[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101794316B1 - Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof - Google Patents

Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof Download PDF

Info

Publication number
KR101794316B1
KR101794316B1 KR1020160116625A KR20160116625A KR101794316B1 KR 101794316 B1 KR101794316 B1 KR 101794316B1 KR 1020160116625 A KR1020160116625 A KR 1020160116625A KR 20160116625 A KR20160116625 A KR 20160116625A KR 101794316 B1 KR101794316 B1 KR 101794316B1
Authority
KR
South Korea
Prior art keywords
smr
catalyst
methane reforming
based catalyst
steam methane
Prior art date
Application number
KR1020160116625A
Other languages
Korean (ko)
Inventor
이동채
조성종
민준석
최상현
김초균
안지혜
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to KR1020160116625A priority Critical patent/KR101794316B1/en
Priority to PCT/KR2017/009853 priority patent/WO2018048236A1/en
Application granted granted Critical
Publication of KR101794316B1 publication Critical patent/KR101794316B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/023
    • B01J35/1014
    • B01J35/1019
    • B01J35/1061
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

The present invention relates to a nickel (Ni)-based molded catalyst for methane steam modification (SMR), which is sintered after compression-molding catalyst powder which is supported through impregnation of a nickel precursor onto boehmite. The catalyst for SMR uses boehmite as a support, enables high reinforcement of catalysts through palletization and molding processes, and exhibits enhanced reaction properties.

Description

수증기 메탄 개질용 니켈계 촉매 성형체 및 이의 이용{Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof}Technical Field [0001] The present invention relates to a nickel-based catalyst formed body for reforming steam,

본 발명은 수증기 메탄 개질용 니켈계 촉매 성형체 및 이의 이용에 관한 것이다.The present invention relates to a nickel-based catalyst formed body for steam methane reforming and its use.

연료전지는 연료의 화학에너지를 전기화학반응에 의해 전기에너지로 직접 변환시키는 에너지 전환 장치로서, 특히 고체 산화물 연료전지(solid oxide fuel cell: SOFC)는 고체 산화물을 전해질로 사용하고 고온에서 작동한다는 두 가지 특징을 지니고 있다. 연료전지에 흔히 사용되는 연료로서는 탄화수소 원료와, 산화제 혹은 수증기를 연료개질기에서 반응시켜 얻게 되는 수소가 있는데, 상업적으로 가장 많이 사용되는 수소 생산 방법은 촉매의 존재 하에서 메탄(CH4)을 수증기와 반응시켜 수소(H2), 일산화탄소(CO), 이산화탄소(CO2)로 전환하는 수증기 메탄 개질 공정(steam-methane reforming: SMR)이다.Fuel cells are energy conversion devices that convert chemical energy of fuel directly into electrical energy by electrochemical reaction. In particular, solid oxide fuel cells (SOFCs) use solid oxides as electrolytes and operate at high temperatures. . As a fuel that is commonly used in fuel cells, there are hydrocarbon raw materials, hydrogen obtained by reacting an oxidizing agent or water vapor in a fuel reformer, and most commercially used hydrogen production method is a method in which methane (CH 4 ) is reacted with water vapor Methane reforming (SMR), which converts hydrogen into hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ).

[반응식 1][Reaction Scheme 1]

CH4 + H2 → 3H2 + CO; ΔHθ = 206.1 kJ/molCH 4 + H 2 ? 3H 2 + CO; ? H ? = 206.1 kJ / mol

수소 제조를 위한 수증기 메탄 개질 공정(SMR: Steam Methane Reforming)은 몰 수가 증가하는 반응으로 압력에 큰 영향을 받는다. 반응 압력을 증가시키는 가장 큰 요인은 촉매의 파손 때문이며, 이를 방지하기 위해서는 고강도의 촉매를 제조해야 한다. Steam Methane Reforming (SMR) for hydrogen production is a reaction that increases the number of moles and is strongly influenced by pressure. The most important factor that increases the reaction pressure is the breakage of the catalyst. To prevent this, it is necessary to prepare a catalyst having high strength.

현재 수소 제조를 위한 수증기 메탄 개질 공정(SMR: Steam Methane Reforming) 촉매로 비교적 가격이 저렴한 세라믹 지지체에 Ni, Ru 등의 활성물질을 담지한 펠렛형 세라믹 지지체 촉매가 사용되고 있다. 그러나, 펠렛형 세라믹 지지체 촉매는 내충격성이 떨어져 쉽게 파손되고 반응기내 차압을 발생시키는 원인이 되었다. 또한, 수증기 메탄 개질 공정은 반응물 몰수보다 생성물 몰수가 증가하는 반응으로 도 1에서 보는 바와 같이 압력이 증가하면 반응 특성, 예컨대 압력에 따른 평형전환율이 하락하는 단점이 있었다. 또한 에너지(촉매가 활성화 되기 위한 힘: 온도)가 불충분하여 촉매의 활성화 에너지 및 촉매량에 의존하는 단점이 있었다. Currently, a pellet-type ceramic support catalyst in which an active material such as Ni or Ru is supported on a ceramic support which is relatively inexpensive is used as a steam methane reforming (SMR) catalyst for hydrogen production. However, the pellet type ceramic support catalyst has a low impact resistance and is easily broken, causing a differential pressure in the reactor. Also, in the steam methane reforming process, as shown in FIG. 1, when the pressure is increased as shown in FIG. 1, the reaction characteristic, for example, the equilibrium conversion rate depending on the pressure, is lowered. Further, there is a disadvantage that energy (power for activating the catalyst: temperature) is insufficient, which depends on the activation energy and the catalyst amount of the catalyst.

따라서, 니켈계 알루미나를 펠렛 또는 비드형태로 압축 성형하는 시도가 이루어지고 있다. 특히 2mm 펠렛의 경우 SMR 촉매 중 매우 소형의 사이즈로, 특수하게 제작된 반응기에 충진되기 적합하다. 그러나, 알루미나 계열의 파우더를 이용하여 2mm 펠렛을 압축성형하여 제조할 경우 성형 모듈의 손상으로 인해 제작이 불가능한 문제점이 있다. Therefore, attempts have been made to compression-form nickel-based alumina into pellets or beads. Particularly in the case of 2 mm pellets, SMR catalysts are very compact and suitable for filling in specially designed reactors. However, when a 2 mm pellet is produced by compression molding using an alumina-based powder, there is a problem that it can not be manufactured due to damage to the molding module.

이러한 배경 기술 하에, 본 발명자들은 압축 성형을 통한 촉매의 강도 증진을 위한 노력을 경주한 결과, 알루미나의 전단계인 보헤마이트에 니켈을 담지한 후 압축 성형을 진행할 경우 성형 모듈의 손상없이 펠렛을 제조할 수 있음을 확인하고 본 발명을 완성하였다. Under these circumstances, the present inventors have made efforts to increase the strength of the catalyst through compression molding. As a result, when nickel is supported on boehmite which is a pre-stage of alumina and compression molding is performed, pellets are produced without damaging the molding module And the present invention has been completed.

본 발명은 압축 성형을 통해 촉매의 강도를 향상시킨 수증기 메탄 개질용 니켈계 촉매 성형체를 제공하고자 한다.An object of the present invention is to provide a nickel-based catalyst formed body for steam methane reforming in which the strength of the catalyst is improved through compression molding.

본 발명의 제1양태는 보헤마이트(boehmite)에 니켈 전구체를 함침시켜 담지한 촉매 파우더를 압축성형하여 소성한 것인, 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체를 제공한다.The first aspect of the present invention provides a Ni-based catalyst formed body for steam methane reforming (SMR), wherein the catalyst powder impregnated with boehmite is impregnated with a nickel precursor and compression-molded.

본 발명의 제2양태는 수증기 메탄 개질 공정(SMR) 및 수소분리 공정을 동시에 수행하는 반응기로서, SMR 용 촉매로 제1양태의 Ni계 촉매 성형체를 사용하는 것이 특징인 반응기를 제공한다.The second aspect of the present invention provides a reactor for simultaneously performing a steam methane reforming process (SMR) and a hydrogen separation process, wherein a Ni-based catalyst formed article of the first aspect is used as a catalyst for SMR.

본 발명의 제3양태는 하나의 반응기에서 수증기 메탄 개질 공정(SMR) 및 수소분리 공정을 수행하여 천연가스로부터 합성가스 또는 수소가스를 제조하는 방법에 있어서, 제1양태의 Ni계 촉매 성형체 하 SMR 공정을 수행하는 것이 특징인 합성가스 또는 수소가스 제조방법을 제공한다.A third aspect of the present invention is a method for producing a synthesis gas or a hydrogen gas from a natural gas by performing a steam methane reforming process (SMR) and a hydrogen separation process in one reactor, And a hydrogen gas production process.

이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 수소 제조를 위한 분리막 내 촉매를 충진하기 위해 2*3mm의 펠렛, 2 mm 펠렛 또는 비드형의 촉매를 제조하고자 하였다.The present inventors tried to prepare a 2 * 3 mm pellet, 2 mm pellet or bead type catalyst to fill a catalyst in a membrane for hydrogen production.

펠렛 타입 촉매는 보통 진공압출 성형 또는 압축성형이 적합한 것으로 알려져 있다.Pellet type catalysts are generally known to be suitable for vacuum extrusion or compression molding.

진공압출 성형은 촉매를 바인더 및 첨가제를 통해 반죽 후 점성을 갖게 한 뒤 모듈에 진공압을 가해 원하는 형상으로 추출해내는 성형방법이다.Vacuum extrusion molding is a molding method in which a catalyst is kneaded through a binder and an additive to make it viscous and then vacuum pressure is applied to the module to extract the desired shape.

진공압출 성형은 성형 장치 앞단 성형 모듈 교체를 통해 다양한 형상의 촉매를 성형할 수 있는 장점이 있다. 그러나 바인더 및 기타 첨가제를 이용한 반죽의 조건을 찾는 작업이 필요한 단점이 있다.Vacuum extrusion molding is advantageous in that various shapes of catalysts can be formed by replacing the molding module in the front end of the molding device. However, there is a disadvantage that it is necessary to find the condition of the dough using the binder and other additives.

압축 성형은 촉매 파우더를 사용하여 모듈의 횡축 운동을 통해 물리적으로 원하는 형상을 제작하는 방법이다. 압축 성형은 촉매 파우더를 반죽하는 과정을 거쳐야 하는 진공압출에 비해 비교적 제조 방법이 간편하다는 장점이 있다.Compression molding is a method of manufacturing a desired shape physically through transverse movement of the module using a catalyst powder. Compression molding is advantageous in that it is relatively easy to manufacture compared to vacuum extrusion, which involves the process of kneading the catalyst powder.

본 발명자들은 펠렛 형상의 SMR 촉매를 제조하기 위해 압축성형 및 압출성형의 두 가지 제법을 도입하여 촉매의 강도를 평가하였다. 그 결과 도 3에서 보는 바와 같이 압축 성형을 통해 MgNiAl2O3 촉매를 제조하는 것이 촉매의 강도가 약 2배 이상 우수한 것을 확인하였다. The inventors of the present invention evaluated the strength of the catalyst by introducing two processes of compression molding and extrusion molding in order to produce a pelletized SMR catalyst. As a result, as shown in FIG. 3, it was confirmed that the MgNiAl 2 O 3 catalyst prepared by compression molding was about twice as strong as the catalyst.

따라서 본 발명자들은 압축 성형을 통해 촉매 펠렛을 제조하고자 하였다. 알루미나가 첨가되는 촉매의 압축성형은 고강도의 힘이 요구된다. 특히, 알루미나를 사용하여 2mm 펠렛 형태로 성형할 경우 성형 모듈이 버티지 못하고 파손되는 현상을 확인하였다. Therefore, the present inventors tried to produce catalyst pellets by compression molding. Compression molding of a catalyst to which alumina is added requires high strength. Especially, when molding with 2mm pellet using alumina, the molding module could not survive and was damaged.

본 발명자들은 보헤마이트를 지지체로 이용하여 펠렛형 Ni계 촉매를 제조하는 경우 알루미나(γ-Al2O3) 지지체로 사용하는 것과는 달리 성형 모듈의 파손없이 펠렛화 및 촉매 성형이 가능하다는 것을 발견하였다(도 2 참조).The present inventors found that pelletized Ni-based catalysts using boehmite as a support can be pelletized and catalyst-formed without breaking the molding module unlike the alumina (? -Al 2 O 3 ) support (See Fig. 2).

나아가, 보헤마이트를 지지체로 이용하여 Ni계 촉매를 제조하여도 소성을 거치면 γ-Al2O3와 동일한 결정 상 및 구조를 갖는 것을 확인하였으며, 오히려 비표면적 및 산점 특성이 우수하였고, 반응특성이 향상됨을 확인하였다.Furthermore, it has been confirmed that when Ni-based catalysts are prepared by using boehmite as a support, they have the same crystal phase and structure as γ-Al 2 O 3 when they are subjected to firing, and have excellent specific surface area and acidity characteristics. Respectively.

본 발명은 이에 기초한 것이다. 따라서, 본 발명은 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체로서, 보헤마이트(boehmite)에 니켈 전구체를 함침시켜 담지한 촉매 파우더를 압축성형하여 소성한 것을 특징으로 한다.The present invention is based on this. Accordingly, the present invention is a Ni-based catalyst formed body for steam methane reforming (SMR), characterized in that a catalytic powder impregnated with a nickel precursor is supported on boehmite and compression-molded.

보헤마이트(Boehmite)는 수산화기(-OH)가 1개인 1가인 γ-AlO(OH)로서 기존의 알루미나(Al2O3)대비 고강도, 고산도, 고결정 및 고성장의 알루미나(Al2O3)이다. 보헤마이트는 감마/델타/세타/알파 Al2O3의 출발 물질로서 열적/구조적 성질이 우수하다. 보헤마이트는 열처리조건 및 방법에 따라서 다양한 Al2O3의 상을 갖게 되므로 이러한 조절을 통해 SMR 반응에 있어 우수한 Ni/Al2O3촉매를 제조할 수 있다.Boehmite (Boehmite) is a hydroxyl group (-OH) is one individual first Ga γ-AlO (OH) as compared to high strength, high acidity, high alumina crystal growth and (Al 2 O 3) existing in the alumina (Al 2 O 3) to be. Boehmite is the starting material of gamma / delta / theta / alpha Al 2 O 3 and has excellent thermal / structural properties. Boehmite has a variety of Al 2 O 3 phases depending on the heat treatment conditions and methods, and thus, it is possible to produce a Ni / Al 2 O 3 catalyst excellent in the SMR reaction.

특히, 보헤마이트는 500 ℃ 이상의 고온에서 감마 알루미나(γ-Al2O3)로 상변환된다. In particular, boehmite is phase-transformed into gamma alumina (gamma -Al 2 O 3 ) at a high temperature of 500 ° C or higher.

본 발명의 수증기 메탄 개질(SMR)용 Ni계 촉매는 함침법에 따라 니켈 전구체 및 선택적으로 조촉매 금속 공급 전구체를 용매에 용해시킨 전구체 용액에 보헤마이트 지지체를 함침한 후 압축성형, 건조 및 소성하여 제조할 수 있다. The Ni-based catalyst for steam-methane reforming (SMR) of the present invention is prepared by impregnating a precursor solution prepared by dissolving a nickel precursor and optionally a co-catalyst metal precursor in a solvent according to impregnation method, followed by compression molding, drying and firing Can be manufactured.

상기 니켈 전구체는 질산염(NO3), 아세테이트염, 할라이드염(F, Cl, Br, I) 또는 이의 혼합물 형태일 수 있으나, 이에 한정되지는 않는다. The nickel precursor may be in the form of nitrate (NO 3 ), acetate salt, halide salt (F, Cl, Br, I) or a mixture thereof, but is not limited thereto.

바람직하게는 상기 니켈 전구체는 니켈 나이트레이트 헥사하이드레이트(Nickel Nitrate Hexahydrate), 니켈클로라이드 헥사하이드레이트(Nickel Chloride Hexahydrate), 니켈 아세테이트 테트라하이드레이트(Nickel Acetate Tetrahydrate) 및 니켈 브로마이드 하이드레이트(Nickel Bromide Hydrate)로 이루어진 군으로부터 선택된 1 종 이상일 수 있다.Preferably, the nickel precursor is selected from the group consisting of Nickel Nitrate Hexahydrate, Nickel Chloride Hexahydrate, Nickel Acetate Tetrahydrate and Nickel Bromide Hydrate. The nickel precursor may be selected from the group consisting of Nickel Nitrate Hexahydrate, Nickel Chloride Hexahydrate, Nickel Acetate Tetrahydrate and Nickel Bromide Hydrate. It may be at least one selected.

더욱 바람직하게는, 상기 니켈 전구체는 니켈과, 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 구리(Cu), 알루미늄(Al), 마그네슘(Mg), 지르코늄(Zr) 및 보론(B)으로 이루어진 군으로부터 선택된 하나 이상의 금속으로 이루어진 복합체 전구체일 수 있다. 가장 바람직하게는, 상기 니켈 함유 복합체 전구체는 니켈과, 크롬(Cr), 구리(Cu), 알루미늄(Al), 마그네슘(Mg) 및 보론(B)으로 이루어진 군으로부터 선택된 하나 이상의 금속을 포함하는 복합체 전구체일 수 있다.More preferably, the nickel precursor is one or more selected from the group consisting of nickel, titanium, vanadium, chromium, manganese, iron, cobalt, copper, ), Magnesium (Mg), zirconium (Zr), and boron (B). Most preferably, the nickel-containing complex precursor is a composite comprising nickel and at least one metal selected from the group consisting of chromium (Cr), copper (Cu), aluminum (Al), magnesium (Mg) Precursor.

한편, 니켈 전구체 함유 용액에는 첨가제로 조촉매 전구체를 추가할 수 있다. On the other hand, a cocatalyst precursor can be added to the nickel precursor-containing solution as an additive.

Ni과 함께 함침되는 조촉매의 비제한적인 예로는 Ag, La, Mg, Pd, Ru 등이 있으나, Ag의 경우 600℃에서 메탄 전환율이 80% 미만으로 낮았으며, Ru 및 Ag의 경우 메탄 전환율 및 수소 생성량이 매우 낮았다(표 5 및 도 13 참조).In the case of Ag, the methane conversion was lower than 80% at 600 ℃, but the conversion of methane to Ru was lower than that of Ag. The amount of hydrogen produced was very low (see Table 5 and FIG. 13).

바람직하게는 La, Mg 및 Pd로 구성된 군에서 1종 이상 선택된 조촉매를 추가할 수 있다.Preferably, at least one cocatalyst selected from the group consisting of La, Mg and Pd can be added.

일반적으로 리포밍 반응에서 생성되는 코크는 촉매활성을 떨어뜨리고, 촉매를 부숴 반응기 내에서 차압을 증가시키는 부작용을 야기하므로, 코크 생성을 억제하는 것이 매우 중요하다. 따라서, 본 발명에 따른 SMR용 Ni계 촉매는 촉매 증진제로서 산화칼슘을 포함할 수 있다. 산화칼슘은 강한 염기성을 갖기 때문에 이산화탄소를 강하게 흡착하는데, 흡착된 이산화탄소는 촉매에 생성된 탄소와 반응하여 일산화탄소로 전환된다. 즉, 코크 또는 코크 전구체의 가스화를 돕게 되므로, 촉매상의 코크 생성을 억제하는 역할을 한다. In general, it is very important to inhibit the formation of coke because the coke produced in the reforming reaction lowers the catalytic activity and causes the side effect of crushing the catalyst and increasing the differential pressure in the reactor. Accordingly, the Ni-based catalyst for SMR according to the present invention may contain calcium oxide as a catalyst promoting agent. Since calcium oxide has a strong basicity, it strongly adsorbs carbon dioxide, and the adsorbed carbon dioxide reacts with the carbon produced in the catalyst and converts to carbon monoxide. In other words, since it helps gasification of the coke or coke precursor, it plays a role of suppressing the formation of coke on the catalyst.

상기 전구체용 용매로는 물, C1~C6의 저급 알콜 등이 있으며, 특히 증류수, 탈이온수를 사용하는 것이 바람직하다.Examples of the solvent for the precursor include water, C 1 -C 6 lower alcohol and the like, and it is particularly preferable to use distilled water or deionized water.

상기 전구체 용액은 80~130 ℃에서 제조될 수 있다. 건조과정은 100~130 ℃에서 5~10 시간 수행될 수 있다. 건조 방법은 특별히 한정하지 않으며 회전진공 증발기(rotatory evaporator) 또는 오븐을 사용할 수 있다. 지지체의 개질이나 촉매 또는 촉매 증진제의 담지시, 이들 전구체 용액을 담지하는 횟수는 제한하지 않는다. 예들 들면, 촉매성분 담지시 여러 번에 걸쳐 나누어서 담지할 수 있다. The precursor solution can be prepared at 80-130 < 0 > C. The drying process may be carried out at 100 to 130 ° C for 5 to 10 hours. The drying method is not particularly limited, and a rotary evaporator or an oven can be used. The number of times of carrying these precursor solutions is not limited when modifying the support or supporting the catalyst or catalyst promoter. For example, when the catalyst component is supported, it can be carried in several divided portions.

본 발명은 압축 강도, 입자 사이즈, 파우더의 흐름성, 점도, 탈착 정도 등의 변수를 제어하여 압축 성형을 최적화할 수 있다.The present invention can optimize compression molding by controlling variables such as compressive strength, particle size, flowability of powder, viscosity, and degree of desorption.

본 발명은 압축성형 전 촉매 파우더에 가해지는 압축 강도를 조절하여 촉매의 기계적 강도를 조절하는 것을 특징으로 한다.The present invention is characterized by controlling the mechanical strength of the catalyst by controlling the compressive strength applied to the catalyst powder before compression molding.

압축 강도는 5 kN 내지 25 kN일 수 있으나, 이에 제한되지는 않으며, 펠렛의 치수에 따라 조절될 수 있다. 촉매에 가해지는 압축강도가 비정상적으로 높을 경우, 성형 모듈 손상의 원인이 될 수 있다(도 4(a)).The compressive strength may be from 5 kN to 25 kN, but is not limited thereto and can be adjusted according to the dimensions of the pellet. If the compressive strength applied to the catalyst is abnormally high, it may cause damage to the molding module (Fig. 4 (a)).

본 발명은 압축성형 전 촉매 파우더의 사이즈를 조절하여 촉매의 기계적 강도를 조절하는 것을 특징으로 한다. The present invention is characterized in that the mechanical strength of the catalyst is controlled by adjusting the size of the catalyst powder before compression molding.

압축성형 전 촉매 파우더의 사이즈는 45 내지 75㎛인 것이 바람직하다. 촉매 파우더의 사이즈가 45㎛ 이하일 경우 성형 모듈에 달라붙어 모듈 파손 원인이 될 수 있다. 45 내지 75㎛ 사이즈의 촉매 파우더를 이용해 성형한 펠렛의 강도가 가장 우수하였다(도 4(b)). 불균일한 촉매 파우더 사이즈는 성형 모듈을 손상시키고 펠렛의 강도를 저하시킬 수 있다.The size of the catalyst powder before compression molding is preferably 45 to 75 mu m. If the size of the catalyst powder is 45 μm or less, it may adhere to the molding module, which may cause module breakage. The strength of the pellet molded using the catalyst powder of 45 to 75 mu m in size was the most excellent (Fig. 4 (b)). Uneven catalyst powder size can damage the molding module and reduce the strength of the pellets.

본 발명은 압축성형시 압축성형 전 촉매 파우더의 흐름성 및 점도, 그리고 탈착정도를 제어하여 압축 성형을 최적화할 수 있다.The present invention can optimize compression molding by controlling the flowability, viscosity, and degree of desorption of the catalyst powder before compression molding in compression molding.

촉매 파우더의 흐름성은 성형 모듈에 채워지는 촉매의 양을 결정하는 변수가 될 수 있다. 촉매 파우더의 흐름성은 상기 촉매 파우더의 사이즈를 제어함에 의해 제어할 수 있다.The flowability of the catalyst powder can be a parameter that determines the amount of catalyst that is filled into the molding module. The flowability of the catalyst powder can be controlled by controlling the size of the catalyst powder.

본 발명은 촉매 파우더의 점도를 높여 촉매가 성형성을 갖도록 할 수 있다. 이를 위해 압축성형시 촉매 파우더에 첨가제를 첨가할 수 있다. The present invention can increase the viscosity of the catalyst powder so that the catalyst has moldability. To this end, additives may be added to the catalyst powder during compression molding.

일례로 촉매의 성형성을 갖추게 하는 점도제로서 PVA, 탈크 등을 첨가할 수 있다. For example, PVA, talc, or the like may be added as a viscosity agent to provide the moldability of the catalyst.

또한, 펠렛의 성형시 모듈 틈 사이에 끼는 파우더를 최소화하기 위해 탈착제로서 탈크, 그라파이트 등을 첨가할 수 있다.In addition, talc, graphite or the like may be added as a desorbing agent in order to minimize the powder caught between the module gaps when forming the pellets.

본 발명의 일 실시예에서는, 첨가제로서 PVA, MC 바인더, 탈크, 그라파이트를 각각 5%씩 첨가하여 펠렛형 촉매를 제조하였다(도 5).In an embodiment of the present invention, 5% of PVA, MC binder, talc and graphite were added as additives, respectively, to prepare a pellet type catalyst (FIG. 5).

PVA 또는 MC 바인더는 촉매의 성형성을 갖추게 할 수 있으나, 촉매 균열의 원인이 되어 강도를 하락시킬 수 있다. 탈크나 그라파이트는 펠렛의 성형 시 모듈 틈 사이에 끼는 파우더를 최소화할 수 있으나, 촉매 강도를 매우 떨어뜨릴 수 있다.The PVA or MC binder can make the catalyst moldable, but can cause cracking of the catalyst and decrease the strength. Talc and graphite can minimize the powder trapped between the module gaps when forming the pellets, but can significantly degrade the catalyst strength.

본 발명에서 압축성형된 펠렛의 소성 온도는 500 ~ 1000 ℃일 수 있으며, 바람직하게는 800 ~ 900 ℃, 특히 850℃일 수 있다.In the present invention, the firing temperature of the compression molded pellets may be 500-1000 ° C, preferably 800-900 ° C, especially 850 ° C.

상기 온도로 소성하여 제조된 촉매는 γ-Al2O3와 동일한 결정 상 및 구조를 갖게 되고, 오히려 γ-Al2O3을 출발 물질로 제조한 촉매보다 비표면적 및 산점 특성이 우수하고, 반응특성이 향상되는 장점이 있다.Prepared by firing at the temperature of the catalyst is γ-Al 2 O 3 and have the same crystal phase and a structure and a rather γ-Al 2 O 3 a excellent in the specific surface area and acid site characteristics than the catalyst made of the starting material, the reaction There is an advantage that the characteristics are improved.

본 발명에 따른 SMR용 Ni계 촉매는 평균 직경이 2 내지 3mm인 펠렛일 수 있다. 반응기 크기에 따라 적합한 충진율을 갖는 촉매를 사용해야 하며, 본 반응에 사용할 촉매로서는 2mm 펠렛이 바람직 하다..The Ni-based catalyst for SMR according to the present invention may be a pellet having an average diameter of 2 to 3 mm. Depending on the size of the reactor, a catalyst having a suitable packing rate should be used, and as the catalyst to be used in the present reaction, 2 mm pellets are preferable.

본 발명에 따른 SMR용 Ni계 촉매 성형체는 기계적 강도가 8 내지 10 kgf일 수 있다.The Ni-based catalyst formed body for SMR according to the present invention may have a mechanical strength of 8 to 10 kgf.

본 발명에 따른 SMR용 Ni계 촉매 성형체는 비표면적이 50 내지 200 m2/g일 수 있으며, 바람직하게는 75 내지 150 m2/g일 수 있다.The Ni-based catalyst formed body for SMR according to the present invention may have a specific surface area of 50 to 200 m 2 / g, preferably 75 to 150 m 2 / g.

본 발명에 따른 SMR용 Ni계 촉매 성형체는 평균 기공 직경이 5 내지 15 nm일 수 있다.The Ni-based catalyst formed body for SMR according to the present invention may have an average pore diameter of 5 to 15 nm.

본 발명에 따른 SMR용 Ni계 촉매 성형체는 500~900 ℃에서의 수증기 메탄 개질 공정(SMR)에서 메탄전환율이 평형전환율 대비 80%이상일 수 있다.In the Ni-based catalyst formed body for SMR according to the present invention, the methane conversion rate may be 80% or more of the equilibrium conversion rate in the steam methane reforming process (SMR) at 500 to 900 ° C.

본 발명에 따른 SMR용 Ni계 촉매 성형체는 수증기 메탄 개질 반응 전에도 Ni종 결정(結晶)을 포함하고, 반응 후 촉매의 XRD에서 Ni peak가 나타난다. The Ni-based catalyst preform for SMR according to the present invention contains Ni seed crystals before the steam reforming reaction, and the Ni peak appears in the XRD of the catalyst after the reaction.

상기 Ni종 결정의 비제한적인 예로는 NiAl2O3등이 있다.Non-limiting examples of the Ni seed crystal include NiAl 2 O 3 and the like.

수소 제조를 위한 수증기 메탄 개질 공정은 기체 몰 수가 증가하는 반응으로 압력에 큰 영향을 받는다. 촉매의 파손은 반응 압력을 증가시켜 반응 효율을 낮추는 요인이 될 수 있는데, 본 발명에 따른 펠렛형 SMR 용 촉매 성형체는 이를 방지할 수 있다.The steam methane reforming process for hydrogen production is greatly affected by the pressure due to the reaction of increasing the number of moles of gas. The breakage of the catalyst may increase the reaction pressure to lower the reaction efficiency. The pellet type catalyst for SMR according to the present invention can prevent this.

따라서, 본 발명에 따른 펠렛형 SMR용 Ni계 촉매 성형체는 500~600 ℃ 저온에서의 수증기 메탄 개질 공정(SMR) 및 수소분리 공정을 동시에 수행하는 반응기에 사용될 수 있다.Therefore, the Ni-based catalyst for a pellet type SMR according to the present invention can be used in a reactor that simultaneously performs a steam methane reforming process (SMR) and a hydrogen separation process at a low temperature of 500 to 600 ° C.

상기 반응기는 수성가스 전환반응용 촉매를 더 포함할 수 있다.The reactor may further include a catalyst for an aqueous gas conversion reaction.

또한, 본 발명에 따른 SMR용 Ni계 촉매 성형체는 하나의 반응기에서 수증기 메탄 개질 공정(SMR) 및 수소분리 공정을 수행하여 천연가스로부터 합성가스 또는 수소가스를 제조하는 방법에 사용될 수 있다.In addition, the Ni-based catalyst preform for SMR according to the present invention can be used in a method of producing a syngas or a hydrogen gas from natural gas by performing a steam methane reforming process (SMR) and a hydrogen separation process in one reactor.

상기 방법은 상기 반응기에서 수소분리 공정 이후 수성가스 전환반응도 수행할 수 있다.The process can also perform a water gas shift reaction after the hydrogen separation process in the reactor.

본 발명에 따른 SMR용 Ni계 촉매 성형체 존재 하에 수증기 메탄 개질 공정(SMR)을 수행하는 반응기에, 수소 투과도가 있는 분리구조체를 탑재시키면 수소 투과도가 다른 기체들에 비하여 높기 때문에 반응과 동시에 생성물인 수소가 선택적으로 제거될 수 있으며, 따라서 르샤틀리에 원리에 따라 개질 반응에서의 정반응이 더욱 우세하게 진행될 수 있으므로, 낮은 온도범위에서도 높은 메탄 전환율을 얻을 수 있다.When a separating structure having hydrogen permeability is mounted on a reactor performing the steam methane reforming process (SMR) in the presence of the Ni-based catalyst formed body for SMR according to the present invention, the hydrogen permeability is higher than the other gases, Can be selectively removed, and accordingly the reaction in the reforming reaction can proceed more predominantly according to the principle of Rechartelier, so that a high methane conversion can be obtained even in a low temperature range.

본 발명에 사용되는 상기 분리구조체는 수소투과도가 높은 분리막을 사용하는 것이 바람직하다. The separation structure used in the present invention preferably uses a separation membrane having high hydrogen permeability.

상기 분리구조체는 합성가스에서 수소 선택성이 있는 것으로, 실리카, 알루미나, 지르코니아, YSZ, 또는 이의 조합을 포함하는 세라믹; 혹은, 니켈, 구리, 철, 팔라듐, 루테늄, 로듐, 백금, 또는 이의 조합으로 구성된 금속; 혹은 상기 금속과 세라믹이 혼합된 복합조성일 수 있다. 상기 분리구조체 구조는 다양할 수 있으며, 비제한적인 예로는 평막, 튜브, 중공사막 형태일 수 있다.Wherein the separation structure comprises a ceramic selected from the group consisting of silica, alumina, zirconia, YSZ, or combinations thereof; Or a metal consisting of nickel, copper, iron, palladium, ruthenium, rhodium, platinum, or combinations thereof; Or a complex composition in which the metal and the ceramic are mixed. The structure of the separation structure may be varied and may be, for example, a flat membrane, a tube, or a hollow fiber membrane.

본 발명에 따르면 압축성형을 통해 고강도의 니켈계 촉매 성형체를 제조하여 500~600 ℃ 저온에서의 수증기 메탄 개질 공정(SMR)에 사용할 수 있다. According to the present invention, nickel-based catalyst formed bodies having high strength can be produced through compression molding and used in the steam methane reforming process (SMR) at a low temperature of 500 to 600 ° C.

본 발명의 SMR 용 촉매 성형체는 보헤마이트를 지지체로 사용함으로써 펠렛화 및 성형화를 통한 촉매의 고강도화가 가능하며 향상된 반응 특성을 나타낼 수 있다.By using boehmite as a support, the catalyst formed body for SMR of the present invention can achieve high strength of the catalyst through pelletization and molding and can exhibit improved reaction characteristics.

도 1은 (a)온도에 따른 반응기의 수축팽창 및 (b)압력에 따른 평형전환율을 나타낸 것이다.
도 2는 (a)MgNiAl2O3 파우더 촉매, (b) 압축성형 펠렛 촉매를 촬영한 사진이다.
도 3은 성형방법에 따른 2mm 펠렛 촉매의 압축강도를 나타낸 것이다.
도 4는 압축성형의 변수별 촉매의 기계적 강도를 나타낸 것이다((a) 압축강도 별, (b) 촉매 사이즈별).
도 5는 다양한 첨가제에 따른 성형 강도를 나타낸 것이다(0은 성형 불가 촉매).
도 6은 펠렛 성형 촉매의 메탄전환율 및 평형전환율 대비 메탄전환율을 나타낸 것이다.
1 shows (a) the shrinking expansion of the reactor with temperature and (b) the equilibrium conversion according to the pressure.
2 is a photograph of (a) a MgNiAl 2 O 3 powder catalyst and (b) a compression molded pellet catalyst.
3 shows the compressive strength of a 2 mm pellet catalyst according to the molding method.
Figure 4 shows the mechanical strengths of the catalysts for different compression molding parameters (a) by compressive strength, and b) by catalyst size.
Fig. 5 shows the molding strength according to various additives (0 is a catalyst which can not be molded).
6 shows methane conversion versus equilibrium conversion rate of methane conversion of the pelletized catalyst.

이하 본 발명을 하기 예에 의해 상세히 설명한다. 다만, 하기 예는 본 발명을 예시하기 위한 것일 뿐, 하기 예에 의해 본 발명의 범위가 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited by the following examples.

실시예Example 1 One

증류수에 니켈 함유 복합체 전구체(MgNiAl2O4)를 1.0 mol/L로 녹여 1시간 동안 초음파 분산시켜 금속이 분산된 전구체 용액을 제조하였다. Nickel-containing complex precursor (MgNiAl 2 O 4 ) was dissolved in distilled water at 1.0 mol / L and ultrasonically dispersed for 1 hour to prepare a metal precursor solution.

상기 전구체 용액에 Boehmite(A사)를 담근 후 40~70℃에서 2단계 rpm으로 교반 후 100℃ 건조기에서 24시간 동안 건조시켰다.Boehmite (Company A) was immersed in the precursor solution, stirred at 40 to 70 ° C in two-step rpm, and dried in a 100 ° C dryer for 24 hours.

45~75 ㎛ 크기의 촉매 파우더를 선별하였다. 선별된 촉매 파우더에 850℃에서 5 내지 25 kN의 힘을 가하여 2*3 mm 촉매 펠렛을 압축 성형하였다. 850℃에서 공기 분위기에서 6시간 동안 소성하여 수증기 메탄 개질용 Ni계 촉매 펠렛을 제조하였다. Catalyst powders of 45 ~ 75 ㎛ size were selected. A 2 * 3 mm catalyst pellet was compression molded by applying a force of 5-25 kN at 850 [deg.] C to the selected catalyst powder. And then calcined at 850 캜 for 6 hours in an air atmosphere to prepare Ni-based catalyst pellets for steam methane reforming.

실험예Experimental Example 1: 압축  1: Compression 강도 별By intensity 강도 평가 Strength evaluation

실시예 1에 따라 제조한 촉매 펠렛에 대해, 압축 강도에 따른 촉매 펠렛의 기계적 강도 평가를 수행하였다. For the catalyst pellets prepared according to Example 1, the mechanical strength of the catalyst pellets was evaluated according to the compressive strength.

도 4(a)는 Ni/Al2O3 촉매를 이용하여 압축 강도에 따른 촉매의 기계적 강도를 측정한 결과이다. 실험 결과 2*3mm 펠렛을 성형하기 위해 15kN을 가할 경우 촉매 펠렛의 기계적 강도가 1.8 kgf로 가장 우수한 것으로 나타났다.4 (a) shows the results of measurement of the mechanical strength of the catalyst according to compressive strength using Ni / Al 2 O 3 catalyst. Experimental results showed that the mechanical strength of the catalyst pellet was the best at 1.8 kgf when 15 kN was added to form 2 * 3 mm pellets.

실험예Experimental Example 2: 촉매 파우더  2: catalyst powder 사이즈 별By Size 강도 평가 Strength evaluation

실시예 1에 따라 제조한 촉매 펠렛에 대해, 촉매 파우더 사이즈에 따른 촉매 펠렛의 기계적 강도 평가를 수행하였다. For the catalyst pellets prepared according to Example 1, the mechanical strength of the catalyst pellets was evaluated according to the catalyst powder size.

도 4(b)에서 보는 바와 같이, 45~75㎛ 사이즈의 촉매 파우더를 이용하여 성형한 촉매 펠렛의 기계적 강도가 가장 우수한 것으로 나타났다. 또한, 촉매의 사이즈가 45㎛ 이하일 경우 성형 모듈에 달라붙어 모듈 파손 원인이 됨을 확인하였다.As shown in FIG. 4 (b), the mechanical strength of the catalyst pellet molded using the catalyst powder having a size of 45 to 75 μm was the most excellent. Also, when the size of the catalyst is 45 탆 or less, it is confirmed that the catalyst sticks to the molding module and causes module breakage.

실험예Experimental Example 3: 첨가제 평가 3: Additive evaluation

촉매의 성형성을 향상시키기 위해 촉매의 압축 성형 시 첨가제로서 PVA, MC바인더, 탈크, 그라파이트를 사용할 수 있다. In order to improve the moldability of the catalyst, PVA, MC binder, talc and graphite may be used as additives in the compression molding of the catalyst.

PVA, MC바인더, 탈크, 그라파이트를 각각 5wt%씩 첨가한 펠렛 촉매의 강도를 측정하여 그 결과를 도 5에 나타냈다. The strength of the pellet catalyst in which 5 wt% of each of PVA, MC binder, talc and graphite were added was measured, and the results are shown in Fig.

도 5에서 보는 바와 같이, PVA 또는 MC 바인더는 점도제 역할을 하여, 촉매의 성형성을 갖추게 할 수 있으나, 촉매 균열의 원인이 되어 강도를 하락시킬 수 있다. 또한, 탈크나 그라파이트는 탈착제로서 펠렛의 성형 시 모듈 틈 사이에 끼는 파우더를 최소화할 수 있으나, 촉매 강도를 매우 떨어뜨릴 수 있음을 알 수 있었다.As shown in FIG. 5, the PVA or MC binder serves as a viscosity agent, so that the catalyst can be molded, but the catalyst can be cracked and the strength can be lowered. In addition, it was found that talc and graphite can minimize the powder trapped between the module gaps when forming the pellets as a desorbent, but the catalyst strength can be greatly reduced.

실험예4Experimental Example 4 : 활성 평가: Activity evaluation

실시예 1에서 제조한 2*3mm 펠렛 촉매에 대해 증기와 메탄의 비(S/C)=3, SV=10,000/h, 600℃ 조건 하에서 수증기 메탄개질 반응에 대한 활성을 평가하여 그 결과를 하기 표 1 및 도 6에 나타냈다.The activity of the 2 * 3 mm pellet catalyst prepared in Example 1 for the steam methane reforming reaction was evaluated under the conditions of steam to methane ratio (S / C) = 3, SV = 10,000 / h and 600 ° C, The results are shown in Table 1 and FIG.

촉매catalyst side
×10,000
side
× 10,000
upper
×1,000
upper
× 1,000
길이
(mm)
Length
(mm)
직경
(mm)
diameter
(mm)
기계적
강도
(kgf)
Mechanical
burglar
(kgf)
반응전
BET
(m2/g)
Before reaction
BET
(m 2 / g)
반응후 BET
(m2/g)
After the reaction, BET
(m 2 / g)
상용
촉매
Commercial
catalyst

Figure 112016088429068-pat00001
Figure 112016088429068-pat00001
Figure 112016088429068-pat00002
Figure 112016088429068-pat00002
Figure 112016088429068-pat00003
Figure 112016088429068-pat00003
3.363.36 1.851.85 7.687.68 187187 6767 MgNi/
Al2O3
MgNi /
Al 2 O 3
Figure 112016088429068-pat00004
Figure 112016088429068-pat00004
Figure 112016088429068-pat00005
Figure 112016088429068-pat00005
Figure 112016088429068-pat00006
Figure 112016088429068-pat00006
3.203.20 1.901.90 10.2310.23 106106 9191

도 6에서 보는 바와 같이, 수증기 메탄개질 반응 결과 본 실시예에 따라 제조한 촉매 펠렛이 니켈 알루미나를 기반으로 한 상용촉매보다 높은 메탄전환율 및 평형전환율 대비 전환율을 나타낸 것을 확인할 수 있다.As shown in FIG. 6, it can be seen that the catalyst pellet prepared according to the present example exhibited higher methane conversion and conversion to equilibrium conversion than commercial catalysts based on nickel alumina, as a result of the steam methane reforming reaction.

표 1에서 두 촉매 모두 균열이 없는 표면 형상을 나타내고, 본 실시예의 촉매 펠렛은 상용촉매과 유사한 길이 및 직경을 갖는 것을 확인하였다. In Table 1, both of the catalysts showed a surface shape free from cracks, and it was confirmed that the catalyst pellets of this Example had a length and a diameter similar to those of a commercial catalyst.

또한, 반응전 상용촉매의 비표면적이 본 실시예의 촉매 펠렛에 비해 약 2배 정도 컸으나, 반응 후 비표면적이 1/3 수준으로 감소한 반면, 본 실시예의 펠렛 촉매는 비표면적이 반응 전 106m2/g, 반응 후 91m2/g로 소폭 감소하는 것으로 나타났다. 이는 촉매 성분의 차이에 기인한 것으로 사료된다.(상용촉매: 니켈 60%, MgNi/Al2O3: 니켈 20%). Also, the specific surface area of the commercial catalyst before the reaction was about twice as large as that of the catalyst pellet of the present invention, but the specific surface area after the reaction was reduced to 1/3 level, while the pellet catalyst of this example had a specific surface area of 106 m 2 / g and 91 m 2 / g after the reaction, respectively. This is thought to be due to differences in the catalyst component (a commercial catalyst: Ni 60%, MgNi / Al 2 O 3: 20% nickel).

또한, 상기 표 1에서 보는 바와 같이, 본 발명의 펠렛 촉매는 상용촉매보다 기계적 강도가 훨씬 우수함을 알 수 있다.Also, as shown in Table 1, it can be seen that the pellet catalyst of the present invention has much better mechanical strength than the commercial catalyst.

Claims (15)

보헤마이트(boehmite)를 지지체로 사용하여 니켈 전구체를 함침시켜 담지한 45 내지 75㎛ 사이즈의 촉매 파우더를 5 kN 내지 25 kN의 압축강도로 압축성형하여 소성한 것인, 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.(SMR), which is obtained by compression molding a catalyst powder of 45 to 75 탆 in size impregnated with a nickel precursor using boehmite as a support at a compression strength of 5 kN to 25 kN Ni-based catalyst formed body. 제1항에 있어서, 평균 직경이 2 내지 3mm인 펠렛인 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체. 2. The Ni-based catalyst preform for steam methane reforming (SMR) according to claim 1, wherein the average pore diameter is 2 to 3 mm. 삭제delete 제1항에 있어서, 기계적 강도가 8 내지 10 kgf인 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst preform for steam methane reforming (SMR) according to claim 1, wherein the mechanical strength is 8 to 10 kgf. 제1항에 있어서, 비표면적이 50 내지 200 m2/g이고, 평균 기공 직경이 5 내지 15 nm 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst formed body for steam methane reforming (SMR) according to claim 1, wherein the specific surface area is 50 to 200 m 2 / g and the average pore diameter is 5 to 15 nm. 제1항에 있어서, 500~900 ℃에서의 수증기 메탄 개질 공정(SMR)에서 메탄전환율이 평형전환율 대비 80%이상인 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst preform for steam methane reforming (SMR) according to claim 1, wherein the methane conversion rate in the steam methane reforming process (SMR) at 500 to 900 ° C is 80% or more of the equilibrium conversion rate. 제1항에 있어서, 수증기 메탄 개질 반응 전 촉매는 Ni종 결정(結晶)을 포함하는 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst formed article for steam methane reforming (SMR) according to claim 1, wherein the catalyst for steam-methane reforming reaction comprises Ni seed crystals. 제7항에 있어서, 상기 Ni종 결정은 NiAl2O3인 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst formed body for steam methane reforming (SMR) according to claim 7, wherein the Ni seed crystal is NiAl 2 O 3 . 제1항에 있어서, 상기 소성은 500 내지 1000 ℃에서 수행되는 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst formed body for steam reforming (SMR) according to claim 1, wherein the calcination is performed at 500 to 1000 ° C. 제1항에 있어서, La, Mg 및 Pd로 구성된 군에서 1종 이상 선택된 조촉매를 더 포함하는 것이 특징인 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체.The Ni-based catalyst preform for steam methane reforming (SMR) according to claim 1, further comprising at least one cocatalyst selected from the group consisting of La, Mg and Pd. 수증기 메탄 개질 공정(SMR) 및 수소분리 공정을 동시에 수행하는 반응기로서, SMR 용 촉매로 제1항, 제2항 및 제4항 내지 제10항 중 어느 한 항에 기재된 Ni계 촉매 성형체를 사용하는 것이 특징인 반응기.A reactor for simultaneously performing a steam methane reforming process (SMR) and a hydrogen separation process, wherein the Ni-based catalyst formed article according to any one of claims 1, 2, and 4 to 10 is used as a catalyst for SMR Lt; / RTI > 제11항에 있어서, 수성가스 전환반응용 촉매를 더 포함하는 것이 특징인 반응기.The reactor according to claim 11, further comprising a catalyst for water gas shift reaction. 하나의 반응기에서 수증기 메탄 개질 공정(SMR) 및 수소분리 공정을 수행하여 천연가스로부터 합성가스 또는 수소가스를 제조하는 방법에 있어서,
제1항, 제2항 및 제4항 내지 제10항 중 어느 한 항에 기재된 Ni계 촉매 성형체 하 SMR 공정을 수행하는 것이 특징인 합성가스 또는 수소가스 제조방법.
A method for producing a syngas or hydrogen gas from a natural gas by performing a steam methane reforming process (SMR) and a hydrogen separation process in one reactor,
A method for producing a synthesis gas or a hydrogen gas, characterized by carrying out the SMR process under the Ni-based catalyst body according to any one of claims 1, 2 and 4 to 10.
제13항에 있어서, 상기 반응기에서 수소분리 공정 이후 수성가스 전환반응도 수행되는 것이 특징인 합성가스 또는 수소가스 제조방법.14. The method of claim 13, wherein a water gas shift reaction is also performed after the hydrogen separation process in the reactor. 하기 단계를 포함하는 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체의 제조방법:
니켈 전구체 용액을 준비하는 단계;
상기 전구체 용액에 보헤마이트 지지체를 침지시켜 보헤마이트에 니켈 전구체를 담지시키는 단계;
보헤마이트에 니켈 전구체가 담지된 촉매 파우더를 45 내지 75㎛ 크기로 수득하는 단계; 및
상기 촉매 파우더를 5 kN 내지 25 kN의 압축강도로 압축성형하여 소성하는 단계.
A method for producing a Ni-based catalyst formed body for steam methane reforming (SMR) comprising the steps of:
Preparing a nickel precursor solution;
Immersing the boehmite support in the precursor solution to support a nickel precursor on the boehmite;
Obtaining a catalytic powder having a nickel precursor carried on the boehmite in a size of 45 to 75 mu m; And
Compression molding the catalyst powder at a compressive strength of 5 kN to 25 kN and firing it.
KR1020160116625A 2016-09-09 2016-09-09 Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof KR101794316B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160116625A KR101794316B1 (en) 2016-09-09 2016-09-09 Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof
PCT/KR2017/009853 WO2018048236A1 (en) 2016-09-09 2017-09-08 Nickel-based catalyst molded body for steam methane reforming and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160116625A KR101794316B1 (en) 2016-09-09 2016-09-09 Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof

Publications (1)

Publication Number Publication Date
KR101794316B1 true KR101794316B1 (en) 2017-11-07

Family

ID=60384926

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160116625A KR101794316B1 (en) 2016-09-09 2016-09-09 Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof

Country Status (2)

Country Link
KR (1) KR101794316B1 (en)
WO (1) WO2018048236A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052099A (en) 2020-10-20 2022-04-27 한국화학연구원 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
WO2023128541A1 (en) * 2021-12-28 2023-07-06 한국화학연구원 Catalyst for methane chlorination reaction in which crystalline graphitic carbon-based material is highly dispersed in inorganic matrix

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112871173A (en) * 2021-02-03 2021-06-01 河南省科学院 Preparation method of reaction catalyst for preparing synthesis gas by dry reforming of methane and carbon dioxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108804B2 (en) 2002-06-12 2006-09-19 National University Of Singapore Supported nickel catalyst for synthesis gas preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167323A1 (en) * 2006-01-16 2007-07-19 Toda Kogya Corporation Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
KR100989598B1 (en) * 2008-12-26 2010-10-25 재단법인 포항산업과학연구원 ?????????2?3 catalyst for syngas production and manufacturing method thereof and manufacturing method of syngas
WO2013068904A1 (en) * 2011-11-09 2013-05-16 Basf Se Catalyst composition for steam reforming of methane in fuel cells
KR101467169B1 (en) * 2013-02-27 2014-12-01 한국화학연구원 Method for the preparation of molded article of nickel-containing catalyst for mixed modification reaction of methane and the molded catalyst article thus obtained

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108804B2 (en) 2002-06-12 2006-09-19 National University Of Singapore Supported nickel catalyst for synthesis gas preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052099A (en) 2020-10-20 2022-04-27 한국화학연구원 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
KR20230005097A (en) 2020-10-20 2023-01-09 한국화학연구원 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
WO2023128541A1 (en) * 2021-12-28 2023-07-06 한국화학연구원 Catalyst for methane chlorination reaction in which crystalline graphitic carbon-based material is highly dispersed in inorganic matrix

Also Published As

Publication number Publication date
WO2018048236A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP5110249B2 (en) Hydrocarbon decomposition catalyst, hydrocarbon decomposition method and hydrogen production method using the catalyst, and power generation system
US8614161B2 (en) CO2 reforming catalyst composition
JP5477561B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
KR101794316B1 (en) Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof
KR102573127B1 (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
KR102035714B1 (en) Nickel catalysts for reforming hydrocarbons
KR101466125B1 (en) Method for preparation of magnesium oxide architectures with meso-macro pores
JP2004089812A (en) Hydrogen producing catalyst and preparation method therefor
KR100647309B1 (en) Support for fuel gas reforming catalyst with excellent heat and mass transfer characteristics and manufacturing method thereof
KR101910091B1 (en) Ni-based catalyst for SMR reaction coated on metal foam with improved catalyst adhesion and reaction property, and Manufacturing method and Use thereof
US9180437B2 (en) Method of preparing magnesium oxide structure with meso-macro pores
Tri et al. High activity and stability of nano‐nickel catalyst based on LaNiO3 perovskite for methane bireforming
KR101466470B1 (en) Nickel based catalyst of core-shell structure for steam and carbon dioxide mixed reforming reaction and preparation method thereof
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
KR101628695B1 (en) A mesoporous nickel-iron-alumina xerogel catalyst, preparation method thereof and production method of hydrogen gas by steam reforming of liquefied natural gas using said catalyst
KR102436299B1 (en) Composite comprising nickel supported on porous alumina carrier and manufacturing method thereof
KR20170027674A (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and use thereof
CA3138894A1 (en) Steam reforming catalysts for sustainable hydrogen production from bio-based materials
JP4340892B2 (en) Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
KR20180116000A (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
KR20170047815A (en) Catalyst for Steam Reformation
KR100980591B1 (en) A mesoporous nickel-alumina co-precipitated catalyst, preparation method thereof and production method of hydrogen gas by steam reforming of liquefied natural gas using said catalyst
KR20240061913A (en) Catalyst for methane reforming and manufacturing method thereof
JP4767738B2 (en) Hydrocarbon reforming catalyst

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant