightweight cable material and method for manufacturing same
CN116262846A (en) * 2022-12-05 2023-06-16 浙江万马股份有限公司 Flame-retardant insulating material for cables and preparation method thereof
CN116515196A (en) * 2023-06-05 2023-08-01 东莞市安高瑞新材料科技有限公司 Halogen-free low-smoke flame-retardant crosslinked polyethylene material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645086B2 (en) * 1988-06-23 1997-08-25 日本化学工業株式会社 Silica-coated magnesium hydroxide and method for producing the same
JP2009007396A (en) * 2007-06-26 2009-01-15 Sony Corp Flame retardant and resin composition
KR101314010B1 (en) * 2013-07-25 2013-10-01 김웅 Fire-retardant polyolefine composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645086B2 (en) * 1988-06-23 1997-08-25 日本化学工業株式会社 Silica-coated magnesium hydroxide and method for producing the same
JP2009007396A (en) * 2007-06-26 2009-01-15 Sony Corp Flame retardant and resin composition
KR101314010B1 (en) * 2013-07-25 2013-10-01 김웅 Fire-retardant polyolefine composition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050072A (en) * 2018-10-31 2020-05-11 에이치디씨현대이피 주식회사 Polymer composite composition having high flame retardancy and polymer resin comprising the same
KR102177829B1 (en) 2018-10-31 2020-11-12 에이치디씨현대이피 주식회사 Polymer composite composition having high flame retardancy and polymer resin comprising the same
WO2021133052A1 (en) * 2019-12-24 2021-07-01 (주)티에스씨 Low-toxicity flame-retardant polyolefin-based insulating resin composition, insulated electric wire, and method for producing insulated electric wire
KR20210082317A (en) * 2019-12-24 2021-07-05 (주)티에스씨 Halogen free flame-retardant polyolefin-based insulation resin composition, insulation cable amd manufactuting method for the same
KR102286151B1 (en) * 2019-12-24 2021-08-06 (주)티에스씨 Halogen free flame-retardant polyolefin-based insulation resin composition, insulation cable amd manufactuting method for the same
CN111117137A (en) * 2019-12-27 2020-05-08 上海至正道化高分子材料股份有限公司 Preparation method of anti-shrinkage silane cross-linked low-smoke halogen-free flame-retardant insulating material for intelligent building cloth wires
CN111117137B (en) * 2019-12-27 2022-10-28 上海至正新材料有限公司 Preparation method of anti-shrinkage silane cross-linked low-smoke halogen-free flame-retardant insulating material for intelligent building cloth wires
KR102253407B1 (en) * 2020-01-28 2021-05-18 한국산업기술대학교산학협력단 Flame retardant polyolefine based resin composition and high-voltage wire using the same
WO2022250456A1 (en) * 2021-05-25 2022-12-01 한국생산기술연구원 High-voltage cable material and manufacturing method therefor
KR20220159184A (en) 2021-05-25 2022-12-02 한국생산기술연구원 Material for high-voltage cable applicable to hydrogen-powered heavy-duty vehicle and preparation method thereof
KR102526902B1 (en) 2021-07-02 2023-04-28 정세진 Positive temperature coefficient self-regulating having high thermal resistance and flexibility heating cable manufacturing method
KR102557079B1 (en) 2021-07-02 2023-07-18 정세진 High heat resistance flexible positive temperature coefficient composition
KR102557081B1 (en) 2021-07-02 2023-07-19 정세진 Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility
KR20230006414A (en) * 2021-07-02 2023-01-10 정세진 High heat resistance flexible positive temperature coefficient composition
KR20230006697A (en) * 2021-07-02 2023-01-11 정세진 Positive temperature coefficient compound and self-regulating heating cable having high thermal resistance and flexibility and manufacturing method thereof
KR20230006766A (en) * 2021-07-02 2023-01-11 정세진 Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility
WO2023008951A1 (en) * 2021-07-30 2023-02-02 한국생산기술연구원 High-voltage lightweight cable material and method for manufacturing same
KR20230018814A (en) 2021-07-30 2023-02-07 한국생산기술연구원 Material for high-voltage lightweight cable applicable to hydrogen-powered heavy-duty vehicle and preparation method thereof
KR102674248B1 (en) * 2021-07-30 2024-06-12 한국생산기술연구원 Material for high-voltage lightweight cable applicable to hydrogen-powered heavy-duty vehicle and preparation method thereof
CN115028985A (en) * 2022-06-16 2022-09-09 江苏新金牛线缆有限公司 Weather-resistant wire and cable material and production process thereof
CN115028985B (en) * 2022-06-16 2023-09-26 江苏新金牛线缆有限公司 Weather-resistant wire and cable material and production process thereof
CN115160762A (en) * 2022-06-27 2022-10-11 广东中德电缆有限公司 Silane crosslinking SEBS (styrene-ethylene-butadiene-styrene) based halogen-free flame-retardant elastomer and preparation method thereof
CN115160762B (en) * 2022-06-27 2024-03-15 广东中德电缆有限公司 Silane crosslinked SEBS-based halogen-free flame-retardant elastomer and preparation method thereof
CN115558280A (en) * 2022-11-10 2023-01-03 苏州亨利通信材料有限公司 B1-level silane cross-linked flame-retardant polyolefin cable material for wire distribution and preparation method thereof
CN116262846A (en) * 2022-12-05 2023-06-16 浙江万马股份有限公司 Flame-retardant insulating material for cables and preparation method thereof
CN116515196A (en) * 2023-06-05 2023-08-01 东莞市安高瑞新材料科技有限公司 Halogen-free low-smoke flame-retardant crosslinked polyethylene material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101845532B1 (en) Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing
JP5343327B2 (en) Method for producing flame retardant silane-crosslinked olefin resin, insulated wire and method for producing insulated wire
JP5237277B2 (en) Flame-retardant silane-crosslinked olefin resin composition, insulated wire, and method for producing flame-retardant silane-crosslinked olefin resin
JP5870477B2 (en) Wire covering material composition, insulated wire and wire harness
JP6329948B2 (en) Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6858139B2 (en) Heat-resistant crosslinked fluororubber molded product and its manufacturing method, silane masterbatch, masterbatch mixture and its molded product, and heat-resistant products
JP3457560B2 (en) Method for producing halogen-free flame-retardant silane-crosslinked polyolefin composition
JP5182580B2 (en) Halogen-free flame retardant insulated wire
WO2017163868A1 (en) Electrical-wire covering material composition, insulated electrical wire, and wire harness
JP2022122905A (en) Heat resistant silane crosslinked resin molded body and manufacturing method therefor, and heat resistant product using heat resistant silane crosslinked resin molded body
JP5103061B2 (en) Flame-retardant silane-crosslinked polyolefin resin composition and insulated wire
JP5845517B2 (en) Flame retardant composition and insulated wire
KR101583908B1 (en) Resin Composition for Producing of Insulating Material and method for manufacturing Insulating Material
JP2010095638A (en) Non-halogen flame retardant resin composition and non-halogen flame retardant electric wire
KR100377862B1 (en) Flame retarding silane crosslinkable polyethylene composition and method of preparing flame retarding cable by the same
CN105623166B (en) Halogen-free flame-retardant resin composition and high-voltage cable
JP6053641B2 (en) Flame retardant silane crosslinkable resin composition, method for producing the same, molded product, electric wire / cable, and method for producing the same
KR101717646B1 (en) Environmental friendly non-toxic flame retardant high density polyethylene compound for extrusion sheath of ultra high-voltage cable and a method of manufacturing
JP6639937B2 (en) Method for producing heat-resistant silane-crosslinked thermoplastic elastomer molded article, silane masterbatch, and heat-resistant product
JP6052042B2 (en) Silane crosslinkable flame retardant composition, insulated wire and method for producing the same
JP2015004025A (en) Non-halogen flame-retardant resin composition and cable using the same
JP2014214239A (en) Silane crosslinking fire-retardant composition, and insulated wire using the same
KR101002708B1 (en) Resin Composition for Producing of Insulating Material with Flame Retardant
JP4968618B2 (en) Method for producing non-halogen flame retardant silane crosslinked insulated wire
JP2000285735A (en) Wire and cable

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant