[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101804659B1 - Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same - Google Patents

Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same Download PDF

Info

Publication number
KR101804659B1
KR101804659B1 KR1020160019249A KR20160019249A KR101804659B1 KR 101804659 B1 KR101804659 B1 KR 101804659B1 KR 1020160019249 A KR1020160019249 A KR 1020160019249A KR 20160019249 A KR20160019249 A KR 20160019249A KR 101804659 B1 KR101804659 B1 KR 101804659B1
Authority
KR
South Korea
Prior art keywords
hydrogen peroxide
solvent
shell
hydrogen
reaction
Prior art date
Application number
KR1020160019249A
Other languages
Korean (ko)
Other versions
KR20170097461A (en
Inventor
이관영
서명기
한근호
남석우
김진영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020160019249A priority Critical patent/KR101804659B1/en
Publication of KR20170097461A publication Critical patent/KR20170097461A/en
Application granted granted Critical
Publication of KR101804659B1 publication Critical patent/KR101804659B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J32/00
    • B01J35/0086
    • B01J35/023
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 과산화수소 제조용 나노입자 촉매 및 상기 촉매를 이용한 과산화수소 제조 방법에 관한 것이다. 본 발명의 나노입자 촉매를 이용하는 경우 고가의 팔라듐을 효율적으로 사용하여 과산화수소를 직접 제조할 수 있으며, 쉘의 최적 두께를 조절함에 따라 향상된 과산화수소의 제조 수율을 나타내는 것이 특징이다. The present invention relates to a nanoparticle catalyst for the production of hydrogen peroxide and a process for producing hydrogen peroxide using the catalyst. In the case of using the nanoparticle catalyst of the present invention, hydrogen peroxide can be directly produced by using expensive palladium efficiently, and the production yield of hydrogen peroxide is improved by controlling the optimal thickness of the shell.

Description

과산화수소 제조용 나노입자 촉매 및 상기 촉매를 이용한 과산화수소 제조 방법 {NANOPARTICLE CATALYSIS FOR SYNTHESIS OF HYDROGEN PEROXIDE AND METHOD OF SYNTHESIS OF HYDROGEN PEROXIDE USING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a nanoparticle catalyst for preparing hydrogen peroxide and a method for producing hydrogen peroxide using the catalyst,

본 발명은 과산화수소 제조용 나노입자 촉매 및 상기 촉매를 이용한 과산화수소 제조 방법에 관한 것이다.The present invention relates to a nanoparticle catalyst for the production of hydrogen peroxide and a process for producing hydrogen peroxide using the catalyst.

과산화수소는 펄프 및 섬유의 표백제, 소독 살균제, 반도체 세정액, 수처리 공정의 산화제, 화학 반응의 친환경 산화제 (프로필렌 옥사이드 합성)로 사용되고 있다. 2009년 기준 연간 220만 톤의 과산화수소가 제조되고 있으며 프로필렌 옥사이드 수요의 증가와 함께 과산화수소의 수요 증가가 기대된다.Hydrogen peroxide is used as a bleaching agent for pulp and fiber, disinfectant disinfectant, semiconductor cleaning liquid, oxidizer for water treatment process, and environmentally friendly oxidizer for chemical reaction (propylene oxide synthesis). As of 2009, 2.2 million tons of hydrogen peroxide are being produced annually, and the demand for hydrogen peroxide is expected to rise along with the increase in propylene oxide demand.

현재 과산화수소는 안트라퀴논(anthraquinone) 계열 화합물을 시작으로 연속적인 산화, 수소화 공정을 거쳐 생성되는데, 이때 많은 양의 유기 용매가 사용되고 폐기물로 발생한다는 문제점이 있다. 또한 과산화수소의 제조가 다단의 연속 공정과 제조 후 정제 및 농축 과정을 거치며 많은 에너지의 소비가 필요하다는 문제점도 있다.At present, hydrogen peroxide is generated through continuous oxidation and hydrogenation processes starting from anthraquinone-based compounds. In this case, a large amount of organic solvent is used and generated as waste. In addition, there is also a problem that the production of hydrogen peroxide requires a lot of energy consumption through a multi-stage continuous process and purification and concentration process after production.

이에 수소와 산소를 직접 반응시켜 과산화수소를 합성하는 직접 제조 공정이 주목 받고 있으며, 이러한 직접 제조 공정은 반응 부산물로 물이 생산되며 유기 용매의 사용이 적어 상용 공정의 대체 공정으로 많은 연구가 되어왔다. 상기 직접 제조 공정은 구성이 간단해 과산화수소를 필요로 하는 곳에서 제조할 수 있어 과산화수소의 보관 및 운반시 폭발의 위험성이 크게 줄일 수 있다 (대한민국 공개특허 2002-0032225호). Direct manufacturing process of synthesizing hydrogen peroxide by directly reacting hydrogen and oxygen has been attracting attention. This direct manufacturing process has been studied as an alternative process of commercial process because water is produced as a reaction by-product and use of organic solvent is low. The direct manufacturing process is simple in construction and can be manufactured where hydrogen peroxide is needed, thus greatly reducing the risk of explosion when storing and transporting hydrogen peroxide (Korean Patent Laid-Open Publication No. 2002-0032225).

하지만, 과산화수소 직접 제조를 위한 촉매 시스템은 대부분은 팔라듐과 같은 귀금속이 사용되고 있으며, 사용되는 귀금속의 가격이 매우 비싸기 때문에 귀금속을 효율적으로 사용하기 위한 기술이 요구되고 있다. However, since most of the catalyst systems for the production of hydrogen peroxide use precious metals such as palladium, and the prices of precious metals used are very high, technologies for efficiently using precious metals are required.

대한민국 공개특허 2002-0032225호Korea Patent Publication No. 2002-0032225

과산화수소 직접 제조방법에 있어서, 과산화수소 귀금속을 효율적으로 사용하면서 과산화수소의 제조 수율을 높일 수 있는 촉매 및 이를 이용한 과산화수소 제조방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a catalyst capable of increasing the production yield of hydrogen peroxide while efficiently using the hydrogen peroxide noble metal and a method for producing hydrogen peroxide using the same.

상기 과제를 해결하고자, 본 발명은 코어-쉘 구조를 가지며, 상기 코어는 팔라듐(Pd), 팔라듐과 금의 합금(Pd-Au), 또는 팔라듐과 백금의 합금(Pd-Pt)으로 이루어지고, 상기 쉘은 실리카(SiO2)로 이루어진 것으로, 상기 쉘의 두께는 38 내지 53 nm이고, 수소 및 산소로부터 과산화수소 제조반응에 사용되는 것을 특징으로 하는 과산화수소 제조용 나노입자 촉매를 제공한다.In order to achieve the above object, the present invention provides a core-shell structure, wherein the core is made of palladium (Pd), an alloy of palladium and gold (Pd-Au), or an alloy of palladium and platinum (Pd- Wherein the shell is made of silica (SiO 2 ), the thickness of the shell is 38 to 53 nm, and is used for hydrogen peroxide production reaction from hydrogen and oxygen.

일 구현예는 쉘의 두께가 42 내지 45nm인 것일 수 있다.In one embodiment, the thickness of the shell may be 42 to 45 nm.

다른 일 구현예는 코어의 지름은 1 내지 30 nm인 것일 수 있다.In another embodiment, the diameter of the core may be 1 to 30 nm.

또한, 본 발명은 상기 과산화수소 제조용 나노입자 촉매 및 용매를 포함하는 반응기에 수소 및 산소를 공급하여 반응시키는 단계를 포함하는 과산화수소 제조 방법을 제공한다.The present invention also provides a method for producing hydrogen peroxide comprising the steps of supplying hydrogen and oxygen to a reactor including the nanoparticle catalyst for preparing hydrogen peroxide and a solvent and reacting the same.

일 구현예는 용매가 메탄올 및 에탄올로 이루어진 군으로부터 선택되는 알코올 용매, 또는 상기 알코올 용매와 물의 혼합용매인 것일 수 있다.In one embodiment, the solvent may be an alcohol solvent selected from the group consisting of methanol and ethanol, or a mixed solvent of the alcohol solvent and water.

다른 일 구현예는 용매가 브롬(Br), 염소(Cl) 또는 요오드(I)를 포함하는 할로겐 화합물을 더 포함하는 것일 수 있다.Another embodiment may be that the solvent further comprises a halogen compound comprising bromine (Br), chlorine (Cl) or iodine (I).

또 다른 일 구현예는 용매가 황산, 염산, 인산 및 질산으로부터 선택되는 1종 이상의 산을 더 포함하는 것In another embodiment, the solvent further comprises at least one acid selected from sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid

또 다른 일 구현예는 수소 및 산소의 몰비가 1:5 내지 1:15인 것일 수 있다.In another embodiment, the molar ratio of hydrogen and oxygen may be 1: 5 to 1:15.

또 다른 일 구현예는 반응기에 질소를 추가로 공급하여 반응시키는 것일 수 있다.Another embodiment may be to react by feeding additional nitrogen to the reactor.

또 다른 일 구현예는 반응이 1 내지 40기압의 압력조건 및 10 내지 30℃의 온도조건에서 수행되는 것일 수 있다.
In another embodiment, the reaction may be carried out at a pressure of 1 to 40 atm and at a temperature of 10 to 30 < 0 > C.

본 발명의 나노입자 촉매를 이용하는 경우 고가의 팔라듐을 효율적으로 사용하여 과산화수소를 직접 제조할 수 있으며, 쉘의 최적 두께를 조절함에 따라 향상된 과산화수소의 제조 수율을 나타내는 것이 특징이다.
In the case of using the nanoparticle catalyst of the present invention, hydrogen peroxide can be directly produced by using expensive palladium efficiently, and the production yield of hydrogen peroxide is improved by controlling the optimal thickness of the shell.

도 1은 실시예 1 내지 2 및 비교예 1 내지 4의 제조된 나노입자 촉매를 TEM으로 관찰한 사진이다.
도 2은 실시예 1 내지 2 및 비교예 1 내지 4의 나노입자 촉매를 사용하여 수소 및 산소로부터 과산화수소를 직접 제조하였을 때의 과산화소소의 생성 속도를 나타낸 것이다.
(생성된 과산화수소의 mmol을 참여한 팔라듐의 면적으로 나눈 수치를 왼쪽 축에 나타내었으며, 반응에 참여한 팔라듐의 질량으로 나눈 수치를 오른쪽 축에 나타내었다. 이는 과산화수소 생산반응에서 효율적인 팔라듐의 사용 척도로 삼을 수 있으며, 과산화수소 생성량을 단위 팔라듐 면적당 또는 사용한 팔라듐 질량당으로 직접적으로 비교할 수 있다.)
FIG. 1 is a TEM photograph of the prepared nanoparticle catalysts of Examples 1 and 2 and Comparative Examples 1 to 4. FIG.
2 shows the production rate of hydrogen peroxide when hydrogen peroxide was directly produced from hydrogen and oxygen using the nanoparticle catalysts of Examples 1 and 2 and Comparative Examples 1 to 4. [
(The value obtained by dividing the mmol of hydrogen peroxide by the area of the palladium involved is shown on the left-hand side of the graph and divided by the mass of the palladium involved in the reaction on the right-hand axis. And the production of hydrogen peroxide can be directly compared per unit palladium area or per used palladium mass.)

본 발명은 과산화수소 제조용 나노입자 촉매 및 상기 촉매를 이용한 과산화수소 제조 방법에 관한 것이다. 본 발명은 코어가 아닌 쉘의 두께를 최적으로 조절함에 따라 과산화수소 제조 수율을 향상시킨 것이 특징이다. The present invention relates to a nanoparticle catalyst for the production of hydrogen peroxide and a process for producing hydrogen peroxide using the catalyst. The present invention is characterized in that the production yield of hydrogen peroxide is improved by optimally adjusting the thickness of the shell, not the core.

화학반응에서 쉘이 있는 경우 물질전달에 방해를 받아 전환율이 낮아지는 것이 일반적이며, 전환율이 낮아짐에 따라 제조 수율이 낮아지게 된다. 그러나, 본 발명자들은 쉘의 두께가 두꺼워짐에 따라 생성된 과산화수소의 분해 반응도 억제됨을 확인함으로써, 과산화수소 제조 수율을 향상시키기 위한 쉘의 최적 두께를 제시함에 따라 본 발명을 완성하였다.
When a shell is present in a chemical reaction, it is common that the conversion rate is lowered by interfering with mass transfer, and the lower the conversion rate, the lower the production yield. However, the inventors of the present invention have completed the present invention by suggesting an optimal thickness of the shell for improving the yield of hydrogen peroxide by confirming that the decomposition reaction of hydrogen peroxide produced is suppressed as the thickness of the shell is increased.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 코어-쉘 구조를 가지며, 상기 코어는 팔라듐(Pd), 팔라듐과 금의 합금(Pd-Au), 또는 팔라듐과 백금의 합금(Pd-Pt)으로 이루어지고, 상기 쉘은 실리카(SiO2)로 이루어진 것으로, 상기 쉘의 두께는 38 내지 53 nm이고, 수소 및 산소로부터 과산화수소 제조반응에 사용되는 것을 특징으로 하는 과산화수소 제조용 나노입자 촉매를 제공한다.The core comprises a core-shell structure, wherein the core comprises palladium (Pd), an alloy of palladium and gold (Pd-Au), or an alloy of palladium and platinum (Pd-Pt) 2 ), wherein the shell has a thickness of 38 to 53 nm and is used for hydrogen peroxide production reaction from hydrogen and oxygen.

상기 쉘의 두께가 38 nm 미만인 경우 코어-쉘 구조의 나노입자 촉매를 제조하는 것이 어려우며 생성된 과산화수소 분해 반응으로 높은 과산화수소 제조 수율을 얻을 수 없고, 두께가 53 nm 초과하는 경우 쉘이 두꺼워 수소와 산소의 물질 전달이 방해 받아 수소 전환율이 매우 낮아진다. 또한 쉘이 두꺼울 경우 코어(Pd)에서 생성된 과산화수소가 쉘 밖으로 빠져 나오기 어려워 과산화 수소 생산성을 낮춘다.When the thickness of the shell is less than 38 nm, it is difficult to produce a nanoparticle catalyst having a core-shell structure, and a high hydrogen peroxide production yield can not be obtained due to the generated hydrogen peroxide decomposition reaction. When the thickness exceeds 53 nm, And the hydrogen conversion is very low. In addition, when the shell is thick, the hydrogen peroxide generated in the core (Pd) hardly escapes from the shell, thereby lowering the hydrogen peroxide productivity.

바람직하게, 상기 쉘의 두께는 42 내지 45 nm일 수 있는데, 상기 두께 범위 내인 경우 생성된 과산화수소 분해반응이 억제되면서 더 높은 과산화수소 제조 수율을 얻을 수 있다.Preferably, the thickness of the shell may be in the range of 42 to 45 nm. If the thickness is within the above range, hydrogen peroxide decomposition reaction may be suppressed and a higher hydrogen peroxide production yield may be obtained.

상기 코어의 지름은 1 내지 30 nm일 수 있다. 코어의 지름이 1nm 보다 작은 경우는 합성이 어려우며, 30 nm 이상일 경우 표면에 노출되는 Pd의 비율이 줄어들어 효과적으로 Pd를 사용하는데 제한적이다.The core may have a diameter of 1 to 30 nm. When the diameter of the core is less than 1 nm, synthesis is difficult. When the core diameter is more than 30 nm, the ratio of Pd exposed on the surface is reduced, which is effective to effectively use Pd.

또한, 본 발명은 상기 과산화수소 제조용 나노입자 촉매 및 용매를 포함하는 반응기에 수소 및 산소를 공급하여 반응시키는 단계를 포함하는 과산화수소 제조 방법을 제공한다.The present invention also provides a method for producing hydrogen peroxide comprising the steps of supplying hydrogen and oxygen to a reactor including the nanoparticle catalyst for preparing hydrogen peroxide and a solvent and reacting the same.

상기 용매는 메탄올 및 에탄올로 이루어진 군으로부터 선택되는 알코올 용매, 또는 상기 알코올 용매와 물의 혼합용매인 것일 수 있으며, 바람직하게는 에탄올과 물의 혼합용매인 것일 수 있다. The solvent may be an alcohol solvent selected from the group consisting of methanol and ethanol, or a mixed solvent of the alcohol solvent and water, preferably a mixed solvent of ethanol and water.

상기 용매에는 할로겐 화합물을 더 포함할 수 있는데, 바람직하게는 브롬(Br), 염소(Cl) 또는 요오드(I)를 포함하는 할로겐 화합물을 더 포함할 수 있으며, 더 바람직하게는 브롬을 포함하는 할로겐 화합물을 더 포함할 수 있다. 팔라듐(Pd) 나노입자에는 코너(corner)나 엣지(edge)와 같이 에너지틱 아톰(energetic atom)이 존재하는데, 이러한 원자에서는 수소와 산소가 만나서 물이 형성되는 반응이 지배적이며, 생성된 과산화수소가 분해되는 반응이 지배적이다. 할로겐 화합물을 첨가할 경우, 할로겐 음이온이 팔라듐(Pd)의 에너지틱 아톰(energetic atom)에 흡착하기 쉬워서 부 반응을 억제한다. 하지만, 과량의 할로겐 화합물을 첨가할 경우 팔라듐(Pd)의 활성점의 수가 줄어들어 수소 전환율 및 과산화 수소 생성량이 줄어든다. The solvent may further contain a halogen compound, preferably a halogen compound including bromine (Br), chlorine (Cl) or iodine (I), more preferably a bromine-containing halogen Compound. ≪ / RTI > Pd nanoparticles have energetic atoms, such as corners and edges. In these atoms, hydrogen and oxygen meet to form water, and the generated hydrogen peroxide The decomposition reaction dominates. When a halogen compound is added, the halogen anion is likely to adsorb to the energetic atom of palladium (Pd), thereby suppressing the negative reaction. However, the addition of an excess of halogen compound reduces the number of active sites of palladium (Pd) and reduces hydrogen conversion and hydrogen peroxide production.

상기 할로겐의 화합물의 용매 내에서의 농도는 0 내지 0.1 M일 수 있으며, 바람직하게는 0~5 mM 일 수 있다.The concentration of the halogen compound in the solvent may be 0 to 0.1 M, preferably 0 to 5 mM.

또한, 상기 용매에는 산을 더 포함할 수 있다. 산을 첨가할 경우 주로 생성된 과산화수소의 분해를 억제하여 과산화수소 수율을 크게 증가시킬 수 있다. 상기 산으로는 황산 (H2SO4), 염산(HCl), 인산(H3PO4) 및 질산(HNO3)으로부터 선택되는 1종 이상인 것일 수 있으며, 바람직하게는 인산일 수 있다.The solvent may further include an acid. The addition of an acid can greatly increase the yield of hydrogen peroxide by inhibiting the decomposition of the produced hydrogen peroxide. The acid may be one or more selected from sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ) and nitric acid (HNO 3 ), preferably phosphoric acid.

상기 산의 용매 내에서의 농도는 0 내지 0.1 M일 수 있으며, 바람직하게는 0~3 M 일 수 있다.The concentration of the acid in the solvent may be 0 to 0.1 M, preferably 0 to 3 M.

반응물인 수소와 산소는 가스형태로서 용매에 대한 용해도를 향상시키기 위하여 용매에 담길 수 있는 관(Dip Tube)을 이용하여 용매에 직접 공급하는 것이 바람직할 수 있다. 수소 가스는 1 ~ 4 mL/min의 유속으로 흘려줄 수 있으며, 산소 가스는 10 ~ 40 mL/min의 유속으로 흘려주는 것이 바람직할 수 있다. 더욱 바람직하게는 수소 가스는 1.5 ~ 2.5 ml/min로, 산소 가스는 15 ~ 25 ml/min로 유지하여, 수소:산소 몰 비가 1 : 5 ~ 1 : 15 일 수 있다. 산소와 수소의 비율이 1:1로 반응하지만, 수소의 농도가 높을 경우 폭발의 위험성이 있기 때문에 1 : 5 보다 산소의 비율이 낮을 경우 폭발의 위험성이 있으며, 1 : 15 보다 산소의 양이 많을 경우는 공급하는 수소의 농도가 낮아 효율적이지 못하기 때문에 상기 수소:산소 몰 비의 범위가 바람직하다.The reactants, hydrogen and oxygen, may be in a gaseous form and may be preferably fed directly to the solvent using a Dip Tube which may be contained in a solvent to improve the solubility in the solvent. The hydrogen gas may be flowed at a flow rate of 1 to 4 mL / min, and the oxygen gas may be flowed at a flow rate of 10 to 40 mL / min. More preferably, the hydrogen: oxygen molar ratio may be 1: 5 to 1: 15 while the hydrogen gas is maintained at 1.5 to 2.5 ml / min and the oxygen gas is maintained at 15 to 25 ml / min. The ratio of oxygen to hydrogen is 1: 1, but if the concentration of hydrogen is high, there is a danger of explosion. Therefore, if oxygen ratio is lower than 1: 5, there is danger of explosion. The range of the hydrogen: oxygen molar ratio is preferable because the concentration of supplied hydrogen is low and thus it is not efficient.

수소 가스와 산소 가스를 일정한 유속으로 흘려주면서 BPR(Back Pressure Regulator)을 사용하여 전체 반응압력을 조절하게 되며, 반응압력은 반응기에 연결되어 있는 압력계를 통하여 측정될 수 있다. 반응 압력은 1 내지 40 기압, 바람직하게는 상압으로 유지하는 것이 바람직하며, 반응 온도는 10 내지 30?로 유지하면서 반응을 진행하는 것이 바람직할 수 있다.While the hydrogen gas and the oxygen gas are flowed at a constant flow rate, the entire reaction pressure is regulated using a BPR (Back Pressure Regulator), and the reaction pressure can be measured through a pressure gauge connected to the reactor. The reaction pressure is preferably maintained at 1 to 40 atm, preferably at normal pressure, and it may be preferable to conduct the reaction while maintaining the reaction temperature at 10 to 30 ° C.

바람직하게는, 상기 반응기에 반응물로 질소를 더 공급하여 반응시킬 수 있다. 질소를 사용할 경우 수소와 산소의 비율을 1 : 1로 맞추어도 폭발 범위를 벗어나는 것이 가능하며, 추후 공기중의 산소를 사용할 때, 추가적인 질소의 분리가 필요 없이 사용 가능한 장점이 있다.
Preferably, the reactor is further reacted by supplying nitrogen as a reactant. When nitrogen is used, it is possible to deviate from the explosion range even if the ratio of hydrogen to oxygen is set to 1: 1, and there is an advantage that it can be used without additional nitrogen separation when using oxygen in the air in the future.

이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명하지만, 하기에 개시되는 본 발명의 실시 형태는 어디까지 예시로써, 본 발명의 범위는 이들의 실시 형태에 한정되지 않는다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the embodiments of the present invention described below are illustrative only and the scope of the present invention is not limited to these embodiments.

실시예Example 1. Pd@S(10)의 제조 1. Preparation of Pd @ S (10)

아스코르빅산(Ascorbic acid), 폴리 비닐 피롤리돈(PVP), 브롬칼륨(KBr)를 3차 초순수물에 녹인 후 10 내지100℃에서 10분간 마그네틱 막대를 이용해서 교반하였다. 디소듐 테트라클로로팔라데이트 (Disodium tetrachloropalladate, Na2PdCl4) 용액을 넣고 같은 온도에서 3시간 동안 마그네틱 막대로 교반하여 반응을 진행시킨 후 아세톤을 넣고 원심분리기를 통해 생성된 나노 입자를 회수하였다. 이후 3차 초순수물을 이용하여 수 차례 세척과정을 진행하였으며, 제조된 팔라듐 나노입자를 에탄올에 재 분산시킨 후 물과 암모니아수를 첨가하였다. 3시간동안 교반 후 실리카 전구체를 첨가하여 쉘을 합성하였으며, 실리카 전구체 (TEOS, 10ml)를 넣어 쉘의 두께가 대략 42nm가 되도록 하였다. 수 차례 세척과정을 진행한 후 500℃에서 6시간동안 열처리를 진행하여 나노입자 촉매(코어: 팔라듐, 쉘: 실리카)를 제조 하였다.
Ascorbic acid, polyvinylpyrrolidone (PVP), and potassium bromide (KBr) were dissolved in tertiary ultrapure water and stirred at 10 to 100 ° C for 10 minutes using a magnetic rod. Disodium tetrachloropalladate (Na 2 PdCl 4 ) solution was added and stirred at the same temperature for 3 hours with a magnetic stirrer to conduct reaction. Then, acetone was added to recover the nanoparticles produced by the centrifugal separator. Thereafter, the washed palladium nanoparticles were redispersed in ethanol and then water and ammonia water were added. After stirring for 3 hours, a silica precursor was added to synthesize a shell, and a silica precursor (TEOS, 10 ml) was added to make the shell thickness approximately 42 nm. After several washing steps, the nanoparticle catalyst (core: palladium, shell: silica) was prepared by heat treatment at 500 ° C. for 6 hours.

실시예Example 2. Pd@S(15)의 제조 2. Preparation of Pd @ S (15)

실리카 전구체 (TEOS)의 양을 15m로 첨가한 것 이외에 실시예 1과 동일한 방법으로 나노입자 촉매(코어: 팔라듐, 쉘: 실리카)를 제조하였다.
A nanoparticle catalyst (core: palladium, shell: silica) was prepared in the same manner as in Example 1, except that the amount of the silica precursor (TEOS) was changed to 15 m.

비교예Comparative Example 1~4. Pd@S(5), Pd@S(20), Pd@S(25), Pd@S(30)의 제조 1-4. Preparation of Pd @ S (5), Pd @ S (20), Pd @ S (25), Pd @ S (30)

실리카 전구체의 양을 제외하고 실시예 1과 동일한 방법으로 나노입자 촉매(코어: 팔라듐, 쉘: 실리카)를 제조하였다. 첨가한 실리카 전구체의 양 (5, 20, 25, 30 ml)에 따라 각각 Pd@S(5), Pd@S(20), Pd@S(25), Pd@S(30)으로 표기하였다.
A nanoparticle catalyst (core: palladium, shell: silica) was prepared in the same manner as in Example 1, except for the amount of the silica precursor. (5), Pd @ S (20), Pd @ S (25) and Pd @ S (30) according to the amount of silica precursor added (5, 20, 25 and 30 ml).

실험예Experimental Example 1. 투과 전자현미경 관찰 1. Transmission electron microscopy

실시예 1 내지 2 및 비교예 1내지 4의 나노입자 촉매를 투과 전자현미경(TEM)으로 관찰하여 도 1에 나타내었으며, 이미지상 100개의 촉매를 측정하여 평균 및 표준편차를 계산하였고 그 결과를 표 1에 나타내었다.1, the catalysts of Examples 1 to 2 and Comparative Examples 1 to 4 were observed with a transmission electron microscope (TEM), and the average and standard deviation of the catalysts were measured. Respectively.

구분division 쉘 두께 (nm)Shell Thickness (nm) 비교예 1Comparative Example 1 Pd@S(5)Pd @ S (5) 37.437.4 실시예 1Example 1 Pd@S(10)Pd @ S (10) 42.442.4 실시예 2Example 2 Pd@S(15)Pd @ S (15) 44.344.3 비교예2Comparative Example 2 Pd@S(20)Pd @ S (20) 53.353.3 비교예 3Comparative Example 3 Pd@S(25)Pd @ S (25) 57.957.9 비교예 4Comparative Example 4 Pd@S(30)Pd @ S (30) 62.862.8

실험예Experimental Example 2.  2. 유도결합플라즈마Inductively coupled plasma 원자방출분광분석기(ICP-AES)를An atomic emission spectrometer (ICP-AES) 이용한 팔라듐 함량측정 및 일산화탄소 화학흡착 (CO- Palladium content measurement and carbon monoxide chemisorption (CO- ChemisorptionChemisorption )을 이용한 노출된 Pd의 면적 측정) To measure the area of exposed Pd

ICP-AES분석을 통하여 실시예 1 내지 2 및 비교예 1내지 4의 나노입자 촉매의 팔라듐 함량을 측정하였고, 그 결과를 표 2에 나타내었다.Palladium contents of the nanoparticle catalysts of Examples 1 to 2 and Comparative Examples 1 to 4 were measured through ICP-AES analysis, and the results are shown in Table 2.

또한, CO-Chemisorption 분석을 통하여 실시예 1 내지 2 및 비교예 1내지 4의 나오입자 촉매들의 팔라듐(Pd) 노출 면적을 측정하였으며, 그 결과를 표 2에 나타내었다.In addition, the palladium (Pd) exposed areas of the nano particle catalysts of Examples 1 to 2 and Comparative Examples 1 to 4 were measured through CO-Chemisorption analysis, and the results are shown in Table 2.

구체적으로, 과산화수소 합성반응은 노출된 팔라듐에서 일어나게 되고, 노출된 팔라듐 면적에 따라서 과산화수소 합성반응의 반응 결과가 달라질 수 있으며, 팔라듐의 노출 면적은 1g의 촉매당 노출된 팔라듐 면적(m2/g-cat)과 팔라듐 1g당 노출된 면적(m2/g-Pd)으로 나누어 표기하였다. 코어 쉘 구조의 경우 쉘이 일부 팔라듐을 가리고 있기 때문에 팔라듐1g당 팔라듐 노출 면적에 차이가 있다.Specifically, the hydrogen peroxide synthesis reaction occurs in the exposed palladium, and the reaction result of the hydrogen peroxide synthesis reaction may vary depending on the exposed palladium area. The exposed area of the palladium is the palladium area (m 2 / g- cat ) and the area exposed per g of palladium (m 2 / g - Pd ). In the case of the core shell structure, there is a difference in palladium exposure area per g of palladium because the shell covers some palladium.

구분division Pd 중량%
(ICP-AES)
Pd wt%
(ICP-AES)
노출된 Pd의 면적
(CO-chemisorption)
Area of exposed Pd
(CO-chemisorption)
m2/g-cat m 2 / g- cat m2/g-Pd m 2 / g -Pd 비교예 1Comparative Example 1 Pd@S(5)Pd @ S (5) 3.53.5 0.980.98 27.927.9 실시예1Example 1 Pd@S(10)Pd @ S (10) 1.81.8 0.650.65 36.736.7 실시예2Example 2 Pd@S(15)Pd @ S (15) 0.900.90 0.430.43 48.248.2 비교예2Comparative Example 2 Pd@S(20)Pd @ S (20) 0.680.68 0.420.42 61.361.3 비교예 3Comparative Example 3 Pd@S(25)Pd @ S (25) 0.540.54 0.360.36 66.966.9 비교예 4Comparative Example 4 Pd@S(30)Pd @ S (30) 0.490.49 0.240.24 49.249.2

실험예Experimental Example 3. 과산화수소 제조 3. Production of hydrogen peroxide

실시예 1 내지 2 및 비교예 1내지 4의 나노촉매를 350℃에서 2시간동안 환원하여 이중 자켓 반응기에 반응용매 (초순수물, 120 mL; 에탄올(ethanol) 30 mL; 및 인산(H3PO4) 0.03 M, KBr 0.9 mM )와 팔라듐 1m에 넣고 3시간 동안 반응을 진행하였다. 반응 온도는 20℃, 압력은 1 atm으로 유지하였고, 반응가스 (H2/O2 =1/10)는 분당 22 mL을 일정하게 흘려주었다. 그리고 반응 후 생성된 과산화수소를 수거하였다.Examples 1 to 2 and Comparative Examples 1 to 4 nano-catalyst of the reduction at 350 ℃ for 2 hours, the reaction solvent in a double jacket reactor (ultra pure water, 120 mL; ethanol (ethanol) 30 mL; and phosphoric acid (H 3 PO 4 ) 0.03 M, KBr 0.9 mM) and palladium (1 m) were reacted for 3 hours. The reaction temperature was maintained at 20 ° C and the pressure was maintained at 1 atm. The reaction gas (H 2 / O 2 = 1/10) was flowed constantly at 22 mL per minute. The hydrogen peroxide produced after the reaction was collected.

수거한 과산화수소의 농도는 요오드 적정법을 이용하여 하기 수학식 1로 측정하였으며, 생성된 과산화수소의 양은 하기 수학식 2로 계산하였고, 그 결과를 도 2 에 나타내었다.The concentration of hydrogen peroxide collected was measured by the following equation (1) using the iodometric titration method, and the amount of generated hydrogen peroxide was calculated by the following equation (2), and the result is shown in FIG.

Figure 112016016318998-pat00001
Figure 112016016318998-pat00001

Figure 112016016318998-pat00002
Figure 112016016318998-pat00002

도 2 에 나타난 바와 같이, 실시예 1 내지 2의 촉매를 사용한 것이 비교예 1내지 4와 비교하여 생성된 과산화수소의 양이 훨씬 높음을 확인하였다. 이는 특정 범위의 쉘 두께 (42 ~ 45 nm)를 갖는 촉매를 사용함에 따라 높은 과산화수소 수율을 갖는 것을 의미하며, 쉘 두께 조절이 과산화수소 합성반응의 새로운 변수로 작용할 것으로 판단된다.As shown in FIG. 2, it was confirmed that the amounts of hydrogen peroxide produced were much higher than those of Comparative Examples 1 to 4 using the catalysts of Examples 1 and 2. This means that the use of a catalyst having a specific range of shell thickness (42 to 45 nm) has a high yield of hydrogen peroxide, and shell thickness control is considered to be a new variable for the hydrogen peroxide synthesis reaction.

Claims (10)

코어-쉘 구조를 가지며,
상기 코어는 팔라듐(Pd)으로 이루어지고, 상기 쉘은 실리카(SiO2)로 이루어진 것으로, 상기 쉘의 두께는 42 내지 45 nm이고, 상기 코어의 지름은 1 내지 30nm이고,
수소 및 산소로부터 과산화수소 제조반응에 사용되는 것을 특징으로 하는, 과산화수소 제조용 나노입자 촉매.
Having a core-shell structure,
Wherein the core is made of palladium (Pd), the shell is made of silica (SiO 2 ), the thickness of the shell is 42 to 45 nm, the diameter of the core is 1 to 30 nm,
A catalyst for the production of hydrogen peroxide, characterized in that it is used for the hydrogen peroxide production reaction from hydrogen and oxygen.
삭제delete 삭제delete 제1항의 과산화수소 제조용 나노입자 촉매 및 용매를 포함하는 반응기에 수소 및 산소를 공급하여 반응시키는 단계를 포함하는, 과산화수소 제조 방법.A process for producing hydrogen peroxide comprising the steps of: supplying hydrogen and oxygen to a reactor comprising the nanoparticle catalyst for producing hydrogen peroxide of claim 1 and a solvent. 제4항에 있어서,
상기 용매는 메탄올 및 에탄올로 이루어진 군으로부터 선택되는 알코올 용매, 또는 상기 알코올 용매와 물의 혼합용매인 것을 특징으로 하는, 과산화수소 제조 방법.
5. The method of claim 4,
Wherein the solvent is an alcohol solvent selected from the group consisting of methanol and ethanol, or a mixed solvent of the alcohol solvent and water.
제5항에 있어서,
상기 용매는 브롬(Br), 염소(Cl) 또는 요오드(I)를 포함하는 할로겐 화합물을 더 포함하는 것을 특징으로 하는, 과산화수소 제조 방법.
6. The method of claim 5,
Wherein the solvent further comprises a halogen compound comprising bromine (Br), chlorine (Cl) or iodine (I).
제5항에 있어서,
상기 용매는 황산, 염산, 인산 및 질산으로부터 선택되는 1종 이상의 산을 더 포함하는 것을 특징으로 하는, 과산화수소 제조 방법.
6. The method of claim 5,
Wherein the solvent further comprises at least one acid selected from sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid.
제4항에 있어서,
상기 수소 및 산소의 몰비는 1:5 내지 1:15인 것을 특징으로 하는, 과산화수소 제조 방법.
5. The method of claim 4,
Wherein the hydrogen and oxygen molar ratio is between 1: 5 and 1:15.
제4항에 있어서,
상기 반응기에 질소를 추가로 공급하여 반응시키는 것을 특징으로 하는, 과산화수소 제조 방법.
5. The method of claim 4,
Wherein the reactor is further fed with nitrogen to cause the reaction to proceed.
제4항에 있어서,
상기 반응은 1 내지 40기압의 압력조건 및 10 내지 30℃의 온도조건에서 수행되는 것을 특징으로 하는, 과산화수소 제조 방법.

5. The method of claim 4,
Wherein the reaction is carried out at a pressure of 1 to 40 atm and at a temperature of 10 to 30 < 0 > C.

KR1020160019249A 2016-02-18 2016-02-18 Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same KR101804659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160019249A KR101804659B1 (en) 2016-02-18 2016-02-18 Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160019249A KR101804659B1 (en) 2016-02-18 2016-02-18 Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same

Publications (2)

Publication Number Publication Date
KR20170097461A KR20170097461A (en) 2017-08-28
KR101804659B1 true KR101804659B1 (en) 2017-12-04

Family

ID=59759823

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160019249A KR101804659B1 (en) 2016-02-18 2016-02-18 Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same

Country Status (1)

Country Link
KR (1) KR101804659B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125008A1 (en) * 2017-12-20 2019-06-27 고려대학교 산학협력단 Method for preparing palladium catalyst for preparation of hydrogen peroxide highly dispersed in rutile titania carrier and method for preparing hydrogen peroxide using same
KR20190075002A (en) * 2017-12-20 2019-06-28 고려대학교 산학협력단 Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110064387A (en) * 2019-03-19 2019-07-30 贵州大学 A method of oxidation restores the catalyst that preparation surface Pd and PdO coexist
CN109985643A (en) * 2019-03-19 2019-07-09 贵州大学 A kind of add in-place bromine preparation small size PdKBrThe method of@HSC
CN110102320A (en) * 2019-03-21 2019-08-09 贵州大学 A kind of hydrogen peroxide catalyzed dose of hollow palladium base of preparation method
CN109999798A (en) * 2019-05-08 2019-07-12 贵州大学 A kind of preparation method of one shell yolk shell catalyst Pd@HCS of a core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529908B1 (en) * 2014-09-03 2015-06-18 고려대학교 산학협력단 Core-shell nano particle having acid characteristics and method of thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529908B1 (en) * 2014-09-03 2015-06-18 고려대학교 산학협력단 Core-shell nano particle having acid characteristics and method of thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. Kim et al., Catal. Lett., 2014, 144, 905-911.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125008A1 (en) * 2017-12-20 2019-06-27 고려대학교 산학협력단 Method for preparing palladium catalyst for preparation of hydrogen peroxide highly dispersed in rutile titania carrier and method for preparing hydrogen peroxide using same
KR20190075002A (en) * 2017-12-20 2019-06-28 고려대학교 산학협력단 Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst
KR102233648B1 (en) 2017-12-20 2021-03-30 고려대학교 산학협력단 Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst

Also Published As

Publication number Publication date
KR20170097461A (en) 2017-08-28

Similar Documents

Publication Publication Date Title
KR101804659B1 (en) Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same
KR20180024478A (en) Nano-catalyst for preparing hydrogen peroxide having mesoporous shell and method for preparing hydrogen peroxide using the same
Kim et al. Effect of Pd particle size on the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd core–porous SiO 2 shell catalysts
KR102233648B1 (en) Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst
KR101804019B1 (en) Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using said catalysis
KR20140093700A (en) A catalyst for direct synthesis of hydrogen peroxide
CN107999072B (en) Photo-thermal catalyst, preparation method thereof and method for catalyzing cyclohexane oxidation
KR101825907B1 (en) Catalyst for preparing hydrogen peroxide having core-shell structure and method for preparing hydrogen peroxide using the same
KR101515677B1 (en) Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles
KR20180072100A (en) Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts
KR101990025B1 (en) Method of preparing Pd catalyst for synthesis of hydrogen peroxide using alkali metal, and Method of preaparing heydrogen oxide using the Pd catalyst
KR102255171B1 (en) Method of preparing Cs-Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Cs-Pd catalyst
KR101602696B1 (en) Direct synthesis of hydrogen peroxide from hydrogen and oxygen using size controlled cubic Pd nanoparticle supported catalysts
EP3321249A1 (en) Method for producing acrylic acid
KR101602695B1 (en) Direct synthesis of hydrogen peroxide from hydrogen and oxygen using shape controlled Pd nanoparticle supported catalysts
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
EP2468398A1 (en) Process for the electrochemical synthesis of hydrogen peroxide and use of a catalyst therefore
US20240360063A1 (en) Selective Aerobic Oxidation of Methane
WO2012133149A1 (en) Method for direct production of hydrogen peroxide using brookite type titanium oxide
KR101616195B1 (en) Direct synthesis of hydrogen peroxide using Pd/silica-alumina catalysts having core/shell structure
JP2008043884A (en) Catalyst for steam-reforming methanol
KR20180065494A (en) Method of preparing Pd catalyst for synthesis of hydrogen peroxide using sonication, and Method of preaparing heydrogen oxide using the Pd catalyst
KR101618507B1 (en) Catalyst for Direct Synthesis of Hydrogen Peroxide, Manufacturing Method for The Same, and Method for Synthesizing Hydrogen Peroxide
KR102717345B1 (en) Method of preparing catalyst for synthesis of hydrogen peroxide, and Method of preparing hydrogen oxide using the catalyst
Mehri et al. In Situ Generated H2O2 over Supported Pd–Au Clusters in Hybrid Titania Nanocrystallites

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant