KR101760060B1 - Titanium dioxide photocatalyst composition for glass coating and preparation method thereof - Google Patents
Titanium dioxide photocatalyst composition for glass coating and preparation method thereof Download PDFInfo
- Publication number
- KR101760060B1 KR101760060B1 KR1020170003594A KR20170003594A KR101760060B1 KR 101760060 B1 KR101760060 B1 KR 101760060B1 KR 1020170003594 A KR1020170003594 A KR 1020170003594A KR 20170003594 A KR20170003594 A KR 20170003594A KR 101760060 B1 KR101760060 B1 KR 101760060B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- titanium dioxide
- minutes
- coating composition
- sol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/30—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3417—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K3/2279—Oxides; Hydroxides of metals of antimony
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/06—Artists' paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
- C09D5/1662—Synthetic film-forming substance
- C09D5/1675—Polyorganosiloxane-containing compositions
-
- C09D7/1216—
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/80—Processes for incorporating ingredients
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/71—Photocatalytic coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2231—Oxides; Hydroxides of metals of tin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
Abstract
본 발명은 이산화티탄 광촉매 유리코팅 조성물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 무기 바인더를 사용하여 이산화티탄 나노입자와 복합금속산화물의 복합구조체를 형성함으로써, 자외선 및 가시광선 영역에서 우수한 광촉매 효율을 갖으며, 방오, 방담 효과가 우수하고, 가시광선을 투과시켜 투명하며, 적외선 및 자외선을 선택적으로 차단하여 단열, 인체 보호 및 열화 방지 효과를 갖는 이산화티탄 광촉매 유리코팅 조성물에 관한 것이다.The present invention relates to a titanium dioxide photocatalyst glass coating composition and a method of preparing the same, and more particularly, to a titanium dioxide photocatalyst glass coating composition which is excellent in photocatalytic efficiency in ultraviolet and visible light regions A titanium dioxide photocatalyst glass coating composition having excellent antifouling and anti-fogging effect, transparent by transmitting visible light, and selectively blocking infrared rays and ultraviolet rays to prevent heat insulation, human body protection and deterioration.
Description
본 발명은 이산화티탄(titanium dioxide) 광촉매 유리코팅 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a titanium dioxide photocatalytic glass coating composition and a process for its preparation.
이산화티탄(titanium dioxide)은 강력한 광촉매 물질로서, 자외선 조사에 의해 유기혼합물을 분해하는 유기물 분해 기능과 표면을 초친수성화하는 광여기 친수화 기능을 가지며, 먼지, 박테리아, 유기 오염물 등을 예방하기 위한 코팅 물질로 널리 사용되고 있다. 또한 자원적으로 매우 풍부하여 가격이 저렴하고 산, 알칼리와 생물학적으로 안정하며 내구성, 내마모성이 우수하여 대표적인 광촉매 물질로 활용된다.Titanium dioxide is a strong photocatalyst material. It has a function of decomposing organic matter decomposing organic mixture by irradiation of ultraviolet rays and a photo-excitation hydrophilization function of superfluidizing the surface. It is used for preventing dust, bacteria, organic pollutants and the like And is widely used as a coating material. In addition, it is abundant in resources and is inexpensive, and is stable as acid, alkali and biologically, and has excellent durability and abrasion resistance and is used as a typical photocatalyst material.
이산화티탄 광촉매를 이용한 코팅 유리는 물을 떨어뜨리면 물방울이 생기는 일반 유리와 달리 자외선이 닿은 후에 물이 유리에 붙지 않고 엷게 퍼지게 되는데, 이는 흡광 시 생성되는 흡착물층과 물 분자와의 강한 인력에 기인하며, 흡착물층은 이산화티탄 표면의 산소결함에 포획된 얕은 트랩 상태의 비편재화된 전자들이 공기 중의 광흡착된 물 분자와 상호작용함으로써 얇은 막처럼 물이 흡착되어 생성된다. 이처럼 이산화티탄의 흡광 시 나타나는 초신수성은 오염물질의 부착을 방지하는 내오염성 및 부착된 오염물질을 강우나 물에 의해 쉽게 세척되게 하는 자정성(self-cleaning)을 갖게 하여 방오, 방담(antifogging) 필름 등에 응용된다.Coated glass with titanium dioxide photocatalyst differs from ordinary glass in that water drops when water is dropped, resulting in thinly spreading of water without adhering to the glass after ultraviolet light is applied. This is due to strong attraction between the adsorbed water layer and water molecules , The adsorbed water layer is formed by adsorbing water like a thin film by interacting with light-absorbed water molecules in the air, in which the delocalized electrons in a shallow trap state trapped by oxygen defects on the surface of titanium dioxide. In this way, supersonic water generated during the absorption of TiO 2 is resistant to staining and antifogging by preventing the adhesion of contaminants and self-cleaning which makes attached pollutants easily washed by rainfall or water. Films and the like.
그러나 종래의 이산화티탄은 빛이 도달하지 않는 공간에서는 빛 에너지를 받지 못하여 활성화되지 않으며, 상대적으로 큰 띠 간격 때문에 자외선 영역에서만 활성화가 가능하다는 단점이 있다. 이로 인해 자외선을 받아 수산화기(-OH)가 생성되어 물 분자와의 상호작용으로 표면이 친수화 된 코팅 유리는 자외선 조사가 중단되면 물이 증발하면서 친수성을 잃게 된다. 따라서 이를 방지하기 위한 방법으로 태양광의 전체 파장 대역 중 4%에 불과한 자외선 영역 외에 태양광의 약 43%에 달하는 가시광선 영역에서도 활성을 갖는 광촉매에 대한 개발이 진행중이다. 그 예로, 가시광선 영역에서 활성을 갖는 광촉매 물질로 CdS, CdSe 등의 반도체 물질 및 이산화티탄의 복합구조체가 개발되었으나, 이는 빛 에너지를 받아 전자를 생성하고 이를 전도대가 낮은 이산화티탄의 전도대로 전달하여 환원 반응을 통한 광촉매 활성을 나타내는데, 환원 반응을 통한 광촉매는 산화 반응을 통한 광촉매와 달리 오염 물질을 완전하게 분해하지 못하는 문제점이 있다.However, conventional titanium dioxide has a disadvantage in that it can not be activated because it does not receive light energy in a space where light does not reach, and can be activated only in an ultraviolet region because of a relatively large band gap. As a result, the coated glass, which receives ultraviolet rays and generates hydroxyl groups (-OH) and interacts with water molecules, is hydrophilized, and when the ultraviolet ray irradiation is stopped, the water evaporates and loses its hydrophilicity. Therefore, in order to prevent this, development of a photocatalyst having an activity in visible light region of about 43% of the sunlight in addition to the ultraviolet region which is only 4% of the entire wavelength band of sunlight is under development. For example, a composite material of a semiconductor material such as CdS or CdSe and titanium dioxide has been developed as a photocatalyst material having an activity in the visible light region. However, this structure generates electrons by receiving light energy and transmits electrons to the conduction band of titanium dioxide The photocatalytic activity through the reduction reaction shows that the photocatalyst through the reduction reaction can not completely decompose the pollutant unlike the photocatalyst through the oxidation reaction.
한편, 코팅 유리는 가시광선 영역의 빛을 투과시켜 유리 본연의 특성인 투명성을 확보함과 동시에 적외선 및 자외선 영역의 빛을 선택적으로 차단할 수 있는 기능을 필요로 한다. 일반적으로 자외선 차단을 위해 썬팅 필름 및 금속 코팅을 주로 이용하나, 이는 자외선뿐만 아니라 가시광선도 함께 차단하여 시야 확보에 어려움이 있을 수 있으며, 채광이 나빠지는 문제점이 있다. 이로써 자외선을 효과적으로 차단하면서 가시광선 투과율을 높은 수준으로 유지하는 방안으로, 벤조트리아졸계 또는 벤조페논계 등의 유기물 및 산화아연 등의 무기물이 많이 사용되고 있다. 그러나 유기물의 경우 내구성 및 자외선 차단 효과가 낮으며, 산화아연의 경우 황색을 띠므로 가시광선 투과율이 저하되어 투명성이 감소하는 문제가 있다.On the other hand, the coated glass is required to transmit light in the visible light region to secure transparency, which is a characteristic of the glass, and to selectively block light in the infrared and ultraviolet ray regions. Generally, a tanning film and a metal coating are mainly used for ultraviolet ray shielding. However, it is difficult to secure visibility by blocking not only ultraviolet ray but also visible ray, and there is a problem that mining is bad. In order to effectively block the ultraviolet rays and keep the visible light transmittance at a high level, organic materials such as benzotriazole-based or benzophenone-based materials and inorganic materials such as zinc oxide have been widely used. However, the durability and ultraviolet shielding effect of the organic material is low, and the zinc oxide has a yellowish color, so that the visible light transmittance is lowered and the transparency is decreased.
한편, 자외선 및 적외선 차단을 위한 코팅 기술에 대한 연구 개발이 활발해짐에 따라 내구성 및 내마모성을 갖는 유리코팅 기술을 필요로 하며, 이를 위해 적정한 바인더의 사용이 요구된다. 바인더는 유기 바인더와 무기 바인더로 구분할 수 있으며, 유기 바인더의 경우 낮은 내열성 및 낮은 보호성의 단점이 있어 무기 바인더의 사용이 증가하고 있다.On the other hand, as research and development on coating technology for ultraviolet ray and infrared ray have been actively developed, a glass coating technique having durability and abrasion resistance is required, and the use of appropriate binder is required for this. Binders can be classified into organic binders and inorganic binders. In the case of organic binders, there are disadvantages of low heat resistance and low protection, and the use of inorganic binders is increasing.
따라서 넓은 활성 영역을 가지며 우수한 투명성, 경도 및 내수성을 갖는 유리코팅 광촉매에 대한 개발이 요구되고 있다. 이에 본 발명에서는 띠 간격을 가시광선 영역의 빛을 흡수하는 수준으로 낮추어 가시광선 영역에서 우수한 광촉매 효율을 나타냄과 동시에 자외선 및 적외선 차폐 효과를 갖도록 하기 위해 복합금속산화물을 이용하였으며, 무기 바인더를 사용하여 내구성, 내오염성, 유리부착성 등의 기능성을 향상시켰다.Therefore, development of a glass-coated photocatalyst having a wide active region and having excellent transparency, hardness and water resistance is required. Accordingly, in the present invention, a composite metal oxide is used to exhibit excellent photocatalytic efficiency in the visible light region by lowering the band gap to a level absorbing light in the visible light region, and to have an ultraviolet and infrared light shielding effect. Durability, stain resistance, and glass adhesion.
본 발명의 목적은 무기 바인더를 사용한 이산화티탄 나노입자와 복합금속산화물의 복합구조체를 형성함으로써 투명성, 내구성, 내오염성 및 광학적 특성이 향상된 이산화티탄 광촉매 유리코팅 조성물 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide a titanium dioxide photocatalyst glass coating composition having improved transparency, durability, stain resistance and optical properties by forming a composite structure of titanium dioxide nanoparticles and a composite metal oxide using an inorganic binder, and a method for producing the same.
본 발명은 상기 목적을 달성하기 위하여,In order to achieve the above object,
(a) TTIP(titanium tetra-isopropoxide) 27 내지 33 중량%, 질산 0.1 내지 3 중량% 및 증류수 60 내지 70 중량%를 혼합하여 이산화티탄 졸을 제조하는 단계; (b) 알콕시실란 화합물 1 내지 10 중량%, 메탄올 1 내지 3 중량%, 에탄올 1 내지 3 중량%, 프로판올 10 내지 20 중량% 및 이소프로판올 60 내지 80 중량%를 혼합하여 무기 바인더를 제조하는 단계; (c) 알킬 실리케이트 올리고머(alkyl silicate oligomer) 용액 40 중량%와 복합금속산화물 27 중량%를 고속전단믹서에 넣고 1 내지 2분간 교반한 후, 2,2',4,4'-tetrahydroxybenzophenone:변성에탄올(20:80) 혼합액 6 중량%를 고속전단믹서에 첨가하여 1 내지 2분간 교반하고, 변성에탄올 7 중량%를 첨가하여 1 내지 2분간 교반한 뒤, 부틸셀로솔브(butylcellosolve) 20 중량%를 첨가하여 1 내지 2분간 교반하여 복합금속산화물 졸을 제조하는 단계; (d) 유기용매와 부틸셀로솔브를 고속전단믹서에 넣고 1 내지 2분간 교반하는 단계; (e) 상기 (d)의 교반 용액에 상기 (a)의 이산화티탄 졸을 첨가하여 1 내지 2분간 교반하는 단계; (f) 상기 (e)의 교반 용액에 상기 (c)의 복합금속산화물 졸을 첨가한 후 1 내지 2분간 교반하고, (b)의 무기 바인더를 첨가한 후 1 내지 2분간 교반하여 이산화티탄 광촉매 유리코팅 조성물을 제조하는 단계;를 포함하는 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법을 제공한다.(a) mixing 27 to 33% by weight of titanium tetra-isopropoxide (TTIP), 0.1 to 3% by weight of nitric acid, and 60 to 70% by weight of distilled water to prepare titanium dioxide sol; (b) preparing an inorganic binder by mixing 1 to 10% by weight of an alkoxysilane compound, 1 to 3% by weight of methanol, 1 to 3% by weight of ethanol, 10 to 20% by weight of propanol and 60 to 80% by weight of isopropanol. (c) 40 wt% of an alkyl silicate oligomer solution and 27 wt% of a composite metal oxide were placed in a high-speed shear mixer and stirred for 1 to 2 minutes. Then, 2,2 ', 4,4'-tetrahydroxybenzophenone: (20:80) were added to a high-speed shear mixer and stirred for 1 to 2 minutes. 7% by weight of denatured ethanol was added and stirred for 1 to 2 minutes. Then, 20% by weight of butylcellosolve Followed by stirring for 1 to 2 minutes to prepare a composite metal oxide sol; (d) stirring the organic solvent and butyl cellosolve in a high-speed shear mixer for 1 to 2 minutes; (e) adding the titanium dioxide sol (a) to the stirring solution of (d) and stirring for 1 to 2 minutes; (f) The composite metal oxide sol of (c) is added to the stirring solution of (e), and the mixture is stirred for 1 to 2 minutes. After the inorganic binder of (b) is added, stirring is performed for 1 to 2 minutes to obtain a titanium dioxide photocatalyst And (c) preparing a titanium dioxide photocatalyst glass coating composition.
본 발명의 상기 (c) 단계에서의 알킬 실리케이트 올리고머 용액은 알킬 실리케이트 올리고머 1 내지 10 중량%, 에탄올 40 내지 50 중량%, 이소프로판올 40 내지 50 중량% 및 아세트산 0 내지 5 중량%의 비율로 혼합되는 것이 바람직하다.The alkyl silicate oligomer solution in step (c) of the present invention may be prepared by mixing 1 to 10% by weight of an alkyl silicate oligomer, 40 to 50% by weight of ethanol, 40 to 50% by weight of isopropanol and 0 to 5% by weight of acetic acid desirable.
또한, 본 발명의 상기 (d) 단계에서의 유기용매는 프로판올 95 내지 99 중량%, 이소프로판올 0 내지 5 중량%, 메탄올 0 내지 1 중량% 및 에탄올 0 내지 1 중량%의 비율로 혼합되는 것이 바람직하다.In the step (d) of the present invention, the organic solvent is preferably mixed in a ratio of 95 to 99% by weight of propanol, 0 to 5% by weight of isopropanol, 0 to 1% by weight of methanol and 0 to 1% by weight of ethanol .
또한, 본 발명의 상기 이산화티탄 졸은 pH 2 내지 3인 것이 바람직하다.The titanium dioxide sol of the present invention preferably has a pH of 2 to 3.
또한, 본 발명의 상기 이산화티탄 광촉매 유리코팅 조성물은 이산화티탄 졸 3 내지 7.5 중량%, 무기 바인더 3 내지 7.5 중량%, 복합금속산화물 졸 3 내지 7.5 중량%, 유기용매 82 내지 87 중량% 및 부틸셀로솔브 3 중량%의 비율로 혼합되는 것이 바람직하다.In addition, the titanium dioxide photocatalytic glass coating composition of the present invention is characterized in that it comprises 3 to 7.5% by weight of titanium dioxide sol, 3 to 7.5% by weight of inorganic binder, 3 to 7.5% by weight of composite metal oxide sol, 82 to 87% And 3% by weight of rosorb.
또한, 본 발명의 상기 알콕시실란 화합물은 메틸트리에톡시실란, 에틸트리에톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 페닐트리에톡시실란, 비닐트리에톡시실란, 알릴트리에톡시실란, 디메틸디에톡시실란 및 디페닐디에톡시실란으로 이루어진 군에서 선택되는 것이 바람직하다.The alkoxysilane compound of the present invention may be at least one selected from the group consisting of methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, phenyltriethoxysilane, vinyltriethoxysilane, allyltriethoxy Silane, dimethyl diethoxy silane, and diphenyl diethoxy silane.
또한, 본 발명의 상기 복합금속산화물은 안티몬 주석 산화물(ATO, antimony tin oxide)과 산화아연의 혼합물 또는 산화안티몬과 산화주석의 혼합물을 포함하는 것이 바람직하다.In addition, the composite metal oxide of the present invention preferably includes a mixture of antimony tin oxide (ATO) and zinc oxide or a mixture of antimony oxide and tin oxide.
또한, 본 발명의 상기 ATO의 입자 크기는 60 내지 80 nm인 것이 바람직하다.The particle size of the ATO of the present invention is preferably 60 to 80 nm.
또한, 본 발명의 상기 산화아연, 산화안티몬 및 산화주석의 입자 크기는 10 내지 30 nm인 것이 바람직하다.The particle size of the zinc oxide, antimony oxide and tin oxide of the present invention is preferably 10 to 30 nm.
또한, 본 발명은 상기 제조방법에 따라 제조된 이산화티탄 광촉매 유리코팅 조성물을 제공한다.In addition, the present invention provides a titanium dioxide photocatalyst glass coating composition prepared according to the above production method.
또한, 본 발명은 유리기재 표면에 상기 이산화티탄 광촉매 유리코팅 조성물로 만들어진 코팅막을 포함하는 유리기재를 제공한다.The present invention also provides a glass substrate comprising a coating film made of the titanium dioxide photocatalyst glass coating composition on the glass substrate surface.
본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물은 무기 바인더를 사용한 이산화티탄 나노입자 및 복합금속산화물의 복합구조체로서, 자외선 영역에서 가시광선 영역까지 범위가 확대되어 광촉매 효율이 향상됨으로써 방오, 방담 효과가 우수하여 유리의 깨끗한 시계 확보가 가능하며, 간단한 유지 관리로 유지 비용이 현저히 절감되는 효과가 있다. 또한 가시광선 영역의 빛을 투과시켜 투명성을 확보하고 적외선 및 자외선을 선택적으로 차단하여 단열, 인체 보호 및 열화 방지 효과를 지닌다.The titanium dioxide photocatalyst glass coating composition according to the present invention is a composite structure of titanium dioxide nanoparticles and a composite metal oxide using an inorganic binder and has an excellent anti-fouling and anti-fogging effect by increasing the range from the ultraviolet ray region to the visible ray region, It is possible to secure a clear clock of the glass, and the maintenance cost is remarkably reduced by simple maintenance. It also has transparency by transmitting light in the visible light region, and selectively blocks infrared and ultraviolet rays to provide insulation, protection of the human body and prevention of deterioration.
이하, 본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물 및 이의 제조방법에 대해 구체적으로 설명한다.Hereinafter, the titanium dioxide photocatalytic glass coating composition according to the present invention and a method for producing the same will be described in detail.
본 발명에 의한 이산화티탄 광촉매 유리코팅 조성물의 제조방법은 (a) TTIP(titanium tetra-isopropoxide) 27 내지 33 중량%, 질산 0.1 내지 3 중량% 및 증류수 60 내지 70 중량%를 혼합하여 이산화티탄 졸을 제조하는 단계; (b) 알콕시실란 화합물 1 내지 10 중량%, 메탄올 1 내지 3 중량%, 에탄올 1 내지 3 중량%, 프로판올 10 내지 20 중량% 및 이소프로판올 60 내지 80 중량%를 혼합하여 무기 바인더를 제조하는 단계; (c) 알킬 실리케이트 올리고머(alkyl silicate oligomer) 용액 40 중량%와 복합금속산화물 27 중량%를 고속전단믹서에 넣고 1 내지 2분간 교반한 후, 2,2',4,4'-tetrahydroxybenzophenone:변성에탄올(20:80) 혼합액 6 중량%를 고속전단믹서에 첨가하여 1 내지 2분간 교반하고, 변성에탄올 7 중량%를 첨가하여 1 내지 2분간 교반한 뒤, 부틸셀로솔브(butylcellosolve) 20 중량%를 첨가하여 1 내지 2분간 교반하여 복합금속산화물 졸을 제조하는 단계; (d) 유기용매와 부틸셀로솔브를 고속전단믹서에 넣고 1 내지 2분간 교반하는 단계; (e) 상기 (d)의 교반 용액에 상기 (a)의 이산화티탄 졸을 첨가하여 1 내지 2분간 교반하는 단계; (f) 상기 (e)의 교반 용액에 상기 (c)의 복합금속산화물 졸을 첨가한 후 1 내지 2분간 교반하고, (b)의 무기 바인더를 첨가한 후 1 내지 2분간 교반하여 이산화티탄 광촉매 유리코팅 조성물을 제조하는 단계;를 포함한다.A method for preparing a titanium dioxide photocatalytic glass coating composition according to the present invention comprises the steps of (a) mixing 27 to 33% by weight of titanium tetraisopropoxide (TTIP), 0.1 to 3% by weight of nitric acid and 60 to 70% Producing; (b) preparing an inorganic binder by mixing 1 to 10% by weight of an alkoxysilane compound, 1 to 3% by weight of methanol, 1 to 3% by weight of ethanol, 10 to 20% by weight of propanol and 60 to 80% by weight of isopropanol. (c) 40 wt% of an alkyl silicate oligomer solution and 27 wt% of a composite metal oxide were placed in a high-speed shear mixer and stirred for 1 to 2 minutes. Then, 2,2 ', 4,4'-tetrahydroxybenzophenone: (20:80) were added to a high-speed shear mixer and stirred for 1 to 2 minutes. 7% by weight of denatured ethanol was added and stirred for 1 to 2 minutes. Then, 20% by weight of butylcellosolve Followed by stirring for 1 to 2 minutes to prepare a composite metal oxide sol; (d) stirring the organic solvent and butyl cellosolve in a high-speed shear mixer for 1 to 2 minutes; (e) adding the titanium dioxide sol (a) to the stirring solution of (d) and stirring for 1 to 2 minutes; (f) The composite metal oxide sol of (c) is added to the stirring solution of (e), and the mixture is stirred for 1 to 2 minutes. After the inorganic binder of (b) is added, stirring is performed for 1 to 2 minutes to obtain a titanium dioxide photocatalyst And preparing a glass coating composition.
상기 이산화티탄 졸은 TTIP(titanium tetra-isopropoxide) 27 내지 33 중량%와 증류수 60 내지 70 중량%를 40 내지 80℃에서 200 내지 400 rpm의 교반 속도로 2 내지 8시간 동안 혼합한 후 질산 0.1 내지 3 중량%를 첨가하여 40 내지 80℃에서 15 내지 48시간 동안 교반하여 제조되는 것일 수 있다. 이 때 증류수는 TTIP를 분산시키고 TTIP의 알콕시기(-OR)를 하이드록시기(-OH)로 치환하는 가수분해 역할을 하며, 질산은 합성 반응 속도를 조절하는 촉매 역할 및 합성 시 해교 작용을 한다. 일반적으로 산성 촉매 하에서는 가수분해 속도가 높으며, 염기성 촉매 하에서는 중합 속도가 높은 것으로 알려져 있으며, TTIP의 경우 반응성이 매우 큰 전이금속이므로 침전 생성을 방지하기 위하여 산을 촉매로 사용하여 가수분해 및 중합 속도를 조절하는 것이 바람직하다. 또한 상기 질산의 양이 적은 경우에는 입자들 간의 인력보다 콜로이드 입자를 분산시켰던 상호 반발력이 더 커져 비교적 낮은 점도값을 나타내며 질산의 양이 많은 경우에는 입자들의 응집이 일어나 졸의 점도 및 입자의 층적밀도가 증가하여 표면적이 감소하므로 질산은 0.1 내지 3 중량% 첨가하는 것이 바람직하다. 또한 질산 첨가 후 반응 시간이 너무 짧으면 해교가 이루어지지 않고 점도가 높아지게 되며, 반응 시간이 길면 겔화가 진행되어 졸로서 사용할 수 없으므로 반응시간은 15 내지 48시간인 것이 바람직하다.The titanium dioxide sol is prepared by mixing 27 to 33% by weight of titanium tetra-isopropoxide (TTIP) and 60 to 70% by weight of distilled water at a stirring speed of 200 to 400 rpm at 40 to 80 캜 for 2 to 8 hours, By weight, and stirring at 40 to 80 DEG C for 15 to 48 hours. In this case, distilled water acts as a catalyst to disperse TTIP and substitute alkoxy group (-OR) of TTIP with hydroxyl group (-OH), acts as a catalyst to control the reaction rate of silver nitrate synthesis, and acts as a peptizing agent in synthesis. In general, it is known that the rate of hydrolysis is high under an acidic catalyst and that the rate of polymerization is high under a basic catalyst. Since TTIP is a highly reactive transition metal, hydrolysis and polymerization rate . In addition, when the amount of nitric acid is small, the mutual repulsive force that disperses the colloidal particles is larger than the attractive force between the particles, which results in a relatively low viscosity value. When the amount of nitric acid is large, the aggregation of particles occurs, And the surface area is decreased. Therefore, it is preferable to add 0.1 to 3% by weight of nitric acid. If the reaction time is too short after the addition of the nitric acid, the peptization does not occur and the viscosity becomes high. If the reaction time is long, the gelation proceeds and the reaction time is preferably from 15 to 48 hours since it can not be used as a sol.
또한, 상기 이산화티탄 졸의 입자는 10 nm 이하의 아타나제 타입인 것이 바람직하다. 이산화티탄은 아나타제, 루타일 및 브루카이트의 세 가지 구조를 가지며, 아나타제 구조는 루타일 및 브루카이트 구조에 비해 물이나 공기 중에 존재하는 오염 물질을 광분해 하는데 뛰어난 광촉매 활성을 가지고 있다. 또한 이산화티탄 졸의 입자 크기가 10 nm를 초과하는 경우에는 최종 이산화티탄 광촉매 유리코팅 조성물의 입자 크기가 증가할 수 있어 부적절하며, 광촉매의 효율이 떨어지는 문제가 있다.It is preferable that the particles of the titanium dioxide sol are of the Atanase type of 10 nm or less. Titanium dioxide has three structures, anatase, rutile and brookite. The anatase structure has superior photocatalytic activity to photodissociate contaminants present in water or air compared to rutile and brookite structures. In addition, when the particle size of the titanium dioxide sol is more than 10 nm, the particle size of the final titanium dioxide photocatalyst glass coating composition may increase, which is a problem in that the efficiency of the photocatalyst is inferior.
상기 무기 바인더는 알콕시실란 화합물 1 내지 10 중량%, 메탄올 1 내지 3 중량%, 에탄올 1 내지 3 중량%, 프로판올 10 내지 20 중량% 및 이소프로판올 60 내지 80 중량%를 혼합하여 20 내지 80℃에서 500 내지 1200 rpm의 교반 속도로 20 내지 120분간 교반하여 제조되는 것일 수 있다.The inorganic binder is prepared by mixing 1 to 10 wt% of an alkoxysilane compound, 1 to 3 wt% of methanol, 1 to 3 wt% of ethanol, 10 to 20 wt% of propanol and 60 to 80 wt% of isopropanol, And stirring at a stirring speed of 1200 rpm for 20 to 120 minutes.
또한, 상기 무기 바인더 전체 중량에 대하여 알콕시실란 화합물이 1 중량% 미만이면 경도가 낮아져 내구성이 감소하고 부착성이 저하될 수 있으며, 10 중량%를 초과하면 결합력이 강하여 코팅 시 코팅 도막에 크랙이 형성될 수 있다. 따라서, 알콕시실란은 1 내지 10 중량%를 첨가하는 것이 바람직하다.If the content of the alkoxysilane compound is less than 1% by weight based on the total weight of the inorganic binder, the hardness may be lowered and the durability may be decreased and the adhesion may be deteriorated. If it exceeds 10% by weight, . Therefore, it is preferable to add 1 to 10% by weight of the alkoxysilane.
상기 복합금속산화물은 적외선 및 자외선을 차단하는 성분이며, 안티몬 주석 산화물(ATO, antimony tin oxide) 5 내지 10 중량%, 산화아연 3 내지 5 중량%, 알콕시실란 화합물 7 내지 11 중량%, 에탄올 1 내지 3 중량%, 메탄올 1 내지 3 중량%, 프로판올 60 내지 80 중량%, 이소프로판올 1 내지 3 중량% 및 부틸셀로솔브 3 내지 10 중량%로 혼합되는 것일 수 있으며, 산화안티몬 6 중량%, 산화주석 24 중량% 및 에탄올 70 중량%로 혼합되는 것일 수 있다.Wherein the composite metal oxide is a component for blocking infrared rays and ultraviolet rays, and comprises 5 to 10% by weight of antimony tin oxide (ATO), 3 to 5% by weight of zinc oxide, 7 to 11% by weight of an alkoxysilane compound, 3 wt.% Of methanol, 1 to 3 wt.% Of methanol, 60 to 80 wt.% Of propanol, 1 to 3 wt.% Of isopropanol and 3 to 10 wt.% Of butyl cellosolve, 6 wt.% Of antimony oxide, By weight and 70% by weight of ethanol.
상기 (c) 단계에서의 알킬 실리케이트 올리고머 용액은 알킬 실리케이트 올리고머 1 내지 10 중량%, 에탄올 40 내지 50 중량%, 이소프로판올 40 내지 50 중량% 및 아세트산 0 내지 5 중량%의 비율로 혼합되는 것이 바람직하다. 상기 알킬 실리케이트 올리고머는 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란 및 디페닐디에톡시실란으로 이루어진 군에서 선택될 수 있다.The alkyl silicate oligomer solution in step (c) is preferably mixed in an amount of 1 to 10% by weight of an alkyl silicate oligomer, 40 to 50% by weight of ethanol, 40 to 50% by weight of isopropanol and 0 to 5% by weight of acetic acid. The alkyl silicate oligomer may be selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, cyclohexyltri Examples of the silane coupling agent include methoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane allyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, di Phenyl dimethoxy silane, and diphenyl diethoxy silane.
상기 (d) 단계에서의 유기용매는 프로판올 95 내지 99 중량%, 이소프로판올 0 내지 5 중량%, 메탄올 0 내지 1 중량% 및 에탄올 0 내지 1 중량%의 비율로 혼합되는 것이 바람직하다.In the step (d), the organic solvent may be mixed in a proportion of 95 to 99% by weight of propanol, 0 to 5% by weight of isopropanol, 0 to 1% by weight of methanol and 0 to 1% by weight of ethanol.
상기 질산은 입자의 표면에 정전기적 반발력을 유도함으로써 입자들 사이의 응집을 방지하여 안정화시키는 역할을 할 수 있으며, 이 때 상기 이산화티탄 졸은 pH 2 내지 3인 것이 바람직하다.The electrostatic repulsive force is induced on the surface of the silver nitrate particles to prevent agglomeration between the particles and to stabilize the titanium dioxide sol. In this case, the titanium dioxide sol preferably has a pH of 2 to 3.
상기 이산화티탄 졸은 3 내지 7.5 중량% 범위로 사용하는 것이 바람직하며, 3 중량% 미만이면 사용된 기재의 종류에 따라 부착성이 감소하는 문제가 있으며, 7.5 중량%를 초과하는 경우에는 많은 광 활성 성분으로 인해 기재에 손상을 줄 수 있다.The amount of the titanium dioxide sol is preferably in the range of 3 to 7.5% by weight, and if it is less than 3% by weight, adhesion of the titanium dioxide sol is reduced depending on the kind of the used substrate. If it exceeds 7.5% The components can damage the substrate.
또한 상기 무기 바인더는 광촉매와 함께 유기물을 분해하고 내구성 및 부착성을 증가시키는 역할을 하며, 3 내지 7.5 중량% 범위로 사용하는 것이 바람직하다. 상기 무기 바인더가 3 중량% 미만이면 내구성, 내오염성 및 유리와의 부착성이 저하되며, 7.5 중량%를 초과하면 태양열 차단을 위한 이산화티탄 및 복합금속산화물의 사용량이 감소하고 바인더의 노출 증가로 인해 태양열 차단 효과가 저하되는 문제점이 있다.In addition, the inorganic binder serves to decompose the organic material together with the photocatalyst and to increase durability and adhesion, and is preferably used in the range of 3 to 7.5% by weight. If the amount of the inorganic binder is less than 3% by weight, durability, stain resistance and adhesiveness to glass deteriorate. If the inorganic binder is more than 7.5% by weight, the amount of titanium dioxide and the composite metal oxide used for solar heat shielding decreases, There is a problem that the solar heat blocking effect is lowered.
또한 상기 복합금속산화물 졸은 3 내지 7.5 중량% 범위로 사용하는 것이 바람직하며, 3 중량% 미만이면 태양열 차단 효과가 감소하며, 7.5 중량%를 초과하면 다른 성분의 첨가량이 감소하여 원하는 특성을 갖는 도막의 형성에 어려움이 있다.In addition, the composite metal oxide sol is preferably used in an amount of 3 to 7.5% by weight. If it is less than 3% by weight, the solar heat shielding effect is reduced. If the amount exceeds 7.5% by weight, Is difficult to form.
상기 알콕시실란 화합물은 부착력을 증진시키는 역할을 수행하는 것으로, 메틸트리에톡시실란, 에틸트리에톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 페닐트리에톡시실란, 비닐트리에톡시실란, 알릴트리에톡시실란, 디메틸디에톡시실란 및 디페닐디에톡시실란으로 이루어진 군에서 선택될 수 있으며, 에틸 실리케이트 폴리머인 것이 바람직하다.The alkoxysilane compound plays a role of enhancing the adhesion, and is preferably a silane compound such as methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, phenyltriethoxysilane, vinyltriethoxysilane , Allyltriethoxysilane, dimethyldiethoxysilane, and diphenyldiethoxysilane, and it is preferably an ethyl silicate polymer.
상기 ATO의 입자 크기는 60 내지 80 nm인 것이 바람직하며, 상기 입자 크기가 60 nm 미만이면 분산 후 자체 응집력으로 인해 뭉치게 되고 재분산의 어려움이 있으며, 80 nm를 초과하는 경우에는 입자가 타원형으로 불규칙하여 작은 입자 크기의 용액 내 유동을 방해하게 된다.If the particle size of the ATO is less than 60 nm, the ATO particles aggregate due to self-cohesion after dispersing, and it is difficult to redisperse. When the particle size exceeds 80 nm, Which is irregular and interferes with the flow of the small particle size solution.
상기 산화아연, 산화안티몬 및 산화주석의 입자 크기는 10 내지 30 nm인 것이 바람직하며, 상기 입자 크기가 10 nm 미만이면 졸 형성 시 다루기가 용이하지 않고, 30 nm를 초과하면 가시광선을 흡수할 때 상기 복합금속산화물의 부피당 표면적이 넓어지게 되므로 광촉매의 효율이 낮아지는 문제가 있다.The particle size of the zinc oxide, antimony oxide and tin oxide is preferably 10 to 30 nm. If the particle size is less than 10 nm, it is not easy to handle during the formation of the sol. When the particle size exceeds 30 nm, There is a problem that the efficiency of the photocatalyst is lowered because the surface area per volume of the composite metal oxide is widened.
또한, 본 발명은 상기 제조방법에 따라 제조된 이산화티탄 광촉매 유리코팅 조성물에 관한 것이다.The present invention also relates to a titanium dioxide photocatalyst glass coating composition prepared according to the above process.
또한, 본 발명은 유리기재 표면에 상기 이산화티탄 광촉매 유리코팅 조성물로 만들어진 코팅막을 포함하는 유리기재에 관한 것이다.The present invention also relates to a glass substrate comprising a coating film made of the titanium dioxide photocatalyst glass coating composition on the glass substrate surface.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
제조예Manufacturing example
제조예Manufacturing example 1: 이산화티탄 졸 제조 1: Production of titanium dioxide sol
TTIP(titanium tetra-isopropoxide) 355 ml와 증류수 800 ml를 40℃에서 200 rpm의 교반 속도로 6시간 동안 혼합한 후 질산 2 내지 3 ml를 첨가하여 40℃에서 48시간 동안 교반하여 이산화티탄 졸을 제조하였다.355 ml of titanium tetra-isopropoxide (TTIP) and 800 ml of distilled water were mixed for 6 hours at a stirring rate of 200 rpm at 40 ° C., 2 to 3 ml of nitric acid was added, and the mixture was stirred at 40 ° C. for 48 hours to prepare titanium dioxide sol Respectively.
제조예Manufacturing example 2: 무기 바인더 제조 2: Manufacture of inorganic binders
알콕시실란 화합물 8 중량%, 메탄올 2 중량%, 에탄올 2 중량%, 프로판올 13 중량% 및 이소프로판올 75 중량%를 혼합하여 60℃에서 1000 rpm의 교반 속도로 20 내지 60분간 교반하여 무기 바인더를 제조하였다.8 wt% of alkoxysilane compound, 2 wt% of methanol, 2 wt% of ethanol, 13 wt% of propanol and 75 wt% of isopropanol were mixed and stirred at 60 ° C and 1000 rpm for 20 to 60 minutes to prepare an inorganic binder.
제조예Manufacturing example 3: 복합금속산화물 졸 제조 3: Preparation of composite metal oxide sol
1) 복합금속산화물 졸 A1) Composite metal oxide sol A
알킬 실리케이트 올리고머 7 중량%, 에탄올 45 중량%, 이소프로판올 45 중량% 및 아세트산 3 중량%로 혼합된 알킬 실리케이트 올리고머(alkyl silicate oligomer) 용액 40 중량%와 안티몬 주석 산화물(ATO, antimony tin oxide) 8 중량%, 산화아연 4 중량%, 알콕시실란 8 중량%, 에탄올 2 중량%, 메탄올 2 중량%, 프로판올 67 중량%, 이소프로판올 2 중량% 및 부틸셀로솔브 7 중량%로 혼합된 복합금속산화물 27 중량%를 고속전단믹서에 넣고 2분간 교반한 후, 2,2',4,4'-tetrahydroxybenzophenone:변성에탄올(20:80) 혼합액 6 중량%를 고속전단믹서에 첨가하여 2분간 교반하고, 변성에탄올 7 중량%를 첨가하여 2분간 교반한 뒤, 부틸셀로솔브(butylcellosolve) 20 중량%를 첨가하여 2분간 교반하여 복합금속산화물 졸 A를 제조하였다.40 wt% of an alkyl silicate oligomer solution mixed with 7 wt% of alkyl silicate oligomer, 45 wt% of ethanol, 45 wt% of isopropanol and 3 wt% of acetic acid, 8 wt% of antimony tin oxide (ATO) 27 weight% of composite metal oxide mixed with 4 weight% of zinc oxide, 8 weight% of alkoxysilane, 2 weight% of ethanol, 2 weight% of methanol, 67 weight% of propanol, 2 weight% of isopropanol and 7 weight% of butyl cellosolve The mixture was stirred for 2 minutes and then 6 wt% of a mixed solution of 2,2 ', 4,4'-tetrahydroxybenzophenone: denatured ethanol (20:80) was added to a high-speed shear mixer and stirred for 2 minutes. %, And the mixture was stirred for 2 minutes. Then, 20% by weight of butylcellosolve was added and stirred for 2 minutes to prepare a composite metal oxide sol A.
2) 복합금속산화물 졸 B2) Compound metal oxide sol B
알킬 실리케이트 올리고머 7 중량%, 에탄올 45 중량%, 이소프로판올 45 중량% 및 아세트산 3 중량%로 혼합된 알킬 실리케이트 올리고머(alkyl silicate oligomer) 용액 40 중량%와 산화안티몬 6 중량%, 산화주석 24 중량% 및 에탄올 70 중량%로 혼합된 복합금속산화물 27 중량%를 고속전단믹서에 넣고 2분간 교반한 후, 2,2',4,4'-tetrahydroxybenzophenone:변성에탄올(20:80) 혼합액 6 중량%를 고속전단믹서에 첨가하여 2분간 교반하고, 변성에탄올 7 중량%를 첨가하여 2분간 교반한 뒤, 부틸셀로솔브(butylcellosolve) 20 중량%를 첨가하여 2분간 교반하여 복합금속산화물 졸 B를 제조하였다.40 wt% of an alkyl silicate oligomer solution mixed with 7 wt% of an alkyl silicate oligomer, 45 wt% of ethanol, 45 wt% of isopropanol and 3 wt% of acetic acid, 6 wt% of antimony oxide, 24 wt% 27% by weight of a composite metal oxide mixed in an amount of 70% by weight was placed in a high-speed shear mixer and stirred for 2 minutes. 6% by weight of a mixed solution of 2,2 ', 4,4'-tetrahydroxybenzophenone: denatured ethanol (20:80) The mixture was stirred for 2 minutes, 7% by weight of denatured ethanol was added, and the mixture was stirred for 2 minutes. Then, 20% by weight of butylcellosolve was added and stirred for 2 minutes to prepare a composite metal oxide sol B.
실시예Example
실시예Example 1 One
프로판올 97 중량%, 이소프로판올 1 중량%, 메탄올 1 중량% 및 에탄올 1 중량%의 비율로 혼합된 유기용매 84 중량%와 부틸셀로솔브 3 중량%를 고속전단믹서에 넣고 2분간 교반한 후, 상기 제조예 1의 이산화티탄 졸 5 중량%를 첨가하여 2분간 교반하였다. 반응이 완료되면 상기 제조예 3의 복합금속산화물 졸 A 5 중량%를 첨가하여 2분간 교반한 후, 상기 제조예 2의 무기 바인더 3 중량%를 첨가하고 2분간 교반하여 이산화티탄 광촉매 유리코팅 조성물을 제조하였다.84 wt% of an organic solvent and 3 wt% of butyl cellosolve mixed in a ratio of 97 wt% of propanol, 1 wt% of isopropanol, 1 wt% of methanol and 1 wt% of ethanol were put into a high-speed shear mixer and stirred for 2 minutes, 5% by weight of the titanium dioxide sol of Production Example 1 was added and stirred for 2 minutes. When the reaction was completed, 5% by weight of the composite metal oxide sol A of Preparation Example 3 was added and stirred for 2 minutes. Then, 3% by weight of the inorganic binder of Preparation Example 2 was added and stirred for 2 minutes to prepare a titanium dioxide photocatalyst glass coating composition .
실시예Example 2 2
상기 실시예 1과 동일하게 실시하되, 상기 제조예 1의 이산화티탄 졸과 상기 제조예 2의 무기 바인더 및 상기 제조예 3의 복합금속산화물 졸 A의 비율을 5:5:3의 중량비로 사용하여 수행하였다.The procedure of Example 1 was repeated except that the titanium dioxide sol of Production Example 1, the inorganic binder of Production Example 2 and the composite metal oxide sol A of Production Example 3 were used at a weight ratio of 5: 5: 3 Respectively.
실시예Example 3 3
상기 실시예 1과 동일하게 실시하되, 상기 제조예 1의 이산화티탄 졸과 상기 제조예 2의 무기 바인더 및 상기 제조예 3의 복합금속산화물 졸A의 비율을 3:5:5의 중량비로 사용하여 수행하였다.The procedure of Example 1 was repeated except that the titanium dioxide sol of Preparation Example 1, the inorganic binder of Preparation Example 2 and the composite metal oxide sol A of Preparation Example 3 were used in a weight ratio of 3: 5: 5 Respectively.
실시예Example 4 4
상기 실시예 1과 동일하게 실시하되, 상기 제조예 3의 복합금속산화물 졸 A 대신에 복합금속산화물 졸 B를 사용하여 제조하였다.The procedure of Example 1 was repeated except that a composite metal oxide sol B was used in place of the composite metal oxide sol A of Production Example 3.
실시예Example 5 5
상기 실시예 4와 동일하게 실시하되, 상기 제조예 1의 이산화티탄 졸과 상기 제조예 2의 무기 바인더 및 상기 제조예 3의 복합금속산화물 졸 B의 비율을 5:5:3의 중량비로 사용하여 수행하였다.The procedure of Example 4 was repeated except that the titanium dioxide sol of Preparation Example 1, the inorganic binder of Preparation Example 2 and the composite metal oxide sol B of Preparation Example 3 were used in a weight ratio of 5: 5: 3 Respectively.
실시예Example 6 6
상기 실시예 4와 동일하게 실시하되, 상기 제조예 1의 이산화티탄 졸과 상기 제조예 2의 무기 바인더 및 상기 제조예 3의 복합금속산화물 졸 B의 비율을 3:5:5의 중량비로 사용하여 수행하였다.The procedure of Example 4 was repeated except that the titanium dioxide sol of Preparation Example 1, the inorganic binder of Preparation Example 2 and the composite metal oxide sol B of Preparation Example 3 were used in a weight ratio of 3: 5: 5 Respectively.
비교예Comparative Example 1 One
프로판올 97 중량%, 이소프로판올 1 중량%, 메탄올 1 중량% 및 에탄올 1 중량%의 비율로 혼합된 유기용매 82 중량%와 부틸셀로솔브 3 중량%를 고속전단믹서에 넣고 2분간 교반한 후, 상기 제조예 1의 이산화티탄 졸 7.5 중량%를 첨가하여 2분간 교반하였다. 반응이 완료되면 상기 제조예 3의 복합금속산화물 졸 A 7.5 중량%를 첨가하고 2분간 교반하였다.82 wt% of an organic solvent and 3 wt% of butyl cellosolve mixed in a ratio of 97 wt% of propanol, 1 wt% of isopropanol, 1 wt% of methanol and 1 wt% of ethanol were put into a high-speed shear mixer and stirred for 2 minutes, 7.5% by weight of titanium dioxide sol of Production Example 1 was added and stirred for 2 minutes. When the reaction was completed, 7.5 weight% of the composite metal oxide sol A of Preparation Example 3 was added and stirred for 2 minutes.
비교예Comparative Example 2 2
상기 비교예 1과 동일하게 실시하되, 상기 제조예 3의 복합금속산화물 졸 A 대신에 상기 제조예 2의 무기 바인더를 사용하여 제조하였다.The same procedure as in Comparative Example 1 was carried out except that the inorganic binder of Production Example 2 was used instead of the composite metal oxide sol A of Production Example 3.
상기 실시예 1 내지 6 및 상기 비교예 1 내지 2의 구성 요소 성분비를 하기 표 1에 나타내었다.The component component ratios of Examples 1 to 6 and Comparative Examples 1 and 2 are shown in Table 1 below.
실험예Experimental Example 1: 광학적 특성 평가 1: Evaluation of optical characteristics
본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물의 광학적 특성을 평가하기 위하여 UV-vis spectrometer를 이용하여 가시광선 및 근적외선에 대한 투과율을 측정하였다. 실시예 1 내지 6 및 비교예 1 내지 2에 의해 제조된 이산화티탄 광촉매 유리코팅 조성물을 유리 표면을 충분히 적시도록 2회 반복하여 유리 표면에 도포한 후 대기 중에서 10분간 건조하였다. 이산화티탄 광촉매 유리코팅 조성물로 코팅된 유리와 코팅되지 않은 유리에 UV-vis spectrometer를 이용하여 빛을 조사한 뒤 가시광선(530 nm)과 근적외선(980 nm)의 투과율을 측정하여 하기 표 2에 표기하였다.In order to evaluate the optical properties of the titanium dioxide photocatalyst glass coating composition according to the present invention, the transmittance for visible light and near-infrared light was measured using a UV-vis spectrometer. The titanium dioxide photocatalytic glass coating composition prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was applied to the glass surface twice repeatedly so as to sufficiently wet the glass surface, followed by drying in the air for 10 minutes. The transmittance of visible light (530 nm) and near-infrared light (980 nm) were measured on a glass coated and uncoated glass coated with a titanium dioxide photocatalyst glass coating composition using a UV-vis spectrometer and the results are shown in Table 2 below .
상기 표 2를 보면, 실시예 1 내지 6 및 비교예 1은 복합금속산화물의 첨가로 인해 비교예 2에 비해 근적외선 투과율이 현저히 낮아 적외선 차단율이 높음을 알 수 있다. 또한 실시예 1 내지 6 및 비교예 1 내지 2는 모두 가시광선 투과율이 우수하였으며, 이를 통해 복합금속산화물 및 무기 바인더를 첨가하여도 이산화티탄의 우수한 가시광선 투과율을 유지하여 투명성을 가짐을 알 수 있다.In Table 2, it can be seen that Examples 1 to 6 and Comparative Example 1 have a far lower infrared transmittance than Comparative Example 2 because of the addition of the composite metal oxide. Also, in Examples 1 to 6 and Comparative Examples 1 and 2, visible light transmittance was excellent, and it was found that even when a composite metal oxide and an inorganic binder were added, excellent visible light transmittance of titanium dioxide was maintained and transparency was obtained .
실험예Experimental Example 2: 2: 초친수성Super hydrophilic 특성 평가 Character rating
본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물의 초친수성을 평가하기 위해 접촉각 측정기(Phoenix 300, SEO)를 이용하여 접촉각을 측정하였다. 상기 실험예 1과 동일한 방법으로 제조한 이산화티탄 광촉매 유리코팅 조성물이 도포된 유리 표면에 물방울을 떨어뜨려 접촉각을 측정하였으며, 측정값을 하기 표 3에 표기하였다.The contact angle was measured using a contact angle meter (Phoenix 300, SEO) to evaluate the superhydrophilicity of the titanium dioxide photocatalyst glass coating composition according to the present invention. The contact angle was measured by dropping water droplets on the glass surface coated with the titanium dioxide photocatalyst glass coating composition prepared in the same manner as in Experimental Example 1. The measured values are shown in Table 3 below.
초친수성은 표면이 젖어도 물방울을 만들지 않고 엷은 막을 만들어 내는 성질이며, 일반적으로 접촉각이 5° 이하일 때를 의미한다. 한편, 접촉각의 크기에 따라 친수성은 30° 이하, 소수성은 60 내지 90°, 발수성은 90° 이상, 초발수성은 150° 이상으로 구분할 수 있다. 상기 표 3에 나타낸 바와 같이, 실시예 1 내지 6 및 비교예 2는 무기 바인더 첨가로 인해 친수성이 증가하여 접촉각이 모두 5° 이하로, 코팅된 유리 표면이 초친수성을 나타내며, 무기 바인더가 첨가되지 않은 비교예 1은 친수성을 띠는 이산화티탄이 유리의 표면에 코팅되어 있어 접촉각이 30° 이하로, 친수성을 나타내는 것을 확인할 수 있다. Superhydrophilic property is a property of making a thin film without making water droplets even when the surface is wet, and generally refers to when the contact angle is 5 ° or less. On the other hand, depending on the contact angle, hydrophilicity can be divided into 30 ° or less, hydrophobicity 60 to 90 °, water repellency 90 ° or more, and super water repellency 150 ° or more. As shown in Table 3, in Examples 1 to 6 and Comparative Example 2, the hydrophilic property was increased due to the addition of the inorganic binder, the contact angle was all less than 5 °, the coated glass surface exhibited superhydrophilic property, and the inorganic binder was not added In Comparative Example 1, in which the hydrophilic titanium dioxide was coated on the surface of the glass, it was confirmed that the contact angle was 30 ° or less, indicating hydrophilicity.
실험예Experimental Example 3: 내오염성 효과 평가 3: Evaluation of stain resistance effect
본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물의 내오염성 효과를 평가하기 위해 옥외폭로 오염과 유사한 시험 결과를 나타내는 카본 블랙 오염성 평가 시험을 진행하였다. 에탄올에 카본 블랙을 넣고 초음파 처리하여 분산시킨 5% 카본 블랙 용액을 상기 실험예 1과 동일한 방법으로 제조한 이산화티탄 광촉매 유리코팅 조성물이 도포된 유리 표면에 에어스프레이로 도포하여 80℃에서 2시간 동안 방치한 뒤 물로 세척한 후 색상 변화를 확인하였다. 상기 색상 변화는 색상 변화의 정도에 따라 최소 점수를 0점으로 하고 최고 점수를 5점으로 하여 측정하였으며, 그 결과를 하기 표 4에 나타내었다.In order to evaluate the stain resistance effect of the titanium dioxide photocatalytic glass coating composition according to the present invention, a carbon black stain evaluation test showing a test result similar to outdoor exposure contamination was conducted. A 5% carbon black solution in which carbon black was added to ethanol and dispersed by ultrasonic treatment was applied to a glass surface coated with a titanium dioxide photocatalyst glass coating composition prepared in the same manner as in Experimental Example 1 by air spraying and then dried at 80 ° C for 2 hours After washing with water, the color change was confirmed. The color change was measured with a minimum score of 0 and a maximum score of 5 according to the degree of color change, and the results are shown in Table 4 below.
상기 표 4에서 보는 바와 같이, 실시예 1 내지 실시예 6 및 비교예 2는 무기 바인더의 사용으로 내오염성이 우수하여 색상의 변화가 거의 없는 것을 확인하였으며, 비교예 1의 경우 무기 바인더가 첨가되지 않아 내오염성 효과가 다소 낮음을 확인하였다. 상기 결과로부터, 무기 바인더는 내오염성 효과를 증가시켜 코팅 유리에 대한 우수한 방오 효과를 지님을 알 수 있다.As shown in Table 4, Examples 1 to 6 and Comparative Example 2 showed excellent stain resistance due to the use of an inorganic binder and showed almost no change in hue. In Comparative Example 1, inorganic binders were not added It was confirmed that the stain resistance effect was somewhat low. From the above results, it can be seen that the inorganic binder increases the stain resistance effect and has an excellent antifouling effect on the coated glass.
실험예Experimental Example 4: 4: 광촉매Photocatalyst 활성 평가 Activity evaluation
본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물의 광촉매 활성을 평가하기 위해 가시광선 하에서 유기물 분해 실험을 실시하였으며, 유기물은 대표적인 실내 오염물 중 하나인 포름알데히드를 선정하였다. 상기 실험예 1과 동일한 방법으로 제조한 이산화티탄 광촉매 유리코팅 조성물이 도포된 유리 표면에 100 ppm 포름알데히드 용액을 에어스프레이로 도포한 뒤, 300 W 제논 램프(Oriel instruments)로 빛을 조사하였다. 이때 420 nm 이하의 자외선을 차단하는 UV 필터를 사용하여 가시광선 영역에서의 광활성화를 확인하였다. 상기 가시광 광촉매 반응에 의하여 포름알데히드가 분해되어 생성된 이산화탄소의 농도를 기체 크로마토그래피(Agilent 6890N, Agilent Technologies)를 이용하여 20분 간격으로 2시간 동안 측정하였으며, 그 결과를 하기 표 5에 나타내었다.In order to evaluate the photocatalytic activity of the titanium dioxide photocatalytic glass coating composition according to the present invention, organic decomposition experiments were conducted under visible light. Formaldehyde, one of representative indoor contaminants, was selected as the organic material. A 100 ppm formaldehyde solution was applied to the glass surface coated with the titanium dioxide photocatalyst glass coating composition prepared in the same manner as in Experimental Example 1 by air spray and irradiated with light using a 300 W xenon lamp (Oriel instruments). At this time, the light activation in the visible light region was confirmed by using a UV filter which cuts off ultraviolet rays of 420 nm or less. The concentration of carbon dioxide produced by the decomposition of formaldehyde by the visible light photocatalytic reaction was measured for 2 hours at intervals of 20 minutes using gas chromatography (Agilent 6890N, Agilent Technologies). The results are shown in Table 5 below.
상기 표 5에 나타낸 바와 같이, 실시예 1 내지 실시예 6 및 비교예 1은 복합금속산화물의 첨가로 인하여 가시광선 영역에서의 활성을 보여 가시광선 하에서 높은 광촉매 효율을 보임을 알 수 있다. 한편, 비교예 2는 복합금속산화물이 첨가되지 않아 가시광선 영역에서 광촉매 활성이 낮은 것을 확인하였다.As shown in Table 5, Examples 1 to 6 and Comparative Example 1 exhibited high photocatalytic efficiency under visible light due to the activity in the visible light region due to the addition of the composite metal oxide. On the other hand, in Comparative Example 2, the composite metal oxide was not added and the photocatalytic activity was low in the visible light region.
실험예Experimental Example 5: 5: 부착성Attachment 평가 evaluation
본 발명에 따른 이산화티탄 광촉매 유리코팅 조성물의 부착성을 평가하기 위해 상기 실험예 1과 동일한 방법으로 제조한 이산화티탄 광촉매 유리코팅 조성물이 도포된 유리 표면을 1 mm 간격으로 절단선을 새겨 100개의 칸을 만든 후, 상기 유리 표면에 셀로판테이프를 붙이고 급격히 떼어내는 동작을 5회 반복하여 박리 테스트를 수행하였다. 5회 반복한 후 박리된 칸 수가 1 내지 10개인 경우를 ○, 11 내지 30개인 경우를 □, 30개 이상인 경우를 △로 표기하여 하기 표 6에 나타내었다.In order to evaluate the adhesion of the titanium dioxide photocatalyst glass coating composition according to the present invention, the glass surface coated with the titanium dioxide photocatalyst glass coating composition prepared in the same manner as in Experimental Example 1 was cut at intervals of 1 mm, A peeling test was conducted by repeating the operation of attaching a cellophane tape to the glass surface and abruptly peeling it off five times. The results are shown in Table 6 below. ≪ tb > < TABLE > Id = Table 6 Columns = 6 < tb >
상기 표 6에 나타낸 바와 같이, 실시예 1 내지 실시예 6 및 비교예 2는 무기 바인더의 첨가로 인해 유리와의 부착 정도가 향상되어 우수한 부착성을 가짐을 확인하였으며, 비교예 1의 경우 무기 바인더가 첨가되지 않아 부착성이 다소 떨어짐을 알 수 있다.As shown in Table 6, in Examples 1 to 6 and Comparative Example 2, it was confirmed that the degree of adhesion with glass was improved due to the addition of an inorganic binder and that it had excellent adhesion. In Comparative Example 1, It can be seen that the adhesiveness is somewhat deteriorated.
Claims (11)
(b) 알콕시실란 화합물 6 내지 10 중량%, 메탄올 1 내지 3 중량%, 에탄올 1 내지 3 중량%, 프로판올 12 내지 20 중량% 및 이소프로판올 65 내지 80 중량%를 혼합하여 무기 바인더를 제조하는 단계;
(c) 알킬 실리케이트 올리고머(alkyl silicate oligomer) 용액 40 중량%와 복합금속산화물 27 중량%를 고속전단믹서에 넣고 1 내지 2분간 교반한 후, 2,2',4,4'-tetrahydroxybenzophenone:변성에탄올(20:80) 혼합액 6 중량%를 고속전단믹서에 첨가하여 1 내지 2분간 교반하고, 변성에탄올 7 중량%를 첨가하여 1 내지 2분간 교반한 뒤, 부틸셀로솔브(butylcellosolve) 20 중량%를 첨가하여 1 내지 2분간 교반하여 복합금속산화물 졸을 제조하는 단계;
(d) 유기용매와 부틸셀로솔브를 고속전단믹서에 넣고 1 내지 2분간 교반하는 단계;
(e) 상기 (d)의 교반 용액에 상기 (a)의 이산화티탄 졸을 첨가하여 1 내지 2분간 교반하는 단계;
(f) 상기 (e)의 교반 용액에 상기 (c)의 복합금속산화물 졸을 첨가한 후 1 내지 2분간 교반하고, (b)의 무기 바인더를 첨가한 후 1 내지 2분간 교반하여 이산화티탄 광촉매 유리코팅 조성물을 제조하는 단계;를 포함하고,
상기 복합금속산화물은 안티몬 주석 산화물(ATO, antimony tin oxide)과 산화아연의 혼합물 또는 산화안티몬과 산화주석의 혼합물을 포함하는 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
(a) mixing 29.9 to 33% by weight of titanium tetra-isopropoxide (TTIP), 0.1 to 3% by weight of nitric acid and 65 to 70% by weight of distilled water to prepare a titanium dioxide sol;
(b) preparing an inorganic binder by mixing 6 to 10% by weight of an alkoxysilane compound, 1 to 3% by weight of methanol, 1 to 3% by weight of ethanol, 12 to 20% by weight of propanol and 65 to 80% by weight of isopropanol.
(c) 40 wt% of an alkyl silicate oligomer solution and 27 wt% of a composite metal oxide were placed in a high-speed shear mixer and stirred for 1 to 2 minutes. Then, 2,2 ', 4,4'-tetrahydroxybenzophenone: (20:80) were added to a high-speed shear mixer and stirred for 1 to 2 minutes. 7% by weight of denatured ethanol was added and stirred for 1 to 2 minutes. Then, 20% by weight of butylcellosolve Followed by stirring for 1 to 2 minutes to prepare a composite metal oxide sol;
(d) stirring the organic solvent and butyl cellosolve in a high-speed shear mixer for 1 to 2 minutes;
(e) adding the titanium dioxide sol (a) to the stirring solution of (d) and stirring for 1 to 2 minutes;
(f) The composite metal oxide sol of (c) is added to the stirring solution of (e), and the mixture is stirred for 1 to 2 minutes. After the inorganic binder of (b) is added, stirring is performed for 1 to 2 minutes to obtain a titanium dioxide photocatalyst Preparing a glass coating composition,
Wherein the composite metal oxide comprises a mixture of antimony tin oxide (ATO) and zinc oxide or a mixture of antimony oxide and tin oxide.
상기 (c) 단계에서의 알킬 실리케이트 올리고머 용액은 알킬 실리케이트 올리고머 5 내지 10 중량%, 에탄올 44 내지 50 중량%, 이소프로판올 40 내지 50 중량% 및 아세트산 1 내지 5 중량%의 비율로 혼합되는 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
Wherein the alkyl silicate oligomer solution in step (c) is mixed in an amount of 5 to 10 wt% of an alkyl silicate oligomer, 44 to 50 wt% of ethanol, 40 to 50 wt% of isopropanol, and 1 to 5 wt% of acetic acid Method for producing titanium dioxide photocatalyst glass coating composition
상기 (d) 단계에서의 유기용매는 프로판올 95 내지 99 중량%, 이소프로판올 1 내지 5 중량%, 메탄올 0 내지 1 중량% 및 에탄올 0 내지 1 중량%의 비율로 혼합되는 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
Wherein the organic solvent in the step (d) is mixed in a ratio of 95 to 99% by weight of propanol, 1 to 5% by weight of isopropanol, 0 to 1% by weight of methanol and 0 to 1% by weight of ethanol, Method for producing coating composition
상기 이산화티탄 졸은 pH 2 내지 3인 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
Wherein the titanium dioxide sol has a pH of from 2 to 3, and a method of producing the titanium dioxide photocatalyst glass coating composition
상기 이산화티탄 광촉매 유리코팅 조성물은 이산화티탄 졸 4 내지 7.5 중량%, 무기 바인더 3 내지 7.5 중량%, 복합금속산화물 졸 3 내지 7.5 중량%, 유기용매 82 내지 87 중량% 및 부틸셀로솔브 3 중량%의 비율로 혼합되는 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
The titanium dioxide photocatalyst glass coating composition comprises 4 to 7.5% by weight of titanium dioxide sol, 3 to 7.5% by weight of inorganic binder, 3 to 7.5% by weight of composite metal oxide sol, 82 to 87% by weight of organic solvent and 3% By weight based on the total weight of the titanium dioxide photocatalyst glass composition.
상기 알콕시실란 화합물은 메틸트리에톡시실란, 에틸트리에톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 페닐트리에톡시실란, 비닐트리에톡시실란, 알릴트리에톡시실란, 디메틸디에톡시실란 및 디페닐디에톡시실란으로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
The alkoxysilane compound may be at least one selected from the group consisting of methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, phenyltriethoxysilane, vinyltriethoxysilane, allyltriethoxysilane, dimethyldiethoxy Silane, and diphenyldiethoxysilane. ≪ RTI ID = 0.0 > 8. < / RTI >
상기 ATO의 입자 크기는 60 내지 80 nm인 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
Wherein the ATO has a particle size of 60 to 80 nm.
상기 산화아연, 산화안티몬 및 산화주석의 입자 크기는 10 내지 30 nm인 것을 특징으로 하는 이산화티탄 광촉매 유리코팅 조성물의 제조방법
The method according to claim 1,
Wherein the particle size of the zinc oxide, antimony oxide and tin oxide is 10 to 30 nm.
A titanium dioxide photocatalytic glass coating composition prepared according to the manufacturing method according to any one of claims 1 to 6, 8 and 9
A glass substrate comprising a coating film made of a titanium dioxide photocatalyst glass coating composition according to claim 10 on a glass substrate surface
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170003594A KR101760060B1 (en) | 2017-01-10 | 2017-01-10 | Titanium dioxide photocatalyst composition for glass coating and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170003594A KR101760060B1 (en) | 2017-01-10 | 2017-01-10 | Titanium dioxide photocatalyst composition for glass coating and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101760060B1 true KR101760060B1 (en) | 2017-07-20 |
Family
ID=59443566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170003594A KR101760060B1 (en) | 2017-01-10 | 2017-01-10 | Titanium dioxide photocatalyst composition for glass coating and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101760060B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190115255A (en) | 2018-04-02 | 2019-10-11 | 부산대학교 산학협력단 | Glass frit composition and glass enamel composition comprising same for air purifier and manufacturing method thereof |
CN115304904A (en) * | 2022-09-08 | 2022-11-08 | 东莞市兴晟达智能科技有限公司 | Anti-aging high-resilience earphone neck hanging wire and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007112905A (en) | 2005-10-20 | 2007-05-10 | Institute Of National Colleges Of Technology Japan | Method for producing visible light transmission type photocatalyst coating solution and visible light transmission type photocatalyst coating solution |
-
2017
- 2017-01-10 KR KR1020170003594A patent/KR101760060B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007112905A (en) | 2005-10-20 | 2007-05-10 | Institute Of National Colleges Of Technology Japan | Method for producing visible light transmission type photocatalyst coating solution and visible light transmission type photocatalyst coating solution |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190115255A (en) | 2018-04-02 | 2019-10-11 | 부산대학교 산학협력단 | Glass frit composition and glass enamel composition comprising same for air purifier and manufacturing method thereof |
CN115304904A (en) * | 2022-09-08 | 2022-11-08 | 东莞市兴晟达智能科技有限公司 | Anti-aging high-resilience earphone neck hanging wire and preparation method thereof |
CN115304904B (en) * | 2022-09-08 | 2024-02-20 | 东莞市兴晟达智能科技有限公司 | Aging-resistant high-resilience earphone neck hanging wire and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1525338B1 (en) | Substrate comprising a photocatalytic tio2 layer | |
KR101144574B1 (en) | Photocatalyst-coated body and photocatalytic coating fluid therefor | |
WO2000018504A1 (en) | Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling | |
US20050191505A1 (en) | Substrates comprising a photocatalytic TiO2 layer | |
KR20140011959A (en) | Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for making the same, uv-shielding silicone coating composition, and coated article | |
JP6579274B2 (en) | Photocatalyst laminate | |
WO2004041723A1 (en) | Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite | |
JP2012512019A (en) | Self-cleaning paint composition | |
WO2010143645A1 (en) | Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor | |
JP4823045B2 (en) | Water-based photocatalytic composition | |
JP2012250134A (en) | Photocatalyst-coated object, and photocatalyst coating liquid therefor | |
JP6876908B2 (en) | Titanium oxide particles and their production method, photocatalyst forming composition, photocatalyst, and structure | |
KR101760060B1 (en) | Titanium dioxide photocatalyst composition for glass coating and preparation method thereof | |
KR101028797B1 (en) | The functional coating agent and manufacturing mtehod the same | |
JP4738736B2 (en) | Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure | |
JPH1192689A (en) | Inorganic coating | |
KR100784137B1 (en) | Titanium Dioxide Photocatalyst and Its Coating Method | |
JP2009119462A (en) | Photocatalytic coated body and photocatalytic coating liquid for the same | |
WO2019239808A1 (en) | Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover | |
JP4972268B2 (en) | Liquid for forming titanium oxide film, method for forming titanium oxide film, titanium oxide film and photocatalytic member | |
KR20230156624A (en) | Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function | |
JP2010149005A (en) | Article coated with photocatalyst, and photocatalytic coating liquid therefor | |
WO2009133591A1 (en) | Photocatalytic coating composition and substrate having coating film | |
KR102558794B1 (en) | Hydrophilic hard coating composition containing titanium dioxide nanoparticles | |
JP2010150768A (en) | Building material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |