[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101782361B1 - Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants - Google Patents

Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants Download PDF

Info

Publication number
KR101782361B1
KR101782361B1 KR1020160016108A KR20160016108A KR101782361B1 KR 101782361 B1 KR101782361 B1 KR 101782361B1 KR 1020160016108 A KR1020160016108 A KR 1020160016108A KR 20160016108 A KR20160016108 A KR 20160016108A KR 101782361 B1 KR101782361 B1 KR 101782361B1
Authority
KR
South Korea
Prior art keywords
hexavalent chromium
phenolic
chlorophenol
contaminants
solution
Prior art date
Application number
KR1020160016108A
Other languages
Korean (ko)
Other versions
KR20170094862A (en
Inventor
김정원
주진중
김기태
김재성
윤호일
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020160016108A priority Critical patent/KR101782361B1/en
Publication of KR20170094862A publication Critical patent/KR20170094862A/en
Application granted granted Critical
Publication of KR101782361B1 publication Critical patent/KR101782361B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

과제 : 6가 크롬과 페놀계 오염물질을 간단하고 효과적으로 동시에 제거하는 방법을 제공하는 것.
해결수단 : 본 발명은 6가 크롬 및 페놀계 오염물질 용액을 준비하는 단계; 상기 용액을 혼합하는 단계; 상기 혼합한 용액에 pH 조절제를 투입하는 단계; 상기 pH 조절제가 투입된 용액을 냉각하는 단계;를 포함하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법으로 공정이 간단하고 6가 크롬과 페놀계 오염물질이 효과적으로 동시에 제거됨을 확인하였다.
Challenge: To provide a simple and effective way to remove hexavalent chromium and phenolic contaminants simultaneously.
The present invention relates to a method for preparing hexavalent chromium and phenolic contaminant solutions, Mixing the solution; Introducing a pH adjusting agent into the mixed solution; And a step of cooling the solution containing the pH adjuster, wherein the process is simple and the hexavalent chromium and the phenolic contaminants are effectively removed simultaneously by removing the hexavalent chromium and the phenolic contaminants simultaneously.

Description

냉각을 이용한 6가 크롬과 페놀계 오염물질의 동시 제거 방법 {Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants} [0001] The present invention relates to a method for simultaneous removal of hexavalent chromium and phenolic pollutants,

본 발명은 냉각을 이용한 6가 크롬과 페놀계 오염물질의 동시 제거 방법에 관한 것이다.The present invention relates to a method for simultaneous removal of hexavalent chromium and phenolic contaminants using cooling.

중금속에 의한 수질이나 토양의 오염이 날로 심각해지고 있다. 그중 6가 크롬은 도금, 합금, 목재 방부제, 가죽의 무두질 등에 고농도로 쓰이고, 뿐만 아니라, 지하수, 토양, 오폐수 등 자연계에도 널리 분포하고 있다. 6가 크롬은 3가 크롬에 비해 독성이 강하고, 이동성이 좋으며, 흡착을 통한 제거가 힘들기 때문에, 6가 크롬을 3가로 환원시킨 후 흡착제를 이용하여 제거하는 방법이 바람직하다.Water quality and soil pollution caused by heavy metals are becoming serious. Among them, hexavalent chromium is widely used in plating, alloys, wood preservatives, tanning of leather, and also in natural environments such as groundwater, soil, and wastewater. Since hexavalent chromium is more toxic than trivalent chromium and has good mobility and is difficult to remove by adsorption, it is preferable to remove the hexavalent chromium by three-dimensionally reducing it with an adsorbent.

또한, 최근 환경을 오염시키는 물질 중 폐놀계 오염물질은 가장 흔한 오염물질 중 하나이고, 매우 낮은 농도에서도 환경에 강한 독성을 나타내기 때문에 이를 처리하는 방법의 개발이 중요하다.In addition, recently, pulmonary pollutants among environmental pollutants are one of the most common pollutants, and it is important to develop a method of treating them because they exhibit toxicity to environment even at very low concentrations.

일반적으로 화학물질 간의 산화, 환원 반응은 온도가 낮을수록 느려지나, 일부 화학물질 간의 산화, 환원 반응은 어는 온도 이하에서 그 반응 속도가 빨라진다. 이는 용액이 어는 과정에서 얼음 결정 주위에 존재하는 준-액체층에 화학물질들이 농축되게 되고 (동결농축효과), 화학물질의 농도 증가를 야기함으로써 화학물질간의 산화, 환원 반응 속도를 향상시킬 수 있기 때문이다.In general, oxidation and reduction reactions between chemical substances slow down with lower temperature, but the oxidation and reduction reactions between some chemical substances accelerate the reaction rate below a certain temperature. This is because during the freezing process the chemicals are concentrated in the quasi-liquid layer around the ice crystals (freezing condensation effect) and the chemical concentration increases, Because.

따라서, 본 발명은 상기 종래기술의 문제점을 해결하고 6가 크롬과 페놀계 오염물질을 동시에 효율적으로 제거하는 방법을 제공하는 것을 목표로 한다.Accordingly, it is an object of the present invention to solve the above problems of the prior art and to provide a method for efficiently removing hexavalent chromium and phenolic contaminants simultaneously.

상기 목적을 달성하기 위하여, 본 발명자들은 6가 크롬과 페놀계 오염물질을 동시에 제거할 수 있는 효과적인 방법을 확립하여 본 발명을 완성하였다. In order to achieve the above object, the present inventors have established an effective method for simultaneously removing hexavalent chromium and phenolic contaminants, thereby completing the present invention.

본 발명은      The present invention

a) 6가 크롬이 함유된 용액 및 페놀계 오염물질이 함유된 용액을 준비하는 단계;a) preparing a solution containing hexavalent chromium and a solution containing phenolic contaminants;

b) 상기 두 용액을 혼합하는 단계;b) mixing the two solutions;

c) 상기 혼합한 용액에 pH 조절제를 투입하여 초기 pH를 5 미만으로 조절하는 단계; 및c) adding a pH adjusting agent to the mixed solution to adjust the initial pH to less than 5; And

d) 상기 pH 조절된 용액을 냉각하는 단계;를 포함하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법에 관한 것이다.d) cooling the pH-adjusted solution, and a method for simultaneously removing hexavalent chromium and phenolic contaminants.

만일 동일한 용액 내에 6가 크롬과 페놀계 오염물질이 모두 함유되어 있다면 위 방법에서 6가 크롬 함유 용액 및 페놀계 오염물질 함유 용액을 준비 및 혼합하는 단계는 생략할 수 있다.If the same solution contains both hexavalent chromium and phenolic contaminants, the step of preparing and mixing the hexavalent chromium-containing solution and the phenolic contaminant-containing solution in the above method may be omitted.

상기 6가 크롬과 페놀계 오염물질을 혼합한 용액에서 6가 크롬과 페놀계 오염물질의 농도에 제한은 없으나, 6가 크롬과 페놀계 오염물질의 농도비가 몰 농도 기준으로 0.25:1 ~ 4:1 범위의 혼합 용액인 것이 6가 크롬과 페놀계 오염물질의 동시 제거에 효율적이다.Although the concentration of hexavalent chromium and phenol-based contaminants is not limited in the mixture of hexavalent chromium and phenol-based contaminants, the concentration ratio of hexavalent chromium and phenol-based contaminants is 0.25: 1 to 4: 1 mixed solution is effective for simultaneous removal of hexavalent chromium and phenolic contaminants.

또한, 본 발명의 상기 pH 조절제는 산 또는 염기이면 특별한 제한은 없다. 본 발명의 실시예에서는 과염소산 (HClO4) 및/또는 수산화나트륨 (NaOH)을 사용하여 pH를 조절하였다.The pH adjusting agent of the present invention is not particularly limited as long as it is an acid or a base. In the examples of the present invention, the pH was adjusted using perchloric acid (HClO 4 ) and / or sodium hydroxide (NaOH).

또한, 본 발명은 상기 냉각 온도가 0℃ 이하인 것을 특징으로 하며, 본 발명의 실시예에서는 -10℃ 내지 -30℃로 설정하였다.Further, the present invention is characterized in that the cooling temperature is 0 DEG C or lower, and in the embodiment of the present invention, it is set at -10 DEG C to -30 DEG C.

본 발명의 6가 크롬과 페놀계 오염물질의 동시 제거 방법을 좀 더 자세히 설명하면, 먼저 6가 크롬이 포함된 용액과 페놀계 오염물질이 포함된 용액을 준비하여 혼합한다. The method for simultaneous removal of hexavalent chromium and phenolic contaminants according to the present invention will be described in detail. First, a solution containing a hexavalent chromium and a solution containing a phenolic contaminant are prepared and mixed.

혼합한 용액에 pH 조절제를 투입하여 혼합 용액의 초기 pH를 설정한다. 이때 pH 조절제는 과염소산 (HClO4) 및/또는 수산화나트륨 (NaOH)인 것을 특징으로 하고, 초기 pH는 5 미만으로 한다. 바람직하게는 pH 2 내지 pH 4이다. 용액의 초기 pH를 5 미만으로 조절하였을 때 6가 크롬의 환원 및 페놀계 오염물질의 분해가 일어나며, pH 2 내지 pH 4 범위에서 좀 더 효과적인 분해가 일어난다.The initial pH of the mixed solution is set by adding a pH adjusting agent to the mixed solution. Wherein the pH adjusting agent is perchloric acid (HClO 4 ) and / or sodium hydroxide (NaOH), and the initial pH is less than 5. And preferably from pH 2 to pH 4. When the initial pH of the solution is adjusted to less than 5, reduction of hexavalent chromium and degradation of phenolic contaminants occurs, with more effective degradation taking place in the pH 2 to pH 4 range.

다음으로, 상기 pH 조절제가 투입된 용액을 냉각한다. 냉각 온도는 0℃ 이하로 한다. 바람직하게는 -10℃ 내지 -30℃이다. 상기 범위를 만족하는 경우 용액이 동결하게 되면서 6가 크롬의 환원 및 페놀계 오염물질의 분해가 효과적으로 일어날 수 있게 된다. 상기 pH 조절제가 투입된 용액을 냉각하게 되면 상기 용액이 얼게 된다. 상기 용액이 얼 때 6가 크롬, 페놀계 오염물질 및 수소 이온이 얼음 결정 주위에 존재하는 준-액체층에 농축되게 된다. 따라서, 준-액체층에 존재하는 6가 크롬, 페놀계 오염물질 및 수소 이온의 농도가 증가하게 된다. 이와 같이 냉각 단계에 의해 준-액체층에 6가 크롬, 페놀계 오염물질 및 수소 이온이 농축될 경우 6가 크롬의 환원 및 페놀계 오염물질의 분해 반응이 효과적으로 일어날 수 있다.Next, the pH adjusting agent is cooled. The cooling temperature is 0 ° C or less. And is preferably -10 ° C to -30 ° C. When the above range is satisfied, the solution is frozen, and the reduction of hexavalent chromium and the decomposition of the phenolic contaminants can be effectively performed. When the solution containing the pH adjuster is cooled, the solution is frozen. When the solution freezes, hexavalent chromium, phenolic contaminants and hydrogen ions are concentrated in the quasi-liquid layer present around the ice crystals. Thus, the concentration of hexavalent chromium, phenolic contaminants and hydrogen ions present in the quasi-liquid layer is increased. When the hexavalent chromium, the phenolic contaminants and the hydrogen ions are concentrated in the quasi-liquid layer by the cooling step, the reduction of the hexavalent chromium and the decomposition reaction of the phenolic contaminants can be effectively performed.

본 발명의 6가 크롬과 페놀계 오염물질의 동시 제거 방법을 이용하는 경우, 6가 크롬의 환원과 페놀계 오염물질의 분해가 간단하고 효과적이다.When the method of simultaneous removal of hexavalent chromium and phenolic contaminants of the present invention is used, reduction of hexavalent chromium and decomposition of phenolic contaminants are simple and effective.

또한, 본 발명의 방법을 이용하면, 6가 크롬과 페놀계 오염물질 두 가지를 동시에 제거할 수 있다.Further, using the method of the present invention, it is possible to simultaneously remove both hexavalent chromium and phenolic contaminants.

또한, 본 발명의 6가 크롬과 페놀계 오염물질의 동시 제거 방법은 6가 크롬 및 페놀계 오염물질을 포함하는 지하수, 오폐수, 토양 등의 정화에 광범위하게 이용될 수 있다.Further, the simultaneous removal of hexavalent chromium and phenolic contaminants of the present invention can be widely used for the purification of groundwater, wastewater, soil and the like containing hexavalent chromium and phenolic contaminants.

도 1은 6가 크롬과 4-클로로페놀 혼합 용액의 냉각을 통한 6가 크롬의 환원 및 4-클로로페놀의 분해에 관한 것이다. 실험조건: [4-클로로페놀] = 20μM, [6가 크롬] = 20μM, 초기 pH = 3.5, 얼음상 반응 = -20℃에서 반응, 액상 반응 = 상온 (약 25℃)에서 반응.
도 2는 6가 크롬과 4-클로로페놀 혼합 용액의 초기 주입 농도에 따른 6가 크롬의 환원 및 4-클로로페놀의 분해에 관한 것이다. 실험조건: (a) [4-클로로페놀] = 20μM, 초기 pH = 3.5, -20℃에서 반응, (b) [6가 크롬] = 20μM, 초기 pH = 3.5, -20℃에서 반응.
도 3은 6가 크롬과 4-클로로페놀 혼합 용액의 초기 pH 에 따른 6가 크롬의 환원 및 4-클로로페놀의 분해에 관한 것이다. 실험조건: [4-클로로페놀] = 20μM, [6가 크롬] = 20μM, -20℃에서 반응.
도 4는 6가 크롬과 4-클로로페놀 혼합 용액의 냉각 온도에 따른 6가 크롬의 환원 및 4-클로로페놀의 분해에 관한 것이다. 실험조건: [4-클로로페놀] = 20μM, [6가 크롬] = 20μM, 초기 pH = 3.5.
Fig. 1 relates to the reduction of hexavalent chromium and the decomposition of 4-chlorophenol by cooling a mixed solution of hexavalent chromium and 4-chlorophenol. Experimental conditions: [4-Chlorophenol] = 20 μM, [Hexavalent chromium] = 20 μM, initial pH = 3.5, ice reaction = -20 ° C, liquid reaction = reaction at room temperature (about 25 ° C).
Fig. 2 relates to the reduction of hexavalent chromium and the decomposition of 4-chlorophenol according to the initial concentration of hexavalent chromium and 4-chlorophenol mixed solution. Experimental conditions: (a) Reaction at [4-chlorophenol] = 20 μM, initial pH = 3.5, -20 ° C, (b) [Hexavalent chromium] = 20 μM, initial pH = 3.5, -20 ° C.
3 relates to the reduction of hexavalent chromium and the decomposition of 4-chlorophenol according to the initial pH of a mixed solution of hexavalent chromium and 4-chlorophenol. Experimental conditions: [4-chlorophenol] = 20 μM, [hexavalent chromium] = 20 μM, reaction at -20 ° C.
FIG. 4 relates to the reduction of hexavalent chromium and the decomposition of 4-chlorophenol according to the cooling temperature of a mixed solution of hexavalent chromium and 4-chlorophenol. Experimental conditions: [4-chlorophenol] = 20 μM, [hexavalent chromium] = 20 μM, initial pH = 3.5.

아래에서는 구체적인 실시예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나, 본 발명 범위가 실시예의 기재에 의해 제한되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.Hereinafter, the configuration of the present invention will be described in more detail with reference to specific embodiments. However, it should be apparent to those skilled in the art that the scope of the present invention is not limited by the description of the embodiments.

재료 및 화학약품Materials and Chemicals

중크롬산나트륨 (Sodium dichromate dehydrate, Na2Cr2O72H2O,Cr(VI), Aldrich), 4-클로로페놀 (4-chlorophenol, C6H5ClO,4-CP, Aldrich), 아세톤 (Acetone, CH3COCH3, Kanto), 황산 (Sulfuric acid, H2SO4, Kanto), 디페닐카바자이드 (1,5-diphenylcarbazide, C6H5NHNHCONHNHC6H5, DPC, Aldrich)를 사용하였다. 이온이 제거된 초고순수 (18.3 MΩCM)가 사용되었고, 이는 Human-Power I+ 초고순수 제조장치 (Human corporation)에 의해 제조되었다.Sodium dichromate (Sodium dichromate dehydrate, Na 2 Cr 2 O 7 2H 2 O, Cr (VI), Aldrich), 4- chloro-phenol (4-chlorophenol, C 6 H 5 ClO, 4-CP, Aldrich), acetone (Acetone , CH 3 COCH 3 , Kanto), sulfuric acid (H 2 SO 4 , Kanto), and diphenylcarbazide (C 6 H 5 NHNHCONHNHC 6 H 5 , DPC, Aldrich). Ion-free ultra-pure water (18.3 MΩCM) was used, which was manufactured by Human-Power I + ultra-pure water manufacturing equipment (Human corporation).

실험 방법Experimental Method

6가 크롬과 4-클로로페놀의 농도는 보통 20μM을 사용하였다. 6가 크롬과 4-클로로페놀을 혼합하고 과염소산 (HClO4)과 수산화나트륨 (NaOH)으로 초기 pH를 설정하였다. 이 혼합된 용액을 코니칼 튜브 (15mL)에 주입하고 저온 항온 순환 수조에 고정시켜 설정한 온도 (보통 -20℃)로 냉각시켰다. 반응의 시작점 (time zero)은 코니칼 튜브를 저온 항온 순환 수조에 넣은 순간으로 하였다. 반응이 끝난 후 동결된 시료는 미온수 (35℃)에 넣어 녹였다. 액상에서의 반응은 같은 방법으로 코니칼 튜브에 주입하고 실온 (약 25℃)에서 수행하였다.The concentrations of hexavalent chromium and 4-chlorophenol were usually 20 μM. The hexavalent chromium and 4-chlorophenol were mixed and the initial pH was set with perchloric acid (HClO 4 ) and sodium hydroxide (NaOH). The mixed solution was poured into a conical tube (15 mL), fixed to a circulating water bath at a low temperature, and cooled to a set temperature (usually -20 DEG C). The time zero of the reaction was the moment when the conical tube was placed in the circulating water bath at the cold temperature. After the reaction was completed, the frozen samples were dissolved in warm water (35 ° C). The reaction in the liquid phase was carried out in a conical tube in the same manner and at room temperature (about 25 ° C).

6가 크롬의 농도 분석Concentration analysis of hexavalent chromium

6가 크롬의 농도는 디페닐카바자이드 (DPC; Diphenylcarbazide) 방법을 이용하여 분석하였다. 자외선-가시광선 분광광도계 (UV-visible spectrophotometer, Shimadzu UV-2600)를 이용하여 540nm에서 흡광도를 측정하여 6가 크롬의 농도를 산정하였다.The concentration of hexavalent chromium was analyzed using a diphenylcarbazide (DPC) method. The concentration of hexavalent chromium was calculated by measuring the absorbance at 540 nm using an ultraviolet-visible spectrophotometer (Shimadzu UV-2600).

4-클로로페놀의 농도 분석Analysis of concentration of 4-chlorophenol

4-클로로페놀의 농도는 고속 액체크로마토그래피 (HPLC; high performance liquid chromatography, Agilent 1120)를 이용하여 분석하였다. 이때 자외선-가시광선 검출기(UV-visible detector)가 사용되었으며, 228nm에서의 흡광도를 측정하여 농도를 산정하였다. 컬럼은 ZORBAX 300SB C-18 컬럼 (4.6mm ×150mm)을 이용하였으며, 용리액은 0.1% 인산용액 (phosphoric acid solution)과 아세토나이트릴 (acetonitrile)을 80:20의 부피비로 사용하였다.The concentration of 4-chlorophenol was analyzed using high performance liquid chromatography (HPLC) (Agilent 1120). At this time, an ultraviolet-visible light detector (UV-visible detector) was used, and the absorbance at 228 nm was measured to calculate the concentration. The column was a ZORBAX 300SB C-18 column (4.6 mm × 150 mm). The eluent was 0.1% phosphoric acid solution and acetonitrile in a volume ratio of 80:20.

결과 1 : 6가 크롬과 4-Results 1: 6-Chromium and 4- 클로로페놀Chlorophenol 혼합 용액의 냉각을 통한 6가 크롬의 환원과 4- Reduction of hexavalent chromium by cooling of the mixed solution and reduction of 4- 클로로페놀의Chlorophenol 분해 decomposition

6가 크롬과 4-클로로페놀 혼합 용액을 코니칼 튜브에 넣고 상온 (약 25℃)에서 반응시키거나 -20℃로 냉각하여 반응을 진행한 결과는 도 1과 같다. 6가 크롬과 4-클로로페놀의 혼합 용액을 냉각했을 경우, 6가 크롬의 환원과 4-클로로페놀의 분해가 빠르게 일어난 것을 확인할 수 있다. 하지만, 혼합 용액을 냉각하지 않거나, 각 물질만을 냉각한 경우에는 제거 반응이 일어나지 않았다. 6가 크롬과 4-클로로페놀의 혼합 용액을 냉각하게 되면 용액이 얼게 된다. 상기 용액이 얼면, 6가 크롬, 4-클로로페놀 및 수소이온이 얼음 결정 주위에 존재하는 준-액체층에 농축되게 된다. 따라서 준-액체층에 존재하는 6가 크롬과 4-클로로페놀의 농도가 증가하고, 수소이온의 농도 또한 증가하여 pH가 감소하게 된다. 이와 같이 냉각에 의해 준-액체층에 6가 크롬, 4-클로로페놀 및 수소이온이 농축되는 경우 4-클로로페놀로부터 6가 크롬으로 전자가 원활히 전달됨으로써 6가 크롬의 환원 및 4-클로로페놀의 분해 반응이 효과적으로 일어날 수 있다.The reaction mixture was reacted at room temperature (about 25 ° C) or cooled to -20 ° C by adding a mixed solution of hexavalent chromium and 4-chlorophenol into a conical tube. The results are shown in FIG. It can be seen that when the mixed solution of hexavalent chromium and 4-chlorophenol was cooled, the reduction of hexavalent chromium and the decomposition of 4-chlorophenol occurred rapidly. However, when the mixed solution was not cooled or only the respective materials were cooled, the elimination reaction did not occur. When the mixed solution of hexavalent chromium and 4-chlorophenol is cooled, the solution freezes. When the solution freezes, hexavalent chromium, 4-chlorophenol and hydrogen ions are concentrated in the quasi-liquid layer present around the ice crystals. Therefore, the concentrations of hexavalent chromium and 4-chlorophenol in the quasi-liquid layer are increased, and the concentration of hydrogen ions is also increased to decrease the pH. When the hexavalent chromium, 4-chlorophenol and hydrogen ions are concentrated in the quasi-liquid layer by cooling as described above, electrons are smoothly transferred from 4-chlorophenol to hexavalent chromium, whereby reduction of hexavalent chromium and reduction of 4-chlorophenol Decomposition reaction can be effectively carried out.

결과 2 : 6가 크롬과 4-Result 2: The hexavalent chromium and 4- 클로로페놀의Chlorophenol 초기 주입 농도에 따른 6가 크롬의 환원 및 4- Reduction of hexavalent chromium and initial reduction of 4- 클로로페놀의Chlorophenol 분해 decomposition

6가 크롬과 4-클로로페놀의 초기 주입 농도에 따른 6가 크롬이 환원된 양과 4-클로로페놀이 분해된 양을 나타낸 결과는 도 2와 같다. 4-클로로페놀의 농도가 일정할 때 6가 크롬의 초기 주입 농도를 증가시킴에 따라 4-클로로페놀의 분해량이 증가하였고 6가 크롬이 환원된 양 또한 증가하였다. 뿐만 아니라, 6가 크롬의 농도가 일정할 때 4-클로로페놀의 초기 주입 농도를 증가시킴에 따라 환원된 6가 크롬의 양이 증가하였고, 분해된 4-클로로페놀의 양 또한 증가하였다. 따라서, 4-클로로페놀이 분해된 양과 6가 크롬이 환원된 양은 이들의 초기 농도가 높아질수록 커진다는 것을 알 수 있다.The results are shown in FIG. 2, which shows the amount of reduced hexavalent chromium and the amount of 4-chlorophenol decomposed according to the initial injection concentration of hexavalent chromium and 4-chlorophenol. When the concentration of 4 - chlorophenol was constant, the amount of 4 - chlorophenol decomposition increased and the amount of reduced hexavalent chromium increased as the initial concentration of hexavalent chromium increased. In addition, when the concentration of hexavalent chromium was constant, the amount of reduced hexavalent chromium increased and the amount of 4 - chlorophenol degraded increased as the initial concentration of 4 - chlorophenol was increased. Thus, it can be seen that the amount of decomposition of 4-chlorophenol and the amount of reduced hexavalent chromium increases as their initial concentration increases.

결과 3 : 6가 크롬과 4-Result 3: 6-valent chromium and 4- 클로로페놀Chlorophenol 혼합 용액의 초기 pH에 따른 6가 크롬의 환원 및 4- The reduction of hexavalent chromium and the reduction of 4- 클로로페놀의Chlorophenol 분해 decomposition

6가 크롬과 4-클로로페놀 혼합 용액의 초기 pH에 따른 6가 크롬의 환원과 4-클로로페놀의 분해를 나타낸 결과는 도 3과 같다. 혼합 용액의 초기 pH를 5 미만으로 조절하였을 때 효과적으로 6가 크롬의 환원과 4-클로로페놀의 분해가 일어남을 알 수 있다. 일반적으로 초기 pH를 낮게 조절할수록 6가 크롬의 환원과 4-클로로페놀의 분해가 더욱 효과적임을 알 수 있다.The results of the reduction of hexavalent chromium and the decomposition of 4-chlorophenol according to the initial pH of the mixed solution of hexavalent chromium and 4-chlorophenol are shown in FIG. It can be seen that when the initial pH of the mixed solution is adjusted to less than 5, the reduction of hexavalent chromium and the decomposition of 4-chlorophenol occur effectively. Generally, the lower the initial pH is, the more effective the reduction of hexavalent chromium and the decomposition of 4-chlorophenol are more effective.

결과 4 : 냉각 온도에 따른 6가 크롬의 환원 및 4-클로로페놀의 분해Result 4: Reduction of hexavalent chromium and decomposition of 4-chlorophenol according to cooling temperature

냉각 온도에 따른 6가 크롬의 환원과 4-클로로페놀의 분해를 나타낸 결과는 도 4와 같다. 6가 크롬의 환원과 4-클로로페놀의 분해는 실험 조건인 -10℃ 내지 -30℃에서 모두 효과적으로 진행되었다. 특히 온도가 낮을수록 6가 크롬의 환원과 4-클로로페놀의 분해가 빠르게 진행되었다.The results of the reduction of hexavalent chromium and the decomposition of 4-chlorophenol according to the cooling temperature are shown in Fig. Reduction of hexavalent chromium and decomposition of 4-chlorophenol proceeded effectively at -10 ° C to -30 ° C, which is the experimental condition. Particularly, the lower the temperature, the faster the reduction of hexavalent chromium and the decomposition of 4-chlorophenol.

Claims (6)

6가 크롬이 함유된 용액 및 페놀계 오염물질이 함유된 용액을 각각 준비하는 단계;
상기 두 용액을 혼합하여 6가 크롬과 페놀계 오염물질이 동시에 함유된 용액을 준비하는 단계;
상기 6가 크롬과 페놀계 오염물질이 동시에 함유된 용액에 pH 조절제를 투입하여 pH를 5 미만으로 조절하는 단계; 및
상기 pH 조절된 용액을 0℃ 이하로 냉각하는 단계;를 포함하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법.
Preparing a solution containing a hexavalent chromium and a solution containing a phenolic contaminant, respectively;
Mixing the two solutions to prepare a solution containing hexavalent chromium and phenolic contaminants at the same time;
Adjusting the pH to less than 5 by adding a pH adjusting agent to a solution containing the hexavalent chromium and the phenolic contaminant simultaneously; And
And cooling the pH-adjusted solution to below 0 ° C. A method of simultaneously removing hexavalent chromium and phenolic contaminants.
6가 크롬과 페놀계 오염물질이 동시에 함유된 용액을 준비하는 단계;
상기 용액에 pH 조절제를 투입하여 pH를 5 미만으로 조절하는 단계; 및
상기 pH 조절된 용액을 0℃ 이하로 냉각하는 단계;를 포함하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법.
Preparing a solution containing hexavalent chromium and phenolic contaminants at the same time;
Adjusting the pH to less than 5 by adding a pH adjusting agent to the solution; And
And cooling the pH-adjusted solution to below 0 ° C. A method of simultaneously removing hexavalent chromium and phenolic contaminants.
청구항 1 또는 청구항 2에 있어서,
상기 페놀계 오염물질은 4-클로로페놀인 것을 특징으로 하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법.
The method according to claim 1 or 2,
Wherein the phenolic contaminant is 4-chlorophenol. ≪ RTI ID = 0.0 > 11. < / RTI >
청구항 1 또는 청구항 2에 있어서,
상기 6가 크롬과 페놀계 오염물질이 동시에 함유된 용액에서 6가 크롬과 페놀계 오염물질의 농도비가 몰 농도 기준으로 0.25:1 ~ 4:1 범위인 것을 특징으로 하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법.
The method according to claim 1 or 2,
Wherein the concentration ratio of hexavalent chromium and phenolic contaminants in the solution containing the hexavalent chromium and the phenolic contaminant is in the range of 0.25: 1 to 4: 1 on the molar basis. ≪ / RTI >
청구항 1 또는 청구항 2에 있어서,
상기 pH 조절제는 과염소산 (HClO4)과 수산화나트륨 (NaOH)인 것을 특징으로 하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법.
The method according to claim 1 or 2,
Wherein the pH adjusting agent is perchloric acid (HClO 4 ) and sodium hydroxide (NaOH).
청구항 1 또는 청구항 2에 있어서,
상기 냉각 온도는 -10℃ ~ -30℃인 것을 특징으로 하는 6가 크롬과 페놀계 오염물질을 동시에 제거하는 방법.
The method according to claim 1 or 2,
Wherein the cooling temperature is between -10 DEG C and -30 DEG C. 6. A method for simultaneously removing hexavalent chromium and phenolic contaminants.
KR1020160016108A 2016-02-12 2016-02-12 Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants KR101782361B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160016108A KR101782361B1 (en) 2016-02-12 2016-02-12 Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160016108A KR101782361B1 (en) 2016-02-12 2016-02-12 Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants

Publications (2)

Publication Number Publication Date
KR20170094862A KR20170094862A (en) 2017-08-22
KR101782361B1 true KR101782361B1 (en) 2017-10-23

Family

ID=59757958

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160016108A KR101782361B1 (en) 2016-02-12 2016-02-12 Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants

Country Status (1)

Country Link
KR (1) KR101782361B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945018B1 (en) * 2018-03-28 2019-02-01 한국해양과학기술원 Degradation of organic pollutants using periodate and freezing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064331A1 (en) 2002-01-31 2003-08-07 University Of Dayton Recovery process for wastes containing hexavalent chromium
KR101595809B1 (en) 2013-10-29 2016-02-23 한국에너지기술연구원 Enhanced Photocatalytic Cr(VI) Reduction In The Presence of Endocrine Disrupting Compound(EDC) Using Self Rotating Photocatalytic Water Treatment Apparatus by Immobilized Nanotubular TiO2 on Ti substrate Under Solar Irradiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064331A1 (en) 2002-01-31 2003-08-07 University Of Dayton Recovery process for wastes containing hexavalent chromium
KR101595809B1 (en) 2013-10-29 2016-02-23 한국에너지기술연구원 Enhanced Photocatalytic Cr(VI) Reduction In The Presence of Endocrine Disrupting Compound(EDC) Using Self Rotating Photocatalytic Water Treatment Apparatus by Immobilized Nanotubular TiO2 on Ti substrate Under Solar Irradiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945018B1 (en) * 2018-03-28 2019-02-01 한국해양과학기술원 Degradation of organic pollutants using periodate and freezing

Also Published As

Publication number Publication date
KR20170094862A (en) 2017-08-22

Similar Documents

Publication Publication Date Title
Lin et al. Enhanced diclofenac elimination in Fe (II)/peracetic acid process by promoting Fe (III)/Fe (II) cycle with ABTS as electron shuttle
Gao et al. Unrecognized role of bisulfite as Mn (III) stabilizing agent in activating permanganate (Mn (VII)) for enhanced degradation of organic contaminants
Pan et al. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water
Gong et al. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents
Gao et al. Quantitative evaluation of relative contribution of high-valent iron species and sulfate radical in Fe (VI) enhanced oxidation processes via sulfur reducing agents activation
Ju et al. Accelerated redox reaction between chromate and phenolic pollutants during freezing
Wick et al. Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography–tandem mass spectrometry
Wang et al. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI)
Shin et al. Oxidation kinetics of algal-derived taste and odor compounds during water treatment with ferrate (VI)
KR101782361B1 (en) Freezing method for the simultaneous removal of hexavalent chromium and phenolic pollutants
Xing et al. Chromium speciation at trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma mass spectrometry with collision/reaction interface
Vera et al. Automatic determination of arsenate in drinking water by flow analysis with dual membrane-based separation
Abusallout et al. Emerging investigator series: rapid defluorination of 22 per-and polyfluoroalkyl substances in water using sulfite irradiated by medium-pressure UV
Liu et al. Effect of boiling on halogenated DBPs and their developmental toxicity in real tap waters
Lv et al. Phototransformation of perfluorooctane sulfonamide on natural clay minerals: A likely source of short chain perfluorocarboxylic acids
Xiang et al. Occurrence of hexabromocyclododecane (HBCD) in sewage sludge from Shanghai: Implications for source and environmental burden
Nguyen et al. Enhanced reduction of hexavalent chromium by hydrogen sulfide in frozen solution
Duan et al. Homogeneous activation of bisulfite by transition metals for micro-pollutant degradation: Mn (VII) versus Cr (VI)
Ou et al. Removal of multi-substituted nitroaromatic pollutants by zero valent iron: a comparison of performance, kinetics, toxicity and mechanisms
Wang et al. Degradation of atrazine by a UV-activated organic chloramines process: kinetics, degradation pathways, disinfection by-product formation, and toxicity changes
CN103153874A (en) Treatment of effluents from the electroplating industry
Liu et al. Remediation of sulfonamides-contaminated groundwater through in-situ activation of peroxymonosulfate by supported hierarchical CuO/MgO nanosheets
Liu et al. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment
Rao et al. Degradation of linuron by UV, ozonation, and UV/O3 processes—Effect of anions and reaction mechanism
KR20220164210A (en) Degradation method of organic pollutants using oxone, chloride ions and freezing

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160212

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170613

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170920

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20170921

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20170921

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210712

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220628

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20230621

Start annual number: 7

End annual number: 7